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Abstract: Heterogeneous protease biosensors show high sensitivity and selectivity but usually require
the immobilization of peptide substrates on a solid interface. Such methods exhibit the disadvantages
of complex immobilization steps and low enzymatic efficiency induced by steric hindrance. In
this work, we proposed an immobilization-free strategy for protease detection with high simplicity,
sensitivity and selectivity. Specifically, a single-labeled peptide with oligohistidine-tag (His-tag) was
designed as the protease substrate, which can be captured by a nickel ion-nitrilotriacetic acid (Ni-
NTA)-conjugated magnetic nanoparticle (MNP) through the coordination interaction between His-tag
and Ni-NTA. When the peptide was digested by protease in a homogeneous solution, the signal-
labeled segment was released from the substrate. The unreacted peptide substrates could be removed
by Ni-NTA-MNP, and the released segments remained in solution to emit strong fluorescence. The
method was used to determine protease of caspase-3 with a low detection limit (4 pg/mL). By
changing the peptide sequence and signal reporters, the proposal could be used to develop novel
homogeneous biosensors for the detection of other proteases.

Keywords: proteases; caspase-3; nitrilotriacetic acid; homogeneous assays; fluorescence; magnetic
nanoparticle

1. Introduction

Proteases participate in many important physiological processes, such as protein
digestion, blood coagulation, and immune system activation. The occurrence of some
diseases is closely related to the abnormal activity of proteases [1–5]. For example, matrix
metalloproteinases are overexpressed in some cancers, serine proteases are involved in the
closely coordinated coagulation cascade, human immunodeficiency virus (HIV) proteases
are overexpressed in the life cycle of HIV patients, SARS-CoV-2 main proteases are related
to COVID-19, and β/γ-secretases are responsible for the production of toxic β-amyloid
peptides in the brains of patients with Alzheimer’s disease. Some diseases can be treated
well by regulating the activity of proteases with inhibitor drugs. Therefore, the development
of simple, sensitive, low cost, and high-throughput methods for monitoring protease
activity is of great significance for early diagnosis and effective treatment of protease-
related diseases.

Proteases can catalyze the hydrolysis of proteins or peptides and decompose them
into amino acids or small peptide fragments. The methods for analysis of protease activity
usually include homogenous and heterogeneous assays, such as liquid chromatography,
mass spectrometry, electrochemistry, colorimetry, fluorescence, surface plasmon resonance
and so on [4,6–17]. Among these, fluorescence-based homogenous analysis is the most
commonly used method for protease detection because of its high sensitivity and quantita-
tive results. In this method, the substrate peptide is often modified with a pair of quencher
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and fluorophore groups [18–23]. The hydrolysis of peptides can lead to the separation of
quenchers and fluorophores, leading to the increase in the fluorescence signal. Although
this fluorescence method has the characteristics of high sensitivity and selectivity, dual-
labeling of peptides at both terminals may increase the cost and complexity of substrate
synthesis, limit the protease to approach the cleavage site and reduce the cleavage efficiency
of proteolysis [24–28]. Recently, single-labeled fluorescent nucleotide probes have been
widely used for the detection of metal ions and nucleic acids with the advantages of low
cost and high sensitivity [29,30]. However, there are few reports on the general detection of
protease activity using single-labeled peptide substrates [31].

