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SwissADME: a free web tool to 
evaluate pharmacokinetics, drug-
likeness and medicinal chemistry 
friendliness of small molecules
Antoine Daina1, Olivier Michielin1,2,3 & Vincent Zoete1

To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, 
and stay there in a bioactive form long enough for the expected biologic events to occur. Drug 

development involves assessment of absorption, distribution, metabolism and excretion (ADME) 

increasingly earlier in the discovery process, at a stage when considered compounds are numerous but 

access to the physical samples is limited. In that context, computer models constitute valid alternatives 

to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of 

fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness 

and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-
Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a 
user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also 

nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a 

collection of molecules to support their drug discovery endeavours.

During the time- and resource-consuming processes of drug discovery and development, a large number of 
molecular structures are evaluated according to very diverse parameters in order to steer the selection of which 
chemicals to synthetize, test and promote, with the �nal goal to identify those with the best chance to become an 
e�ective medicine for the patients. �e molecules must show high biological activity together with low toxicity. 
Equally important is the access to and concentration at the therapeutic target in the organism. �e traditional 
way to consider pharmacokinetics (i.e. the fate of a therapeutic compound in the organism) is to break down the 
various e�ects that impact the access to the target into individual parameters. In turn, these ADME parameters 
(for Absorption, Distribution, Metabolism and Excretion) can be evaluated separately by dedicated methods. It 
has been demonstrated that early estimation of ADME in the discovery phase reduces drastically the fraction of 
pharmacokinetics-related failure in the clinical phases1. Computer models have been fostered as a valid alterna-
tive to experimental procedures for prediction of ADME, especially at initial steps, when investigated chemical 
structures are numerous but the availability of compounds is scarce2.

A large variety of in silico methods share the objective of predicting ADME parameters from molecular structure3.  
Noteworthy, the pioneer work of Lipinski et al. examined orally active compounds to de�ne physicochemical 
ranges for high probability to be an oral drug (i.e. the drug-likeness)4. �is so-called Rule-of-�ve delineated the 
relationship between pharmacokinetic and physicochemical parameters.

Whereas physicochemical parameters give a global description of the structure, molecules can be directly 
described by substructure searches. �ese techniques are at the root of Structural Alert5, the PAINS6 or the Lilly 
MedChem7 �lters applied to cleanse chemical libraries from compounds most likely unstable, reactive, toxic, or 
prone to interfere with biological assays because unspeci�c frequent hitters, dyes or aggregators8.

Cheminformaticians developed different molecular descriptors mined from chemical structures. One 
of the most popular examples is the molecular �ngerprint (FP), which consists in a sequence of bits de�ning 
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the presence or absence of chemical features in a molecule. �e FP2 method9 is one archetype of topological 
(or path-based) FP, which considers all fragments of the molecular structure following a linear path up to a 
given number of bonds. Every possible path is hashed to generate the bit string (i.e. the FP). A major advantage 
of FP is the e�ciency by which computers handle such bit strings10, allowing for instance large-scale virtual 
screening or the rapid estimation of synthetic accessibility of molecules11. FP are also employed in classi�cation 
models for ADME behaviours built by support vector machine (SVM) or Bayesian techniques12. Remarkably, 
computer-aided drug design (CADD) has been a pioneer �eld for the application of such machine learning 
technologies13.

Because most freely available in silico ADME tools focus on one speci�c property or model only, while gener-
alist ADME packages are commercial so�ware, we felt the need of gathering what we consider the most relevant 
computational methods to provide a global appraisal of the pharmacokinetics pro�le of small molecules. �e 
methods were selected for robustness, speed, but also and importantly for ease of interpretation to enable e�cient 
translation to medicinal chemistry through molecular design. Some of them were adapted with open-source algo-
rithms to ensure freedom to operate for the global scienti�c community. Others are our own models developed 
and tested on purpose. When applicable, multiple predictions of the same parameter are provided to allow for a 
consensus view of a given property.

The SwissADME web tool presented here is freely accessible at http://www.swissadme.ch and meant 
for user-friendly submission and easy analysis of the results, also for nonexpert in CADD. Compared to the 
state-of-the art of free web-based tools for ADME and pharmacokinetics (e.g. pk-CSM14 and admetSAR15) and 
apart from unique access to pro�cient methods (e.g. iLOGP16 or the BOILED-Egg17), SwissADME strong points 
are, non-exhaustively: di�erent input methods, computation for multiple molecules, and the possibility to dis-
play, save and share results per individual molecule or through global intuitive and interactive graphs. Finally, 
SwissADME is integrated in the SwissDrugDesign workspace. One-click interoperability gives access to vari-
ous CADD tools developed by the Molecular Modeling Group of the SIB Swiss Institute of Bioinformatics, e.g. 
ligand-based virtual screening (SwissSimilarity18), biotarget prediction (SwissTargetPrediction19), molecular 
docking (SwissDock20), bioisosteric design (SwissBioisostere21), or molecular mechanics (SwissParam22).

Submission Web page
Accessing http://www.swissadme.ch in a web browser displays directly the submission page of SwissADME, 
where molecules to be estimated for ADME, physicochemistry, drug-likeness, pharmacokinetics and medic-
inal chemistry friendliness properties can be input. As shown in Fig. 1, a black toolbar at the top of the Web 

Figure 1. SwissADME submission page. �e actual input is a list of SMILES, which contains one molecule per 
line with an optional name separated by a space. Molecules can be directly pasted or typed in SMILES format, 
or inserted through the molecular sketcher. �e latter enables importing from databases, opening a local �le or 
drawing a 2D chemical structure to be transferred to the list by clicking on the double-arrow button. When the 
list of molecules is ready to be submitted, the user can start the calculations by clicking on the “Run” button.

http://www.swissadme.ch
http://www.swissadme.ch
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page allows the user to navigate within the di�erent SwissDrugDesign tools. A second bar gives access to di�er-
ent information regarding SwissADME, among which the FAQ and Help pages as well as legal disclaimer and 
contacts.

