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Abstract

Image restoration is a long-standing low-level vision

problem that aims to restore high-quality images from low-

quality images (e.g., downscaled, noisy and compressed im-

ages). While state-of-the-art image restoration methods are

based on convolutional neural networks, few attempts have

been made with Transformers which show impressive per-

formance on high-level vision tasks. In this paper, we pro-

pose a strong baseline model SwinIR for image restora-

tion based on the Swin Transformer. SwinIR consists of

three parts: shallow feature extraction, deep feature extrac-

tion and high-quality image reconstruction. In particular,

the deep feature extraction module is composed of several

residual Swin Transformer blocks (RSTB), each of which

has several Swin Transformer layers together with a resid-

ual connection. We conduct experiments on three represen-

tative tasks: image super-resolution (including classical,

lightweight and real-world image super-resolution), image

denoising (including grayscale and color image denoising)

and JPEG compression artifact reduction. Experimental re-

sults demonstrate that SwinIR outperforms state-of-the-art

methods on different tasks by up to 0.14∼0.45dB, while the

total number of parameters can be reduced by up to 67%.

1. Introduction

Image restoration, such as image super-resolution (SR),

image denoising and JPEG compression artifact reduction,

aims to reconstruct the high-quality clean image from its

low-quality degraded counterpart. Since several revolu-

tionary work [18, 40, 90, 91], convolutional neural net-

works (CNN) have become the primary workhorse for im-

age restoration [43, 51, 43, 81, 92, 95, 93, 46, 89, 88].

Most CNN-based methods focus on elaborate architec-

ture designs, such residual learning [43, 51] and dense con-

nections [97, 81], although the performance is improved

significantly compared with traditional model-based meth-
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Figure 1: PSNR results v.s the total number of parameters of dif-

ferent methods for image SR (×4) on Set5 [3].

ods [73, 14, 28], they generally suffer from two basic prob-

lems that stem from the basic building block, i.e., the convo-

lution layer. First, the interactions between images and con-

volution kernels are content-independent. Using the same

convolution kernel to restore different image regions may

not be a good choice. Second, with the principle of local

processing, convolution is not effective for long-range de-

pendency modelling.

As an alternative to CNN, Transformer [76] designs a

self-attention mechanism to capture global interactions be-

tween contexts and has shown promising performance in

several vision problems [6, 74, 19, 56]. However, vision

Transformers for image restoration [9, 5] usually divide the

input image into small patches with fixed size (e.g., 48×48)

and process each patch independently. Such a strategy in-

evitably gives rise to two drawbacks. First, the restored im-

age may introduce border artifacts around each small patch.

Second, the border pixels of each patch lose information

for better restoration. While this can be alleviated by patch

overlapping, it would introduce extra computational burden.

Recently, Swin Transformer [56] has shown great

promise as it integrates the advantages of both CNN and

Transformer. On the one hand, it has the advantage of

CNN to process image with large size due to the local at-

tention mechanism. On the other hand, it has the advantage

of Transformer to model long-range dependency with the

shifted window scheme.
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In this paper, we propose an image restoration model,

namely SwinIR, based on Swin Transformer. More specif-

ically, SwinIR consists of three modules: shallow feature

extraction, deep feature extraction and high-quality image

reconstruction modules. Shallow feature extraction module

uses a convolution layer to extract shallow feature, which

is directly transmitted to the reconstruction module so as to

preserve low-frequency information. Deep feature extrac-

tion module is mainly composed of residual Swin Trans-

former blocks (RSTB), each of which utilizes several Swin

Transformer layers for local attention and cross-window in-

teraction. In addition, we add a convolution layer at the

end of the block for feature enhancement and use a resid-

ual connection to provide shortcuts for feature aggregation.

Finally, both shallow and deep features are fused in the re-

construction module for high-quality image reconstruction.

Compared with prevalent CNN-based image restoration

models, Transformer-based SwinIR has several benefits: (1)

content-based interactions between image content and at-

tention weights, which can be interpreted as spatially vary-

ing convolution [13, 21, 75]. (2) long-range dependency

modelling are enable by the shifted window mechanism.

(3) better performance with less parameters. As shown in

Fig. 1, SwinIR achieves better PSNR with less parameters

compared with existing image SR methods.

2. Related Work

2.1. Image Restoration

Compared to traditional image restoration methods [28,

72, 73, 62, 32] which are generally model-based, learning-

based methods, especially CNN-based methods, have be-

come more popular due to their impressive performance.

