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Abstract. Videos contain highly redundant information between frames.
Such redundancy has been studied extensively in video compression and
encoding, but is less explored for more advanced video processing. In
this paper, we propose a learnable unified framework for propagating a
variety of visual properties of video images, including but not limited to
color, high dynamic range (HDR), and segmentation mask, where the
properties are available for only a few key-frames. Our approach is based
on a temporal propagation network (TPN), which models the transition-
related affinity between a pair of frames in a purely data-driven manner.
We theoretically prove two essential properties of TPN: (a) by regular-
izing the global transformation matrix as orthogonal, the “style energy”
of the property can be well preserved during propagation; and (b) such
regularization can be achieved by the proposed switchable TPN with
bi-directional training on pairs of frames. We apply the switchable TPN
to three tasks: colorizing a gray-scale video based on a few colored key-
frames, generating an HDR video from a low dynamic range (LDR) video
and a few HDR frames, and propagating a segmentation mask from the
first frame in videos. Experimental results show that our approach is sig-
nificantly more accurate and efficient than the state-of-the-art methods.

1 Introduction

Videos contain highly redundant information between frames. Consider a pair
of consecutive frames randomly sampled from a video, it is likely that they are
similar in terms of appearance, structure and content in most regions. Such re-
dundancy has been extensively studied in video compression to reduce storage
and speedup the transmission of videos, but is less explored for more advanced
video processing. A number of recent algorithms, such as optical-flow based warp-
ing [1], similarity-guided filtering [2, 3] and the bilateral CNN model [4], explore
the local relationships between frames to propagate information. These methods
model the similarity among pixels, regions or frames from either hand-crafted
pixel-level features (e.g., pixel intensities and locations) or apparent motion (e.g.,
optical flow). They have several potential issues: (a) the designed similarity may
not faithfully reflect the image structure, and (b) such similarity may not ex-
press the high-level pairwise relationships between frames, e.g., for propagating
a segmentation mask in the semantic domain.
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Fig. 1. We propose the TPN model that takes a known property (e.g., color, HDR,
segmentation mask) from a key-frame (k), and transform it to a nearby frame (k+ τ),
denoted by “propagated”. The transformation is guided by a learnable matrix G, which
is learned from some known information (e.g., lightness, LDR, RGB image). We show
three tasks on the right size, where k denotes the key-frame for which the ground-
truth property is provided. The orange bounding boxes shows the propagated results
of our algorithm, when guided by the information in the left columns. We highlight
(red bounding boxes) the regions where the proposed method successfully deals with
large transitions or preserves fine details. Zoom-in to see details.

In this paper, we develop a temporal propagation network (TPN) to explicitly
learn pixel-level similarity between a pair of frames (see Fig. 1). It contains a
propagation module that transfers a property (e.g., color) of one frame to a
nearby frame through a global, linear transformation matrix which is learned
with a CNN from any available guidance information (e.g., lightness).

We enforce two principles when learning propagation in the temporal domain:
(a) bi-directionality, i.e., the propagation between a pair of frames should be
invertible, and (b) consistency, i.e., the “style energy” (e.g., the global satu-
ration of color) of the target property should be preserved during propagation.
We theoretically prove that: enforcing both principles in the TPN is equivalent
to ensuring that the transformation matrix is orthogonal with respect to each
propagation direction. This theoretical result allows us to implement TPN as a
novel, special network architecture — the switchable TPN (see Fig. 2) — without
explicitly solving for the transformation matrix. It uses bi-directional training
for a pair of frames in the propagation module, which is guided by switched
output maps from the guidance CNN network. Experiments demonstrate that
the proposed architecture is effective in preserving the style energy even between
two widely separated frames.

