
The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Switch-Based Active Deep Dyna-Q: Efficient Adaptive
Planning for Task-Completion Dialogue Policy Learning

Yuexin Wu,⋆ Xiujun Li,†‡ Jingjing Liu,† Jianfeng Gao,† Yiming Yang⋆

⋆Carnegie Mellon University, †Microsoft Research
‡Paul G. Allen School of Computer Science & Engineering, University of Washington

⋆{yuexinw,yiming}@cs.cmu.edu, †{xiul,jingjl,jfgao}@microsoft.com

Abstract

Training task-completion dialogue agents with reinforcement
learning usually requires a large number of real user experi-
ences. The Dyna-Q algorithm extends Q-learning by integrat-
ing a world model, and thus can effectively boost training ef-
ficiency using simulated experiences generated by the world
model. The effectiveness of Dyna-Q, however, depends on the
quality of the world model - or implicitly, the pre-specified
ratio of real vs. simulated experiences used for Q-learning.
To this end, we extend the recently proposed Deep Dyna-Q
(DDQ) framework by integrating a switcher that automati-
cally determines whether to use a real or simulated experience
for Q-learning. Furthermore, we explore the use of active
learning for improving sample efficiency, by encouraging the
world model to generate simulated experiences in the state-
action space where the agent has not (fully) explored. Our re-
sults show that by combining switcher and active learning, the
new framework named as Switch-based Active Deep Dyna-Q
(Switch-DDQ), leads to significant improvement over DDQ
and Q-learning baselines in both simulation and human eval-
uations.1

Introduction

Thanks to the increasing popularity of virtual assistants such
as Apple’s Siri and Microsoft’s Cortana, there has been a
growing interest in both industry and research community
in developing task-completion dialogue systems (Gao, Gal-
ley, and Li 2018). Dialogue policies in task-completion dia-
logue agents, which control how agents respond to user in-
put, are typically trained in a reinforcement learning (RL)
setting (Young et al. 2013; Levin, Pieraccini, and Eckert
1997). RL, however, usually requires collecting experiences
via direct interaction with real users, which is a costly data
acquisition procedure, as real user experiences are much
more expensive to obtain in the dialogue setting than that
in simulation-based game settings (such as Go or Atari
games) (Mnih et al. 2015; Silver et al. 2016).

One common strategy is to train policies with user simu-
lators that are developed from pre-collected human-human
conversational data (Schatzmann et al. 2007; Li et al. 2016).
Dialogue agents interacting with such user simulators do not

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Source code is at https://github.com/CrickWu/Switch-DDQ.

incur any real-world cost, and can in theory generate un-
limited amount of simulated experiences for policy train-
ing. The learned policy can then be further fine-tuned using
small amount of real user experiences (Dhingra et al. 2016;
Su et al. 2016; Lipton et al. 2016; Li et al. 2017).

Although simulated users provide an affordable alterna-
tive, they may not be a sufficiently truthful approximation to
human users. The discrepancy between simulated and real
experiences inevitably leads to strong bias. In addition, it
is very challenging to develop a high-quality user simula-
tor, because there is no widely accepted metric to assess the
quality of user simulators (Pietquin and Hastie 2013). It re-
mains a controversial research topic whether training agents
through user simulators is an effective solution to building
dialogue systems.

Recently, Peng et al. (2018) proposed Deep Dyna-Q
(DDQ), an extension of the Dyna-Q framework (Sut-
ton 1990), which integrates planning into RL for task-
completion dialogue policy learning. As illustrated in Fig-
ure 1a, DDQ incorporates a trainable user simulator, referred
to as the world model, which can mimic real user behav-
iors and generate simulated experience. The policy of the
dialogue agent can be improved through either (1) real user
experiences via direct RL; or (2) simulated experiences via
indirect RL or planning.

DDQ is proved to be sample-efficient in that a reasonable
policy can be obtained using a small number of real expe-
riences, an affordable training process thanks to the integra-
tion of planning into RL. However, the effectiveness of DDQ
depends, to a large degree, upon the way we control the ra-
tio of real vs. simulated experiences used in different stages
of training. For example, Peng et al. (2018) pointed out that
although aggressive planning (i.e., policy learning using a
large number of simulated experiences) often helps improve
the performance in the beginning stage of training when the
agent is not sensitive to the low-quality experiences, such
aggressive planning might hurt the performance in the later
stage when the agent is more susceptible to noise, as illus-
trated in Figure 2. Carefully designed heuristics are essen-
tial to set the ratio properly. For example, we might decrease
the number of simulated experiences during the course of
training. However, such heuristics can vary with different
settings, and thus significantly limits the wide application of
DDQ in developing real-world dialogue agents.