They often learn mappings between low-quality and high-

quality images from large-scale paired datasets. Since pi-

oneering work SRCNN [18] (for image SR), DnCNN [90]

(for image denoising) and ARCNN [17] (for JPEG com-

pression artifact reduction), a flurry of CNN-based mod-

els have been proposed to improve model representation

ability by using larger and deeper neural network archi-

tecture designs, such as residual block [40, 7, 88], dense

block [81, 97, 98] and others [10, 42, 93, 78, 77, 79, 50, 48,

49, 92, 70, 36, 83, 30, 11, 16, 96, 64, 38, 26, 41, 25]. Some

of them have exploited the attention mechanism inside the

CNN framework, such as channel attention [95, 15, 63],

non-local attention [52, 61] and adaptive patch aggrega-

tion [100].

2.2. Vision Transformer

Recently, natural language processing model Trans-

former [76] has gained much popularity in the computer

vision community. When used in vision problems such

as image classification [66, 19, 84, 56, 45, 55, 75], ob-

ject detection [6, 53, 74, 56], segmentation [84, 99, 56, 4]

and crowd counting [47, 69], it learns to attend to impor-

tant image regions by exploring the global interactions be-

tween different regions. Due to its impressive performance,

Transformer has also been introduced for image restora-

tion [9, 5, 82]. Chen et al. [9] proposed a backbone model

IPT for various restoration problems based on the stan-

dard Transformer. However, IPT relies on large number of

parameters (over 115.5M parameters), large-scale datasets

(over 1.1M images) and multi-task learning for good per-

formance. Cao et al. [5] proposed VSR-Transformer that

uses the self-attention mechanism for better feature fusion

in video SR, but image features are still extracted from

CNN. Besides, both IPT and VSR-Transformer are patch-

wise attention, which may be improper for image restora-

tion. A concurrent work [82] proposed a U-shaped archi-

tecture based on the Swin Transformer [56].

3. Method

3.1. Network Architecture

As shown in Fig. 2, SwinIR consists of three modules:

shallow feature extraction, deep feature extraction and high-

quality (HQ) image reconstruction modules. We employ the

same feature extraction modules for all restoration tasks, but

use different reconstruction modules for different tasks.

Shallow and deep feature extraction. Given a low-

quality (LQ) input ILQ ∈ R
H×W×Cin (H , W and Cin are

the image height, width and input channel number, respec-

tively), we use a 3× 3 convolutional layer HSF(·) to extract

shallow feature F0 ∈ R
H×W×C as

F0 = HSF(ILQ), (1)

where C is the feature channel number. The convolution

layer is good at early visual processing, leading to more

stable optimization and better results [86]. It also provides

a simple way to map the input image space to a higher

dimensional feature space. Then, we extract deep feature

FDF ∈ R
H×W×C from F0 as

FDF = HDF(F0), (2)

where HDF(·) is the deep feature extraction module and it

contains K residual Swin Transformer blocks (RSTB) and

a 3× 3 convolutional layer. More specifically, intermediate

features F1, F2, . . . , FK and the output deep feature FDF are

extracted block by block as

Fi = HRSTBi
(Fi−1), i = 1, 2, . . . ,K,

FDF = HCONV(FK),
(3)

where HRSTBi
(·) denotes the i-th RSTB and HCONV is the

last convolutional layer. Using a convolutional layer at the
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Figure 2: The architecture of the proposed SwinIR for image restoration.

end of feature extraction can bring the inductive bias of the

convolution operation into the Transformer-based network,

and lay a better foundation for the later aggregation of shal-

low and deep features.

Image reconstruction. Taking image SR as an example,

we reconstruct the high-quality image IRHQ by aggregating

shallow and deep features as

IRHQ = HREC(F0 + FDF), (4)

where HREC(·) is the function of the reconstruction mod-

ule. Shallow feature mainly contain low-frequencies, while

deep feature focus on recovering lost high-frequencies.

With a long skip connection, SwinIR can transmit the low-

frequency information directly to the reconstruction mod-

ule, which can help deep feature extraction module focus

on high-frequency information and stabilize training. For

the implementation of reconstruction module, we use the

sub-pixel convolution layer [68] to upsample the feature.

For tasks that do not need upsampling, such as image

denoising and JPEG compression artifact reduction, a single

convolution layer is used for reconstruction. Besides, we

use residual learning to reconstruct the residual between the

LQ and the HQ image instead of the HQ image. This is

formulated as

IRHQ = HSwinIR(ILQ) + ILQ, (5)

where HSwinIR(·) denotes the function of SwinIR.

Loss function. For image SR, we optimize the parameters

of SwinIR by minimizing the L1 pixel loss

L = ∥IRHQ − IHQ∥1, (6)

where IRHQ is obtained by taking ILQ as the input of SwinIR,

and IHQ is the corresponding ground-truth HQ image. For

classical and lightweight image SR, we only use the naive

L1 pixel loss as same as previous work to show the effec-

tiveness of the proposed network. For real-world image SR,

we use a combination of pixel loss, GAN loss and percep-

tual loss [81, 89, 80, 27, 39, 81] to improve visual quality.