We validate the proposed model for three propagation tasks: (a) video col-
orization from a few color key-frames and a grayscale video (Section 5.2). With
such temporal propagation, the workload of black-and-white video colorization
can be largely reduced to only annotating a small number of key-frames. (b)
HDR video reconstruction from an LDR video with a few HDR key-frames (Sec-
tion 5.3). This is a new way for HDR video capture, where the whole video can
be reconstructed with a few provided HDR frames. (c) video segmentation when
only the segmentation mask of the target in the first frame is provided. We show



Switchable Temporal Propagation Network 3

that even without any image-based segmentation model, the proposed method
can achieve comparable performance to the state-of-the-art algorithm. All of
these tasks reveal that video properties between temporally close frames are
highly redundant, and that the relationships between them can be learned from
corresponding guidance information. Compared to the existing methods, and
aside from the novel architecture, our proposed method also has the following
advantages: (a). High accuracy. Compared to prior work [4, 5], the TPN signif-
icantly improves video quality. More importantly, the switchable TPN preserves
the style energy significantly better than the network without the switchable
structure. (b). High efficiency. Our method runs in real-time on a single Ti-
tan XP GPU for all the three tasks, which is about 30x to 50x faster than the
prior work [4, 5] (see Table 1). Moreover, our model does not require sequential
processing of video frames, i.e., all video frames can be processed in parallel,
which can further improve its efficiency.

2 Related Work and Problem Context

Modeling affinity for pixel propagation. Affinity is a generic measure of
closeness between two pixels/entities and is widely used in vision tasks at all lev-
els. Well-modeled affinity reveals how to propagate information from the known
pixels to the unknown ones. Most prior methods design affinity measures based
on simple, intuitive functions [2, 6, 3]. Recently, a deep CNN model is proposed
to learn task-dependent affinity metric [7] by modeling the propagation of pixels
as an image diffusion process.

While [7] is limited to the spatial propagation of pixels for image segmenta-
tion, its high-level idea inspires us to learn pixel affinity in other domains via
CNNs, e.g., in video sequences as proposed in this work.

Considerably less attention has been paid to develop methods for propa-
gating temporal information across video frames. Jampani et al. [4] propose to
propagate video segmentation and color information by embedding pixels into
a bilateral space [8] defined based on spatial, temporal and color information.
While pixels of the same region from different frames can be closer in this space,
it requires several previous frames stacked together to generate a new frame,
which results in a high computational cost. Our proposed algorithm is differ-
ent in that it explicitly learns the pixel affinity that describes the task-specific
temporal frame transitions, instead of manually defining a similarity measure.

Colorizing grayscale videos Colorization in images and videos is achieved
via an interactive procedure in [3], which propagates manually annotated strokes
spatially within or across frames, based on a matting Laplacian matrix and with
manually defined similarities. Recently, several methods based on CNNs have
been developed to colorize pixels in images with fully-automatic or sparsely
annotated colors [9, 10]. Due to the multinomial nature of color pixels [10], the
interactive procedure usually gives better results. While interactive methods can
be employed for single images, it is not practical to annotate them for all frames
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of a monochrome video. In this work, we suggest a more plausible approach
by using a few color key-frames to propagate visual information to all frames in
between. To this end, colorizing a full video can be easily achieved by annotating
at sparse locations in only a few key-frames, as described in Section 5.2.

Video propagation for HDR imaging Most consumer-grade digital cameras
have limited dynamic range and often capture images with under/over-exposed
regions, which not only degrades the quality of the captured photographs and
videos, but also impairs the performance of computer vision tasks in numerous
applications. A common way to achieve HDR imaging is to capture a stack of
LDR images with different exposures and to fuse them together [11, 12]. Such an
approach assumes static scenes and thus requires deghosting techniques [13–15]
to remove artifacts. Capturing HDR videos for dynamic scenes poses a more
challenging problem. Prior methods to create HDR videos are mainly based on
hardware that either alternate exposures between frames [16, 17], or use multiple
cameras [18], or specialized image sensors with pixel-wise exposure controls [19,
20]. A few recent methods based on deep models have been developed for HDR
imaging. Kalantari et al. [21] use a deep neural network to align multiple LDR
images into a single HDR image for dynamic scenes. Zhang et al. [22] develop an
auto-encoder network to predict a single HDR panorama from a single exposed
LDR image for image-based rendering. In addition, Eilertsen et al. [5] propose a
similar network for HDR reconstruction from a single LDR input image, which
primarily focuses on recovering details in the high intensity saturated regions.