�e input zone itself comprises a molecular sketcher based on ChemAxon’s Marvin JS (http://www.chemaxon.
com) that enables the user to import (from a �le or an external database), draw, and edit a 2D chemical structure, 
and to transfer it to a list of molecules. �is list, on the right-hand side of the submission page, is the actual input 
for computation. It can be edited as a standard text, allowing for typing or pasting SMILES. �e list is made to 
contain one input molecule per line, de�ned by a SMILES and optionally a name separated by a space. If name is 
omitted, SwissADME will automatically provide an identi�er.

Noteworthy, both buttons for transferring the sketch to SMILES list and for running the computation are 
dynamic, in the sense that they are active only if the action is possible. At the time of writing, one can expect a 
result in 1 to 5 seconds for a drug-like molecule.

Examples can be loaded in the SMILES list by clicking on the “Fill with an example” button.

One-panel-per-molecule Output
�e output panels are loaded in the same Web page. �ere is one panel compiling all values for each molecule. It 
is �lled immediately a�er calculation completion, one molecule a�er the other. �is way it is possible to inspect 
the results for the �rst compounds without waiting for the whole list to be treated. �is one-panel-per-molecule 
(Fig. 2) is headed by the molecule name and divided into di�erent sections.

Chemical Structure and Bioavailability Radar. �e �rst section, including two-dimensional chemical 
structure and canonical SMILES, is located below the title (Fig. 2). It shows on which chemical form the pre-
dictions were calculated (refer to Computational Methods). Moreover, our Bioavailability Radar is displayed for 
a rapid appraisal of drug-likeness (refer to Fig. 3). Six physicochemical properties are taken into account: lipo-
philicity, size, polarity, solubility, �exibility and saturation. A physicochemical range on each axis was de�ned by 
descriptors adapted from refs 23 and 24 and depicted as a pink area in which the radar plot of the molecule has 
to fall entirely to be considered drug-like. Leaving the mouse over the radar gives further information about the 
descriptors (see also Physicochemical Properties and Computational Methods).

Physicochemical Properties. Simple molecular and physicochemical descriptors like molecular weight 
(MW), molecular refractivity (MR), count of speci�c atom types and polar surface area (PSA) are compiled in 
this section. �e values are computed with OpenBabel9, version 2.3.0. �e PSA is calculated using the fragmental 

Figure 2. Computed parameter values are grouped in the di�erent sections of the one-panel-par-molecule 
output (Physicochemical Properties, Lipophilicity, Pharmacokinetics, Drug-likeness and Medicinal 
Chemistry). �e panel is headed by the molecule name and an up-arrow button to scroll to the top of the page. 
�e molecule is �rst described by its chemical structure and canonical SMILES together with the Bioavailability 
Radar (see Fig. 3). Contextual help can be displayed by leaving the mouse over the radar or di�erent question 
mark icons next to some parameters.

http://www.chemaxon.com
http://www.chemaxon.com
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technique called topological polar surface area (TPSA), considering sulfur and phosphorus as polar atoms25. �is 
has proven a useful descriptor in many models and rules to quickly estimate some ADME properties, especially 
with regards to biological barrier crossing such as absorption and brain access17.

Lipophilicity. �e partition coe�cient between n-octanol and water (log Po/w) is the classical descriptor for 
Lipophilicity. It has a dedicated section in SwissADME due to the critical importance of this physicochemical 
property for pharmacokinetics drug discovery26,27. Many computational methods for log Po/w estimation were 
developed with diverse performance on various chemical sets. Common practice is to use multiple predictors 
either to select the most accurate methods for a given chemical series or to generate consensus estimation. �e 
models behind the predictors should be as diverse as possible to increase the prediction accuracy through consen-
sus log Po/w

28. In that regard, SwissADME gives access to �ve freely available predictive models; i.e. XLOGP3, an 
atomistic method including corrective factors and knowledge-based library29; WLOGP, our own implementation 
of a purely atomistic method based on the fragmental system of Wildman and Crippen30; MLOGP, an archetype 
of topological method relying on a linear relationship with 13 molecular descriptors implemented from refs 31 
and 32; SILICOS-IT, an hybrid method relying on 27 fragments and 7 topological descriptors (http://silicos-it.
be.s3-website-eu-west-1.amazonaws.com/so�ware/�lter-it/1.0.2/�lter-it.html, accessed June 2016); and �nally 
iLOGP, our in-house physics-based method relying on free energies of solvation in n-octanol and water calcu-
lated by the Generalized-Born and solvent accessible surface area (GB/SA) model. iLOGP was benchmarked on 
two drug or drug-like external sets and performed equally as or better than six well-established predictors16. �e 
consensus log Po/w is the arithmetic mean of the values predicted by the �ve proposed methods.

Water Solubility. Having a soluble molecule greatly facilitates many drug development activities, primarily 
the ease of handling and formulation33. Moreover, for discovery projects targeting oral administration, solubil-
ity is one major property in�uencing absorption34. As well, a drug meant for parenteral usage has to be highly 
soluble in water to deliver a su�cient quantity of active ingredient in the small volume of such pharmaceutical 
dosage35. Two topological methods to predict Water Solubility are included in SwissADME. �e �rst one is an 
implementation of the ESOL model36 and the second one is adapted from Ali et al.37. Both di�er from the seminal 
general solubility equation38 since they avoid the melting point parameter; the latter being challenging to pre-
dict. Moreover they demonstrate strong linear correlation between predicted and experimental values (R2 =  0.69 
and 0.81, respectively). SwissADME third predictor for solubility was developed by SILICOS-IT. �e linear 
correlation coe�cient of this fragmental method corrected by molecular weight is R2 =  0.75 (http://silicos-it.
be.s3-website-eu-west-1.amazonaws.com/so�ware/�lter-it/1.0.2/�lter-it.html, accessed June 2016).

All predicted values are the decimal logarithm of the molar solubility in water (log S). SwissADME also 
provides solubility in mol/l and mg/ml along with qualitative solubility classes (please refer to Computational 
Methods).

Pharmacokinetics. Specialized models, whose predictions are compiled in the Pharmacokinetics section, 
evaluate individual ADME behaviours of the molecule under investigation.