7289



(a) DDQ framework (b) Proposed Switch-DDQ framework

Figure 1: Designs of RL agents for dialogue policy learning in task-completion dialogue systems

Figure 2: The learning curves of DDQ(K) without heuristics
where (K − 1) denotes the number of planning steps. The
curves are sensitive to K values and may deteriorate in the
later phase due to the low-quality simulated experiences.

Another limitation of DDQ is that the world model gen-
erates simulated experiences by uniformly sampling user
goals. However, training samples in the state-action space
unexplored or less explored by the dialogue agent are usu-
ally more desirable in order to avoid bias. This is the prob-
lem that many active learning methods try to address. In this
paper, we present a new variant of DDQ that addresses these
two issues.

Our method is inspired by the recent study of Su et
al. (2018), which tries to balance the use of simulated and
real experience by measuring the quality of simulated ex-
periences using a machine-learned discriminator. The more
simulated experiences are used if their quality is higher.
Their approach demonstrates some limited success, and suf-
fers from two shortcomings. First, it does not take into ac-
count the fact that the agent in different training stages might
require simulated experiences of different qualities. Second,
it still uniformly samples user goals and is not as sample-
efficient as it should be (e.g., by using active learning).

In this paper, we propose a new framework, called Switch-

based Active Deep Dyna-Q (Switch-DDQ), to significantly
improve DDQ’s sample efficiency. As illustrated in Fig-
ure 1b, we incorporate a switcher to automatically determine
whether to use real or simulated experiences at different
stages of dialogue training, eliminating the dependency on
heuristics. The switcher is implemented based on an LSTM
model, and is jointly trained with the dialogue policy and the
world model. Moreover, instead of randomly sampling sim-
ulated experiences, the world model adopts an active sam-
pling strategy that generates simulated experiences from the
state-action space that has not been (fully) explored by the
dialogue agent. Experiments show that this active sampling
strategy can achieve a performance that is comparable to the
original DDQ method but by using a much smaller amount
of real experiences.

The work present in this paper contributes to the growing
family of model-based RL methods, and can potentially be
applied to other RL problems. To the best of our knowledge,
Switch-DDQ is the first learning framework that conducts
active learning in a task-completion dialogue setting. The
contributions of this work are two-fold:

• We propose a Switch-based Active Deep Dyna-Q frame-
work to incorporate active learning into the Dyna-Q
framework for dialogue policy learning, providing a
mechanism of automatically balancing the use of simu-
lated and real user experiences.

• We validate the superior performance of Switch-DDQ
by building dialogue agents for the movie-ticket booking
task. The effectiveness of active learning and switcher is
verified by simulation and human evaluations.

Model Architecture

We depict our Switch-DDQ pipeline in Figure 3. The agent
consists of six modules: (1) an LSTM-based natural lan-
guage understanding (NLU) module (Hakkani-Tür et al.
2016) for extracting user intents/goals and calculated their
associated slots; (2) a state tracker (Mrkšić et al. 2016) for
tracking dialogue states; (3) a dialogue policy that makes
choice of the next action by using the information of the
current dialogue state; (4) a model-based natural language

7290



Figure 3: Switch-DDQ for dialogue policy learning.

generation (NLG) module which outputs natural language
responses (Wen et al. 2015); (5) a world model for generat-
ing simulated user actions and simulated rewards based on
active user goal selection; and (6) an RNN-based switcher
for selecting the source of data (simulated or real experi-
ences) for dialogue policy training. The solid lines in the
figure illustrate the iterative dialogue policy training loop,
while the dashed lines show the flow of data in training the
world model and switcher.

The optimization of Switch-DDQ comprises four steps:
(1) direct reinforcement learning: the agent conducts direct
interactions with a real user, where the generated real ex-
periences are directly used to improve the dialogue policy;
(2) active planning: the agent interacts with the simulator
and improves the policy using the simulated experiences;
(3) world model learning: the world model receives real ex-
periences and updates itself; and (4) switcher training: the
switcher is learned and refined using both real and simulated
experiences. Each step is detailed in the subsections below.
The iterative Switch-DDQ algorithm, described in pseudo-
code, is shown in Algorithm 1.