In this paper, we apply the TPN for HDR video reconstruction from a LDR
video. Given a few HDR key-frames and an LDR video, the TPN propagates the
scene radiance information from the key-frames to the remaining frames. Note
that unlike all the existing single LDR-based methods [22, 5], which hallucinate
the missing HDR details in images, we focus on propagating the HDR informa-
tion from the input few HDR images to neighboring LDR frames, which provides
an alternative solution for efficient, low cost HDR video reconstruction.

3 Proposed Algorithm

We exploit the redundancy in videos, and propose the TPN for learning affinity
and propagating target properties between frames. Take the video colorization as
an example. Given an old black-and-white movie with a few key-frames colorized
by artists, can we automatically colorize the entire movie? This problem can be
equivalently reformulated as propagating a target property (i.e., color) based on
the affinity of some features (e.g., lightness) between two frames. Intuitively, this
is feasible because (1) videos have redundancy over time — nearby frames tend
to have similar appearance, and (2) the pixel correlation between two frames in
the lightness domain is often consistent with that in the color domain.

In this work, we model the propagation of a target property (e.g., color)
between two frames as a linear transformation,

Ut = GUk, (1)
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Fig. 2. The architectures of a switchable TPN, which contains two propagation mod-
ules for bi-directional training. We specifically use a red-dashed box to denote the
switchable structure In the reversed pair, the output channels {P} are switched (red)
for horizontal and vertical propagation.

where Uk ∈ R
n2×1 and Ut ∈ R

n2×1 are the vectorized version of the n × n

property maps of a key-frame and a nearby frame, and G ∈ Rn2×n2

is the
transformation matrix to be estimated4. Suppose we observe some features of
the two frames (e.g., lightness) Vk and Vt, the transformation matrix G is thus
a function of Vk and Vt,

G = g(θ, Vk, Vt). (2)

The matrix G should be dense in order to model any type of pixel transition in
a global scope, but G should also be concise for efficient estimation and propa-
gation. In Section 3.1, we propose a solution, called basic TPN, by formulating
the linear transformation G as an image diffusion process similar to [7]. Follow-
ing that, in Section 3.2, we introduce the key part of our work, the switchable
TPN, which enforces the bi-directionality and the style consistency for temporal
propagation. We prove that enforcing these two principles is equivalent to en-
suring the transformation matrix G is orthogonal, which in turn can be easily
implemented by equipping an ordinary temporal propagation network with a
switchable structure.

3.1 Learning Pixel Transitions via the Basic TPN

Directly learning the transformation matrix G via a CNN is prohibitive, since G
has a huge dimension (e.g., n2×n2). Instead, inspired by the recent work [7], we
formulate the transformation as a diffusion process, and implement it efficiently
by propagating information along each row and each column in an image linearly.
Suppose we keep only k = 3 nearest neighbors from a previous column (row)
during the propagation, and we perform the propagation in d = 4 directions, the
total number of parameters to be estimated is significantly reduced from n2×n2

to n2 × k × d (see example of Fig. 2).

4 For property maps with multiple channels n×n×c, we treat each channel separately.
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Linear transformation as a diffusion process. The diffusion process from
frame k to frame t can be expressed with a partial differential equation (PDE)
in the discrete form as:

▽U = Ut − Uk = −LUk = (A−D)Uk, (3)

where L = D−A is the Laplacian matrix, D is the diagonal degree matrix and A

is the affinity matrix. In our case, this represents the propagation of the property
map U over time. (3) can be re-written as Ut = (I −D +A)Uk = GUk, where
G is the transformation matrix between the two states, as defined in (1), and I

is an identity matrix.

