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Abstract— This paper focuses on the swing up and 
stabilization control of a rotary inverted pendulum system with 
linear quadratic regulator (LQR), sliding mode control (SMC) 
and fuzzy logic control (FLC). The inverted pendulum, a popular 
control application exists in several forms and due to its 
widespread use for prototyping control schemes we present 
experimental results obtained on a rotary version of the 
pendulum. The paper develops the dynamical model and 
introduces the implementation of the considered schemes 
comparatively. 
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I. INTRODUCTION 
The inverted pendulum systems have two typical forms studies 

frequently in the literature. First is the classical one running on 
straight path to balance the pole yet the other is the rotary one 
which is capable of performing swing up. Both are underactuated 
mechanical systems and they have been studied numerously to 
demonstrate when a novel scheme is proposed or when a control 
teaching material is proposed. The nonlinear and coupled nature of 
the differential equations describing the system dynamics is found 
further appealing to those experimenting control laws in real time. 

Underactuated systems have fewer actuators than the degrees 
of freedom. Because of this, the strategies developed for fully 
actuated systems may not be applied directly to underactuated 
systems During the last few decades, developing different control 
strategies for underactuated systems has drawn a great interest as 
most physical systems have an underactuated description, such as 
those in robotics, aerospace engineering, and marine engineering. 
Until recently, designing global controllers for underactuated 
systems was a challenge, yet, to overcome this problem, the 
control engineering framework now offers several tools based on 
quadratic optimization, hard boundary switching laws (sliding 
mode control) or soft boundary laws based on fuzzy set theory. 

Aside from the underactuated nature of the dynamics, the 
difficulty of the control problem is the desire of balancing the pole 
around the unstable equilibrium point. Despite the dynamics is 
well known and it is possible to apply the feedback linearization 
scheme, the fact that the system is a nonminimum phase one 

makes the application of the scheme a tedious task [1]. This paper 
presents the results obtained with linear quadratic controller. Since 
the optimization problem can be expressed in terms of the tracking 
errors and the cost functional, it is possible to develop a linear 
quadratic controller based on the linearized model of the plant 
around the desired operating point. Despite the widespread 
applicability of the scheme, the fact that it necessitates the 
linearized plant dynamics is a drawback making the controller 
useless for he operating points that are dissimilar to the one used 
for linearization. Sliding mode control, a nonlinear and two sided 
witching type control scheme, is implemented to see the 
robustness and invariance properties. Lastly, the experiments are 
carried out to discover the performance of the fuzzy controllers 
based on sets labeled by linguistic qualifiers and with unsharp 
boundaries. Each scheme has pros and cons discussed in the paper. 

So far, many approaches have been proposed to swing up and 
stabilization control for inverted pendulum systems. In [2-3], a 
swing up control algorithm is proposed and in [4], minimum time 
swing up by iterative impulsive control method is elaborated. 
Another technique, called energy based control, is studied in [5-6]. 
The LQR is presented to optimize the controller gains in [7], 
artificial neural networks and fuzzy logic systems are utilized for 
swing up process and stabilization in [8-10]. In [11], fuzzy swing 
up and fuzzy stabilization based on linear quadratic regulator 
approach for the rotary inverted pendulum is investigated. 
Conventional sliding mode control technique can not be applied 
for underactuated systems since they can not be decoupled and not 
every subsystem is equipped with an individual control channel. In 
[12], to overcome this problem, a modification to sliding surface is 
considered. A coupled sliding surface is highlighted for actuated 
and unactuated states and their time derivatives in [13]. Also an 
aggressive swing up by saturation functions and a state dependent 
coupling parameter in coupled sliding surfaces is introduced in 
[13-14]. Due to insufficiency of conventional methods a 
nonregular backstepping technique is proposed in [15]. Sliding 
mode control, designed by the use of fuzzy sliding surfaces, is 
introduced in [16-17]. 