Direct Reinforcement Learning and Planning

Typically, dialogue policy learning can be formulated as
a Markov Decision Process in the RL setting, a task-
completion dialogue could be viewed as a sequence of (state,
action, reward) tuples. We employ the Deep Q-network
(DQN) (Mnih et al. 2015) for training the dialogue pol-
icy (line 12 in Algorithm 1). Both the direct reinforcement
learning and planning are accomplished using the same Q-
learning algorithm using the simulated and real experiences,
respectively.

Specifically, at each step, the agent receives the state s
and selects an action a to carry into the next dialogue turn.
The action a is chosen using the exploration policy based
on ǫ-greedy, where there is probability ǫ a random action
being executed or otherwise the action that maximizes the
Q(s, a; θQ) function. The function Q(·) is parameterized
by a Multi-Layer Perceptron (MLP) parameterized by θQ.
Afterwards, the agent observes a reward r from the envi-
ronment, and a corresponding response au from either a
real user or the simulator, updating the dialogue state to

s′ until reaching the end of a dialogue. The experience
(s, a, r, au, s′) is then stored into the user experience buffer
Bu or simulator experience buffer Bs respectively. Func-
tion Q(·) can be improved using experiences stored in the
buffers.

In the implementation, we optimize the parameter θQ
w.r.t. the mean-squared loss:

L(θQ) = E(s,a,r,s′)∼Bs∪Bu [(y −Q(s, a; θQ))] (1)

y = r + γmax
a′

Q′(s′, a′; θQ′) (2)

where Q′(·) is a copy of the previous version of Q(·) and is
only updated periodically and γ ∈ [0, 1] is the discount fac-
tor. Q(·) is updated using back-propagation and mini-batch
gradient descent.

Algorithm 1 Switch-based Active Deep Dyna-Q

1: procedure SWITCH-DDQ TRAININGPIPELINE

2: for i← 1 : max epoch do
3: user randomly picks a user goal gu

4: Generate real experience eu from user based on
gu into Bu

5: repeat
6: Actively select a user goal gs based on the

validation results # see Algorithm 2
7: Generate simulated experience es from sim-

ulator based on gs into Bs

8: Evaluate quality of es through switcher
9: until quality < threshold

10: Train simulator on Bu

11: Train switcher on Bu, Bs

12: Train agent on Bu, Bs

13: Evaluate simulator on validation set

Active Planning based on World Model

In a typical task-completion dialogue (Schatzmann et al.
2007), a user begins a conversation with a particular goal
in mind G which consists of multiple constraints. For ex-
ample, in the movie-ticket-booking scenario, the constraints
can be the place of the theater, the number of tickets to
buy, and the name of the movie. An example of a user
goal is request(theater;numberofpeople=2,

moviename=mission impossible), which
is presented in its natural language form as “in
which theater can I buy two tickets for

mission impossible”. Although there is no explicit
restriction for the range of user goals in real experiences,
in the stage of planning, the world model can selectively
generate the simulated experiences in the state-action space
that are not (fully) explored by the dialogue agent, based on
a specific set of user goals, to improve sample efficiency.
We call our planning active planning because it is a form of
active learning.

The world model for active planning consists of two parts:
(1) a user goal sampling module that samples a proper user
goal at the start of a dialogue; (2) a response generation mod-
ule that imitates real users’ interaction with the agent to gen-

7291



erate for each dialogue turn the user action, reward and the
user’s decision whether to terminate the dialogue.

• Active user goal sampling module. Assume that we have
collected large amounts of user goals from human-human
conversational data. These user goals can be grouped
into different categories, each with different constraints,
amounting to different scales of difficulties. The key ob-
servation is that, during the training process, while mon-
itoring the performance of the agent policy on valida-
tion set, we can gather detailed information about the
impact of each category of user goals on the perfor-
mance improvement of the dialogue agent e.g., in terms
of the success rate (line 13 in Algorithm 1). The de-
tailed information can be used to measure the cost (or
gain) in the active learning setting (Russo et al. 2018;
Auer, Cesa-Bianchi, and Fischer 2002) and guide the
world model how to sample user goals.