For image denoising and JPEG compression artifact re-

duction, we use the Charbonnier loss [8]

L =
√

∥IRHQ − IHQ∥2 + ϵ2, (7)

where ϵ is a constant that is empirically set to 10−3.

3.2. Residual Swin Transformer Block

As shown in Fig. 2(a), the residual Swin Transformer

block (RSTB) is a residual block with Swin Transformer

layers and convolutional layers. Given the input feature

Fi,0 of the i-th RSTB, we first extract intermediate features

Fi,1, Fi,2, . . . , Fi,L by L Swin Transformer layers as

Fi,j = HSwini,j (Fi,j−1), j = 1, 2, . . . , L, (8)

where HSwini,j (·) is the j-th Swin Transformer layer in the

i-th RSTB. Then, we add a convolutional layer before the

residual connection. The output of RSTB is formulated as

Fi,out = HCONVi
(Fi,L) + Fi,0, (9)

where HCONVi
(·) is the convolutional layer in the i-th

RSTB. This design has two benefits. First, although Trans-

former can be viewed as a specific instantiation of spatially

varying convolution [21, 75], covolutional layers with spa-

tially invariant filters can enhance the translational equivari-

ance of SwinIR. Second, the residual connection provides a

short identity-based connection from different blocks to the

reconstruction module, allowing the aggregation of differ-

ent levels of features.
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Swin Transformer layer. Swin Transformer layer

(STL) [56] is based on the standard multi-head self-

attention of the original Transformer layer [76]. The main

differences lie in local attention and the shifted window

mechanism. As shown in Fig. 2(b), given an input of size

H ×W × C, Swin Transformer first reshapes the input to

a HW
M2 × M2 × C feature by partitioning the input into

non-overlapping M ×M local windows, where HW
M2 is the

total number of windows. Then, it computes the standard

self-attention separately for each window (i.e., local atten-

tion). For a local window feature X ∈ R
M2

×C , the query,

key and value matrices Q, K and V are computed as

Q = XPQ, K = XPK , V = XPV , (10)

where PQ, PK and PV are projection matrices that are

shared across different windows. Generally, we have

Q,K, V ∈ R
M2

×d. The attention matrix is thus computed

by the self-attention mechanism in a local window as

Attention(Q,K, V ) = SoftMax(QKT /
√
d+B)V, (11)

where B is the learnable relative positional encoding. In

practice, following [76], we perform the attention function

for h times in parallel and concatenate the results for multi-

head self-attention (MSA).

Next, a multi-layer perceptron (MLP) that has two fully-

connected layers with GELU non-linearity between them is

used for further feature transformations. The LayerNorm

(LN) layer is added before both MSA and MLP, and the

residual connection is employed for both modules. The

whole process is formulated as

X = MSA(LN(X)) +X,

X = MLP(LN(X)) +X.
(12)

However, when the partition is fixed for different lay-

ers, there is no connection across local windows. There-

fore, regular and shifted window partitioning are used al-

ternately to enable cross-window connections [56], where

shifted window partitioning means shifting the feature by

(⌊M
2
⌋, ⌊M

2
⌋) pixels before partitioning.

4. Experiments

4.1. Experimental Setup

For classical image SR, real-world image SR, image

denoising and JPEG compression artifact reduction, the

RSTB number, STL number, window size, channel num-

ber and attention head number are generally set to 6, 6,

8, 180 and 6, respectively. One exception is that the win-

dow size is set to 7 for JPEG compression artifact reduc-

tion, as we observe significant performance drop when us-

ing 8, possibly because JPEG encoding uses 8 × 8 image

partions. For lightweight image SR, we decrease RSTB

number and channel number to 4 and 60, respectively. Fol-

lowing [95, 63], when self-ensemble strategy [51] is used

in testing, we mark the model with a symbol “+”, e.g.,

SwinIR+. Training and evaluation details are provided in

the supplementary.

4.2. Ablation Study and Discussion

For ablation study, we train SwinIR on DIV2K [1] for

classical image SR (×2) and test it on Manga109 [60].

Impact of channel number, RSTB number and STL

number. We show the effects of channel number, RSTB

number and STL number in a RSTB on model performance

in Figs. 3(a), 3(b) and 3(c), respectively. It is observed that

the PSNR is positively correlated with these three hyper-

parameters. Although the performance keeps increasing

for large channel numbers, the total number of parameters

grows quadratically. To balance the performance and model

size, we choose 180 as the channel number in rest experi-

ments. As for RSTB number and layer number, the perfor-

mance gain tends to be saturated gradually. We choose 6 for

both of them to obtain a relatively small model.