Linear propagation network. With a propagation structure, the diffusion
between frames can be implemented as a linear propagation along the rows or
columns of an image. Here we briefly show their equivalence. Following [7], we
take the left-to-right spatial propagation operation as an example:

yi = (I − di)xi + wiyi−1, i ∈ [2, n], (4)

where x ∈ Uk and y ∈ Ut, and the n×1 vectors {xi, yi} represent the i
th columns

before and after propagation with an initial condition of y1 = x1, and wi is the
spatially varying n × n sub-matrix. Here, I is the identity matrix and di is a
diagonal matrix, whose tth element is the sum of all the elements of the tth row
of wi as di(t, t) =

∑n

j=1,j 6=t wi(j, t). Similar to [7], through (a) expanding its
recursive term, and (b) concatenating all the rows/columns as a vectorized map,
it is easy to prove that (4) is equivalent to the global transformation G between
Uk and Ut, where each entry is the multiplication of several spatially variant wi

matrices [7]. Essentially, instead of predicting all the entries in G as independent
variables, the propagation structure transfers the problem into learning each
sub-matrix wi in (4), which significantly reduces the output dimensions.

Learning the sub-matrix {wi}. We adopt an independent deep CNN, namely
the guidance network, to output all the sub-matrices wi. Note that the propaga-
tion in (1) is carried out for d = 4 directions independently, as shown in Fig. 2.
For each direction, it takes a pair of images {Vk, Vt} as its input, and outputs a
feature map P that has the same spatial size as U (see Fig. 2). Each pixel in the
feature map pi,j contains all the values of the jth row in wi, which describes a
local relation between the adjacent columns, but results in a global connection
in G though the propagation structure. Similar to [7], we keep only k = 3 near-
est neighbors from the previous column, which results in wi being a tridiagonal
matrix. Thus, a total of n × n × (k × d) parameters are used to implement the
transformation matrix G. Such a structure significantly compresses the guidance
network while still ensuring that the corresponding G is a dense matrix that can
describe global and dense pairwise relationships between a pair of frames.

3.2 Preserving Consistency via Switchable TPN

In this part, we show that there are two unique characteristics of propagation
in the temporal domain, which do not exist for propagation in the spatial do-
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main [7]. First, temporal propagation is bi-directional for two frames, i.e., a
network capable of transforming a frame U1 into a frame U2, should also be
able to transform from U2 to U1, with a corresponding reversed ordering of in-
puts to the guidance network. Second, during propagation, the overall “style” of
the propagated property across the image should stay constant between frames,
e.g., during color propagation, the color saturation of all frames within a short
video clip should be similar. We call this feature “consistency property”. As
shown below, we prove that enforcing the bi-directionality and the consistency
is equivalent to ensure the transformation matrix G to be orthogonal, which in
turn can be easily implemented by equipping an ordinary temporal propagation
network with a switchable structure.

Bi-directionality of TPN. We assume that properties in nearby video frames
do not have a causal relationship. This assumption holds for most properties that
naturally exist in the real-world, e.g., color and HDR. Hence, temporal propa-
gation of these properties can often be switched in direction without breaking
the process. Given a diffusion model G and a pair of frames {U1, U2}, we have a
pair of equations:

U2 = G1→2U1, U1 = G2→1U2, (5)

where the arrow denotes the propagation direction. The bi-directionality prop-
erty implies that reversing the roles of the two frames as inputs by {V1, V2} →
{V2, V1}, and the corresponding supervision signals to the network corresponds
to applying an inverse transformation matrix G2→1 = G−1

1→2
.

Style preservation in sequences. Style consistency refers to whether the
generated frames can maintain similar chromatic properties or brightness when
propagating color or HDR information, which is important for producing high-
quality videos without the property vanishing over time. In this work, we en-
sure such global temporal consistency by minimizing the difference in style loss
of the propagated property for the two frames. Style loss has been intensively
used in style transfer [23], but has not yet been used for regularizing temporal
propagation. In our work, we represent the style by the Gram matrix, which is
proportional to the un-centered covariance of the property map. The style loss
is the squared Frobenius norm of the difference between the Gram matrices of
the key-frame and the succeeding frame:

Theorem 1. By regularizing the style loss we have the following optimization

w.r.t. the guidance network:

min 1

N
‖ U⊤

1
U1 − U⊤

2
U2 ‖

2

F (6)

s.t. U2 = GU1. (7)

The optimal solution is reached when G is orthogonal.