Suppose there are k different categories of user goals. At
each epoch, the failure rate of each category estimated on
the validation set is denoted as fi and the number of sam-
ples for the estimation is ni. For simplicity, denote the
summation of ni as N =

∑

i ni. Then, the active sam-
pling routine (line 6 in Algorithm 1) can be expanded as

Algorithm 2 Active Sampling Routine

1: procedure ACTIVE USER GOAL SAMPLING

2: Draw a number pi for each category following pi ∼

N
(

fi,
√

k lnN
ni

)

3: Select the user goal i with the maximum pi value

Here, N is the Gaussian distribution for introducing
randomness. The Thompson-Sampling-like (Russo et al.
2018) sub-routine of Algorithm 2 is motivated by two ob-
servations: (1) on average, categories with larger failure
rate fi are more preferable as they inject more difficult
cases (containing more useful information to be learned)
based on the current performance of the agent policy.
The generated data (simulated experiences) are generally
associated with the steepest learning direction and can
prospectively boost the training speed; (2) categories that
are estimated less reliably (due to a smaller value of ni

value) may have a large de facto failure rate, thus worth
being allocated with more training instances to reduce

the uncertainty.
√

k lnN
ni

is the measurement of the uncer-

tainty of fi, serving the role of variance in the Gaussian.
Thus, the categories with high uncertainty are still likely
to be selected even if the failure rate is small.

• Response generation module. We utilize the same design
of the world model in Peng et al. (2018). Specifically, we
parameterize it using a multi-task deep neural network
(Liu et al. 2015). Each time the world model observes the
dialogue state s and the last action from the agent a, it
passes the input pair (s, a) through an MLP M(s, a; θM )
generating a user action au, a regressed reward r and a bi-
nary terminating indicator signal t. The MLP has a com-

mon sharing representation in the first layer (referred to
as layer h). The computation for each term can be shown
as below:

h = tanh(Wh(s, a) + bh) (3)

au = softmax(Wah+ ba) (4)

r = tanh(Wrh+ br) (5)

t = sigmoid(Wth+ bt) (6)

Switcher

At every step of training, the switcher needs to decide
whether the dialogue agent should be trained using simu-
lated or real experience (lines 8-9 in Algorithm 1).

The switcher is based on a binary classifier implemented
using a Long Short-Term Memory (LSTM) model (Hochre-
iter and Schmidhuber 1997). Assume that a dialogue is
represented as a sequence of dialogue turns, denoted by
{(si, ai, ri)}, i = 1, ..., N , where N is the number of di-
alogue turns of the dialogue. Q-learning takes a tuple in the
form of (s, a, r, s′) as a training sample, which can be ex-
tracted from two consecutive dialogue turns in a dialogue.
Now, the design choice of switcher is whether the classi-
fier is turn-based or dialogue-based. We choose the former,
though a bit anti-intuitive, for data efficiency. There is an
order of magnitude larger number of turns than that of dia-
logues. As a result, a turn-based classifier can be more re-
liably trained than a dialogue-based one. Then, given a dia-
logue, we score the quality of each of its dialogue turns, and
then averages these scores to measure the quality of the di-
alogue (line 6 in Algorithm 1). If the dialogue-level score is
below a certain threshold, the agent switches to interact with
real users.

Note that each dialogue turn is scored by tak-
ing into account its previous turns in the same dia-
logue. Given a dialogue turn (st, at, rt) and its history
h = ((s1, a1, r1), (s2, a2, r2), ..., (st−1, at−1, rt−1)) We
use LSTM to encode h using the hidden state vector, and
output a turn-level quality score via a sigmoid layer:

Score((s, a, r), h; θ) = sigmoid(LSTM((s, a, r), h; θ))
(7)

Since we store user experiences and simulated experi-
ences in the buffers Bu and Bs, respectively (lines 4, 7 in
Algorithm 1), the training of Score(.) follows a similar pro-
cess of minimizing the cross-entropy loss as in the common
domain adversarial training setting (Ganin et al. 2016) using
mini-batches:

min
θS

E(s,a,r),h∼Bu log (Score ((s, a, r), h; θ))

+ E(s,a,r),h∼Bs log (1− Score((s, a, r), h; θ)) (8)

Since the experiences stored in Bs and Bu change dur-
ing the course of dialogue training, the score function of
the switcher is updated accordingly, thus automatically ad-
justing how much planning to perform at different stages of
training.

