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Abstract

Motivation: Riboswitches are cis-regulatory elements in mRNA, mostly found in Bacteria, which

exhibit two main secondary structure conformations. Although one of them prevents the gene

from being expressed, the other conformation allows its expression, and this switching process is

typically driven by the presence of a specific ligand. Although there are a handful of known ribos-

witches, our knowledge in this field has been greatly limited due to our inability to identify their

alternate structures from their sequences. Indeed, current methods are not able to predict the pres-

ence of the two functionally distinct conformations just from the knowledge of the plain RNA nu-

cleotide sequence. Whether this would be possible, for which cases, and what prediction accuracy

can be achieved, are currently open questions.

Results: Here we show that the two alternate secondary structures of riboswitches can be accur-

ately predicted once the ‘switching sequence’ of the riboswitch has been properly identified. The

proposed SwiSpot approach is capable of identifying the switching sequence inside a putative,

complete riboswitch sequence, on the basis of pairing behaviors, which are evaluated on proper

sets of configurations. Moreover, it is able to model the switching behavior of riboswitches whose

generated ensemble covers both alternate configurations. Beyond structural predictions, the ap-

proach can also be paired to homology-based riboswitch searches.

Availability and Implementation: SwiSpot software, along with the reference dataset files, is avail-

able at: http://www.iet.unipi.it/a.bechini/swispot/

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: a.bechini@ing.unipi.it

1 Introduction

Gene regulation is essential to achieve organism versatility, giving

cells control over structure and functions and being the basis for cellu-

lar differentiation, morphogenesis, and adaptability. Since the discov-

ery of ribozymes, it has become more and more evident that RNA

molecules are also actively involved in regulatory mechanisms, includ-

ing the regulation of gene expression (Waters and Storz, 2009).

Riboswitches are RNA elements, mainly found in bacteria, that

are embedded in 50-untranslated regions of mRNA (Garst et al.,

2011). They are able to sense cellular metabolites with no involve-

ment of protein factors, and consequently modulate either mRNA

transcription or translation by adopting one out of two possible

structures (Serganov and Nudler, 2013), known as ‘ON’ and ‘OFF’

conformations. Riboswitches are usually built around an aptamer
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domain, which binds to the ligand, and an expression platform do-

main, which undergoes a structural rearrangement upon the ligand-

aptamer binding (Garst et al., 2011). Furthermore, a central role in

regulation has been recognized to an overlapping region between

these two domains, referred to as switching sequence (or ‘SwSeq’ for

short hereafter). From an evolutionary standpoint, aptamers are typ-

ically highly conserved, as a consequence of its recognition specifi-

city towards the ligand. In contrast, expression platforms are usually

far less conserved (Breaker, 2012).

Previous works have shown that riboswitches can regulate gene

expression via three main mechanisms: (i) transcription termination,

through the formation of a terminator hairpin or a competitive anti-

terminator structure, (ii) translation inhibition, by sequestering or

releasing the Shine-Dalgarno (SD) sequence and (iii) alternative

splicing regulation, via sequestration/release of alternative splicing

sites (Peselis and Serganov, 2014). Understanding the mechanisms

of riboswitch structural switching is of broad interest and applicable

to a wide range of scientific fields, such as systems biology or drug

design, e.g. to design novel engineered genetic circuits (Wittmann

and Suess, 2012), or develop riboswitch-targeting drugs (Lünse

et al., 2014).

Previous computational efforts targeting riboswitches can be

categorized in riboswitch gene finders, and conformational switch

predictors (Clote, 2015). The former category includes several tools,

such as Infernal, the founding component of the Rfam database

(Nawrocki et al., 2009), and more specific tools such as RibEx

(Abreu-Goodger and Merino, 2005) or RiboSW (Chang et al.,

2009). Such methods are primarily used for genome-wide analyses,

and are based on machine learning approaches. The second category

encompasses various methods based on a structural classification of

alternative structures, such as paRNAss (Voss et al., 2004),

RNAshapes (Janssen and Giegerich, 2014) and RNAbor (Freyhult

et al., 2007). Family-specific approaches for ON/OFF structure

prediction have been employed as well (Clote et al., 2012).

