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Abstract

In this paper, we propose a Switchable Deep Network

(SDN) for pedestrian detection. The SDN automatically

learns hierarchical features, salience maps, and mixture

representations of different body parts. Pedestrian detection

faces the challenges of background clutter and large vari-

ations of pedestrian appearance due to pose and viewpoint

changes and other factors. One of our key contributions

is to propose a Switchable Restricted Boltzmann Machine

(SRBM) to explicitly model the complex mixture of visual

variations at multiple levels. At the feature levels, it auto-

matically estimates saliency maps for each test sample in

order to separate background clutters from discriminative

regions for pedestrian detection. At the part and body

levels, it is able to infer the most appropriate template for

the mixture models of each part and the whole body. We

have devised a new generative algorithm to effectively pre-

train the SDN and then fine-tune it with back-propagation.

Our approach is evaluated on the Caltech and ETH datasets

and achieves the state-of-the-art detection performance.

1. Introduction

Pedestrian detection is an important topic in computer

vision [5, 30, 9, 36, 34]. This problem is particularly

challenging because pedestrian images undergo large vari-

ations of visual appearance due to the changes of poses,

viewpoints, clothing, lighting, and resolutions. Background

clutters in a detection window also confuse the detectors.

Some examples are shown in Fig.1 (a).

Many pedestrian detectors [5, 34, 36, 8, 17, 11] have

been developed to address these challenges. They extract

manually designed features, such as HOG [5] and Haar-

like descriptors [34] or their combinations [36, 18], from

images, and then employ classifiers such as boosting [8],

SVM [5], and structure SVM [36] to decide whether a

detection window should be classified as a pedestrian. Hier-

∗indicates equal contribution.

Figure 1. Pedestrian detection is challenging due to background clutter,

poses, and large variations of appearance of the upper- and lower-body,

as shown in (a). It is hard to learn a single model to represent each body

part or the whole body. Background clutter also confuses detectors. SDN

learns hierarchical features, salience maps, and mixture representations of

the entire body and different body parts. The saliency maps that separate

the background clutters and the discriminative regions are shown in (b).

archical deformable part-based models (DPM) [40, 17, 11]

are proposed to handle moderate pose variation. In order

to handle more complex and larger variations, a mixture

of templates is learned for each body part [2, 40]. Such

templates (e.g., poselets [2]) are learned through clustering

pose annotations and region appearance.

In recent years, deep learning has been applied to pedes-

trian detection and achieved promising results [30, 24, 25].

Instead of using handcrafted features, it can automatically

learn features in an unsupervised or supervised fashion,

such as restricted Boltzmann machine (RBM) [12], and

discriminative RBM [13]. They are often stacked into

multiple layers so as to map the raw data into gradually

higher-level representations [15, 31, 30]. Then, the entire

network is fine-tuned with label information and the top

layer output is often adopted as features to train classifiers.

However, the hierarchical representations learned by deep

models do not have semantic meanings (such as the body
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parts of head-shoulder, upper-body, and lower-body) as in

previous hierarchical deformable part-based models [40,

17, 11, 16, 37]. Ouyang and Wang [25] extend DPM to a

deep model by learning feature representations and jointly

optimizing the key components of DPM. However, they did

not explicitly model mixture of templates for each body

parts as in [2, 40] and did not depress the influence of

background clutters.

We propose a novel Switchable Deep Network (SDN)

for pedestrian detection. The SDN automatically learns

hierarchical feature representations that correspond to body

parts and the whole body. The key contribution of the model

is that it introduces a new Switchable Restricted Boltzmann

Machine (SRBM) to explicitly model the complex mixture

of visual appearance at multiple levels. SRBM is used

to build switchable layers added into the hierarchy of the

SDN. At each feature level, SRBM estimates saliency maps

(indicating a pixel is on the background or a pedestrian)

for each test sample. For instance, in the root layer, the

saliency map separates background clutter from discrimi-

native regions for pedestrian detection. Some examples are

shown in Fig.1 (b). In a part layer, the saliency map also

helps to localize each part in the same way. In addition, our

deep model learns a mixture of templates for each part to

represent it in different views and poses. SRBM can infer

the most appropriate template for each part or the whole

body. Since all the body parts and their templates have

semantic meanings, they are initialized through clustering

image regions. A new generative algorithm is devised to

effectively pre-train the SDN and then fine-tune it with

back-propagation.