Impact of patch size and training image number; model

convergence comparison. We compare the proposed

SwinIR with a representative CNN-based model RCAN to

exploit the difference of Transformer-based and CNN-based

models. From Fig. 3(d), one can see that SwinIR performs

better than RCAN on different patch sizes, and the PSNR

gain becomes larger when the patch size is larger. Fig. 3(e)

shows the impact of the number of training images. Extra

images from Flickr2K are used in training when the per-

centage is larger than 100% (800 images). There are two

observations. First, as expected, the performance of SwinIR

rises with the training image number. Second, different

from the observation in IPT that Transformer-based mod-

els reply on large amount of training data, SwinIR achieves

better results than CNN-based models using the same train-

ing data, even when the dataset is small (i.e., 25%, 200

images). We also plot the PSNR during training for both

SwinIR and RCAN in Fig. 3(f). It is clear that SwinIR con-

verges faster and better than RCAN, which is contradictory

to previous observations that Transformer-based models of-

ten suffer from slow model convergence.

Impact of residual connection and convolution layer in

RSTB. Table 1 shows four residual connection variants

in RSTB: no residual connection, using 1 × 1 convolu-

tion layer, using 3 × 3 convolution layer and using three

3 × 3 convolution layers (channel number of the interme-

diate layer is set to one fourth of network channel num-

ber). From the table, we can have following observations.

First, the residual connection in RSTB is important as it

improves the PSNR by 0.16dB. Second, using 1 × 1 con-

volution brings little improvement maybe because it cannot
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Figure 3: Ablation study on different settings of SwinIR. Results are tested on Manga109 [60] for image SR (×2).

Table 1: Ablation study on RSTB design.

Design No residual 1 × 1 conv 3 × 3 conv Three 3 × 3 conv

PSNR 39.42 39.45 39.58 39.56

extract local neighbouring information as 3×3 convolution

does. Third, although using three 3 × 3 convolution layers

can reduce the number of parameters, the performance is

slightly dropped.

4.3. Results on Image SR

Classical image SR. Table 2 shows the quantitative com-

parisons between SwinIR (middle size) and state-of-the-art

methods: DBPN [31], RCAN [95], RRDB [81], SAN [15],

IGNN [100], HAN [63], NLSA [61] and IPT [9]. As one

can see, when trained on DIV2K, SwinIR achieves best

performance on almost all five benchmark datasets for all

scale factors. The maximum PSNR gain reaches 0.26dB on

Manga109 for scale factor 4. Note that RCAN and HAN in-

troduce channel and spatial attention, IGNN proposes adap-

tive patch feature aggregation, and NLSA is based on the

non-local attention mechanism. However, all these CNN-

based attention mechanisms perform worse than the pro-

posed Transformer-based SwinIR, which indicates the ef-

fectiveness of the proposed model. When we train SwinIR

on a larger dataset, the performance further increases by

a large margin (up to 0.47dB), achieving better accuracy

than the same Transformer-based model IPT, even though

IPT utilizes ImageNet (more than 1.3M images) in train-

ing and has huge number of parameters (115.5M). In con-

trast, SwinIR has a small number of parameters (11.8M)

even compared with state-of-the-art CNN-based models

(15.4∼44.3M). As for runtime, representative CNN-based

model RCAN, IPT and SwinIR take about 0.2, 4.5s and 1.1s

to test on a 1, 024 × 1, 024 image, respectively. We show

visual comparisons on scale factor 4 in Fig. 4. SwinIR can

restore high-frequency details and alleviate the blurring arti-

facts, resulting in sharp and natural edges. In contrast, most

CNN-based methods cannot restore the correct texture and

produce blurry images or even different structures. IPT gen-

erates better images compared with CNN-based methods,

but it suffers from image distortions and border artifact.

Lightweight image SR. We also provide comparison of

SwinIR (small size) with state-of-the-art lightweight im-

age SR methods: CARN [2], FALSR-A [12], IMDN [35],

LAPAR-A [44] and LatticeNet [57]. In addition to PSNR

and SSIM, we also report the total numbers of parame-

ters and multiply-accumulate operations (evaluated on a

1280×720 HQ image) to compare the model size and com-

putational complexity of different models. As shown in Ta-

ble 3, SwinIR outperforms competitive methods by a PSNR

margin of up to 0.53dB on different benchmark datasets,

with similar total numbers of parameters and multiply-

accumulate operations. This indicates that the SwinIR ar-

chitecture is highly efficient.