Figure 3. �e Bioavailability Radar enables a �rst glance at the drug-likeness of a molecule. �e pink 
area represents the optimal range for each properties (lipophilicity: XLOGP3 between − 0.7 and + 5.0, size: 
MW between 150 and 500 g/mol, polarity: TPSA between 20 and 130 Å2, solubility: log S not higher than 
6, saturation: fraction of carbons in the sp3 hybridization not less than 0.25, and �exibility: no more than 9 
rotatable bonds. In this example, the compound is predicted not orally bioavailable, because too �exible and too 
polar.

http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html


www.nature.com/scientificreports/

5SCientifiC REpORtS | 7:42717 | DOI: 10.1038/srep42717

One model is a multiple linear regression, which aims at predicting the skin permeability coe�cient (Kp). It is 
adapted from Potts and Guy39, who found Kp linearly correlated with molecular size and lipophilicity (R2 =  0.67). 
�e more negative the log Kp (with Kp in cm/s), the less skin permeant is the molecule.

�e predictions for passive human gastrointestinal absorption (HIA) and blood-brain barrier (BBB) perme-
ation both consist in the readout of the BOILED-Egg model17, an intuitive graphical classi�cation model, which 
can be displayed in the SwissADME result page by clicking the red button appearing below the sketcher when all 
input molecules have been processed (refer to Graphical Output). Other binary classi�cation models are included, 
which focus on the propensity for a given small molecule to be substrate or inhibitor of proteins governing impor-
tant pharmacokinetic behaviours.

�e knowledge about compounds being substrate or non-substrate of the permeability glycoprotein (P-gp, 
suggested the most important member among ATP-binding cassette transporters or ABC-transporters) is key 
to appraise active e�ux through biological membranes, for instance from the gastrointestinal wall to the lumen 
or from the brain40. One major role of P-gp is to protect the central nervous system (CNS) from xenobiotics41. 
Importantly as well, P-gp is overexpressed in some tumour cells and leads to multidrug-resistant cancers42.

Also essential is the knowledge about interaction of molecules with cytochromes P450 (CYP). �is superfam-
ily of isoenzymes is a key player in drug elimination through metabolic biotransformation43. It has been suggested 
that CYP and P-gp can process small molecules synergistically to improve protection of tissues and organisms44. 
One can estimate that 50 to 90% (depending on the authors) of therapeutic molecules are substrate of �ve major 
isoforms (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4)45,46. Inhibition of these isoenzymes is certainly one 
major cause of pharmacokinetics-related drug-drug interactions47,48 leading to toxic or other unwanted adverse 
e�ects due to the lower clearance and accumulation of the drug or its metabolites49. Numerous inhibitors of the 
CYP isoforms have been identi�ed. Some are a�ecting di�erent CYP isoforms, while other compounds show 
selectivity for speci�c isoenzymes50. It is therefore of great importance for drug discovery to predict the propen-
sity with which the molecule will cause signi�cant drug interactions through inhibition of CYPs, and to deter-
mine which isoforms are a�ected.

SwissADME enables the estimation for a chemical to be substrate of P-gp or inhibitor of the most important 
CYP isoenzymes. We applied the support vector machine algorithm (SVM)51 on meticulously cleansed large data-
sets of known substrates/non-substrates or inhibitors/non-inhibitors (for details, see Computational Methods). 
In similar contexts, SVM was found to perform better than other machine-learning algorithms for binary clas-
si�cation40,52. �e models return “Yes” or “No” if the molecule under investigation has higher probability to be 
substrate or non-substrate of P-gp (respectively inhibitor or non-inhibitor of a given CYP). �e statistical per-
formance of the classi�cation models is given in Table 1, in comparison with previous SVM models on the same 
targets. We restricted the benchmark to state-of-the-art methods, published a�er 2010.

�e quanti�cation of the models performance is not straightforwardly comparable, because the training sets 
are di�erent, most of the published models are less than 10-fold cross-validated and some statistical parameters 

Model

SwissADME Previous models

TR/TS[a] ACCCV
[b] AUCCV

[c] ACCext
[d] AUCext

[e] TR/TS ACCCV AUCCV ACCext AUCext Reference

P-gp substrate 1033/415 0.72 0.77 0.89 0.94 544/n.c. 0.71[f] n.c. n.c. n.c. 53

484/300 0.64 n.c. 0.59 n.c. 71

332/n.c. 0.74[f] 0.77[f] n.c. n.c. 15

212/120 0.74 n.c. 0.88 n.c. 57

CYP1A2 inhibitor 9145/3000 0.83 0.90 0.84 0.91 9145/3000 n.c. n.c. 0.88 0.95 54

12099/2804 0.82[f] n.c. 0.68 0.81 77

7208/7128 0.88[g] n.c. n.c. 0.93 55

CYP2C19 inhibitor 9272/3000 0.80 0.86 0.80 0.87 9272/3000 n.c. n.c. 0.85 0.91 54

11885/2691 0.79[f] n.c. 0.81 0.84 77

6038/5923 0.81[g] n.c. n.c. 0.89 55

CYP2C9 inhibitor 5940/2075 0.78 0.85 0.71 0.81 8720/3000 n.c. n.c. 0.83 0.90 54

12130/2579 0.78[f] n.c 0.89 0.86 77

6627/6530 0.83[g] n.c. n.c. 0.89 55

CYP2D6 inhibitor 3664/1068 0.79 0.85 0.81 0.87 9726/3000 n.c. n.c. 0.84 0.88 54

11881/2860 0.84[f] n.c. 0.88 0.88 77

7788/7761 0.90[g] n.c. n.c. 0.85 55

CYP3A4 inhibitor 7518/2579 0.77 0.85 0.78 0.86 8893/5135 n.c. n.c. 0.84 0.92 54

11536/7025 0.78[f] n.c. 0.76 0.78 77

2334/6738 0.81[g] n.c. n.c. 0.87 55

Table 1.  Statistical performance of SVM classi�cation models for substrate or inhibitor of 