In summary, our work makes three key contributions.

First, we propose a unified deep model to jointly learn

features, saliency maps, and mixture representations of the

whole body and different body parts in a hierarchy. This

makes it possible to maximize the strengths of all of the

components. Second, we enrich the traditional convolu-

tional neural network (CNN) by introducing a switchable

layer built with a new switchable restricted Boltzmann

machine. This layer depresses background clutters by

estimating saliency maps and handles complex pedestrian

appearance variations with mixture of part templates. Our

third contribution is to propose a EM-like algorithm to pre-

train the switchable layer. With this algorithm, some hidden

variables can be estimated directly in the E-step without

Gibbs sampling, so that it can reduce the computation time

compared with the conventional methods.

1.1. Related Works

We review previous works in three aspects as follows.

Feature Learning. Recent works on deep neural net-

works such as [15, 12, 30, 13, 42, 19, 23, 41, 20, 32, 33]

are capable to learn features in terms of complex object

categories. For instance, [12, 15, 30, 19] unsupervisedly

pre-trained the networks in a layerwise manner. Moreover,

[13, 41, 20] layerwisely pre-trained the network with su-

pervised information and showed superior results. In this

paper, we learn discriminative features with a new pre-

training strategy, which incorporates label information.

Hierarchical Deformable Models. DPM is one of the

widely used methods [11]. It learns a two-layer hierarchy

of root and part templates using a weakly-supervised latent

SVM. Zhu et al. [40] and Lin et al. [17] extended this

hierarchy with more layers and the mixture of templates.

Bourdev and Malik [2] modeled complex variations of part

appearance with poselets, which are a set of templates

learned through clustering. However, these methods rely

on the hand-crafted features, the discriminative capacities

of which are not optimized for pedestrian detection.

Mixture of Deep Models. Recent studies [21, 4, 31]

have shown that a mixture of deep models works better

than singleton. Nair and Hinton [21] proposed the mixture

of RBMs to learn features from raw pixels, by including

a gating variable to determine which RBM should be

activated. Sohn et al. [31] partitioned the learned features

to two components: relevant features on the foreground

and the irrelevant features on the background. Ciresan et

al. [4] separated the data into several groups according to

some domain knowledge (multi-scales, for example), and

then constructed an ensemble of deep neural networks for

image classification. Unlike the existing works that focus

either on learning features or constructing an ensemble of

models, the mixture of the switchable layer in the SDN is

designed to model high-level object hierarchy as well as

saliency maps, and is jointly trained and optimized with the

features extracted by the convolutional layers. Therefore,

it is more robust to account for pedestrian variations and

enables us to incorporate more domain knowledge (such as

the design of body parts and initialization of part templates)

into the network for object detection.

2. Switchable Restricted Boltzmann Machine

The proposed switchable restricted Boltzmann machine

(SRBM) is a key building block in the SDN to model

the hierarchical feature representations and the mixtures of

body parts and entire body for pedestrian detection. We

first review the regular RBM in Sec.2.1 and then introduce

SRBM and its pre-training method in Sec.2.2.

A graphical model with both observed and hidden vari-

ables can be formulated as follows

p(V; Θ) =
1

Z

∑

H

exp{−E(V,H)}, (1)

where V,H are the sets of observed and hidden variables,

and Z is the normalizing constant. E(V,H) is an energy



Figure 2. The architectures of the regular RBM and the SRBM.

function and Θ denotes a set of parameters that can be

optimized using maximum likelihood estimation, where the

gradient can be computed by

∂ log p(V)

∂Θ
= −Ep(H|V)[

∂E(V,H)

∂Θ
]+Ep(V,H)[

∂E(V,H)

∂Θ
].

