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SWINGING UP THE FURUTA PENDULUM AND ITS
STABILIZATION VIA MODEL PREDICTIVE CONTROL

Pavol Seman — Boris Rohal’-Ilkiv — Martin Juhás — Michal Salaj
∗

This paper deals with certain options on controlling an inverted rotary pendulum also known as the Furuta pendulum.
Controlling an inverted pendulum involves two stages. The first stage is the swing up of the pendulum and the second stage
is its balancing in the up-right position. The paper describes two possibilities on swinging up the pendulum. First one is the
classical approach based on comparing the current total (potential and kinetic) energy of the system with the energy in its
stabilized up-right position. The second option uses an exponentiation operation over the pendulum position since the trend
of power law function is very convenient for determining the amount of required energy to be delivered to the system. For
the purposes of balancing the pendulum in the up-right position a predictive controller based on optimal control law with
perturbation was proposed, which is an LQ controller with control signal corrections when constraints are exceeded. The
results are illustrated by real-time experiments on a laboratory rotary inverted pendulum setup.
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1 INTRODUCTION

The inverted pendulum is a great example of a nonlin-
ear underactuated mechatronic system with fast dynam-
ics and is therefore used for exploring various techniques
of controlling such systems.

The inverted pendulum under the terms of rotary pen-

dulum or furuta pendulum [2, 4] is a 3D device, Fig. 1,
which means its movement is not planar as in the case of a
cart-pendulum, but spatial (three-dimensional). The sys-
tem has two degrees of freedom where on the first one ex-
citing torque is applied. The device consists of two arms,
one mounted horizontally and the other attached to it in a
vertical direction representing the pendulum. This means
that the rotary axes of both arms are perpendicular one to
another. As already mentioned, different strategies of con-
trol can be explored using the inverted pendulum. These
strategies can be divided into two categories. First are
the swing up algorithms and the second category are the
algorithms for balancing the pendulum. Swinging up the
pendulum can be provided in many ways.

Possibly the simplest way is to swing up the pendulum
with only one oscillation. The velocity of the exciting arm
is set to maximum or any value high enough to place the
pendulum in the horizontal position. After this is achieved
(the velocity of the pendulum is near zero) the rotating
arm changes its direction or stops. Once the pendulum
comes near the equilibrium position due to inertia, the
balancing controller takes over the control.

This method of swinging up is mentioned in eg [13].
The method requires minimum of time to realize, in that
it places the pendulum to the vicinity of the up-right equi-
librium position by applying only one oscillation. However
this option is not ideal since an uncontrolled oscillation

brings an unspecified amount of energy to the system and
may cause the overtaking controller to fail in balancing
the pendulum, leading to repeated attempts.

Certain opposite of the previous approach is a swing
up with energy control. This method sequentially adds
energy to the system by considering the energy of the
pendulum in the up-right equilibrium position and actual
energy [1]. Energy is supplied by oscillating movements
of the exciting arm. This movement depends on the pen-
dulum position and velocity. The main advantage of this
strategy is that the system receives a specific amount of
energy determined by the difference between the energy of
the pendulum in the up-right position and actual energy.
However, determining the control input is more difficult.
A simple, reliable and effective compromise between the
two mentioned approaches is the method of exponentia-
tion of the pendulum position. Further explanations re-
veal the method of placing the pendulum effectively to
the vicinity of the up-right position without oversupply-
ing it with energy, hence not interfering with the process
of balancing.

In this case balancing is achieved with the use of a
predictive controller based on an LQ controller with cor-
rections adjusting the control input when constraints are
exceeded. The control algorithms presented in this paper
were created in MATLAB Simulink and applied by means
of xPC target.

2 MATHEMATICAL MODEL

The subject of this section is to briefly describe the
mathematical model of the pendulum, Fig. 2, and its main
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Fig. 1. Rotary inverted pendulum
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Fig. 2. Scheme of rotary inverted pendulum with base parameters

Table 1. Parameters of model

Parameter Symbol Value

Arm mass mr 0.63 kg
Arm length (from axis of

rotation to sensor) lr 0.22m
Arm mass moment of inertia Ir 0.021 kgm2

Arm friction coefficient Br 0.08 kgm2s−1

Pendulum mass mk 0.062 kg
Distance from pendulum center

of mass to rotation axis lk 0.2m
Pendulum mass

moment of inertia Ik 0.0012 kgm2

Pendulum friction coefficient Bk 0.0001 kgm2s−1

Pendulum position θk rad
Arm position θr rad
Torque (control action) τ Nm

parameters, Tab. 1, estimated for the exploited labora-
tory setup. More details concerning the laboratory setup
and its identification can by found in [17]. Obtaining the

model is necessary for realizing predictive balancing con-
trol.

The analytical model is based on the equations of mo-
tion derived from the Lagrange equations of the second
kind, which represent the most commonly used method
for establishing equations of motion of difficult mechani-
cal systems. This method is applied for obtaining mathe-
matical models of eg manipulators, with several degreases
of freedom [5, 14]. Taking into account damping in the
form of friction, the resulting equations of motion of the
pendulum are [17]
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These equations are further utilized to establish the state
space model for generating the balancing algorithms [17].
The obtained model was then used in all experiments
listed further in this paper.