Real-world image SR. The ultimate goal of image SR

is for real-world applications. Recently, Zhang et al. [89]

proposed a practical degradation model BSRGAN for real-

world image SR and achieved surprising results in real

scenarios1. To test the performance of SwinIR for real-

world SR, we re-train SwinIR by using the same degra-

dation model as BSRGAN for low-quality image synthesis

and test it on the real-world SR benchmark dataset Real-

SRSet [89]. Since there is no ground-truth high-quality im-

ages, we only provide visual comparison with representa-

tive bicubic model ESRGAN [81] and state-of-the-art real-

world image SR models FSSR [24], RealSR [37] and BSR-

GAN [89]. As shown in Fig. 5, SwinIR produces visually

pleasing images with clear and sharp edges, whereas other

compared methods may suffer from unsatisfactory artifacts.

In addition, to exploit the full potential of SwinIR for real

1https://github.com/cszn/BSRGAN
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Table 2: Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods for classical image SR on bench-

mark datasets. Best and second best performance are in red and blue colors, respectively. Results on ×8 are provided in

supplementary.

Method Scale
Training

Dataset

Set5 [3] Set14 [87] BSD100 [58] Urban100 [34] Manga109 [60]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RCAN [95] ×2 DIV2K 38.27 0.9614 34.12 0.9216 32.41 0.9027 33.34 0.9384 39.44 0.9786

SAN [15] ×2 DIV2K 38.31 0.9620 34.07 0.9213 32.42 0.9028 33.10 0.9370 39.32 0.9792

IGNN [100] ×2 DIV2K 38.24 0.9613 34.07 0.9217 32.41 0.9025 33.23 0.9383 39.35 0.9786

HAN [63] ×2 DIV2K 38.27 0.9614 34.16 0.9217 32.41 0.9027 33.35 0.9385 39.46 0.9785

NLSA [61] ×2 DIV2K 38.34 0.9618 34.08 0.9231 32.43 0.9027 33.42 0.9394 39.59 0.9789

SwinIR (Ours) ×2 DIV2K 38.35 0.9620 34.14 0.9227 32.44 0.9030 33.40 0.9393 39.60 0.9792

SwinIR+ (Ours) ×2 DIV2K 38.38 0.9621 34.24 0.9233 32.47 0.9032 33.51 0.9401 39.70 0.9794

DBPN [31] ×2 DIV2K+Flickr2K 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775

IPT [9] ×2 ImageNet 38.37 - 34.43 - 32.48 - 33.76 - - -

SwinIR (Ours) ×2 DIV2K+Flickr2K 38.42 0.9623 34.46 0.9250 32.53 0.9041 33.81 0.9427 39.92 0.9797

SwinIR+ (Ours) ×2 DIV2K+Flickr2K 38.46 0.9624 34.61 0.9260 32.55 0.9043 33.95 0.9433 40.02 0.9800

RCAN [95] ×3 DIV2K 34.74 0.9299 30.65 0.8482 29.32 0.8111 29.09 0.8702 34.44 0.9499

SAN [15] ×3 DIV2K 34.75 0.9300 30.59 0.8476 29.33 0.8112 28.93 0.8671 34.30 0.9494

IGNN [100] ×3 DIV2K 34.72 0.9298 30.66 0.8484 29.31 0.8105 29.03 0.8696 34.39 0.9496

HAN [63] ×3 DIV2K 34.75 0.9299 30.67 0.8483 29.32 0.8110 29.10 0.8705 34.48 0.9500

NLSA [61] ×3 DIV2K 34.85 0.9306 30.70 0.8485 29.34 0.8117 29.25 0.8726 34.57 0.9508

SwinIR (Ours) ×3 DIV2K 34.89 0.9312 30.77 0.8503 29.37 0.8124 29.29 0.8744 34.74 0.9518

SwinIR+ (Ours) ×3 DIV2K 34.95 0.9316 30.83 0.8511 29.41 0.8130 29.42 0.8761 34.92 0.9526

IPT [9] ×3 ImageNet 34.81 - 30.85 - 29.38 - 29.49 - - -

SwinIR (Ours) ×3 DIV2K+Flickr2K 34.97 0.9318 30.93 0.8534 29.46 0.8145 29.75 0.8826 35.12 0.9537

SwinIR+ (Ours) ×3 DIV2K+Flickr2K 35.04 0.9322 31.00 0.8542 29.49 0.8150 29.90 0.8841 35.28 0.9543