(2)
∂E(V,H)

∂Θ is the partial derivative of the parameters. The

first term in Eq.(2) calculates the expectation of the hidden

variables given the observed data and the second term

calculates the expectation of the joint probability under the

current model, which has to be inferred by sampling. For

example, [12] approximated the gradient of Eq.(2) by Gibbs

sampling.

2.1. Restricted Boltzmann Machine

RBM is a Markov Random Field that defines on both the

observed and hidden variables. In the traditional RBM as

shown in Fig.2 (a), V rbm = {x} and Hrbm = {h} are the

input and output (hidden features) of the layer, respectively,

and Θ = {W, c,b} contains the weight matrices and the

bias vectors of the input and output. Note that bold letters

indicate vector or matrix. Its energy function is written as

E(x,h) = −cTx− bTh− xTWh, (3)

where the first two terms can be considered as the unary

potentials as in MRF, while the last term is the pairwise

potential. The probabilities of one set of variables given

the other are conditional independent and the conditional

probabilities for Gibbs sampling are as follows

p(h = 1|x) = τ(Wx+ b), (4)

p(x = 1|h) = τ(WTh+ c), (5)

where τ(x) = 1/(1 + exp(−x)) is the sigmoid function.

2.2. Switchable RBM

One of the contributions of this study is to extend RBM

by modeling the mixture and saliency maps using SRBM.

As shown in Fig.2 (b), V srbm = {x,y} and Hsrbm =
{h,m, s}, where y,m, s denote the labels, the saliency

maps, and the switch variables indicating which component

in the mixture is activated. We employ both the input

data and the labels as observed variables other than only

using the data as in RBM, because supervised information

can improve classification performance [13]. The energy

function is formulated as

E(x,y,h, s,m; Θ) = −

K
∑

k=1

skh
T
k (Wk(x ◦mk) + bk)

−

K
∑

k=1

skc
T
k (x ◦mk)− yTU

K
∑

k=1

skhk − dTy,

(6)

in which K indicates the number of components in the

mixture and Θ = {W,b, c,U,d}, where U is a fully-

connect weight matrix to transform the features to labels

and d is the bias vector of the label. The switch variable

sk ∈ [0, 1],
∑K

k=1 sk = 1 indicates which component is

activated. In the SRBM, the output features are the linear

combination of the hidden features of different components;

that is h =
∑K

k=1 skhk as shown in Eq.(6). For each com-

ponent, mk ∈ [0, 1]n×m is the saliency map representing

the discriminative regions of the pedestrian. As shown in

Fig.1 (b), the value of 0 indicates background and the value

of 1 indicates discriminative regions. Element-wise product

of two vectors is denoted with ◦.
Similar to RBM, the observed and hidden variables

are conditionally independent given the others, and the

conditional probabilities can be derived as below.

p(hk = 1|x,y, s,m) = τ(sk(Wk(x ◦mk) + bk +UTy)),

p(x = 1|h, s,m) = τ(

K
∑

k=1

skmk(W
T
k hk + ck)),

p(y = 1|h, s) = τ(U(

K
∑

k=1

skhk) + d).

(7)

Eq.(7) shows that the sampling of h,x,y can be derived in

a similar way as RBM. Moreover, the conditional probabil-

ities of m, s are

p(mk = 1|x,h, s) = τ(skx(W
T
k hk + ck)),

p(sk = 1|x,y,h,m) =
1

Z
exp{hT

k (Wk(x ◦mk) + bk)

+ cTk (x ◦mk) + yTUhk},

(8)

where the saliency map of the k-th component can be

considered as the correlation between the original input x,

and the recovered input WT
k hk + ck by this component.

High correlation indicates high saliency. The computation

of s is similar to Eq.(6) and suggests that, if a component

has a smaller energy value, it is more likely to be activated.