3 SWING–UP

This topic introduces two possibilities of swinging up
the pendulum to the vicinity of the up-right position. A
traditional approach is swinging-up with energy control
whereas the second method determines the control input
by exponentiation of the pendulum position.

3.1 Swing-up by energy control

It is convenient when applying the strategy of sequen-
tial energy adding to consider the energy in the up-right
position and the actual energy of the pendulum [1]. En-
ergy is added by oscillating movements of the exciting
arm. The movement of the arm relies on the position and
velocity of the pendulum. Normalized actual energy is
determined by

E =
mkglk

2

(

(
θ̇k

ω0

)2 + cos θk − 1
)

(3)
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Fig. 3. Selected variables in swing-up by energy control: (a) — pendulum position, (b) — pendulum velocity, (c) — arm position, (d)
— arm velocity, (e) — torque, (f) — computation time in one cycle
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Fig. 4. Exponentiation of the pendulum position

where ω0 is the frequency of small fluctuations of the
pendulum in the vicinity of the downward position.

ω0 =

√

mkglk

Ik
(4)

The value of the total energy depends on the selection of
the “base” with zero energy. There are more options for
the base: downward equilibrium position, horizontal po-
sition or up-right equilibrium position. The most suitable
choice is the up-right equilibrium, since there is no reason
to add more energy to the pendulum in this position. Ac-
cording to (3) the energy of the system in the downward
position is −2mglk and it is also the energy that needs
to be delivered to the system. Therefore, it is necessary
to apply a control law that would consider the current
gained energy of the system and would at the same time
add energy in the right direction

u = sat
(

kv(E − E0)
)

sign(θ̇k cos θk) . (5)

This is the role of the last member of the equation (5)

sign(θ̇k cos θk), where the pendulum velocity θ̇k defines
the direction of movement and cos θk indicates the po-
sition of the pendulum in the upper or lower half-plane.
This polarity is the key in determining whether to “push”
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Fig. 5. Selected variables in swing-up by exponentiation of the pendulum position: (a) — pendulum position, (b) — pendulum velocity,
(c) — arm position, (d) — arm velocity, (e) — torque, (f) — computation time in one cycle

or “pull” onto the mounted end of the pendulum. The
first member of (5) specifies the required torque, where
E0 is the desired energy in the up-right unstable equi-
librium position. As mentioned above, it is reasonable to
consider it to be zero. The significance of the coefficient
kv is to determine how fast the pendulum reaches the
vicinity of the unstable equilibrium position. Saturation
limits the value of the excitation torque. This way the en-
ergy is supplied to the pendulum by taking into account
the energy of the pendulum in the up-right equilibrium
position that characterizes a stable pendulum.

Swing up measurement results using the mentioned
algorithm are shown in Fig. 3. Figure 3(a) shows the
position in course of time. As one can see, the pendulum
gradually approaches the up-right equilibrium position.
At the end of the progress the pendulum is located in the
up-right position where the control is taken over by the
balancing controller. Figure 3(f) shows the computational
demands of the algorithm. They are represented as the
time necessary for computation in one cycle.

3.2 Swing up by exponentiation of the pendu-

lum position

In this case the amount of supplied energy is depen-
dent on the pendulum position. In view of the preferred
progress of the exponential function, it is possible to sup-
ply the system with more energy when the pendulum is
in the vicinity of the downward equilibrium position and
less energy when the pendulum is in the vicinity of the
up-right equilibrium position. The control law is simple

u = kv|θ
n
k | sign(θ̇kcosθk) (6)

where kv and n are constants, that are used to influ-
ence the dynamics of the pendulum swing up and θk is
the position of the pendulum. Since the up-right posi-
tion of the pendulum is set to θk = 0, the dynamics of
the swing up is influenced by a suitable exponentiation of
the position θnk , so that the amount of supplied energy
is minimal as long as the pendulum is relatively near the
vicinity of the upright position. This argument is founded
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Fig. 6. Dual mode control law

on the progress shown in Fig. 4. That way it is possible to
modify the amount of energy to be delivered to the sys-
tem, depending on the pendulum position and thus secure
adding only a small amount of energy when the pendu-
lum is in the vicinity of the up-right position, thereby
making the transition to balancing control smoother. In
this case the position of the pendulum is in radians but
can be converted to a different range, allowing to achieve
the desired position requiring significantly less delivered
energy.

Verification of functionality of the mentioned algo-
rithm can be shown in Fig. 5. Constants used in the
swing up were: kv = 0.02 and n = 3. As seen from the
progress of the pendulum position, Fig. 5(a), the pen-
dulum is gradually approaching the up-right equilibrium
position, where near this position the balancing algorithm
can take over the control. The approaching is sequential
and similar quality as in the swing up by energy control.
Figure 5(f) shows the computation demands of the algo-
rithm, which are similar or slightly less demanding than
in the previous case. The advantage here is, that there are
no pre-computations necessary as in the case of a swing
up with energy control, where it is important to know the
energy of the pendulum in the up-right position and the
frequency of small pendulum oscillations.