7292



Experiments

We evaluate the proposed Switch-DDQ framework in the
movie-ticket booking domain, in two settings: simulation
and human evaluation.

Dataset

For experiments, we use a movie-ticket booking dataset
which contains raw conversational data collected via Ama-
zon Mechanical Turk. The dataset is manually labeled based
on a schema defined by domain experts. As shown in Table
1, the annotation schema consists of 11 intents and 16 slots.
In total, the dataset contains 280 labeled dialogues, the aver-
age length of which is 11 turns.

Annotations

Intent
request, inform, deny, confirm question,
confirm answer, greeting, closing, not sure,
multiple choice, thanks, welcome

Slot

city, closing, date, distanceconstraints,
greeting, moviename, numberofpeople,
price, starttime, state, taskcomplete, theater,
theater chain, ticket, video format, zip

Table 1: The data annotation schema

Baselines

We compare the effectiveness of the Switch-DDQ agent with
several baselines:

• DQN agent is implemented with only direct reinforce-
ment learning in each training epoch (without lines 5-9
in Algorithm 1).

• The DQN(K) has (K − 1) times more real experiences
than the DQN agent (repeat lines 3-4 in Algorithm 1 K
times). The performance of DQN(K) can be viewed as
the upper bound of DDQ (K), with the same number of
planning steps (K − 1) (they have the same training set-
ting and the same amount of training samples during the
entire learning process).

• The DDQ(K) agents are learned using a jointly-trained
world model initiated from human conversational data,
with (K − 1) planning steps (replace lines 5-9 in Algo-
rithm 1 with a (K − 1)-round loop).

• The proposed Switch-DDQ agents are updated as de-
scribed in Algorithm 1. Note that there is no parameter
K in the agent, as real/simulated ratio is automatically
controlled by the switcher module.

Implementation Details

Agent and Hyper-parameter Settings We use an MLP to
parameterize function Q(·) in all the agent variants (DQN,
DDQ and Switch-DDQ). The MLP has one hidden layer of
80 neurons with ReLU (Nair and Hinton 2010) activation
function. The ǫ-greedy policy is adopted to explore the ac-
tion space. The discount factor γ for future rewards is set to

0.9. For DDQ(K), as the number of real and simulated ex-
periences is different at each epoch, the buffer sizes of Bu

and Bs are generally set to 2000 and 2000×K, respectively.
For Switch-DDQ, we observed that the results are not sensi-
tive to the buffer size of Bs, so we set it to 2000 × 5 for all
settings.

We randomly initialize the parameters in all neural net-
works and empty both experience buffers Bu and Bs in the
beginning. The RMSProp (Hinton, Srivastava, and Swersky
2012) algorithm is used to perform optimization over all
the parameters where the learning rate is set to 0.001. We
also apply the gradient clipping trick to all parameters with
a maximum norm of 1 to prevent possible gradient explo-
sion issues. At the beginning of each epoch (line 2 in Algo-
rithm 1), the reference copy Q′(·) is updated. Each simulated
dialogue contains less than 40 turns. Conversations exceed-
ing the maximum number of turns are counted as failed. In
order to train the agents more efficiently, we utilized the im-
itation learning method called Reply Buffer Spiking (RBS)
(Lipton et al. 2016) at the initial stage to build a simple rule-
based agent trained from human conversational data. The
trained agent is then used to pre-fill the real experience re-
play buffer Bu with a total of 50 complete dialogues before
training all the variants of the agent.

World Model We employ an MLP world model for DDQ
and Switch-DDQ. The shared hidden layer is set to have size
160 with hyperbolic tangent activation. The state and action
input are encoded through a linear layer of size 80. We pre-
fill each ni as 5 to prevent division by 0 error, during the
calculation of the Gaussian variance (line 2 in Algorithm 2).

Switcher The LSTM switcher has a hidden layer with 126
cells. Similar to the world model, states and actions are
passed through a linear layer of size 80 as inputs at each time
step. The switcher adopts an annealing threshold w.r.t. the
epoch number to decide the quality of each dialogue turn. If
the average dialogue episode score passes a certain thresh-
old, all the high-quality predictions are pushed into buffer
Bs.2

Simulation Evaluation

We train the dialogue agents by simulating interactions be-
tween the agents and well-programmed user simulators, in-
stead of real users. That is, we train the world model to imi-
tate the behaviors of the user simulator.