However, the optimization procedure for SRBM has

comparatively high computational cost because the calcu-

lation of Eq.(2) must alternately sample five different kinds



of variables as in Eq.(7) and (8). We simplify the training

procedure using an EM-like algorithm by considering the

switch variables as pseudo-observed variables. In this case,

we can estimate their values directly in the E-step, and

then update the parameters in the M-step using Eq.(2) by

sampling the other four variables. This strategy saves 20
percent of the pre-training time.

Pseudo-observed SRBM. The joint probability of x, y,

and the pseudo-observed variables s is written as

p(x,y, s; Θ) ∝ p(x,y|s; Θ)p(s). (9)

The prior is specified by p(s) =
∏K

k=1 λ
sk
k , where λk =

1
N

∑N
n=1 snk is the mixing coefficient indicating the frac-

tion of training samples assigned to the k-th components.

p(x,y|s) can be defined by integrating over h and m,

p(x,y|s) ∝
1

Z

∑

h,m

e−E(x,y,h,s,m)

∝
1

Z
ed

Ty

K
∏

k=1

∑

hk

esk(y
TU+bT )hk ·

|x|
∏

i=1

(1 + esk(W
T
k,i∗hk+cki)xi)

∝
1

Z
ed

Ty

K
∏

k=1

|x|
∏

i=0

∑

hk

Gik,

(10)

where the energy function E(·) is given in Eq.(6). The

second equation in (10) integrates m and the last one sums

over both m,h, where Gik expresses the expansion of the

product of |x| binomials. For example, G0k and G1k are

esk(y
TU+bT )hk and esk(y

TU+bT )hk ·(es
k(WT

k,1∗hk+ck1)x1+

esk(W
T
k,2∗hk+ck2)x2 + ... + esk(W

T
k,i∗hk+cki)xi + ...), re-

spectively. Thus, the integration of G0k over hk is
∏|h|

j=1(1 + esk(y
TU∗j+bj)). More details are provided in

the supplementary material1. Combining Eq.(9) and (10)

with the Bayes rules, the posterior distribution becomes

p(s|x,y) = 1
Z

∏K
k=1 λ

sk
k

∑

h,m exp{−E(x,y,h, s,m)},
from which we can estimate the value of sk.

Implementation details. The pre-training contains two

steps: (1) initialization and (2) EM optimization. In the

first step, we start by grouping the input to K components

using k-means. As many variants of RBM [13], we then

train a regular RBM for each component to initialize the

weight matrixes. To obtain discriminative power and save

computation time, we retain the weights related to the

discriminative hidden features and discard the others by

using t-Test [39]. In the second step, the EM algorithm

proceeds as follows. We evaluate s in the E-step and keep

1 http://mmlab.ie.cuhk.edu.hk/publications.html

Algorithm 1 Pre-training pseudo-observed SRBM

Input: input {x} and labels {y};
Output: Θ = {W,U,b, c,d};

1: group input data {x} into K components using k-

means;

2: train RBM to initialize W,b, c for each component and

initialize U,d, λ randomly; prune W by t-Test;

3: if not stopping criterion loop

4: E-step: estimate s for each x;

5: M-step:

for a minibatch x do

6: perform gibbs sampling for t steps according to

Eq.(7) and (8) to obtain x0,y0,h0,m0, and

xt,yt,h
t
,mt;

7: ∇Θ← E[∂E(x0,y0,h0,m0,s)
∂Θ ]−E[∂E(xt,yt,h

t
,mt,s)

∂Θ ];
end

8: update parameters, Θ← Θ+ η∇Θ;

9: update mixing coefficients, λk = 1
N

∑N
n=1 snk;

10: end loop

s fixed and maximize the log likelihood log p(x,y|s) with

respect to Θ in the M-step, which is similar to Eq.(2) and

can be calculated following contrastive divergence [12].

The details are given in Alg.1.

3. Switchable Deep Network (SDN)

We stack a convolutional layer, four switchable layers

(that is, modeled with SRBM), and one logistic regression

layer into the SDN for pedestrian detection. As shown in

Fig.3, the convolutional layer learns to extract low- and

mid-level features, the switchable layers model high-level

mixture representations and salience maps of the entire

body and different body parts (head-shoulder, upper-body,

and lower-body), and the logistic regression layer predicts

labels. This architecture is designed for pedestrian detec-

tion. More layers can be added to handle more complex

object hierarchies.