pharmacokinetics-relevant protein, P-gp and CYP. aNumber of molecules in the training set (TR) and in 
the test set (TS); b10-fold cross-validation accuracy; c10-fold cross-validation area under receiver operating 
characteristic (ROC) curve; dexternal validation accuracy; eexternal validation area under ROC curve; f5-fold 
cross-validation; g7-fold cross-validation.
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are missing. Nevertheless, the SwissADME classi�ers are competitive with previous models in term of robust-
ness, with cross-validation accuracy (ACCCV) grossly at the same level. Furthermore, cross-validated areas under 
receiver operating characteristic (ROC) curves (AUCCV) are equal to the corresponding values found in the lit-
erature. Likewise, external prediction power is di�cult to compare, as each test set includes di�erent molecules. 
However, the predictive capacity of SwissADME classi�ers is grossly equivalent to the related SVM methods, 
both in terms of external accuracy (ACCext) and external area under ROC curve (AUCext). �e models for which 
external validation was not found (P-gp of refs 15 and 53) have to be taken with extreme caution since they 
possibly su�er from over�tting biases. Noteworthy, some of the published models (e.g. CYP2C9 and CYP3A4 
of ref. 54 or CYP2C9 of ref. 55) were built on severely unbalanced training sets and tested on clearly unbalanced 
external sets. As demonstrated by Carbon-Mangels et al.56 the relevance of machine-learning classi�cation meth-
ods, and especially SVM, are negatively impacted by datasets with one signi�cantly more populated class. In that 
case, accuracy measurements are overestimated and prone to mislead the construction and the evaluation of the 
model. Moreover, some SVM models were published with small training and test sets (P-gp of refs 15 and 57), 
which imply questionable capacity of generalization and broadness of applicability domains. We emphasize that 
for SwissADME classi�ers, both training and test sets were carefully cleansed and checked for size, diversity and 
balance between classes. Furthermore, our SVM models rely merely on molecular and physicochemical descrip-
tors generated by SwissADME. We believe that this improves robustness and sustainability of the underlying 
methodologies. In particular, not using molecular �ngerprints, molecular graphs or other structural descriptions 
can be an handicap to generate high statistical values but should also limit over�tting biases and yield more gener-
alist predictive models, not necessarily in�uenced by speci�c chemical sca�olds or moieties. In our practice, these 
well-performing models able to estimate important ADME behaviours are of great support for pharmacokinetics 
optimization and evaluation of small molecules.

Drug-likeness. As de�ned earlier, “drug-likeness” assesses qualitatively the chance for a molecule to become 
an oral drug with respect to bioavailability. Drug-likeness was established from structural or physicochemical 
inspections of development compounds advanced enough to be considered oral drug-candidates. �is notion is 
routinely employed to perform �ltering of chemical libraries to exclude molecules with properties most probably 
incompatible with an acceptable pharmacokinetics pro�le. �is SwissADME section gives access to �ve di�erent 
rule-based �lters, with diverse ranges of properties inside of which the molecule is de�ned as drug-like. �ese 
�lters o�en originate from analyses by major pharmaceutical companies aiming to improve the quality of their 
proprietary chemical collections. �e Lipinski (P�zer) �lter is the pioneer rule-of-�ve implemented from ref. 4.  
�e Ghose (Amgen), Veber (GSK), Egan (Pharmacia) and Muegge (Bayer) methods were adapted from refs 
58–61, respectively. Multiple estimations allow consensus views or selection of methods best �tting the end-user’s 
speci�c needs in terms of chemical space or project-related demands. Any violation of any rule described here 
appears explicitly in the output panel.

�e Abbot Bioavailability Score62 is similar but seeks to predict the probability of a compound to have at least 
10% oral bioavailability in rat or measurable Caco-2 permeability. �is semi-quantitative rule-based score relying 
on total charge, TPSA, and violation to the Lipinski �lter de�nes four classes of compounds with probabilities 
of 11%, 17%, 56% or 85%. Like the other methods in this section, it primary focuses on the fast screening of 
chemical libraries, to select the best molecules to be purchased, synthetized or promoted at a further stage of a 
medicinal chemistry project.

Medicinal Chemistry. �e purpose of this section is to support medicinal chemists in their daily drug 
discovery endeavours. Two complementary pattern recognition methods allow for identi�cation of potentially 
problematic fragments. PAINS (for pan assay interference compounds, a.k.a. frequent hitters or promiscuous 
compounds) are molecules containing substructures showing potent response in assays irrespective of the protein 
target. Such fragments, yielding false positive biological output, have been identi�ed by Baell et al.6 in analysing 
six orthogonal assays and breaking down the molecules active on 2 or more assays into 481 recurrent fragments, 
considered as potentially leading to promiscuous compounds. SwissADME returns warnings if such moieties are 
found in the molecule under evaluation.

Besides, we implemented Structural Alert, which consists in a list of 105 fragments identi�ed by Brenk et al.5 
to be putatively toxic, chemically reactive, metabolically unstable or to bear properties responsible for poor phar-
macokinetics. In SwissADME, it is possible to have a chemical description of the problematic fragments found in 
a given molecule by �ying over the “question mark” icon appearing a�er the fragment list. �is is implemented 
for both PAINS and Brenk �lters. By applying these and other physicochemical �lters to design screening librar-
ies, Brenk et al.5 observed that most of the remaining compounds satisfy criteria for “leadlikeness”. �is concept 
is similar to drug-likeness, yet focusing on physicochemical boundaries de�ning a good lead, i.e. a molecular 
entity suitable for optimization. By de�nition, leads are subjected to chemical modi�cations that will most likely 
increase size and lipophilicity63. As a consequence, leads are required to be smaller and less hydrophobic than 
drug-like molecules. Since it is crucial for a chemist to judge whether a given molecule is suitable to initiate lead 
optimization, in addition to structural �lters, we implemented a rule-based method for leadlikeness, which was 
adapted from ref. 64.