User Simulator We used an open-sourced task-oriented
user simulator (Li et al. 2016) in our simulated evaluation.
At each dialogue turn, the simulator will emit a simulated
user response to the agent. When the dialogue ends, a reward
signal will be provided. The dialogue is considered success-
ful, if and only if a movie ticket is booked successfully and
the information provided by the agent conform to all the con-
straint slots in the sampled user goal. Each completed dia-
logue shows either a positive reward 2 ∗ L for success, or
a negative reward −L for failure, where L is the maximum

2See the code for specific hyper-parameters.

7293



Agent
Epoch = 100 Epoch = 200 Epoch = 300

Success Reward Turns Success Reward Turns Success Reward Turns

DQN 0.2867 -17.35 25.51 0.6733 32.48 18.64 0.7667 46.87 12.27
DQN(5) 0.7667 46.74 12.52 0.7867 49.46 11.88 0.8000 50.81 12.37
DDQ(5) 0.6200 25.42 19.96 0.7733 45.45 16.69 0.7467 43.22 14.76
DDQ(10) 0.6800 34.42 16.36 0.6000 24.20 17.60 0.3733 -2.11 15.81
DDQ(20) 0.3333 -13.88 29.76 0.4467 5.39 18.41 0.3800 -1.75 16.69
Switch-DDQ 0.5200 15.48 15.84 0.8533 56.63 13.53 0.7800 48.49 12.21

Table 2: Results of different agents at training epoch = {100, 200, 300}. Each number is averaged over 3 runs, and each run
is tested on 50 dialogues. (Success: success rate) Switch-DDQ outperforms DQN and DDQ variants after Epoch 100, where
DQN(5) is shown as the upper bound as it uses more real experiences. Best scores are labeled in bold faces.

Figure 4: The learning curves of DQN, DQN(5), Switch-
DDQ, and DDQ(5) of each epoch.

Figure 5: The learning curves of DQN, DQN(5), Switch-
DDQ, and DDQ(5) on the scale of updating frequency.

number of turns in each dialogue and is set to 40 in our ex-
periments. Furthermore, in each turn, a negative reward −1
is provided to encourage shorter dialogue.

Main Results We summarize the main results in Table 2
and plot the learning curves in Figure 4. As illustrated in
Figure 2, DDQ(K) is highly susceptible to parameter K.
Therefore, we only keep the best performing DDQ(5) as
the baseline in the following figures. DQN(5), which uses
4 times more real user experiences to this end, is the upper
bound for the corresponding DDQ(5) method. In Table 2, we
report success rate, average reward and average number of
turns over 3 different runs for each agent. As is shown, the
agent of Switch-DDQ after the first 100 epochs, consistently
achieves higher success rates with a smaller number of inter-
action turns. Again, DDQ(10) and DDQ(20) quickly deteri-
orate through the training process. In Figure 4, we can ob-
serve that in the first 130 epochs, DDQ(5) performs slightly
better than Switch-DDQ. However, after that, Switch-DDQ
surpasses DDQ(5) and achieves better performance. It only
takes Switch-DDQ 180 epochs to achieve comparable re-
sults to DQN(5), which utilizes 4 times more real experi-
ences, and DDQ(5) fails to reach similar performance within
300 epochs. This is expected, as the aggressive simulator

sampling policy adopted by DDQ(5), though helping up-
date the policy network more rapidly in the early stage of
training, hurts the performance due to the use of low-quality
training instances in the later stage. Note that except for
DQN(5), all the agents are trained using the same number of
real experiences in each epoch, differing only the amounts
of simulated experiences used (for planning) and how these
simulated experiences are generated (via active learning or
not). The result show that Switch-DDQ can utilize simula-
tors in a more effective and robust way than DDQ.

We also examine the performance of different agents with
an equal number of optimization operations. As shown in
Figure 5, we plot the success rate as a function of updat-
ing frequency, i.e., how many dialogue experiences (either
real or simulated) are used altogether to optimize the agent
policy network. Note that DQN(5) displays superior perfor-
mance over DQN as it generates more diverse dialogues at
the same updating frequency (DQN may refer to identical
experiences more frequently since Bu in DQN is refreshed
less often than that in DQN(5)). Furthermore, we observe
that DDQ(5) fails to obtain a similar performance to DQN,
due to the use of many low-quality simulated experiences.
However, this does not happen in Switch-DDQ, since it ac-
tively samples user goals by making diversified training di-

7294



Figure 6: Learning curves of Switch-DDQ versus SU-DDQ
where SU-DDQ uses a uniform sampling strategy.