The input image data x0 (Fig.3 (a)) have six channels,

each of which is in the size of 108 × 36. The first three

channels are obtained by resizing the bounding box cen-

tered on the pedestrian with three different scales and then

extract the Y-channels of these three images in the YUV

color spaces. The last three channels are the edge maps of

the first three channels by using Sober edge detector. This

is to encourage the SDN to learn features with multi-scales

and boundary cues.

As shown in Fig.3 (a), the convolutional layer outputs 64

channels by learning 64 filters, each with a size of 9×9×6.

This layer can be formulated as below

x1
j = tanhabs(

I
∑

i=1

W1
i ∗ x

0
i + b1j ), (11)

http://mmlab.ie.cuhk.edu.hk/publications.html


Figure 3. Architecture of the SDN. It stacks three types of layers, including a convolutional layer (a) at the bottom to extract low- and mid-level features, four

switchable layers (b) in the middle for high-level mixture representations (i.e., body, head-shoulder, upper-body, and lower-body), and a logistic regression

layer (c) on the top for label prediction. The spatial max pooling in (b) is illustrated in (d). It divides the whole body into three sub-regions and pass their

feature maps to next layers.

where tanhabs(·) = |tanh(·)| is the absolute values of the

hyperbolic tangent function, ∗ indicates convolution, and

i = 1...6 and j = 1...64 are the indices of the input and

output channels, respectively. W1 and b1 are the filter

matrixes and bias vector. The output x1 are then sub-

sampled by a max pooling layer to obtain more compact

representation.

As shown in Fig.3 (b), we stack four switchable layers

as a hierarchy to model the decomposition of pedestrians,

including a root layer for body, three sub-layers for head-

shoulder, upper-body, and lower-body, respectively. Each

switchable layer is a mixture of K components (K = 10 in

our experiment), each of which connects to the input using

a fully-connect weight matrix that is to capture the global

pose or view of pedestrians. The l-th layer can be computed

as

xl =

10
∑

k=1

slk tanh
abs(Wl

k(x
l−1 ◦ml

k) + bl
k)), (12)

where k is the index of components and ◦ denotes the

element-wise product. mk denotes the saliency map. sk
denotes the switch variable, which serves as a gate and

outputs the features of the most informative component.

One possible output of the SDN is illustrated by the red

arrows of Fig.3 (b). Both s and m are the hidden variables,

the values of which vary for different samples and have to

be inferred during training and testing. Furthermore, the

spatially max pooling layer partitions the learned features

of the entire body into three parts, as shown in Fig.3 (d).

Such partition works fine for pedestrian detection and the

number of partitions can be changed to deal with the other

object categories.

As shown in Fig.3 (c), the logistic regression layer

predicts the label by concatenating the output of all the

switchable layers as input,

y = τ(WLxL−1 + bL), (13)

where WL is a fully-connect weight matrix.

3.1. Pretraining and Finetuning

The training stage of SDN needs to update a set of filters

and infer the hidden variables; that is, switches and saliency

maps. This is challenging because there are a large number

of such variables. For instance, if we divide the body into

three parts and have five components for each part, there

are millions of parameters and over 2, 000 hidden variables.

Therefore, we have adopted the same scheme as many other

deep learning methods have done, which is to pre-train the

network in a layerwise manner and then fine-tune all the

parameters.

We use Gabor filters to initialize the filters of the

convolutional layer, because Gabor filters can capture the

boundary shapes of pedestrians. For the four switchable

layers in Fig.3 (b), we pre-train them following Alg.1.