This paper is organized as follows. The second section 
presents description of the rotary inverted pendulum system and 
derivation of the mathematical model. LQR and state feedback 
controller, SMC and FLC are described in the following sections, 
respectively, with real time experimental results. Finally, the 
concluding remarks are given at the end of the paper. 
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II. ROTARY INVERTED PENDULUM SYSTEM 

A. Description of the system 
Rotary inverted pendulum system as known Furuta 

pendulum was first developed by Katsuhisa Furuta in Tokyo 
Institute of Technology. The testing apparatus showing the 
definitions of the angles are is depicted in Fig. 1. 

 
Figure1:Rotary inverted Pendulum System 

 
The system consists of a servo system and a pendulum 

attached to the tip of a link appropriately as shown above. 
Angular displacement in the horizontal plane is denoted by θ 
and α denotes angular displacement of the pendulum in the 
vertical plane (See Fig. 1). The motivation of the problem is to 
design a controller that swings the pendulum up and balance it 
at the upright position which is the unstable equilibrium point 
of the system. 

B. Mathematical Model of the Rotary Inverted Pendulum 
Mathematical model of the system is obtained by using 

Euler Lagrange formulation. As a first step to obtain the 
dynamic equations of the system: the potential and kinetic 
energy is given in (1) and (2), respectively. 
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Lagrange equation is described by (3). 

L T V= −  (3) 
The output torque of the motor is given by (4)  
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where ηm is motor efficiency, ηg is gear efficiency of the 
pendulum and motor arm, Kt motor torque constant, Km 
electromotor constant, Rm armature resistance and Vm is the 
input voltage. Euler equations to derive the dynamics are given 
in (5) and the dynamics of the system is described in (6). 
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TABLE I.  PARAMETERS OF THE SYSTEM 

 Description Value Unit 
L Length to pendulum's center of mass 0.1675 m 
r Rotating arm length 0.215 m 

Jeq Equivalent moments of inertia 0.0036 kg.m2 

m The mass of the pendulum 0.125 kg 
Rm Armature resistance 2.6 Ohms 
Beq Equivalent viscous damping coef. 0.0040 kg.m2 

III. LINEAR QUADRATIC REGULATOR DESIGN 
Essentially, the LQR is a particular type of a state feedback 

method entailing a cost functional in a particular form (See (7)) 
with a constraint, the system dynamics, in the form of a linear 
ordinary differential equation as in (8). 
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where T(       )x θ α θ α=  and Q is a weighting matrix. 

The states of the system to be controlled is assumed to be 
available and the design phase is involved with the design of a 
swing up controller and that responsible for maintaining the 
motion around the unstable equilibrium point, the upright 
position. 

A proportional plus derivative controller with a positive 
feedback is implemented for the swing up phase. The used 
gains are given as Kp=100 and Kd=2.5, which are large enough 
to provoke instability and force the pendulum pass through the 
unstable equilibrium point. The results with such a swing up 
controller are shown in Fig. 2, where it is clearly seen that the 
positive feedback controller causes fast turns and the pendulum 
visits the desired position several times. The stabilizing 
controller will now be considered to stop when the pendulum 
approaches its desired point. 

We choose Q=diag(5  20  0.5  0.5). This choice has been 
refined after a few iterations. The gain matrix K is accessed 
using the solution of Riccatti equation given by (9) and the 
control signal is constructed using (10). 

0T TKA KBB K Q A K− + + =  (9) 

( )TV B K xm = −  (10) 

θ 

α 
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The gain K is obtained as given by K=(−3.32 26.77 −2.53 
3.88). Using the control law above, it is observed that the 
unstable equilibrium point of rotary inverted pendulum 
remains stable and control performance was found adequate. 
The real time experimental results for stabilization of rotary 
inverted pendulum around unstable equilibrium point are given 
in Fig. 3 and the control signal is depicted in Fig. 4.  
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Figure 2:Swing up action with PD controller 