Here we present a novel computational method that can predict

the two functional conformations of riboswitches, using merely as

input the plain RNA nucleotide sequence. Importantly, this de-

veloped procedure can also be coupled with a classifier to identify

putative riboswitch sequences, i.e. to uncover riboswitches based on

its potential to generate two alternate configurations.

2 System and methods

The presented work stems from investigations initially carried out to

answer a simple question: Is it possible to computationally predict

the two functional conformations of a riboswitch once the SwSeq

has been identified? By imposing loose constraints on the pairings of

the SwSeq bases, the RNAfold tool in the ViennaRNA package

(Lorenz et al., 2011) was able to closely approximate the two refer-

ence alternative structures in ten out of twelve case studies, while

only minor errors were present in the outcomes for the other two

(Supplementary Table S1; further details in Section 3.2).

Such results suggest that spotting out the switching sequence

may represent the basic step for the prediction of the two functional

RNA conformations.

Throughout this work we used the ViennaRNA package, ver.

2.1.9, (Lorenz et al., 2011), which is based on a validated set of

thermodynamic parameters (Mathews et al., 2004) and produces

precise energy models.

2.1 Overall approach

Although it has been found that tertiary structural arrangements af-

fect the riboswitch functionality (Greenleaf et al., 2008), their influ-

ence can hardly be captured by a simple, handy computational

model. Instead, secondary structures can be investigated and ana-

lyzed in a much more efficient way. For these reasons, we shall focus

on RNA secondary structures and their representations.

Let r ¼ r1r2 . . . rlr be the RNA sequence of length lr over the or-

dinary RNA alphabet; a secondary structure can be indicated by the

integer row vector p(r) (a ‘pairing’) whose jth element pðrÞ½j� holds

either the index of the element the jth base is paired with, or j in case

of no pairing. An ensemble of structures for r is a multiset of N pair-

ing vectors pðrÞi ; i ¼ 1 . . .N, not necessarily distinct, stacked in the

N � lr matrix Er. Thus, Er½i� indicates the i-th conformation in Er,

whose j-th element is Er½i; j�. In this context, SwSeqs in the two alter-

nate conformations show alternate pairing patterns (towards either

upstream or downstream bases), thus suggesting a pattern-based

method to identify and locate SwSeqs whenever they are not known.

The processing flow that leads from the input RNA sequence

down to the possible alternate conformations and the evaluation of

a riboswitch-like behavior can be structured as shown in Figure 1. It

comprises three main functional modules indicated as SwSeq

Extractor, Constrained Folding, and Classifier, respectively aimed

at identifying the switching sequence, at deriving the alternate con-

figurations, and at evaluating their potential to support a typical

riboswitch behavior. Their implementations can be separately modi-

fied to improve their accuracy and/or efficiency.

The proposed method has been assessed against a set of well-

known riboswitches, whose functional structures have been care-

fully described. Hence, a reference dataset has been defined for this

purpose.

2.2 Dataset

Currently, riboswitches have been classified in more than 20 distinct

classes (Breaker, 2012), according to significant structural and/or se-

quence similarity. At present, hundreds or thousands of representa-

tives per class exist in the current RNA databases such as Rfam

(Nawrocki et al., 2015). However, a proper evaluation of the pro-

posed approach requires a complete knowledge of both the ON and

OFF conformations, and this is available only for a very small num-

ber of cases.

For the sake of our investigation, both the aptamer and the

expression platform domain have to be precisely located in the

riboswitch sequences. Unfortunately, in literature and in databases

such as Rfam often only the expression platform is given. Thus, the

Fig. 1. Schematic view of the SwiSpot approach. Starting from an RNA se-

quence, a putative switching sequence is identified by the SwSeq Extractor.

Such result is exploited by the Constrained Folding module to derive the two

alternate structures. Finally, a classifier decides if a switching behavior can be

associated to them
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complete sequence and the missing details must be obtained through

a systematic review of studies on single riboswitches, whenever

available. The riboswitch records used as our reference dataset and

reported in Table 1 have been defined carrying out this reviewing

work and, to the best of our knowledge, they can be regarded as one

of the most comprehensive riboswitch dataset to date, at least in

terms of the complete sequence set (aptamer + expression platform).

It covers the main riboswitch families and the major regulatory

mechanisms.