Nanomaterials such as gold nanoparticles, carbon nanotubes and graphene oxide as
quenchers have been integrated with single-labeled fluorescent peptides for monitoring
protease activity through the fluorescence resonance energy transfer (FRET) effect [32–37].
The nanomaterials usually exhibit superior quenching ability to molecular quenchers due
to the long-range energy transfer. However, immobilization of peptide substrates on the
solid surface may cause the steric hindrance effect to affect the configurational freedom of
peptides, thus limiting their interaction with proteases and decreasing the cleavage effi-
ciency [38,39]. In addition, peptide immobilization requires laborious and time-consuming
procedures. In this respect, it is of paramount importance to the manipulation of external
surfaces for anchoring peptide substrates. Oligohistidine-tag (His-tag) can be easily inte-
grated into peptides or proteins through synthetic or recombinant techniques. The nickel
ion-nitrilotriacetic acid (Ni-NTA) complex shows high-affinity toward His-tag in which
four coordination sites are occupied by NTA and two of them are coordinated with two
imidazole moieties of His-tag [40–42]. Based on strong and specific interactions, Ni-NTA-
conjugated polymers, magnetic beads and silica nanoparticles have been widely applied for
the separation, purification and delivery of peptides and proteins with His-tags [41,43–46].
In this work, the commercialized Ni-NTA-conjugated magnetic nanoparticles (MNPs) were
employed for the development of a switch-on fluorescent biosensor for monitoring protease
activity with Caspase-3 (Cas3) as an example. Fluorescently-labeled peptide substrates
with His-tags can be captured by Ni-NTA-MNPs through the interactions between His-tag
and Ni-NTA, leading to adecrease in fluorescence. When peptide substrates were degraded
using the proteolysis, the fluorophore-included peptide segments were released from the
peptide substrates or the peptide-conjugated NTA-Ni-MNPs, thus turning on the fluores-
cence of solution. The reaction rate of proteolysis for the peptides dispersed in solution
and immobilized on the surface of NTA-Ni-MNPs was investigated. This strategy can be
used for the detection of various proteases by matching the peptide sequences specific to
the targets. In addition, by replacing the fluorophores with other signal molecules such as
electroactive molecules, enzymes and nanoparticles, single-labeled peptides could be used
for electrochemical or colorimetric analysis of the activity of various proteases.

2. Results and Discussion
2.1. Principle of This Proposal

Cas3, an important cysteine protease of the caspase family, plays a critical role in
the cell apoptosis pathway [47,48]. To verify the analytical performances of this proposal,
Cas3 was used as the model analyte. The principle of magnetically assisted assays of Cas3
is shown in Scheme 1. His-tag (HHHHHH or H6) was included in the C-terminal of a
Cas3-recognized peptide sequence (DEVD), and fluorescein isothiocyanate (FITC) was
labeled in the N-terminal of the peptide. The peptide substrate of FITC-GDEVDGH6 could
be captured and removed by Ni-NTA-MNP through the interaction between His-tag and
Ni-NTA, thus quenching the fluorescence. Once the peptide was selectively digested by
Cas3 in solution, the FITC-labeled segment (FITC-GDEVD) was released from the substrate.
The released segment could not be removed by Ni-NTA-MNP even under the magnetic
force and thus emitted a strong fluorescence. Inhibiting the activity of Cas3 with a potential
inhibitor could prevent the cleavage of the substrate peptide and thus cause the decrease in
the fluorescence signal. The fluorescence intensity was proportional to the concentration
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and activity of Cas3, allowing for the detection of Cas3 and screening of its inhibitor drugs.
The strategy is simple and sensitive because it does not require the pre-immobilization of
the peptide substrate on the solid surface, thus eliminating the steric hindrance effect and
improving the cleavage efficiency.
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2.2. Feasibility for Cas3 Detection

Figure 1 shows the results to confirm the validity of the proposal. The fluorescence
intensity of the peptide substrate decreased significantly after being incubated with Ni-
NTA-MNP under a magnetic force (c.f. curves 1 and 2). The change was time-independent,
indicating a rapid coordination interaction between His6 tag and Ni-NTA. However, no
obvious change in the fluorescence signal was observed when the H6-free peptide (FITC-
GDEVD) was incubated with Ni-NTA-MNP at the same condition. The results indicated
that the peptide substrate was captured and removed by Ni-NTA-MNP through the interac-
tion between His-tag and Ni-NTA. Interestingly, when the peptide substrate was incubated
with Cas3 and then treated with Ni-NTA-MNP, the fluorescence signal increased greatly
(curve 3). The result confirmed that the peptide probe could be enzymatically cleaved
with Cas3, thus leaving the FITC-GDEVD segment in solution for determination. To eval-
uate the influence of steric hindrance on the cleavage efficiency, the FITC-GDEVDGH6
substrates were immobilized on the Ni-NTA-MNP surface and then digested by Cas3 at
the same experimental conditions. Consequently, the fluorescence intensity (curve 4) was
lower than that achieved by the immobilization-free method (curve 3), suggesting that
the immobilization of the peptide on the solid surface decreased the cleavage efficiency to
some extent. The problem may be resolved by adding a spacer between the solid surface
and the cleavage core of the peptide or by employing small-size nanoparticles to load the
peptide substrate.