RCAN [95] ×4 DIV2K 32.63 0.9002 28.87 0.7889 27.77 0.7436 26.82 0.8087 31.22 0.9173

SAN [15] ×4 DIV2K 32.64 0.9003 28.92 0.7888 27.78 0.7436 26.79 0.8068 31.18 0.9169

IGNN [100] ×4 DIV2K 32.57 0.8998 28.85 0.7891 27.77 0.7434 26.84 0.8090 31.28 0.9182

HAN [63] ×4 DIV2K 32.64 0.9002 28.90 0.7890 27.80 0.7442 26.85 0.8094 31.42 0.9177

NLSA [61] ×4 DIV2K 32.59 0.9000 28.87 0.7891 27.78 0.7444 26.96 0.8109 31.27 0.9184

SwinIR (Ours) ×4 DIV2K 32.72 0.9021 28.94 0.7914 27.83 0.7459 27.07 0.8164 31.67 0.9226

SwinIR+ (Ours) ×4 DIV2K 32.81 0.9029 29.02 0.7928 27.87 0.7466 27.21 0.8187 31.88 0.9423

DBPN [31] ×4 DIV2K+Flickr2K 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137

IPT [9] ×4 ImageNet 32.64 - 29.01 - 27.82 - 27.26 - - -

RRDB [81] ×4 DIV2K+Flickr2K 32.73 0.9011 28.99 0.7917 27.85 0.7455 27.03 0.8153 31.66 0.9196

SwinIR (Ours) ×4 DIV2K+Flickr2K 32.92 0.9044 29.09 0.7950 27.92 0.7489 27.45 0.8254 32.03 0.9260

SwinIR+ (Ours) ×4 DIV2K+Flickr2K 32.93 0.9043 29.15 0.7958 27.95 0.7494 27.56 0.8273 32.22 0.9273

Urban100 (4×):img 012

HR VDSR [40] EDSR [51] RDN [97] OISR [33]

SAN [15] RNAN [96] IGNN [100] IPT [9] SwinIR (ours)

Figure 4: Visual comparison of bicubic image SR (×4) methods. Compared images are derived from [9]. Best viewed by zooming.

Table 3: Quantitative comparison (average PSNR/SSIM) with state-of-the-art methods for lightweight image SR on bench-

mark datasets. Best and second best performance are in red and blue colors, respectively.

Method Scale #Params #Mult-Adds
Set5 [3] Set14 [87] BSD100 [58] Urban100 [34] Manga109 [60]

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

CARN [2] ×2 1,592K 222.8G 37.76 0.9590 33.52 0.9166 32.09 0.8978 31.92 0.9256 38.36 0.9765

FALSR-A [12] ×2 1,021K 234.7G 37.82 0.959 33.55 0.9168 32.1 0.8987 31.93 0.9256 - -

IMDN [35] ×2 694K 158.8G 38.00 0.9605 33.63 0.9177 32.19 0.8996 32.17 0.9283 38.88 0.9774

LAPAR-A [44] ×2 548K 171.0G 38.01 0.9605 33.62 0.9183 32.19 0.8999 32.10 0.9283 38.67 0.9772

LatticeNet [57] ×2 756K 169.5G 38.15 0.9610 33.78 0.9193 32.25 0.9005 32.43 0.9302 - -

SwinIR (Ours) ×2 878K 195.6G 38.14 0.9611 33.86 0.9206 32.31 0.9012 32.76 0.9340 39.12 0.9783

CARN [2] ×3 1,592K 118.8G 34.29 0.9255 30.29 0.8407 29.06 0.8034 28.06 0.8493 33.50 0.9440

IMDN [35] ×3 703K 71.5G 34.36 0.9270 30.32 0.8417 29.09 0.8046 28.17 0.8519 33.61 0.9445

LAPAR-A [44] ×3 544K 114.0G 34.36 0.9267 30.34 0.8421 29.11 0.8054 28.15 0.8523 33.51 0.9441

LatticeNet [57] ×3 765K 76.3G 34.53 0.9281 30.39 0.8424 29.15 0.8059 28.33 0.8538 - -

SwinIR (Ours) ×3 886K 87.2G 34.62 0.9289 30.54 0.8463 29.20 0.8082 28.66 0.8624 33.98 0.9478

CARN [2] ×4 1,592K 90.9G 32.13 0.8937 28.60 0.7806 27.58 0.7349 26.07 0.7837 30.47 0.9084

IMDN [35] ×4 715K 40.9G 32.21 0.8948 28.58 0.7811 27.56 0.7353 26.04 0.7838 30.45 0.9075

LAPAR-A [44] ×4 659K 94.0G 32.15 0.8944 28.61 0.7818 27.61 0.7366 26.14 0.7871 30.42 0.9074

LatticeNet [57] ×4 777K 43.6G 32.30 0.8962 28.68 0.7830 27.62 0.7367 26.25 0.7873 - -

SwinIR (Ours) ×4 897K 49.6G 32.44 0.8976 28.77 0.7858 27.69 0.7406 26.47 0.7980 30.92 0.9151
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LR (×4) ESRGAN [81] FSSR [24] RealSR [37] BSRGAN [89] SwinIR (ours)

Figure 5: Visual comparison of real-world image SR (×4) methods on RealSRSet [89]. Compared images are derived from [89].