Our complete reference dataset contains 40 records, divided in

three groups. The first two groups include 20 riboswitches from 16

families (Table 1). The first group encompasses twelve sequences

(some already used in previous studies (Quarta et al., 2012)) with

reliable SwSeq information (first part of Table 1). For each record in

the group, whenever not explicitly reported in the literature, the

switching sequences have been identified by comparing the two

known alternative secondary structures. The second group contains

eight riboswitches whose SwSeq has not been identified yet (second

part of Table 1); despite this lack of information, they can be used

to validate the overall method, but not the SwSeq Extractor. The

twenty elements in the last group (shown in Table S2) have been

used as negative controls; they are not riboswitches, and consist of

ncRNAs, in the same length range of the previous groups, selected

from the Rfam database (version 12.0, see http://rfam.xfam.org) to

be representative of heterogeneous secondary structures. Among

them, we have taken care to include RNAs that exhibit other types

of switching behaviors.

3 Algorithms

3.1 SwSeq extractor

A central question in the proposed approach is how to spot the

switching sequence out of an RNA sequence r, using no additional

information. This task is assigned to the SwSeq Extractor module.

Scarceness of accurate structural data on riboswitches makes it im-

possible to follow a typical machine-learning approach. Moreover, re-

cent studies on entropy contents of riboswitch sequences

(Manzourolajdad and Arnold, 2015) do not focus on SwSeqs. Thus,

we propose to use an ensemble (a multiset) Er of conformations,

which will likely contain conformations close to the two alternative

structures. Once Er has been defined, base pairings across different

conformations in Er must be analyzed to identify the SwSeq. These

two tasks, named “Ensemble Builder” and “Ensemble Analyzer”, are

integral parts of the SwSeq Extractor module (Fig. 1).

The actual content of Er determines the effectiveness of the

whole SwSeq extraction procedure. An implicit choice for Er can be

taken by referring to the McCaskill algorithm (McCaskill, 1990) to

compute the frequency of all possible base pairings at equilibrium at

a given temperature, subsumed in the matrix P. In this case, the ideal

reference Er accounts for all the conformations and their specific sta-

bility. We shall derive results according to this choice first, and then

we shall compare them with results from a stochastic approach in

building Er.

The SwSeq is identified by the ‘Ensemble Analyzer’, which searches

for the subsequence in r that most frequently shows alternative base-

pairing (upstream or downstream) across structures in Er. We propose

to capture this behavior by means of a proper scoring method; the pre-

dicted SwSeq would then be the one with the maximum score. The

corresponding pseudo-code is shown in Algorithm S1.

In defining the scoring method, we make use of the basic pro-

moting score sp > 0, and the basic penalty sn < 0. Let us consider

the subsequence r½j . . . jþ l� of length l starting at index j; its mean

frequency of upstream/downstream base-pairing, indicated respect-

ively by Fupðj; lÞ and Fdoðj; lÞ, can be calculated through the

McCaskill pairing probability matrix P (the probability for base pair

(x, y) is indicted here as P½x; y�):

Fupðj; lÞ ¼
1

l

Xjþl�1

h¼j

Xh�1

i¼0

P½i; h� (1)

Table 1. Riboswitches of the reference dataset

IDa Riboswitch Class Gene–Organism Switching mechanism Boltzmann Cov.b

thiM_TPP Thiamine Pyrophosphate thiM – E. coli Translation YES

add_Adenine Adenine add - Vibrio vulnificus Translation YES

folT_THF Tetrahydrofolate folT - Alkaliphilus metalliredigens Translation N.A.

xpt_Guanine Guanine xpt - Bacillus subtilis Transcription NO

pbuE_Adenine Adenine pbuE (ydhL) – B. subtilis Transcription NO

mtgE_Mg Magnesium mgtE – B. subtilis Transcription YES

yitJ_SAM S-adenosylmethionine yitJ – B. subtilis Transcription YES

lysC_Lysine Lysine lysC – B. subtilis Transcription YES

tenA_TPP Thiamine Pyrophosphate tenA - B. subtilis Transcription YES

metH_SAH S-adenosylhomocisteine metH - Dechloromonas aromatica Transcription N.A.