As the existing methods [15, 12, 13, 4] have proved,

fine-tuning deep networks can improve classification per-

formance. Similarly, we fine-tune all the parameters of the

SDN by minimizing the error entropy

Err(x0; Θ) = y logy + (1− y) log(1− y), (14)

in which y is the predicted label. The parameters are

updated using stochastic gradient descent. For instance,

we update the weights by Wt+1 ← Wt − η ∂Err
∂Wt

. For

the convolutional layers and the logistic regression layer

as shown in Fig.3 (a) (c), ∂Err
∂W

are calculated in the same

way as the traditional CNN [14]. For the switchable layer,

the gradient of the weight matrix for the k-th component is

computed as

∂Err

∂Wk

= sk(x
l−1 ◦mk)e

lT , (15)

which is the outer product of the back-propagation error el

and the input of the k-th component. Then, the error el is

obtained by a recurrence relation as

[el]i =

{

[βl(1− tanh2(δl))]i, [tanh(δl)]i > 0

[βl(tanh2(δl)− 1)]i, otherwise
,

(16)



where [·]i denotes the i-th element of a vector and diag(·)
is the diagonal matrix. Furthermore, δl = Wl

k(x
l−1 ◦

ml
k)+bl is the output of the l-th layer without the absolute

hyperbolic tangent function, and βl = diag(Wl+1T el+1).
The back-propagation error is computed in this piecewise

manner because of the absolute function.

3.2. Inference

In the testing stage, unlike the existing deep learning

methods that deal with different samples with the same

network architecture, the SDN selects the most appropriate

structure for each sample. This is achieved by inferring

the hidden variables s,m. First, the switch variables s can

be estimated based on Eq.(10). Second, we can infer the

saliency maps m as discussed in Eq.(8) given x, h, and s.

4. Experiments

We conduct experiments on the Caltech dataset [9] and

the ETH dataset [10]. The former consists of approximately

10 hours video in an urban environment. A total of 350, 000
bounding boxes and 2, 300 pedestrians were annotated.

The latter has three testing sequences with a total of 1804
frames. To reduce the computational time, we adopt a

simple detector trained with HOG+CSS+SVM to prune

the candidate windows at both the training and the testing

stages. We keep approximately 60, 000 windows that are

not pruned by the detector for training. At the testing

stage, SDN takes less than 0.1 second per image after

the HOG+CSS+SVM detector has pruned most candidate

windows. For both datasets, we strictly follow the criteria

proposed in [9] to evaluate the performance, where the

log-average miss rate is computed by averaging the miss

rates at nine False-Positive-Per-Image (FPPI) rates, which

are evenly spaced in log-space in the range from 10−2

to 100. Moreover, we test on the reasonable subsets of

both datasets. These subsets are widely used and consider

pedestrians with heights larger than 49 pixels according to

the ground truth.

We compare with the best-performing methods as sug-

gested by the Caltech and ETH benchmarks2, which report

the top results of these two datasets, including VJ [34],

HOG [5], DBN-Isol [24], ACF [6], ACF-Caltech [6],

MultiFtr+CSS [35], MultiResC [28], Roerei [1], MOCO

[3], MT-DPM [38], ChnFtrs [8], HogLbp [36], Pls [29],

CrossTalk [7], LatSVM-V2 [11], MLS [22], ConvNet [30],

and UDN [25]. All of these approaches detect pedestrians

on static images, like our method, rather than using video

motion as additional information. We have also excluded

the results of using contextual information. For example,

Ouyang and Wang [26] used a two-pedestrian detetor to

improve single-pedestrian detection and showed that their

2 http://www.vision.caltech.edu/Image_Datasets/

CaltechPedestrians/

Figure 4. Overall performance of Caltech-Test dataset.

two-pedestrian detector can be used to improve any single-

pedestrian detectors. In [27] two neighboring pedestrians

were jointly detected. Yan et al. [38] used a vehicle

detector to improve pedestrian detection. These context-

based approaches are complementary to ours. The above

works use various features, classifiers, deep networks, and

context information. We summarize them below.

Features: Haar (VJ), HOG (HOG, LatSVM-V2, MT-

DPM), LBP (HogLbp), CSS (MultiFtr+CSS); Classifiers:

latent-SVM (LatSVM-V2, MOCO, MT-DPM), boosting

(VJ, ChnFtrs, CrossTalk); Deep Learning: DBN-Isol,

ConvNet, UDN.