Table 4: Quantitative comparison (average PSNR/SSIM/PSNR-B) with state-of-the-art methods for

JPEG compression artifact reduction on benchmark datasets. Best and second best performance are in red and

blue colors, respectively.

Dataset q ARCNN [17] DnCNN-3 [90] QGAC [20] RNAN [96] RDN [98] DRUNet [88] SwinIR (ours)

Classic5

[22]

10 29.03/0.7929/28.76 29.40/0.8026/29.13 29.84/0.8370/29.43 29.96/0.8178/29.62 30.00/0.8188/- 30.16/0.8234/29.81 30.27/0.8249/29.95

20 31.15/0.8517/30.59 31.63/0.8610/31.19 31.98/0.8850/31.37 32.11/0.8693/31.57 32.15/0.8699/- 32.39/0.8734/31.80 32.52/0.8748/31.99

30 32.51/0.8806/31.98 32.91/0.8861/32.38 33.22/0.9070/32.42 33.38/0.8924/32.68 33.43/0.8930/- 33.59/0.8949/32.82 33.73/0.8961/33.03

40 33.32/0.8953/32.79 33.77/0.9003/33.20 - 34.27/0.9061/33.4 34.27/0.9061/- 34.41/0.9075/33.51 34.52/0.9082/33.66

LIVE1

[67]

10 28.96/0.8076/28.77 29.19/0.8123/28.90 29.53/0.8400/29.15 29.63/0.8239/29.25 29.67/0.8247/- 29.79/0.8278/29.48 29.86/0.8287/29.50

20 31.29/0.8733/30.79 31.59/0.8802/31.07 31.86/0.9010/31.27 32.03/0.8877/31.44 32.07/0.8882/- 32.17/0.8899/31.69 32.25/0.8909/31.70

30 32.67/0.9043/32.22 32.98/0.9090/32.34 33.23/0.9250/32.50 33.45/0.9149/32.71 33.51/0.9153/- 33.59/0.9166/32.99 33.69/0.9174/33.01

40 33.63/0.9198/33.14 33.96/0.9247/33.28 - 34.47/0.9299/33.66 34.51/0.9302/- 34.58/0.9312/33.93 34.67/0.9317/33.88

applications, we further propose a large model and train it

on much larger datasets. Experiments show that it can deal

with more complex corruptions and achieves even better

performance on real-world images than the current model.

Due to page limit, the details are given in our project page

https://github.com/JingyunLiang/SwinIR.

4.4. Results on JPEG Compression Artifact Reduc­
tion

Table 4 shows the comparison of SwinIR with state-

of-the-art JPEG compression artifact reduction methods:

ARCNN [17], DnCNN-3 [90], QGAC [20], RNAN [96],

RDN [98] and DRUNet [88]. All of compared methods

are CNN-based models. Following [98, 88], we test dif-

ferent methods on two benchmark datasets (Classic5 [22]

and LIVE1 [67]) for JPEG quality factors 10, 20, 30 and

40. As we can see, the proposed SwinIR has average PSNR

gains of at least 0.11dB and 0.07dB on two testing datasets

for different quality factors. Besides, compared with the

previous best model DRUNet, SwinIR only has 11.5M pa-

rameters, while DRUNet is a large model that has 32.7M

parameters.

4.5. Results on Image Denoising

We show grayscale and color image denoising re-

sults in Table 5 and Table 6, respectively. Com-

pared methods include traditional models BM3D [14]

and WNNM [29], CNN-based models DnCNN [90], IR-

CNN [91], FFDNet [92], N3Net [65], NLRN [52], FOC-

Net [38], RNAN [96], MWCNN [54] and DRUNet [88].

Following [90, 88], the compared noise levels include 15,

25 and 50. As one can see, our model achieves better per-

formance than all compared methods. In particular, it sur-

passes the state-of-the-art model DRUNet by up to 0.3dB

on the large Urban100 dataset that has 100 high-resolution

testing images. It is worth pointing out that SwinIR only

has 12.0M parameters, whereas DRUNet has 32.7M param-

eters. This indicates that the SwinIR architecture is highly

efficient in learning feature representations for restoration.

The visual comparison for grayscale and color image de-

noising of different methods are shown in Figs. 6 and 7.

As we can see, our method can remove heavy noise cor-

ruption and preserve high-frequency image details, result-

ing in sharper edges and more natural textures. By contrast,

other methods suffer from either over-smoothness or over-

sharpness, and cannot recover rich textures.