2.3. Optimization of Experimental Conditions

To obtain the best detection performances, the experimental conditions, including
peptide concentration and enzymolysis time, were explored. Low background signal can
favor the sensitivity of an analytical method. We first investigated the dependence of the
fluorescence signal on the peptide concentration. It was found that the fluorescence signal
was close to the background when the peptide concentration was below 1 µM (Figure 2A).
Beyond this value, the fluorescence intensity began to raise with the increase in peptide
concentration. The signal began to increase, implying that the surface of Ni-NTA-MNP
was saturated by the peptide probe. In this work, a compromising concentration of peptide
was used in light of the real level of Cas3 in samples and the low signal-to-noise ratio. We
also found that the fluorescence intensity increased and then reached a platform with the
increase of enzymolysis time (Figure 2B). To achieve sensitive and rapid assays, 30 min was
chosen as the reaction time for the cleavage event.
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Figure 1. Fluorescence spectra of different systems: FITC-GDEVDGH6 (curve 1), FITC-GDEVDGH6 +
Ni-NTA-MNP (curve 2) and FITC-GDEVDGH6/Cas3 + Ni-NTA-MNP (curve 3). Curve 4 corresponds
to that of incubation of FITC-GDEVDGH6/Ni-NTA-MNP with Cas3. The concentrations of FITC-
GDEVDGH6 and Cas3 used were 500 nM and 100 ng/mL.
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time (B).

2.4. Analytical Performances

Under optimal conditions, we investigated the analytical performances of this method
by determining different concentrations of Cas3. As shown in Figure 3A, the fluorescence
signal increased with the increase of Cas3 concentration. A good linear relationship between
the fluorescence intensity and Cas3 concentration was found in the range of 0.01–25 ng/mL
(Figure 3B). The linear equation is expressed as F = 11.4 + 2.4[Cas3] (ng/mL). The limit of
detection (LOD) was found to be 4 pg/mL, which is lower than that of other fluorescence
assays with nanomaterials as the quenchers and carriers to load the peptide substrates
(Table 1). The sensitivity is also comparable to that achieved by the heterogeneous methods
through immobilization of peptides on a solid surface for enzymatic cleavage [49,50]. The
high sensitivity should be attributed to the low background signal and high cleavage
efficiency of this proposal.
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Table 1. Analytical performances of nanomaterial-based fluorescence assays of Cas3.

Materials/Reporters Linear Range LOD Ref.

AuNPs/dye 0–1 unit/mL 0.0079 unit/mL [51]
AuNPs/dye 0–300 ng/mL 0.073 ng/mL [52]
AuNPs/dye 3.2–100 pg/mL 1.3 pg/mL [53]

AuNPs/SiNPs 0.05–1.0 U/mL 0.05 U/mL [54]
GO/dye 7.25–362 ng/mL 7.25 ng/mL [55]
GO/dye 2–360 ng/mL 0.33 ng/mL [56]

qPNPs/dye 2–40 nM 0.09 nM [57]
MCN/dye 0.01–1 ng/mL 0.4 pg/mL [58]
MB/dye 0.01–25 ng/mL 4 pg/mL This work

Abbreviations: AuNPs, gold nanoparticles; SiNPs, [Ru(bpy)3]2+–encapsulated silica nanoparticles; GO, graphene
oxide; qPNPs, polymeric nanoquenchers; MCN, mesoporous carbon nanospheres.

2.5. Selectivity

To explore the selectivity, a series of proteases were tested, including Cas3, thrombin,
trypsin, β-secretase and PSA. As a result, only Cas3 caused the enhancement of fluorescence
intensity (Figure 4A). Other proteases did not induce a significant signal change. The good
selectivity of the proposal can be attributed to the high specificity of the peptide toward
Cas3 and the unique interaction between His-tag and Ni-NTA. We also investigated the
influence of other possible components in biological samples such as serum on the detection
of Cas3. It was found that there is no significant difference in the signals for the assays
of Cas3 in buffer and diluted serum. This result is acceptable since the commercialized
Ni-NTA-MNPs were highly specific to His-tag peptides or proteins and only a few natural
species with His-tag exist in serum at most.