Figure 7: Success rate on 128 user goal categories for
Switch-DDQ and SU-DDQ, ranking in ascending order.

alogues and discreetly controlling the amount of simulated
experiences via the switcher.

Ablation Test To further examine the effectiveness of the
active learning module, we conduct an ablation test by re-
placing the user goal selection routine (Algorithm 2) with
the one based on uniform sampling, referred to as SU-DDQ.
The results in Figure 6 demonstrate that Switch-DDQ can
consistently outperform SU-DDQ, especially in the early
phase (before epoch 100). This is due to the fact that the
agent is more sensitive to the diversity of user goals in the
earlier stage since in the limited data setting, many repeated
cases introduce biases more easily. In Figure 7, we report the
success rate for different categories of user goals and rank
them in the increasing order. It is observed that for the cor-
responding rank of user goal category, especially the ones
with low success rate, the active version of Switch-DDQ al-
ways give a better score. These results demonstrate that the
use of the active module improves training efficiency.

Human Evaluation

Real users were recruited to interact with different agents,
while the identity of the agent system is hidden from the
users. At the beginning of the dialogue session, the user was
provided with a randomly sampled user goal, and one of the
agents was randomly picked to converse with the user. The
dialogue session can be terminated at any time, if the user
finds that the dialogue takes so many turns that it is unlikely
to reach a promising outcome. Such dialogues are consid-
ered as failed in our experiments.

Three agents (DQN, DDQ(5), and Switch-DDQ) trained
as previously described (Figure 4) at epoch 150 are selected
as for human evaluation.3 As illustrated in Figure 8, the re-
sults of human evaluation are consistent with those in the
simulation evaluation. We find that DQN is abandoned more
often by users as it takes so many dialogue turns (Table 2) re-

3Epoch 150 is picked since we are testing the effectiveness of
methods using a small number of real experiences.

Figure 8: Human evaluation results of DQN, DDQ(5), and
Switch-DDQ. The number of test dialogues is shown on
each bar, and the one-sided p-value is from a two-sample
permutation test over the success/fail lists.

sulting in a much hefty performance drop, and the proposed
Switch-DDQ outperforms all the other agents.

Conclusion

This paper presents a new framework Switch-based Ac-
tive Deep Dyna-Q (Switch-DDQ) for task-completion dia-
logue policy learning. With the introduction of a switcher,
Switch-DDQ is capable of adaptively choosing the proper
data source to use, either from real users or world model,
enhancing the efficiency and robustness of dialogue policy
learning. Furthermore, the active user goal sampling strategy
provides a better utilization of the world model than that of
previous DDQ, and boosts the performance of training. Val-
idating Switch-DDQ in the movie-ticket booking task with
simulation experiments and human evaluation, we show that
the Switch-DDQ agent outperforms the agents trained by
other state-of-the-art methods, including DQN and DDQ.
Switch-DDQ can be viewed as a generic model-based RL
approach, and is easily extensible to other RL problems.

7295



Acknowledgement
We thank the reviewers for their helpful comments, and we
would like to acknowledge the volunteers for helping us with
the human experiments. This work was done in part when
Yuexin Wu was visiting Microsoft Research as an intern,
and is supported in part by the National Science Foundation
(NSF) under grant IIS-1546329.

References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-
time analysis of the multiarmed bandit problem. Machine
learning 47(2-3):235–256.

Dhingra, B.; Li, L.; Li, X.; Gao, J.; Chen, Y.-N.; Ahmed,
F.; and Deng, L. 2016. Towards end-to-end reinforcement
learning of dialogue agents for information access. arXiv
preprint arXiv:1609.00777.

Ganin, Y.; Ustinova, E.; Ajakan, H.; Germain, P.; Larochelle,
H.; Laviolette, F.; Marchand, M.; and Lempitsky, V. 2016.
Domain-adversarial training of neural networks. The Jour-
nal of Machine Learning Research 17(1):2096–2030.