VEGFA Het. nuclear ribonucleoprotein L VEGFA - Homo sapiens Alt. Splicing YES

thiC_TPP Thiamine Pyrophosphate thiC - Arabidopsis thaliana Alt. Splicing N.A.

moaA_Moco Molybdenum Cofactor moaA – E. coli Translation

btuB_Cobalamin Cobalamin btuB –E. coli Translation

alx_PH PH alx – E. coli Translation

GEMM_CDA Cyclic-di-Guanosine Monoph. Daud_1768 - Desulforudis audaxviator Transcription

crcB_Flouride Flouride crcB - Bacillus cereus Transcription

PreQ1 Pre-Queosine glyS - Fusobacterium nucleatum Transcription

ydaO_ATP ATP ydaO – B. subtilis Transcription

metA_SAH S-adenosylmethionine metA - Agrobacterium tumefaciens Transcription

aRiboswitches have been subdivided into those for which the SwSeq is known (upper panel) and not known (lower panel).
bBoltzmann coverage has been evaluated with the extended sampling approach described in text. List of ncRNA used as negative controls are shown in

Supplementary Table S2. Full description of the reference dataset, including the annotated switching sequences, can be found in Supplementary Table S1.
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Fdoðj; lÞ ¼
1

l

Xjþl�1

h¼j

XN

i¼hþ1

P½i; h� (2)

A synthetic way to express the tendencies of r½j . . . jþ l� to pair

upstream and downstream is

pairUpðj; lÞ ¼ sp � Fupðj; lÞ þ sn � Fdoðj; lÞ

pairDownðj; lÞ ¼ sp � Fdoðj; lÞ þ sn � Fupðj; lÞ
(3)

and the propensity for r½j . . . jþ l� to show both of them can be indi-

cated by

scoreðj; lÞ ¼ pairUpðj; lÞ � pairDownðj; lÞ (4)

According to the proposed scoring model, the pair of indices ðj�; l�Þ

yielding the maximum for score(j, l) indicates the putative switching

sequence.

The actual values chosen for for sp and sn may affect the overall

classification performance. Thus, according to tests performed on

the reference dataset and discussed in Supplementary Material, they

have been set to sp¼1 and sn ¼ �0:9, yielding the most satisfying

classification performance (Supplementary Figure S1).

Figure 2 shows how base pairing frequencies can be exploited to

build the described score. The upper chart reports the plain per sin-

gle base upstream/downstream pairing frequencies. The middle

chart reports the mean frequencies per target subsequence, referred

to its starting position. Finally, the lower chart shows the overall

score, as per Equation (4). The starting position of the putative

SwSeq corresponds to the base index yielding the maximum score

(indicated by a small circle).

It might be argued that working with the overall pairing prob-

ability matrix P would account also for very unlikely conformations,

loosing the focus on the most representative ones for our goal. Thus

another possibility is to make use of an actual Er, populating it via

specific sampling methods. In this regard, the baseline option in our

work was a Boltzmann-based sampling through a well-known algo-

rithm (Ding and Lawrence, 2003).

For Er to be representative of the real energy landscape, a very

accurate energy model is required. It must be underlined that the

Turner energy model is inherently unable to account for the ligand

contributions in one of the structures. Moreover, the influence of

kinetic phenomena in the formation of some native structures can-

not be easily captured. As a consequence, as shown in Figure 3, by

using a plain Boltzmann sampling not in all cases Er covers the

neighborhoods of the two alternate functional conformations: for

thiM_TPP (a), both neighborhoods are encompassed, while for

xpt_Guanine (b) one conformation is completely out of the Er land-

scape. In practice, whenever conformations similar to one of the two

alternatives are not adequately represented in Er, it is unlikely to

identify the SwiSeq by analyzing pairing frequencies.

In an attempt to partially address this limitation, we have chosen

an ensemble size of 1200 structures and, to increase the representa-

tiveness of samples in Er, we have applied an artifice proposed also

in (Quarta et al., 2012), by performing the sampling at different

temperatures. By using the RNAsubopt tool, we sampled 300 struc-

tures at the default value of 37 �C and we added 150 structures per

each temperature value at six decile intervals towards the melting

temperature of the RNA strand.