Proof. Since the function (6) is non-negative, the minimum is reached when
U⊤
1
U1 = U⊤

2
U2. Combining it with (7) we have G⊤G = I.
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Given that G is orthogonal, the G2→1 in (5) can be replaced by G⊤
1→2

, which
equals to G−1

1→2
. Therefore, the bi-directionality propagation can be represented

via a pair of transformation matrices that are transposed w.r.t each other. In
the following part, we show how to enforce this property for the transformation
matrix G in the linear propagation network via a special network architecture.
Note that in our implementation, even though we use the channel-wise propaga-
tion described in Section. 3.1, where the U⊤U actually reduces to an uncentered
variance, the conclusions of Theorem 1 still hold.

A switchable propagation network. The linear transformation matrix G

has an important property: since the propagation is directed, the transforma-
tion matrix G is a triangular matrix. Consider the two directions along the
horizontal axis (i.e., →,←) in Fig. 2. G is an upper triangular matrix for a par-
ticular direction (e.g., →), while it is lower triangular for the opposite one (e.g.,
←). Suppose P→ and P← are the output maps of the guidance network w.r.t.
these two opposite directions. This means that the transformation matrix, which
is lower-triangular for propagation in the left-to-right direction, becomes upper-
triangular for the opposite direction of propagation. Since the upper-triangular
matrix: (a) corresponds to propagating in the right-to-left direction, and (b)
contains the same set of weight sub-matrices, switching the CNN output chan-

nels w.r.t. the opposite directions P→ and P← is equivalent to transposing the

transformation matrix G in the TPN. This fact is exploited as a regularization
structure (see the red bbox in Fig. 2) during training.

To summarize, the switchable structure of the TPN is derived from the two
principles (i.e., the bi-directionality and the style consistency) for temporal prop-
agation and the fact that the matrix G is triangular due to the specific form
of propagation. Note that [7] did not address the triangulation of the matrix
and thus were limited to propagation in the spatial domain only. We show the
switchable TPN (STPN) largely improve performance over the basic TPN, with
no computational overhead at inference time.

4 Network Implementation

We provide the network implementation details shared by color, HDR and seg-
mentation mask propagation, which are proposed in this work. These settings
can be potentially generalized to other properties of videos as well.

The basic TPN. The basic TPN contains two separate branches: (a) a deep
CNN for the guidance network, which takes as input the provided information
{V1, V2} from a pair of frames, and outputs all elements (P ) that constitute the
state transformation matrix G, and (b) a linear propagation module that takes
the property map of one frame U1 and outputs U2. It also takes as input {P} the
propagation coefficients following the formulation of (4), where {P} contains kd
channels (k = 3 connections for each pixel per direction, and d = 4 directions
in total). {V, U, P} have the same spatial size according to (4). We use node-
wise max-pooling [24, 7] to integrate the hidden layers and to obtain the final
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Fig. 3. We show two groups of color transitions output through a basic TPN. For each
group, the left side is key-frames with the ground truth color images provided, and the
right side is new frames propagated from the left. {ak, bk} and {ak+τ , bk+τ} are the
inputs and outputs of the TPN. All four examples show obvious appearance transitions
caused by movement of objects. Zoom-in to see details.

Table 1. Run-times of different methods. We set K = 30 for VPN color propagation [4]
to calculate its run-time. The last four columns are our methods.

Method VPN [4] (color) VPN [4] (seg) HDRCNN[5] color HDR SEG(t) SEG(t+s)

(ms) 730 750 365 15 25 17 84

propagation result. All submodules are differentiable and jointly trained using
stochastic gradient descent (SGD), with the base learning rate of 10−5.

The switchable TPN. Fig. 2 shows how the switchable structure of the TPN
is exploited as an additional regularization loss term during training. For each
pair (U1, U2) of the training data, the first term in (8) shows the regular su-
pervised loss between the network estimation Û2 and the groundtruth U2. In
addition, as shown in Fig. 2(b), since we want to enforce the bi-directionality
and the style consistency in the switchable TPN, the same network should be
able to propagate from U2 back to U1 by simply switching the channels of the
output of the guidance networks, i.e., switching the channels of {P →, P ←}
and {P ↓, P ↑} for propagating information in the opposite direction. This will
form the second loss term in (8), which serves as a regularization (weighted by
λ) during the training. We set λ = 0.1 for all the experiments in this paper.