One of the key aspects of CADD activities is to help the selection of the most promising virtual molecules 
that will be synthetized and submitted to biological assays or other experiments. Synthetic accessibility (SA) is 
a major factor to consider in this selection process. Obviously, for a reasonable number of molecules, medicinal 
chemists are the best able to determine SA. However, when too many molecular structures prevent an expert 
evaluation, in silico estimation can be used for pre-�ltering. Ertl & Schu�enhauer11 proposed a �ngerprint-based 
approach for SA estimation but including closed-source information about �ngerprint de�nition that prevents 
a straightforward implementation in our tool open to the scienti�c community. As a consequence, we have built 
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our own fragmental method by analysing more than 13 millions compounds immediately deliverable by vendors. 
We assumed that the most frequent molecular fragments (technically, FP2 bits, refer to Computational Methods) 
in this large collection indicates a probably high SA, while rare fragments imply a di�cult synthesis. For a given 
molecule, the fragmental contributions to SA are summed and corrected by the terms describing size and com-
plexity, such as macrocycles, chiral centres, or spiro functions as de�ned by Ertl & Schu�enhauer11. A�er nor-
malization, the SA Score ranges from 1 (very easy) to 10 (very di�cult). To assess the performance of the method 
developed for SwissADME, we retrieved two test sets of SA previously published. Both sets involved external 
molecules, whose di�culty of synthesis was marked from 1 to 10 by nine11 and four65 medicinal chemists, respec-
tively. �e averaged expert score can then be compared to an in silico SA Score. As seen in Table 2, the predictive 
capacity of all three methods appears very dependent of the test set. Indeed the SAs of set 1, smaller and evaluated 
by more chemists, turned out to be much more robustly predictable than set 2. Human evaluation of synthetic 
complexity is undeniably subjective and relies on individual chemist’s training and experience. However, signi�-
cant linear correlation and small errors — especially with SwissADME SA Score that outperformed the reference 
methods on both sets with smaller errors, and equal or higher linear correlation coe�cients — demonstrate how 
this simple and fast methodology can help prioritizing molecules to synthetize.

Graphical output
A�er all calculations completed, the “Show BOILED-Egg” red button appears below the sketcher to display the 
graphical output on the same page (as exemplify in Fig. 4). �is consists primarily in the BOILED-Egg, an intu-
itive method to predict simultaneously two key ADME parameters, i.e. the passive gastrointestinal absorption 
(HIA) and brain access (BBB). Although conceptually very simple as it relies on two physicochemical descrip-
tors only (WLOGP and TPSA, for lipophilicity and apparent polarity), this classi�cation model was built with 
extreme care regarding statistical signi�cance and robustness17. As shown in Fig. 4, the egg-shaped classi�cation 
plot includes the yolk (i.e. the physicochemical space for highly probable BBB permeation) and the white (i.e. the 
physicochemical space for highly probable HIA absorption). Both compartments are not mutually exclusive and 
the outside grey region stands for molecules with properties implying predicted low absorption and limited brain 
penetration. In practice, the BOILED-Egg has proven straightforward interpretation and e�cient translation to 
molecular design in a variety of drug discovery settings. Whereas the predictive power of the BOILED-Egg is 
broad in term of chemical space, it is restricted to passive penetration through gastro-intestinal wall and BBB. We 
took bene�t of its implementation within SwissADME to enrich the graphical output with the prediction of P-gp 
substrate, which is the most important active e�ux mechanism involved in those biological barriers40 (refer to the 
SVM model described in Pharmacokinetics). As a result, the user conveniently obtains on the same graph a global 
evaluation about passive absorption (inside/outside the white), passive brain access (inside/outside the yolk) and 
active e�ux from the CNS or to the gastrointestinal lumen by colour-coding: blue dots for P-gp substrates (PGP+ )  
and red dots for P-gp non-substrate (PGP− ).

Contrary to the one-panel-per-molecule concept for other parameters, the graphical output includes predic-
tion for all molecules submitted to SwissADME, thus additional capacities were implemented to enable interac-
tive navigation and easy evaluation. Flying over a speci�c point makes a semi-transparent box appear including 
the name and structure of the molecule. Clicking on a speci�c point makes the page scroll to the corresponding 
output panel including all predictions for the molecule. Getting back to the graphical output is achieved by click-
ing on the red up-arrow on the top-right corner of the panel. Moreover, on the right of the plot are displayed 
possible actions (at the moment, to show the name of the molecules on the graph, only), legends and possible 
remarks (the number of molecules outside the range of the plot). �e user may want to hide the plot by clicking 
the “Hide BOILED-Egg” red button.

Help, saving and interoperability
SwissADME is user-friendly and has been conceived for a variety of users, including nonexpert in cheminfor-
matics or computational chemistry. E�orts were put to insure ease of input and interpretability of output. �ese 
aspects are supported by the Help page, which provides technical guidance on the usage of the website and by 
the FAQ, where we collected not only technical but also scienti�c and general questions. Contextual help about 
speci�c items can be displayed by leaving the mouse over question marks or some boxes on the pages.

Moreover, SwissADME is an integral part of the SwissDrugDesign program, an ambitious initiative driven by 
the Molecular Modeling Group of the SIB Swiss Institute of Bioinformatics that aims at providing a collection of 
free Web-based tools covering many aspects of CADD. As such, SwissADME users can access the di�erent Web 
sites, through the black toolbar at the top of the page. By clicking on the name of the tool, a new tab opens with 
the corresponding submission page. We have undertaken the implementation of more advanced interoperability 
capabilities. At the time of writing this manuscript, three icons were placed top le� of the output panel (below 

Test set SwissADME Original models published with the test set

#molecule[a] #chemist[b] MAE[c] RMSE [d] r[e] MAE RMSE r Reference

1 40 9 0.63 0.81 0.96 0.91 1.13 0.94 11

2 114 4 1.02 1.33 0.62 1.07 1.41 0.62 65

Table 2. Statistical performance of synthetic accessibility (SA) scores on two external test sets. aNumber of 
external molecules; bnumber of chemist marks; cmean average error; droot mean square error; elinear correlation 
coe�cient.
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the name of the molecule, see Fig. 2). �ey allow one-click submission of the molecule to SwissTargetPrediction 
(for reverse screening to predict protein target, by clicking on the red target), SwissSimilarity (for ligand-based 
virtual screening, by clicking on the red twins) and to re-submit the molecule to SwissADME (for instance to get 
a single compound graphical output, by clicking the red pill). Reversely, other SwissDrugDesign websites include 
the SwissADME pill icon for estimation of ADME, pharmacokinetics, drug-likeness and medicinal chemistry 
friendliness regarding a small molecule output of any CADD process.

Importantly, the user has the opportunity to save or share SwissADME results in �les (CSV) or by copy-
ing the values in the clipboard of the local computer and pasting in text or spreadsheet applications for further 
processing.