Once the reference ensemble has been built, we can refer to the

same scoring method previously described. Thus, we can express Fup
and Fdo on the basis of actual structures in Er. Using the step func-

tion H(x) (defined as H(x)¼0 for x � 0, H(x)¼1 otherwise), these

values can be calculated as:

Fupðj; lÞ ¼
1

l �N

Xjþl�1

h¼j

XN

i¼1

Hðh� Er½i; h�Þ (5)

Fdoðj; lÞ ¼
1

l �N

Xjþl�1

h¼j

XN

i¼1

HðEr½i; h� � hÞ (6)

This possible approach is intrinsically stochastic, thus not repro-

ducible in principle. Although a small variance exists across pre-

dicted SwSeqs from different runs, its effect on the two predicted

conformations is minimal, with a negligible variance of the normal-

ised bp-distance between conformations predicted in different runs

(values are reported in Supplementary Table S3).

3.2 Constrained folding

The Constrained Folding module predicts the two alternate config-

urations, given a putative riboswitch sequence and its corresponding

SwSeq. The founding idea is that SwSeq bases should pair with up-

stream bases in one case, and with downstream bases in the other:

This can be forced as a (soft) constraint within the RNA folding

algorithm. We have chosen RNAfold from the ViennaRNA pack-

age, because of its ability to accommodate the required constraint,

Fig. 2. In the upper two panels, upstream/downstream base pairing frequen-

cies (respectively per single base, and over subsequences of length l¼ 5), are

shown in the neighborhood of the actual SwSeq (indicated by the shaded

band) for E. coli thiM_TPP. In the lower panel, the corresponding score

(Equation 4) with the indicated maximum point (Color version of this figure is

available at Bioinformatics online.)

Fig. 3. Sampled and clustered structural ensembles for two different ribos-

witches. Different symbols are used for elements of different clusters. The

placement of ON/OFF conformations is indicated by the þ/D symbols. In the

right panel, the ensemble does not cover both of them (for sampled structural

ensembles for the full reference dataset, see Supplementary Fig. S2) (Color

version of this figure is available at Bioinformatics online.)
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specifying via a mask string, where a base may be paired upstream

(‘<’), downstream (‘>’), or not constrained at all (‘.’).

The implementation of this module was tested on the first group

of our reference dataset, i.e. containing riboswitches with experi-

mentally validated SwSeqs. We have been able to closely predict the

two alternate configurations in 	80% of the cases, and reconstruct

the remaining ones with very minor errors (Supplementary Table

S1). Notably, this was the result that pushed us to shape the whole

approach.

In a nutshell, we can conclude that the plain knowledge of the

switching sequence is generally sufficient to predict the two func-

tional structures of the riboswitch (Supplementary Fig. S3 for fur-

ther considerations on switching sequences).

3.3 Classifier

Our method derives two alternative structures for a target RNA se-

quence and it is up to the Classifier module to determine whether

they may be associated to a typical riboswitch behavior. The pro-

posed solution relies on the identification of secondary motifs

known to be related to specific gene regulation mechanisms in ribos-

witches. The extent to which such motifs are present in the input

conformations is quantified by means of specific indices, namely iSD

for SD sequestering, and iTT for transcription termination. Because

of its complexities and subtleties, alternative splicing has not been

directly addressed. In its current form, the Classifier can be sensibly

applied only to prokaryotic sequences.

To quantify translation inhibition, we first locate the SD pattern

in the sequence, and then count the fraction of unpaired bases nub in

the found SD sequence interval (Chen et al., 1994) in each of the

two alternate structures. The greater nub, the lower the sequestering

of the SD site. Our search consisted on the following consensus se-

quence: AGGAGG, followed by a start codon (AUG), separated by

5–10 bases from the SD site. If a given sequence does not possess a

terminator (see Equation 7 below), it is searched against one of the

patterns in the database of small SD, located within a small distance

from the end of the sequence. Once found the SD, we measure the

difference between the unpaired fraction of the found SD in the two

predicted structures. The index iSD; 0 � iSD � 1 can be defined as

the absolute difference of nub in the alternative conformations, over

the SD length.

Transcription termination is typically determined by a ‘termin-

ator hairpin’ (Wilson and von Hippel, 1995), which can be detected

as a stem-loop-like motif, followed by a run of ‘U’s. In practice, this

can be performed by substituting dots in the dot-bracket notation

with the symbols of the corresponding bases, and then looking for

matches of one of the following patterns: The first, of the form

‘(f3,g[ACGU]f3,8g)f3,gUf3,g.f,20g$’ to identify long hairpins, and

the other, ‘)f8,gUf3,g.f,20g$’, to catch terminators with a more

complex topology. Although unlikely, this pattern might introduce

false positives in the case of a stem loop within a multiloop that is

followed by a run of ’U’s and is close to the sequence end. We recall

that typically in regexes ‘(’ and ‘)’ are used as group delimiters; thus,

in practice parentheses symbols should be indicated by ‘\(’ and ‘\)’

instead. A termination-based riboswitch is correctly predicted if at

least one of the patterns is matched only in one of the alternative

structures. In this case, we set iTT ¼ 1; iTT ¼ 0 otherwise.