4.1. Performance on the CaltechTest Dataset

Overall Performance. For evaluation purposes we pre-

train and fine-tune the SDN using the Caltech-Train dataset,

which is also adopted as training data by the recent best-

performing methods, such as [38, 6]. We compare the

result with the existing approaches in Fig.4, where SDN

achieves the smallest miss rate of 37.87 percent among

all the detectors without using context information. SDN

outperforms the other two detectors (DBN-Isol and Con-

vNet) with deep learning by at least 15 percent. DBN-

Isol did not learn features and used DBN to infer the

visibility status of body parts. ConvNet learned features

in an unsupervised way. Our SDN learns low- and mid-

level features and high-level mixture representations jointly

in a supervised way. SDN also outperforms the methods

based on deformable part models such as LatSVM-V2 and

MT-DPM, which extracted the HOG features of multiple

resolutions, while our method directly learns features from

raw pixels in multiple resolutions. It takes three hours to

train a SDN (including both pre-training and fine-tuning)

on a single NVIDIA GTX 760 GPU.

Effectiveness of Architecture. The switchable layers

in the SDN utilize the output of the convolutional layer

as input. In fact, they can employ any other hand-

crafted features as input. We test different features

http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/


Figure 5. The performance of SDN combined with different hand-

crafted features are compared to the existing approaches on the

Caltech-Test dataset.

combined with the switchable layers, including HOG,

HOG+CSS, and HOG+LBP, and compare our approaches

with the existing methods, which are HOG+latent-SVM,

HOG+LBP+linear-SVM, and HOG+CSS+linear-SVM. All

the above methods employ the same experimental set-

ting. The results are given in Fig.5. For instance,

HOG+SDN improves HOG+latent SVM by 11 percent and

the HOG+CSS+SDN reduces the miss rate by 3 percent

compared to HOG+CSS+linear SVM. In the above settings,

we observe that HOG+LBP+SDN achieves the best result

that is 48 percent. Since multiple features can improve per-

formance, the difference of miss rates between combining

HOG+CSS is smaller than only utilizing HOG features.

Effectiveness of Feature Learning. We evaluate the use

of multiple scales of the images as input for feature learning.

There are three different combinations: (1) size of the

bounding box of the pedestrian multiply by 1.1 (one scale),

(2) size of the bounding box multiply by 1.0 and 1.25 (two

scales), and (3) size of the bounding box multiply by 1.0,

1.25, and 1.45 (three scales). We separately examine the

influence of the Y-channels and the edge maps as introduced

in Sec.3. Fig.6 shows the results, which are obtained by

directly employing the output of the convolutional layer as

features and using logistic regression for classification. We

demonstrate that Y-channels are more informative than the

edge maps and the use of multiple scales tends to improve

the performances of both of them. The best miss rate (43.98
percent) is obtained by using Y-channels in three scales.

However, the multi-scales combination of the Y-channels

and the edge maps achieves the miss rate of 40.12 percent.

4.2. Performance on the ETH Dataset

We follow the existing approaches [24, 11, 1] that

evaluate their methods on the ETH dataset with a common

setting, which is to use the INRIA-Train dataset as training

data. This is done in order to evaluate the generalization

Figure 6. Performance of multiple scales feature learning on the

Caltech-Test dataset.

capacity of the SDN. Fig.7 plots the results on the ETH

dataset. SDN again achieves the lowest average miss rate.

It outperforms the deep learning based methods DBN-Isol

and ConvNet by 6.38 percent and 9.64 percent, respectively.

5. Conclusions

In this paper, we have proposed a switchable deep net-

work to model background clutter and complex appearance

variations in pedestrian detection. This SDN improves

the conventional convolutional neural network by adding

multiple switchable layers, which are built with a new

switchable restricted Boltzman machine. This new deep

model jointly learns hierarchical features, salience maps,

and mixture representations of body parts. It achieves state-

of-the-art performance on the public benchmark datasets.
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