L(U1, Û1, U2, Û2) =
∥

∥

∥
U2(i)− Û2(i)

∥

∥

∥

2

+ λ
∥

∥

∥
U1(i)− Û1(i)

∥

∥

∥

2

. (8)

At inference time, the switchable TPN reduces to the basic TPN introduced in
Section 3.1 and therefore does not have any extra computational expense.

5 Experimental Results

In this section, we present our experimental results for propagating color chan-
nels, HDR images, and segmentation mask across videos. We note that propa-
gating information across relatively longer temporal intervals may not satisfy the
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Fig. 4. An example of color propagation from a key-frame (a) to a new frame with
considerably large appearance transitions, using either (b) the basic TPN or (c) the
switchable TPN. The closeups show the detailed comparison. Zoom-in to see details.

assumptions of a diffusion model, especially when new objects or scenes appear.
Hence, for color and HDR propagation, instead of considering such complex sce-
narios, we set “key-frames” at regular fixed intervals for both tasks. That is,
the ground truth color or HDR information is provided for every K frames and
propagated to all frames in between them. This is a practical strategy for real-
world applications. Note that for video segmentation mask propagation, we still
follow the protocol of the DAVIS dataset [25] and only use the mask from the
first frame.

5.1 General Network Settings and Run-times

We use a guidance network and a propagation module similar to [7], with two
cascaded propagation units. For computational and memory efficiency, the prop-
agation is implemented with a smaller resolution, where U is downsampled from
the original input space to a hidden layer before being fed into the propagation
module. The hidden layer is then bi-linearly upsampled to the original size of the
image. We adopt a symmetric U-net shaped, light-weight deep CNN with skip
links for all tasks, but with slightly different numbers of layers to accomondate
the different input resolutions (see Fig. 2 as an example for color propagation).
We first pre-train the model on synthesized frame pairs generated from an im-
age dataset. (e.g., the MS-COCO dataset [26] for color and segmentation prop-
agation, and a self-collected one for HDR propagation, see the supplementary
material). Given an image, we augment it in two different ways via a similarity
transform with uniformly sampled parameters from s ∈ [0.9, 1.1], θ ∈ [−15◦, 15◦]
and dx ∈ [−0.1, 0.1] × b, where b = min(H,W ). We also apply this data aug-
mentation while training with patches from video sequences. We present the
run-times for different methods on an 512× 512 image using a single TITAN X
(Pascal) NVIDIA GPU (without cuDNN) in Table 1.
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5.2 Color Propagation in Videos

We use the ACT dataset [27], which contains 7260 training sequences with about
600K frames in total of various categories of actions. All the sequences are short
with small camera or scene transitions, and thus are more suitable for the pro-
posed task. We re-train and evaluate the VPN network on the ACT dataset for
a fair comparison. The original testing set contains 3974 sequences with more
than 300K frames. For faster processing, we randomly select five videos from
every action category in order to maintain the prior distribution of the original
ACT dataset. We use one for testing and the remaining four for training.

We perform all computations in the CIE-Lab color space. After pretraining
on the MS-COCO dataset, we fine-tune the models on the ACT dataset by
randomly selecting two frames from a sequence and cropping both frames at the
same spatial location as a single training sample. Specifically, our TPN takes as
input the concatenated ab channels that are randomly cropped to 256×256 from
a key-frame. The patches are then transformed to 64×64×32 via 2 convoluitional
layers with stride = 2 before being input to the propagation module. After
propagation, the output maps are upsampled as a transformed ab image map
for the frames following the key-frame. The guidance CNN takes as input a pair
of lightness images (L) for the two frames. We optimize the Euclidean loss (in
the ab color space) between the ground truth and the propagated color channels
generated by our network. Note that for the switchable TPN, we have two losses
with different weights according to (8). During testing, we combine the estimated
ab channels with the given L channel to generate a color RGB image. All our
evaluation metrics are computed in the RGB color space.