To further confirm that the method is highly specific to active Cas3, the inhibition effi-
ciency of a well-known inhibitor (DEVD-FMK) was evaluated. With the increase ininhibitor
concentration, the fluorescence intensity decreased gradually and finally began to level off
(Figure 4B). This demonstrated that the inhibitor prevented the cleavage of peptides by
depressing the enzymatic activity of Cas3. Based on the relationship between fluorescence
intensity and inhibitor concentration, the half-maximum inhibition value (IC50) was found
to be 4.6 nM for 20 ng/mL Cas3. The inhibition efficiency was in agreement with that eval-
uated by other methods [59–62], suggesting that the method has a promising application
for rapid and high-throughput screening of protease inhibitors.
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2.6. Evaluation of Cell Apoptosis

To indicate the applicability of this proposal, apoptosis was evaluated by monitoring
the activity of Cas3 in the cell lysates. MCF-7 cells were induced to apoptosis with a
classical inducer staurosporine. As shown in Figure 5, the fluorescence intensity was
significantly intensified with an increasing number of cells induced with staurosporine.
However, a slight change was observed for the assays of cells without treatment with
the inducer. This result suggests that the level or activity of Cas3 in the apoptotic cells is
higher than that in the living cells, which is consistent with that of previous reports [59,60].
Therefore, the proposed method could be used to determine Cas3 in biological samples and
evaluate cell apoptosis, showing great potential for developing therapeutic drugs toward
apoptosis-related diseases.
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3. Experimental
3.1. Chemicals and Reagents

Cas3, β-secretase and thrombin were ordered from Sigma-Aldrich (Shanghai, China).
Trypsin was provided by Sangon Biotech. Co., Ltd. (Shanghai, China). Prostate-specific
antigen (PSA) was obtained from Linc-Bio Science Co., Ltd. (Shanghai, China). Peptides
were synthesized with a solid phase synthesis method and purified using ChinaPeptides
Co., Ltd. (Shanghai, China). NTA-Ni-MNPs with an average size of 400 nm were purchased
from PuriMag Biotech. (Xiamen, China). Other reagents were of analytical grade and used
without further purification. All the aqueous solutions were freshly prepared with ultrapure
water treated with a Millipore system.
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3.2. Procedures for Cas3 Detection

A total of 100 µL of peptide substrate with the sequence of FITC-GDEVDGHHHHHH
(denoted as FITC-GDEVDGH6) was incubated with 100 µL of Cas3 in phosphate buffer
(10 mM, pH 7.4) at room temperature for a given time. Following this, 10 µL of 12.5 mg/mL
Ni-NTA-MNP suspension was added to the reaction solution and shaken for 5 min. Un-
der the action of magnetic force, the supernatant solution was removed for fluorescence
measurement on a fluorescence spectrometer with an excitation wavelength of 470 nm.

To evaluate the inhibition efficiency, the inhibitor was incubated with Cas3 for 10 min.
Then, the mixture of Cas3 and inhibitor was incubated with the peptide substrate following
the above procedure. The inhibition efficiency was calculated according to the change in
fluorescence intensity.

3.3. Apoptosis Analysis

The extraction of cell lysates from living and apoptotic MCF-7 cells followed the
procedure in our previous reports [59,60]. The collected lysates were diluted at different
times with phosphate buffer and then analyzed with the steps as those for the assays of
Cas3 standard samples.

4. Conclusions

In summary, a sensitive and simple homogeneous fluorescence method was pro-
posed for the determination of proteases with Cas3 as the model analyte. The influence of
steric hindrance on the enzymatic efficiency was also evaluated. Our proposal does not
require the pre-immobilization of the peptide substrate, simplifying the operation steps
and improving the sensitivity. The LOD of the method is lower than that of other fluo-
rescence assays via immobilization of substrates on solid surfaces and comparable to that
of heterogeneous strategies with signal amplifications of enzymes or nanomaterials. The
method was successfully used to evaluate inhibition efficiency and monitor cell apoptosis.
Other protease biosensors may be readily designed with this proposal by matching the
sequence-specific peptide substrates and signal reporters.
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