It has been proposed that an RNA switch could be predicted by

analyzing its energy landscape (Clote, 2015). According to this hy-

pothesis, an RNA switch ideally shows two distinct clouds of points

in the conformational landscape. This feature, although not exclu-

sively held by riboswitches, could indeed be used to strengthen the

classification procedure. For this reason, to quantify how well two

separate clusters can be spotted in Er, we perform a 2-medoids cluster-

ing on the ensemble, based on pairwise bp-distances (other possible

metrics would derive similar results (Barsacchi et al., 2016)). We then

characterize the result with the silhouette index isil, i.e. by computing

the mean of the silhouette coefficients for all the elements in the set

(Rousseeuw, 1987). This is one of the most popular indexes to quan-

tify clustering quality, and it approaches 1 for increasing quality.

The overall classification outcome can be based on a global

index that comprises the previous ones:

Ir ¼ iSDð1� iTTÞ þ iTT þ isil (7)

A riboswitch behavior will be foreseen in all cases if Ir is beyond

a given threshold value It.

3.4 Implementation

Algorithms have been initially implemented in Python, and the soft-

ware has been built upon a Python wrapper from ViennaRNA li-

brary, compiled from sources provided by TBI (http://www.tbi.

univie.ac.at/RNA/). A version in C language is available as well,

suitable for faster computations. Being based on RNAsubopt and

RNAfold, the current algorithm implementation does not support

pseudoknotted structures.

The runtime of the Ensemble Analyzer increases as

Oðlr �wlenmaxÞ 
 OðlrÞ, where lr and wlenmax indicate the sequence

length and the maximum length of the SwSeq, respectively. The

complexity of the McCaskill algorithm is Oðlr
3Þ, while the complex-

ity of the suboptimal Boltzmann sampling is Oðn � lr
3 þN2Þ (Ding

and Lawrence, 2003), with N as the ensemble cardinality. In prac-

tice, in the ordinary ranges for such parameters, the runtime shows a

linear dependence on input sequence length (Supplementary

Fig. S4), and it takes a few seconds per sequence, thus allowing this

method to be applied on large datasets in a genome-wide fashion.

4 Results

The method presented here is capable of predicting the presence of a

riboswitch—including its two alternate conformations—using as in-

put only its nucleotide sequence. The procedure consists in three

major steps, including: (i) prediction of the switching sequence

(SwSeq), (ii) prediction of the alternate secondary structure con-

formations and (iii) scoring, and consequent classification, of the se-

quence as a putative riboswitch (Fig. 1). The proposed approach has

been tested on the reference dataset, obtaining the results reported

in Supplementary Table S4; moreover, it has been used to investigate

a complete set of annotated putative riboswitches from the Rfam

database (Rfam 12.0). Our method is fully applicable to any pro-

karyotic organism at a genome-wide level, targeting single sequences

up to 300 nt each.

4.1 Application to the reference dataset

The ability to spot out the SwSeq depends both on the analysis pro-

cedure applied to the ensemble, and on the ensemble representative-

ness of the two functional conformations. Indeed, considering the

computational steps in the SwSeq Extractor and the formulation of

Equation (4), the sampling procedure itself, whenever used, affects

the reliability of the outcomes in this module (Fig. 3).

We first tested the SwSeq Extractor module on the first group of

our reference dataset, obtaining 10 exact SwSeq predictions out of

12 cases. We then predicted SwSeqs also for sequences in the second

group, obtaining the putative alternative structures for all sequences
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in both groups; Figure 4 shows an example of such predicted con-

formations for tenA_TPP, highlighting the SwSeq location. It should

be noted that, even in those cases in which an exact SwSeq predic-

tion could not be made, the located subsequence is similar enough to

the true SwSeq, thus allowing the Constrained Folding module to

correctly identify the alternate conformations (as it happens for

xpt_Guanine). Therefore, although SwSeq predictions may not

exactly match SwSeq annotations from the literature, they are accur-

ate enough to be effective in revealing the switching behavior.