Conclusions
�e SwissADME Web tool enables the computation of key physicochemical, pharmacokinetic, drug-like and 
related parameters for one or multiple molecules. In one hand, e�orts were put in the backend to embed free 
open-access and fast predictive models showing statistical signi�cance, predictive power, intuitive interpreta-
tion, and straightforward translation to molecular design. �ese models are adapted from published renowned 
approaches or in-house original methods, specially developed and thoroughly benchmarked. On the other 
hand, we focused on an ergonomic and user-friendly graphical interface for the cost- and login-free Web site 
http://www.swissadme.ch. �e latter enables easy input and e�cient analysis of the output through interactive 
capabilities, and does not require any prior knowledge in CADD. Moreover, interoperability allows for direct 
access to other SwissDrugDesign web tools, including SwissSimilarity66 (virtual screening), SwissBioisostere21 
(ligand-based design), SwissTargetPrediction19 (prediction of biotargets), SwissDock20 (molecular docking), 
SwissSideChain67 (protein modeling) and SwissParam22 (molecular mechanics).

As a result, SwissADME has been designed to support the entire community (specialists and nonexperts) in 
their drug discovery endeavours.

Computational methods
Programming and scripting. �e SwissADME website was written in HTML, PHP5, and JavaScript, 
whereas the backend of computation was mainly coded in Python 2.7. �e use of additional libraries or so�ware 
for speci�c tasks is mentioned in the corresponding paragraph.

Submission Page. �e molecule inputted through the sketcher Marvin JS (version 16.4.18, 2016, www.che-
maxon.com) are converted into SMILES by JChem Web Services (version 14.9.29, 2013, www.chemaxon.com) 
installed on one of our servers. �is on-the-�y conversion allows seamless paste of SMILES in the input list. �e 
user has the possibility to edit this list as a standard text, e.g. to modify SMILES or add a name to the molecule. 

Figure 4. �e BOILED-Egg17 allows for intuitive evaluation of passive gastrointestinal absorption (HIA) 
and brain penetration (BBB) in function of the position of the molecules in the WLOGP-versus-TPSA 
referential. �e white region is for high probability of passive absorption by the gastrointestinal tract, and 
the yellow region (yolk) is for high probability of brain penetration. Yolk and white areas are not mutually 
exclusive. In addition the points are coloured in blue if predicted as actively e�uxed by P-gp (PGP+ ) and in 
red if predicted as non-substrate of P-gp (PGP− ). For an interactive analysis, the user can leave the mouse over 
a dot to show the structure of the molecule and click on the dot to scroll to the corresponding output panel. In 
this example, Lapatinib is predicted as not absorbed and not brain penetrant (outside the Egg), Omeprazol is 
predicted well-absorbed but not accessing the brain (in the white) and PGP+  (blue dot), Sunitinib is predicted 
as passively crossing the BBB (in the yolk), but pumped-out from the brain (blue dot), and Palonosetron is 
predicted as brain-penetrant (in the yolk) and not subject to active e�ux (red dot). One molecule is predicted 
not absorbed and not BBB permeant because outside of the range of the plot (streptomycin with a TPSA of 
331.43 Å 2 and a WLOGP of − 7.74).

http://www.swissadme.ch
http://www.chemaxon.com
http://www.chemaxon.com
http://www.chemaxon.com
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Upon calculation submission by clicking the “Run” button, the SMILES of each molecule is canonicalised by 
OpenBabel (version 2.3.0, 2012, http://openbabel.org)9 and processed individually. Several actions are performed 
through JChem Web Services APIs. First hydrogen atoms are added to the molecular structure, which is dearo-
matised (i.e. kekulised), neutralised and checked by the Standardizer API. �en a tridimensional conformation is 
generated though the StringMolExport function with the Clean3D option and stored in MOL2 format. Besides, 
a two-dimensional image created through the MolConverter API is displayed on demand when scrolling the 
output web page.

One-panel-per-molecule Output. �e Bioavailability Radar in the �rst section of the One-panel-per-molecule  
output complements the two-dimensional image from the JChem webserver and the canonical SMILES calcu-
lated by OpenBabel. We use the JpGraph PHP library (version 3.5.0b1, 2016, http://jpgraph.net) to produce the 
radar plot, which bears six axes for six important properties for oral bioavailability. Each property is de�ned by 
a descriptor of SwissADME and a range of optimal values is depicted as a pink area. �e latter is inspired from 
commonly accepted bioavailability and drug-likeness guidelines23,24. For saturation, the ratio of sp3 hybridized 
carbons over the total carbon count of the molecule (Fraction Csp3) should be at least 0.25. For size, the molec-
ular weight (MW calculated by OpenBabel) should be between 150 and 500 g/mol. For polarity, the TPSA25 
should be between 20 and 130Å2. For solubility, log S (calculated with the ESOL model36) should not exceed 6. 
For lipophilicity, XLOGP329 should be in the range from − 0.7 to + 6.0. For �exibility, the molecule should not 
have more than 9 rotatable bonds. To be estimated as drug-like, the red line of the compound under study must 
be fully included in the pink area. Any deviation represents a suboptimal physicochemical property for oral 
bioavailability.

All descriptors and molecular parameters of the Physicochemical Properties section are computed through 
the OpenBabel API (version 2.3.0, 2012, http://openbabel.org)9. Noteworthy, the topological polar surface area 
(TPSA) is strictly based on the fragmental system provided by Ertl et al.25 including polar sulfur and phosphorus 
atoms.