3.3 Balancing the pendulum using a predictive

controller

This method uses the mathematical model of the sys-
tem. It was obtained using linearization of the equations
of motion (1) and (2) in the upper equilibrium position
[17]. Due to better conditionality for numerical calcula-
tion with model predictions, the technique of closed-loop
paradigm [9] was employed. The model then is used to
determine the sequence of control actions on a certain
prediction horizon. Subsequently, only the first member
of the sequence is applied. The prediction horizon is de-
termined from the behavior of the model. A too short
horizon leads to an unstable control whereas a too long
horizon requires high computation demands. The horizon
of prediction can also be infinite or finite. In this case the
so-called dual mode control was used, see Fig. 6 [16]. Basi-
cally it is a combination of both finite and infinite horizon

control, where the finite horizon control uses N predicted
steps (first mode of control) and leads the system to the
desired invariant and feasible target set. Sequentially a
closed-loop balancing controller is used to balance the
system in the vicinity of the zero state (second mode of
control) [7].

The control law is then

uk+i =

{

Kxk+i + ck+i for i = 0, . . . , N − 1 ,

Kxk+i for i ≥ N
(7)

where K is the gain of the state balancing controller
[11, 12] and ck are so-called perturbations [10] that secure
feasibility of constraints along the finite horizon N . The
cost function is

J =

∞
∑

i=1

(xT
k+iQxk+i + uT

k+iRuk+i) (8)

defined for an infinite horizon, but can be rewritten as

J =

N−1
∑

i=1

(xT
k+iQxk+i + uT

k+iRuk+i) + xT
k+NPxk+N (9)

where penalization of the final state is added to the finite
horizon cost function. Using the so-called autonomous
augmented state-space description [8] the cost function
is

J = xT
k Pxk + fT

k Sfk (10)

where fk is vector of perturbations ci, i = 1, . . .N − 1.
The value of xT

k Pxk is a function of the actual state
xk and thereby for cost optimization with respect to fk
insignificant. Therefore, it is sufficient to minimize the
cost function in the form

J = fT
k Sfk + const . (11)

For solving this optimization problem, following con-
straining conditions were taken into account

• control action limitation

• achieving desired set [3, 18] at the end of the prediction
horizon

The minimization of the cost function (11) was solved
using a quadratic programming function and qpOASES
software [6].

Figure 7 shows the progress of state variables and other
quantities that are important in the process of swinging
up and subsequent balancing of the pendulum. There is
thus possible to observe the complex control of the rotary
inverted pendulum, when the pendulum is swung up from
the downward equilibrium position to the vicinity of the
upright equilibrium position, where the control is taken
over by the balancing controller.

The swing up was realized using the algorithm based
on the exponentiation of the pendulum position with pa-
rameters: kv = 0.02 and n = 3 and the above men-
tioned predictive controller with a prediction horizon of
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Fig. 7. Selected variables in the swing up based on the exponentiation of pendulum position and balancing using predictive controller:
(a) — pendulum position, (b) — pendulum velocity, (c) — arm position, (d) — arm velocity, (e) — torque and perturbation, (f) —

computation time in one cycle, (g) — iterations and status

N = 100 steps and control action limitation ±1Nm was

applied for balancing the pendulum. Position of the pen-

dulum. Figure 7(a) shows that the designed algorithm is

capable of performing this task. In Fig. 7(e) one can fol-

low the course of the torque, by which the pendulum is

controlled. As it can be seen, the torque does not exceed

specified limit.

Limitations were insured by perturbations that ad-

justed the control actions if constraints were exceeded.

In Fig. 7(e) we can see, that when transiting from swing
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up to balancing, the constraints were active. In Fig. 7(f)
we can observe an increase in computation time by active
constraints and with the use of qpOASES. Since the issue
is to find a numerical solution of a quadratic optimization
problem, qpOASES uses a certain amount of iterations to
find the suitable solution, which is shown in Fig. 7(g). One
can also see the status that informs whether a suitable so-
lution was found (0 = found suitable solution).

5 CONCLUSION

The problem of swinging up the inverted rotary pen-
dulum together with the model predictive balancing con-
trol was investigated. Two possibilities on swinging up
the pendulum were described and tested on real labora-
tory setup. The first one was classical approach based on
the energy of system in its stabilized up-right position,
the second has used the exponentiation operation over
the pendulum position for determining the amount of re-
quired energy to be delivered to the system. The paper
presents the second option for swinging up the inverted
pendulum, which is in compare with the method of en-
ergy control simpler but with similar results. For the pur-
poses of balancing the pendulum in the up-right position
a model based predictive controller with constrained op-
timal control law was used. The overall performance was
illustrated by experiments with the real laboratory setup.
The obtained results confirms the possibility of applying
the predictive controller in similar mechatronic applica-
tions with fast dynamics.
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