Considering the complete reference dataset, the classifier module

performance is summarized as a ROC curve, where sensitivity and

specificity are respectively formulated as TPR ¼ TP=ðTPþ FNÞ and

SPC ¼ TN=ðTNþ FPÞ; true positives TP are the correctly predicted

riboswitches, true negatives TN the correctly predicted non-

riboswitches. Figure 5 reports the curves obtained using the

McCaskill method and the ensemble-based analysis.

We have observed that a good trade-off between accuracy and

true positive rate (TPR) is obtained choosing a threshold value

It ¼ 0:45. Hence, predictions using the McCaskill method exhibit

an accuracy of 0.6 and a TPR of 0.83, while the stochastic method

on average yields an accuracy of 0.6 and TPR ¼ 0.7. All the out-

comes of the Classifier module on the reference dataset are reported

in Supplementary Table S4.

We then proceeded to quantify the influence of the ensemble

coverage on the classification outcomes. For this aim, we compared

the classification outcome of all the riboswitches in the reference

dataset, with the outcome of selected riboswitches that have Er

coverage. Figure 6 clearly shows that the proposed approach is more

effective whenever Er coverage is present.

4.2 Application to Rfam putative riboswitches

Currently, several motif search methods exist to uncover ribos-

witches in genomes. However, they typically identify riboswitches

on the basis of the aptamer region only (Clote, 2015). Other

methods search for conformational switches, avoiding specific

aptamer considerations. Our methodology can complement both of

them, providing further structural insights. We applied our method

upon a set of putative Rfam-annotated riboswitches, to illustrate

how homology-based riboswitch searches can be coupled with our

algorithm to obtain a higher confidence set of putative riboswitches.

In practice, not only sequence similarity has to be taken into ac-

count, but also the potential of generating two alternative structures

with a SwSeq.

For this aim, we first gathered the sequences included in the seed

alignment for each of such families. We then used MAFFT (Katoh

and Standley, 2013) to obtain a structure-based alignment of the

seeds. Each alignment was assigned the relative ‘RNAz P-value’

(Gruber et al., 2010), accounting for both structural conservation

and thermodynamic stability. The top-ranked families based on

RNAz P-value were selected for further analysis; they included also

some of the prokaryotic sequences described in our reference data-

set. The target sequences were elongated downstream (to include the

first occurrence of a start codon ATG) to assure the inclusion of

(a)

(b)

Fig. 4. Example of predicted alternate conformations ON (a) and OFF (b) for

the tenA_TPP riboswitch. Both the switching sequence and the terminator are

highlighted and labeled (Color version of this figure is available at

Bioinformatics online.)

Fig. 5. ROC curve of performance on the complete reference dataset. The

upper ROC curve has been obtained using base-pairing probability matrix,

while the dashed curve represents the mean of 10 runs per ensemble (Color

version of this figure is available at Bioinformatics online.)

Fig. 6. Influence of ensemble coverage on effectiveness, evaluated in the case

of ensemble sampling. The upper ROC curve refers to the set of only ribos-

witches with Er coverage, while the lower curve considers all the riboswitches

(Color version of this figure is available at Bioinformatics online.)
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both aptamers and switching sequences. We finally ran our algo-

rithm on these sequences, spotting the switching regulatory behavior

by checking either the SD sequestering/releasing or the presence of a

terminator hairpin. A list of classified riboswitches has been ob-

tained (downloadable from the SwiSpot website).

The histogram in Figure 7 summarizes per-family results: for

each Rfam family, the percentage of sequences with a spotted

switching regulatory behavior is shown (see also Supplementary

Table S6). The low percentage of potential riboswitches actually

spotted may be due to the presence of other types of switching mech-

anisms, an inaccurate sequence framing around the aptamer regions,

or misannotations in Rfam, which may be in part due to ignoring

the presence of expression platforms for their annotation.