IV. SLIDING MODE CONTROLLER DESIGN 
Sliding mode control, also known as variable structure 

control, is a nonlinear control technique that is based on a two 
sided switching control law. The method is useful when there 
are uncertainties in the system dynamics and the parameter 
values. The uncertainties are assumed to be bounded and the 
closed loop system exhibits a certain degree of robustness 
against such uncertainties. The design starts with the definition 
of a particular subspace of the phase space called the sliding 
hypersurface (sliding line or switching subspace). The SMC 
scheme displays two fundamentally different responses called 
the reaching mode and the sliding mode. The error vector is 
forced towards the sliding subspace and when it hits the sliding 
surface, it remains on it thereafter. The period ending with the 
hitting the sliding subspace is called the reaching phase, and 
the motion afterwards is called the sliding mode. Since the 
error vector slides toward the origin along the sliding subspace, 
the control scheme is called the sliding mode control. 

Consider the system in (6) in the following affine form. 
( ) ( ) ( )nx F x G x u= +  (11) 

y x=  (12) 
Defining e as the error in the output, choosing the switching 
variable as given in (13) and considering the Lyapunov 
function in (14) means that a control law ensuring 0V <  
guides all trajectories toward the subspace characterized by s = 
0, the sliding subspace. 

1nde
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 (13) 

21

2SV s=  (14) 

The state variables can be treated as the states of two 
subsystems as in (15). Rotary inverted pendulum is a 

nonminimum phase underactuated system; therefore designing 
a variable structure controller is not straightforward for such a 
system. 
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Figure 3: Stabilization with LQR in Real Time 
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Figure 4: The Control Signal of LQR 
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Zero dynamics of a system describe the internal behavior of 
the system when the output is kept at zero. As mentioned 
earlier designing a feedback linearization controller for a 
nonlinear system may not meet the performance goals because 
of the unstable zero dynamics. Thus the zero dynamics of the 
system should be analyzed also. In pendulum displacement as 
the output of the system, the relative degree of the system is 
obtained, r=2. We set the control law as described in (17)-(20) 
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1 2 3 4sgn( ) sgn( )v k k k kα α α α= − − − −  (20) 
The control input given in (20) can not stabilize the pendulum 
since the zero dynamics given in (21) is unstable. Thus output 
feedback linearization type of a control law is not helpful for 
rotary inverted pendulum system. 

2
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−
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Hence we have to design a controller taking the unstable zero 
dynamics into consideration. The sliding surfaces for the two 
subsystems are defined as in (22) and (23). 

1 0s cα α α+ ==  (22) 

2 0s cθ θ θ+= =  (23) 
The relation between two surfaces is linear as given in (24). 
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Now consider a Lyapunov function as given in (25). 

1 2
2SV S pendulum=  (25) 

Thaing the time derivative of Spendulum and forcing 

( )1: sgnpendulum pendulumS k S= −  yields the control law 
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The controller has been implemented with the parameters 
settings shown in Table II and the results obtained are depicted 
in Figs. 5-6, where the pendulum is stabilized at its unstable 
equilibrium and, as expected, the control signal contains some 
fast fluctuations due to the switching nature of the controller. 

TABLE II.  PARAMETER VALUES FOR SMC 

Parameters used in Sliding Mode Control 
Parameter Value Parameter Value Parameter Value 
k1 1.7 c1 13 c3 1.9 

ε 0.05 c2 4   
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Figure 5. Stabilization Results with Sliding Mode Control 
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Figure 6. The Control Signal Produced by Sliding Mode Controller 

V. FUZZY LOGIC CONTROL 
Fuzzy logic control has been used in many control 

applications due to its suitability to the goals of a diverse set of 
feedback control problems. Fuzzy control is an approach to 
design controller based on expert knowledge and past 
experiences of a designer. The controllers based on fuzzy logic 
offers as a platform of decision making that does not rely on 
the mathematical models or hard computing. The control 
actions are defined by words and the fuzzy logic formalism 
provides the necessary means for expressing the verbally 
defined actions to a set of rules and inference engine based 
input-output relations. 