Multiple freely available computational methods to predict n-octanol/water partition coe�cient (log Po/w) 
values are made available in the Lipophilicity section. iLOGP (for implicit log P) is an in-house physics-based 
methods relying on Gibbs free energy of solvation calculated by GB/SA in water and n-octanol. Generalized-born 
(GB) parameters are computed through the GBMV2 method68 and solvent-accessible surface area (SA) is the 
analytical approximation generated by CHARMM (version c36b1, 2011, https://www.charmm.org)69. �e iLOGP 
implemented in SwissADME corresponds to Model9 of the seminal publication16, which was trained on 11,993 
molecules (r =  0.72, MAE =  0.89, and RMSE =  1.14 against experimental log P). 5-fold crossvalidation ensured 
robustness (q2

CV =  0.52, MAECV =  0.89, and RMSECV =  1.14) and external test benchmarks showed the excellent 
predictive power and extended applicability domain compared to well-established methods. XLOGP3 values 
are obtained through the command-line Linux program (version 3.2.2, courtesy of CCBG, Shanghai Institute of 
Organic Chemistry) including the knowledge-based corrections29. WLOGP is our own implementation of the 
atomistic method developed by Wildman and Crippen30. MLOGP values are computed through an in-house 
implementation of Moriguchi’s topological method31,32. SILICOS-IT is the log Po/w estimation returned by exe-
cuting the FILTER-IT program (version 1.0.2, 2013, http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/
so�ware/�lter-it/1.0.2/�lter-it.html). Finally, SwissADME gives a consensus log Po/w value, which is the arithmetic 
mean of the �ve predictive values mentioned above.

Similarly to lipophilicity, the Water Solubility section includes multiple predictive methods for the user to 
choose between the most accurate model for a given chemical series and an averaged consensus value. �e ESOL 
model36 is a QSPR model establishing the linear relationship between log S and �ve molecular parameters, i.e. 
MW, the number of rotatable bonds, the fraction of aromatic heavy atoms and Daylight’s CLOGP. Because the 
lipophilicity descriptor is not freely available, the implementation of ESOL in SwissADME replaces CLOGP by 
XLOGP3 as parameter in the linear equation to predict log S. XLOGP3 is known to perform well on exter-
nal datasets and to return similar predictions as CLOGP28. �e other three parameters were computed with 
OpenBabel. Likewise, Ali et al.37 linked log S with log Po/w and TPSA. �e model implemented in SwissADME 
corresponds to the model 3 of the original publication, with XLOGP3 as lipophilicity descriptor. �e third sol-
ubility method available in SwissADME is the log S estimated by the FILTER-IT program (version 1.0.2, 2013, 
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/so�ware/�lter-it/1.0.2/�lter-it.html). �is prediction is 
based on a system of 16 fragmental contributions modulated by the squared root of MW. All three models are 
predicting log S values, which are also translated within SwissADME into solubility in mol/l and mg/ml. Finally 
a qualitative estimation of the solubility class is given according to the following log S scale: insoluble < − 10 < 
poorly < − 6 < moderately < − 4 < soluble < − 2 < very < 0 < highly.

�e Pharmacokinetics section proposes one linear method for skin permeation, which relies on the simple 
QSPR model by Potts and Guy39 linking the decimal logarithm of the skin permeability coe�cient (log Kp in 
cm/s) with MW and log Po/w. �e model implemented in SwissADME uses XLOGP3 as lipophilicity descriptor. 
Besides, most of the models in this section are machine-learning binary classi�ers for important ADME behav-
iours. Passive gastro-intestinal (HIA) absorption and blood-brain barrier (BBB) permeation are predicted with 
the BOILED-Egg model, which de�nes favourable and unfavourable zones in the log Po/w versus PSA physic-
ochemical space for passive di�usion through both physiological barriers17. �e classi�cation showed 10-fold 
cross-validation accuracy of 92% and 88% for BBB and HIA, respectively (refer to Graphical Output).

Six other classification models are part of the Pharmacokinetics section to predict the propensity of the 
molecule under investigation to be substrate or inhibitor of important pharmacokinetics-related proteins, for  
which large diverse and balanced datasets were retrieved and meticulously cleansed. For P-glycoprotein1 (P-gp), 
the training set consists of 521 substrates and 512 non-substrates extracted from the Metrabase database70  
(http://www-metrabase.ch.cam.ac.uk, accessed January 2016), whereas the test set was obtained from ref. 71. 

http://openbabel.org
http://jpgraph.net
http://openbabel.org
https://www.charmm.org
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://www-metrabase.ch.cam.ac.uk
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To ensure truly external validation, molecules overlapping with the training set were removed from the test set, 
which �nally includes 215 substrates and 200 non-substrates. For CYP major isoforms, all datasets were those 
of Veith et al.50 and downloaded from the PubChem database72 (http://pubchem.ncbi.nlm.nih.gov, accessed 
February 2016). In case of unbalanced dataset (all except CYP1A2 and CYP2C19), su�cient chemical diversity 
was guaranteed by clustering with the Ward method and a reciprocal nearest neighbour (RNN) algorithm73, the 
more populated class to lessen. �e number of molecules (described by circular �ngerprints) of the large class is 
reduced by de�ning clusters with the JKlustor program (version 14.9.29, 2014, http://www.chemaxon.com). Only 
the centre of each cluster (i.e. the molecule that has the smallest sum of dissimilarities to the other molecules 
in the cluster) is included in the training or test set to balance. As a result, the training sets involved respec-
tively 4301 CYP1A2 inhibitors and 4844 CYP1A2 non-inhibitors; 4284 CYP2C19 inhibitors and 4988 CYP2C19 
non-inhibitors; 2940 CYP2C9 inhibitors and 3000 CYP2C9 non-inhibitors; 1814 CYP2D6 inhibitors and 1850 
CYP2D6 non-inhibitors; and 3758 CYP3A4 inhibitors and 3760 CYP3A4 non-inhibitors. �e test sets involved 
respectively 1412 CYP1A2 inhibitors and 1588 CYP1A2 non-inhibitors; 1386 CYP2C19 inhibitors and 1614 
CYP2C19 non-inhibitors; 1020 CYP2C9 inhibitors and 1055 CYP2C9 non-inhibitors; 528 CYP2D6 inhibitors 
and 540 CYP2D6 non-inhibitors; and 1289 CYP3A4 inhibitors and 1290 CYP3A4 non-inhibitors.