4.3 Comparison with other approaches

Although other approaches for riboswitch prediction exist, none of

them performs the two tasks that our method does, i.e. predicting if

a sequence is a riboswitch, as well as identifying its switching se-

quence and its alternative conformations. Nevertheless, even if

RNAbor does not produce an actual classification step, we have per-

formed a general comparison with SwiSpot: by applying RNAbor to

our reference dataset, peaks in the probability density profiles can

be coarsely compared with SwiSpot results (see Supplementary Fig.

S5 and Supplementary Table S5). In general, multiple peaks in

RNAbor profiles lead to interpretation problems, while Swispot pro-

vides clear outcomes. Considering the five RNAs with known

ON/OFF structures in our dataset, that show also two distinct, well-

defined RNAbor peaks, the structural predictions by SwiSpot are

more accurate than those provided by RNAbor (average normalized

bp-distance from reference structures: 0.319975 vs 0.467507).

In Figure 8, we consider the particular case of thiM_TPP, previ-

ously used in the RNAbor validation (Freyhult et al., 2007). In the

secondary structure diagrams, bases belonging to SD and to the

SwSeq are highlighted. The density plot for the complete sequence

displays only one larger peak corresponding to the OFF structure,

and a smaller peak for a partially formed ON structure; both con-

formations do not exactly match the reference ones. SwiSpot pro-

vides better results, with relative distances from the two annotated

conformations -based on literature- of (0.00, 0.00), while RNAbor

peaks structure show less similarity with the reference: (0.28, 0.09).

This suggests that SwiSpot is capable of predicting existing alterna-

tive conformations regardless of the presence of distinct peaks in the

probability density profile.

5 Discussion

Several methods for riboswitch prediction have been proposed,

which are based either on predicting the presence of conformational

switches, or on predicting riboswitches using homology-based

searches (Clote, 2015). However, none of the current methods is

focused on predicting the two riboswitch conformational structures.

Such a capability would be extremely useful in driving riboswitch

engineering and for synthetic biology. For this reason, we propose

SwiSpot, a novel computational method to directly address con-

formational prediction of riboswitches.

The scarceness of precise data on riboswitch conformations

makes it impossible to build a riboswitch predictor that merely uses

a statistical or machine learning approach. Despite the mentioned

data shortage, a reference dataset has been defined to properly assess

the proposed approach. The proposed modeling effort stems from

the first significant result presented in this work: we find a strong

computational evidence of the role of the switching sequence in the

characterisation of the whole riboswitch system. Moreover we find

that the switching sequence incorporates most of the information

required to drive the switching mechanisms.

The novelty of our approach relies on the ability to locate switch-

ing sequences, which are then used to predict the alternative conform-

ations, and to finally classify the target RNA sequence as a riboswitch

or not. Notably, previous genome-wide methods to search for ribos-

witches only looked for aptamer motifs (Clote, 2015), thus completely

ignoring structural predictions. On the other hand, we show that

Fig. 7. Percentage of per-family prokaryote riboswitches identified in putative

Rfam families containing riboswitches

(a)

(b)

Fig. 8. (A) Predicted alternate riboswitch structures according to the SwiSpot

approach for thiM_TPP. The SD sequence is highlighted and labeled as “locked

SD” and “free SD”. The SwSeq nucleotides are highlighted and labeled as

“SwSeq”. (B) RNAbor results, run on the same sequence, show only one peak

for the OFF structure. A smaller peak with partially free SD is present (Color ver-

sion of this figure is available at Bioinformatics online.)
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SwiSpot can be paired to these methods, leading to more reliable pre-

dictions of putative riboswitches. Importantly, from this experience

we observe that the quality of results depends on the capability of se-

lecting the proper subsequence to analyze, around the aptamer, down

to the expression platform, and not beyond.

Lessons learned in using the proposed algorithms indicate pos-

sible future improvements, although apparently difficult to apply.

Neglecting the energy contribution of the ligand and kinetic/co-

transcriptional aspects of the folding process can likely lead to

biased samplings of the energy landscapes, where conformations

similar to both the alternative structures are not adequately repre-

sented. This issue could be addressed by introducing additional, di-

verse forms of sampling. Unfortunately, the lack of real structural

data prevents any solid assessment of this kind of improvement.

Furthermore, the limitation of excluding pseudoknots could be

removed, devising new algorithms for the SwSeq Extractor and the

Constrained Folder (Fig. 1).

Future work will investigate possible improvements within each

single module, as well as the provision of new functionalities in add-

itional modules.
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