5. Conclusion

In this paper, we propose a Swin Transformer-based im-

age restoration model SwinIR. The model is composed of

three parts: shallow feature extraction, deep feature extrac-
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Table 5: Quantitative comparison (average PSNR) with state-of-the-art methods for grayscale image denoising on bench-

mark datasets. Best and second best performance are in red and blue colors, respectively.

Dataset σ
BM3D

[14]

WNNM

[29]

DnCNN

[90]

IRCNN

[91]

FFDNet

[92]

N3Net

[65]

NLRN

[52]

FOCNet

[38]

RNAN

[96]

MWCNN

[54]

DRUNet

[88]
SwinIR (ours)

Set12

[90]

15 32.37 32.70 32.86 32.76 32.75 - 33.16 33.07 - 33.15 33.25 33.36

25 29.97 30.28 30.44 30.37 30.43 30.55 30.80 30.73 - 30.79 30.94 31.01

50 26.72 27.05 27.18 27.12 27.32 27.43 27.64 27.68 27.70 27.74 27.90 27.91

BSD68

[59]

15 31.08 31.37 31.73 31.63 31.63 - 31.88 31.83 - 31.86 31.91 31.97

25 28.57 28.83 29.23 29.15 29.19 29.30 29.41 29.38 - 29.41 29.48 29.50

50 25.60 25.87 26.23 26.19 26.29 26.39 26.47 26.50 26.48 26.53 26.59 26.58

Urban100

[34]

15 32.35 32.97 32.64 32.46 32.40 - 33.45 33.15 - 33.17 33.44 33.70

25 29.70 30.39 29.95 29.80 29.90 30.19 30.94 30.64 - 30.66 31.11 31.30

50 25.95 26.83 26.26 26.22 26.50 26.82 27.49 27.40 27.65 27.42 27.96 27.98

Table 6: Quantitative comparison (average PSNR) with state-of-the-art methods for color image denoising on benchmark

datasets. Best and second best performance are in red and blue colors, respectively.

Dataset σ
BM3D

[14]

DnCNN

[90]

IRCNN

[91]

FFDNet

[92]

DSNet

[64]

RPCNN

[85]

BRDNet

[71]

RNAN

[96]

RDN

[98]

IPT

[9]

DRUNet

[88]
SwinIR (ours)

CBSD68

[59]

15 33.52 33.90 33.86 33.87 33.91 - 34.10 - - - 34.30 34.42

25 30.71 31.24 31.16 31.21 31.28 31.24 31.43 - - - 31.69 31.78

50 27.38 27.95 27.86 27.96 28.05 28.06 28.16 28.27 28.31 28.39 28.51 28.56

Kodak24

[23]

15 34.28 34.60 34.69 34.63 34.63 - 34.88 - - - 35.31 35.34

25 32.15 32.14 32.18 32.13 32.16 32.34 32.41 - - - 32.89 32.89

50 28.46 28.95 28.93 28.98 29.05 29.25 29.22 29.58 29.66 29.64 29.86 29.79

McMaster

[94]

15 34.06 33.45 34.58 34.66 34.67 - 35.08 - - - 35.40 35.61

25 31.66 31.52 32.18 32.35 32.40 32.33 32.75 - - - 33.14 33.20

50 28.51 28.62 28.91 29.18 29.28 29.33 29.52 29.72 - 29.98 30.08 30.22

Urban100

[34]

15 33.93 32.98 33.78 33.83 - - 34.42 - - - 34.81 35.13

25 31.36 30.81 31.20 31.40 - 31.81 31.99 - - - 32.60 32.90

50 27.93 27.59 27.70 28.05 - 28.62 28.56 29.08 29.38 29.71 29.61 29.82

Noisy BM3D [14] DnCNN [90] FFDNet [92] DRUNet [88] SwinIR (ours)

Figure 6: Visual comparison of grayscale image denoising (noise level 50) methods on image “Monarch” from Set12 [90]. Compared

images are derived from [88].

Noisy DnCNN [90] FFDNet [92] IPT [9] DRUNet [88] SwinIR (ours)

Figure 7: Visual comparison of color image denoising (noise level 50) methods on image “163085” from CBSD68 [59]. Compared images

are derived from [88].

tion and HR reconstruction modules. In particular, we use a

stack of residual Swin Transformer blocks (RSTB) for deep

feature extraction, and each RSTB is composed of Swin

Transformer layers, convolution layer and a residual con-

nection. Extensive experiments show that SwinIR achieves

state-of-the-art performance on three representative image

restoration tasks and six different settings: classic image

SR, lightweight image SR, real-world image SR, grayscale

image denoising, color image denoising and JPEG com-

pression artifact reduction, which demonstrates the effec-

tiveness and generalizability of the proposed SwinIR. In the

future, we will extend the model to other restoration tasks

such as image deblurring and deraining.
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