Gao, J.; Galley, M.; and Li, L. 2018. Neural approaches to
conversational ai. arXiv preprint arXiv:1809.08267.

Hakkani-Tür, D.; Tür, G.; Celikyilmaz, A.; Chen, Y.-N.;
Gao, J.; Deng, L.; and Wang, Y.-Y. 2016. Multi-domain
joint semantic frame parsing using bi-directional rnn-lstm.
In Interspeech, 715–719.

Hinton, G.; Srivastava, N.; and Swersky, K. 2012. Rm-
sprop: Divide the gradient by a running average of its recent
magnitude. Neural networks for machine learning, Cours-
era lecture 6e.

Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.

Levin, E.; Pieraccini, R.; and Eckert, W. 1997. Learning di-
alogue strategies within the markov decision process frame-
work. In Automatic Speech Recognition and Understanding,
1997. Proceedings., 1997 IEEE Workshop on, 72–79. IEEE.

Li, X.; Lipton, Z. C.; Dhingra, B.; Li, L.; Gao, J.; and Chen,
Y.-N. 2016. A user simulator for task-completion dialogues.
arXiv preprint arXiv:1612.05688.

Li, X.; Chen, Y.-N.; Li, L.; Gao, J.; and Celikyilmaz, A.
2017. End-to-end task-completion neural dialogue systems.
arXiv preprint arXiv:1703.01008.

Lipton, Z. C.; Gao, J.; Li, L.; Li, X.; Ahmed, F.; and Deng,
L. 2016. Efficient exploration for dialogue policy learning
with bbq networks & replay buffer spiking. arXiv preprint
arXiv:1608.05081.

Liu, X.; Gao, J.; He, X.; Deng, L.; Duh, K.; and Wang, Y.-Y.
2015. Representation learning using multi-task deep neu-
ral networks for semantic classification and information re-
trieval.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.

Mrkšić, N.; Séaghdha, D. O.; Wen, T.-H.; Thomson, B.; and
Young, S. 2016. Neural belief tracker: Data-driven dialogue
state tracking. arXiv preprint arXiv:1606.03777.

Nair, V., and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), 807–814.

Peng, B.; Li, X.; Gao, J.; Liu, J.; Wong, K.-F.; and Su, S.-
Y. 2018. Deep Dyna-Q: Integrating planning for task-
completion dialogue policy learning. In ACL.

Pietquin, O., and Hastie, H. 2013. A survey on metrics for
the evaluation of user simulations. The knowledge engineer-
ing review 28(1):59–73.

Russo, D. J.; Van Roy, B.; Kazerouni, A.; Osband, I.; Wen,
Z.; et al. 2018. A tutorial on thompson sampling. Founda-
tions and Trends R© in Machine Learning 11(1):1–96.

Schatzmann, J.; Thomson, B.; Weilhammer, K.; Ye, H.; and
Young, S. 2007. Agenda-based user simulation for boot-
strapping a pomdp dialogue system. In Human Language
Technologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguistics;
Companion Volume, Short Papers, 149–152. Association for
Computational Linguistics.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; van den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe, D.;
Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T. P.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of go with deep neural networks
and tree search. Nature 529(7587):484–489.

Su, P.-H.; Gasic, M.; Mrksic, N.; Rojas-Barahona, L.; Ultes,
S.; Vandyke, D.; Wen, T.-H.; and Young, S. 2016. Continu-
ously learning neural dialogue management. arXiv preprint
arXiv:1606.02689.

Su, S.-Y.; Li, X.; Gao, J.; Liu, J.; and Chen, Y.-N. 2018.
Discriminative deep dyna-q: Robust planning for dialogue
policy learning. arXiv preprint arXiv:1808.09442.

Sutton, R. S. 1990. Integrated architectures for learn-
ing, planning, and reacting based on approximating dynamic
programming. In Machine Learning Proceedings 1990. El-
sevier. 216–224.

Wen, T.-H.; Gasic, M.; Mrksic, N.; Su, P.-H.; Vandyke, D.;
and Young, S. 2015. Semantically conditioned lstm-based
natural language generation for spoken dialogue systems.
arXiv preprint arXiv:1508.01745.

Young, S. J.; Gasic, M.; Thomson, B.; and Williams, J. D.
2013. Pomdp-based statistical spoken dialog systems: A re-
view. Proceedings of the IEEE 101(5):1160–1179.

7296