SwissADME’s backend calculations were ran to generate 50 molecular and physicochemical descriptors per 
molecule (described in the Supplementary Table S1). For a given model, a descriptor was rejected if non-zero 
values for all molecules in the training set are less than 20% or if the coe�cient of variation is less than 3%. In case 
of correlation higher than 0.9 between remaining descriptors, a selection is made based on F-score. �e selected 
descriptors for each model are shown in Supplementary Tables S2–S7. �ese tables also include the minimum 
and maximum values for each descriptor among all molecules used in the training. �is enables beholding the 
broadness of physicochemical space involved and the applicability domain of the SVM models. �e predictive 
capability of each model can be further appraised on Supplementary Table S8, where external accuracy was split 
in sensitivity and speci�city to ensure that positive and negative molecules are predicted with the same level of 
robustness. �e �nal training and test sets with selected descriptors were normalized and the respective model 
ready to be built. First, the libSVM support vector machine python library (version 3.20, 2015, https://www.
csie.ntu.edu.tw/~cjlin/libsvm/)74 was used for multi-step grid-based optimization of the best coe�cients for the 
above-selected descriptors as well as for the so�-margin permissivity (C) and the hyper-parameter (ϒ ) of the 
RBF Gaussian kernel function. �e 10-fold crossvalidated accuracy (ACCCV) for each model was so maximized 
and AUCCV was calculated. In a second step, the so-built models were used on the external test sets (normal-
ized according to the training set) in order to evaluate predictive power in terms of external accuracy (ACCext) 
and AUCext. All �nal SVM models were stored in separate �les, which are read through the libSVM API upon 
SwissADME job submission.

�e Drug-likeness section includes six rule-based methods. �e Lipinski rule-of-�ve is exactly as described in 
ref. 4 including MLOGP < 4.15 as lipophilicity threshold. �e Ghose �lter is the method detailed in the original 
publication58, where the atomic log P is calculated with WLOGP. �e very simple yet e�cient Veber �lter is imple-
mented directly from the seminal paper59. �e Egan �lter is yielded from the Egan Egg60,75, but the closed-source 
ALOGP98 was replaced by WLOGP17. �e Muegge �lter61 was adapted to �t SwissADME implementation and 
usage by calculating XLOGP3 as lipophilicity descriptor. �e Bioavailability Score was implemented without 
changes from Martin et al.62. Similarly, the leadlikeness �lter included in the Medicinal Chemistry section was 
adapted from the original rule64 by using XLOGP3 as lipophilicity descriptor.

Both methods for identi�cation of problematic fragments within the Medicinal Chemistry section, i.e. PAINS6 
and Brenk’s Structural Alert5, were implemented using the SMARTS recognition capability of OpenBabel API. 
�e SMARTS de�nitions for PAINS were retrieved from the Filter-it distribution (version 1.0.2, 2013, http://
silicos-it.be.s3-website-eu-west-1.amazonaws.com/so�ware/�lter-it/1.0.2/�lter-it.html). Little formatting and 
cleansing were needed to obtain a screenable collection of 481 fragments. Brenk provided directly the SMARTS 
descriptions of 105 unwanted chemical groups in the supplementary material of the seminal paper5.

SwissADME Synthetic Accessibility (SA) Score is based primarily on the assumption that the frequency of 
molecular fragments in ‘really’ obtainable molecules correlates with the ease of synthesis. �e fragmental con-
tribution to SA should be favourable for frequent chemical moieties and unfavourable for rare moieties. We 
examined the ‘All Now’ subset of ZINC database76 (version 12, 2014, http://zinc.docking.org/subsets/all-now 
accessed April 2015) including 12′ 782′ 590 compounds immediately deliverable by vendors. �is collection was 
not submitted to any other �lter. FP2 �ngerprints of all molecules were computed by OpenBabel9 thus generating 
12′ 782′ 590 bit strings (i.e. the �ngerprints). �e frequency of occupancy of each of the 1024 bits for the entire 
library was calculated and its contribution to SA obtained by applying natural logarithm to the normalized bit 
count. As a result, this fragmental system of bits allows extremely fast evaluation of any input molecule by reading 
its FP2 string. Fragmental contribution of bit occupancy is summed and linearly modulated by corrective factors, 
which are penalties for size (MW) and complexity. �is latter is based on SMARTS recognition of chiral centres, 
spiro functions, bridged rings and macrocycles (more than 8-membered rings). �e coe�cients of the corrective 
terms are those de�ned by Ertl & Schu�enhauer11. Finally the score is normalized to range from 1 (very easy) to 
10 (very di�cult to synthetize). As crude as it may seem, SwissADME SA Score is extremely fast and performing 
slightly better than two similar methods previously published11,65 (refer to Table 2).

Graphical output. �e graphical output of SwissADME consists of the BOILED-Egg directly implemented 
from ref. 17 to predict passive di�usion through HIA and BBB by position in a WLOGP-versus-TPSA physico-
chemical space. �e HIA model was trained on 660 well-absorbed and non-absorbed molecules and a 10-fold 
crossvalidation returned an accuracy (ACCCV) of 92% and a Matthews correlation coe�cient (MCCCV) of 0.65. 
�e BBB model was built on a training set of 260 permeant and non-permeant molecules and displayed excellent 

http://pubchem.ncbi.nlm.nih.gov
http://www.chemaxon.com
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://silicos-it.be.s3-website-eu-west-1.amazonaws.com/software/filter-it/1.0.2/filter-it.html
http://zinc.docking.org/subsets/all-now
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internal statistics as well: ACCCV =  88% and MCCCV =  0.75. �e plot is enriched by color-coding referring to 
P-gp active e�ux predicted by a SVM classi�er (refer to Pharmacokinetics). We aimed at providing a global and 
e�cient analysis of absorption and brain access for multiple molecules at once. For more advanced interactive fea-
tures, the graph is generated in JavaScript using the Flot plotting library (version 0.8, 2015, http://www.�otcharts.
org/). �e user has the possibility to visualize the position of the molecules between the di�erent BOILED-Egg 
compartments and their propensity of being substrate of P-gp by coloured points: blue for substrate (PGP+ ) and 
red for non-substrate (PGP− ). �e dots are also the mean to visualize name and chemical structure of the mol-
ecules (generated on-the-�y by the dedicated Chemaxon web server as described above) by leaving the mouse 
over the dot. As well, it is possible to access the corresponding output panel summarizing all calculated values for 
the molecule by clicking on the corresponding dot. Getting back to the BOILED-Egg is as simple as clicking on 
the up arrow at the top-right corner of the panel. All these functionalities, as well as interoperability with other 
SwissDrugDesign web tools are coded in PHP and Javascript.
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