The proposed fuzzy controller consists of two parts; first 
one is designed for the swing up action and second one is 
designed for stabilizing the pendulum around the unstable 
equilibrium point. 
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A. Swing up controller 
The main objective of the controller is to take pendulum 

from pendent position to upward position. 
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Figure 7. Swing up fuzzy controller 

The proposed swing up action used the methodology of 
region of attraction and energy compensation methodology. 
Swing up consists of sequential motion of arm on positive and 
negative direction which means moving right and left 
consecutively. The fuzzy swing up controller is built via a 
Mamdani fuzzy inference system. The controller has four 
inputs and one output. Fuzzy logic based swing up rules are 
built on the two following basis: 

• Control signal u is maximum, when all state variables 
are zero means pendulum and arm are stationary.  

• When pendulum displacement is increasing one 
direction and pendulum velocity is zero, then control 
signal should be applied opposite direction. 

• When the arm which is driven by servo system 
swung in either direction with a suitable frequency, 
the pendulum momentum increases with each swing.  

The application results for a swing up fuzzy controller are 
shown in Fig. 7, whose details are skipped due to the space 
limit. The figure depicts a successful driving of the system 
toward the desired unstable equilibrium point. 

B. Stabilization controller 
The main objective of the stabilization controller is to keep 

the pendulum at the upright position and keep balancing 
continuously. We utilize a two part fuzzy controller, one 
dedicated to the arm and other dedicated to the pendulum. The 
input-output relation for such fuzzy models is given in (27) and 
the rule table is depicted in Figure 8, the implied control 
surface is also shown in Figure 10. 
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Figure 8. The Rule Based Fuzzy Stabilization Controller  

• If the angular position error is negative big and the 
angular velocity error is negative big then; the 
control signal is negative big. 

• If the angular position error is negative small and the 
angular velocity error is positive small then; the 
control signal is zero. 

The triangular membership functions are shown in Fig. 9. The 
inputs of membership functions are in between  
(-3 3) for position error of pendulum and between (-15,15) for 
velocity error of pendulum as shown in Fig. 10. The defuzzifier 
parameters are chosen as in (28). 
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Figure 9. The Membership Functions of Fuzzy Stabilization Controller 

y=[  -1.32 -1.21 -1.08 -0.91 -0.83 -0.72 -0.61   
    -0.562 -0.462 -0.33 0.15 -0.05 0 0.08 0.165     

      0.314 0.45 0.57 0.62 0.715 0.80 0.94 1.07  
      1.21 1.32]T 

(28) 

The results of the implementation are illustrated in Figs. 11-12, 
where the pendulum is balanced at its desired position after a 
swing up phase lasting approximately 2 seconds. 

VI. CONCLUDING REMARKS  
This study analyzes the real time performance of different 

control techniques on a rotary inverted pendulum system. 
Laboratory system consists of three parts; rotary base with the 
DC motor, a pendulum, analog/digital interface and a personal 
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computer. Control algorithms are prototyped in 
Matlab/Simulink® environment. 

Both swing up and stabilization problem has been studied. 
Experimental tests have been done in real time. Three control 
schemes are elaborated, namely, linear quadratic controller, 
sliding mode control and fuzzy logic control. According to the 
results, shortest swing up phase is observed with the fuzzy 
controller. However, smoothest control signal is produced by 
the linear quadratic controller. In sliding mode control 
scheme, the control signal contains sharp fluctuations yet it 
provides robustness against parameter uncertainties. 

Overall, the paper provides a comparative guide to those 
practicing the control laws on such a standard nonlinear and 
underactuated system. 
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Figure 10. Rotary Inverted Pendulum Stabilization Control Surface for 

each Fuzzy Controller 
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Figure 11. The Stabilization with Fuzzy Controller 

 

0 2 4 6 8 10 12 14 16 18 20
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time(sec)

u(
V)

5 10 15 20
-1

-0.5

0

0.5

1

 
Figure 12. The Control Signal for Fuzzy Logic Controller 
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