Table 2. RMSE and PSNR (in parentheses) for video color propagation on the ACT
dataset for different key-frame interval K. We compared VPN with K = 30.

eval RMSE PSNR

Interval K = 10 K = 20 K = 30 K = 40 K = 10 K = 20 K = 30 K = 40

BTPNim+BTPNvd 4.43 5.46 6.04 6.44 36.65 35.22 34.46 33.96

BTPNim+STPNvd 4.00 5.00 5.58 6.01 37.63 36.09 35.26 34.70

STPNim+STPNvd 3.98 4.97 5.55 5.99 37.64 36.12 35.29 34.73

VPN (stage-1) [4] - - 6.86 - - - 32.86 -

We compare the models with three combinations. We refer to the basic and
switchable TPN networks as BTPN and STPN, the suffix “im” and “vd” denote
pretraining on MS-COCO and finetuning on ACT, respectively. The methods
that we compare include: (a) BTPNim+BTPNvd, (b) BTPNim+STPNvd, and
(c) STPNim+STPNvd; and evaluate different key-frames intervals, including
K = {10, 20, 30, 40}. The quantitative results for root mean square error (RMSE)
and peak signal-to-noise ratio (PSNR) are presented in Table 2. Two trends can
be inferred from the results. First, the switchable TPN consistently outperforms
the basic TPN and the VPN [4], and using the switchable TPN structure for
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Fig. 5. Results using propagation of color from a key-frame to two proceeding frames
(the 18th and the 25th) at different time intervals with the basic/switchable TPN, and
the VPN [4] models. Zoom-in to see details.

both the pre-training and fine-tuning stages generates the best results. Second,
while the errors decrease drastically on reducing time intervals between adjacent
key-frames, the colorized video maintains overall high-quality even when K is set
close to a common frame rate (e.g., 25 to 30 fps). We also show in Fig. 4 (b) and
(c) that the switchable structure significantly improves the qualitative results
by preserving the saturation of color, especially when there are large transitions
between the generated images and their corresponding key-frames. The TPN
also maintains good colorization for fairly long video sequences, which is evident
from a comparison of the colorized video frames with the ground truth in Fig. 5.
Over longer time intervals, the quality of the switchable TPN degrades much
more gracefully than that of the basic TPN and the VPN [4].

5.3 HDR Propagation in Videos

We compare our method against the work of [5], which directly reconstructs the
HDR frames given the corresponding LDR frames as inputs. While this is not an
apples-to-apples comparison because we also use an HDR key-frame as input, the
work [5] is the closest related state-of-the-art method to our approach for HDR
reconstruction. To our knowledge, no prior work exists on propagating HDR
information in videos using deep learning and ours is the first work to address
this problem. We use a similar network architecture as color propagation except
that U is transformed to 128 × 128 × 16 via one convolution layer to preserve
more image details, and a two-stage training procedure by first pre-training the
network with randomly augmented pairs of patches created from a dataset of
HDR images, and then fine-tuning on an HDR video dataset. We collect the
majority of the publicly available HDR image and video datasets listed in the
supplementary material, and utilize all the HDR images and every 10-th frame
of the HDR videos for training in the first stage [5]. Except for the four videos
(the same as [5]) that we use for testing, we train our TPN with all the collected
videos. We evaluate our method on the four videos that [5] used for testing and
compare against their method.

To deal with the long-tail, skewed distribution of pixel values in HDR im-
ages, similarly to [5], we use the logarithmic space for HDR training with U =
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Fig. 6. Results of HDR Video Propagation. We show one HDR frame (τ = 19 frames
away from the key frame) reconstructed with our switchable TPN (middle column).
The top row shows the ground truth HDR, and the bottom row shows the output of
HDRCNN [5]. The HDR images are displayed with two popular tone mapping algo-
rithms, Drago03 [30] and Reinhard05 [31]. The insets show that the switchable TPN
can effectively propagate the HDR information to new frames and preserve the dynamic
range of scene details. Zoom-in to see details.

Table 3. RMSE for video HDR propagation for the TPN output, the output with
LDR blending, for different intervals for the key-frames K. Reconstruction from single
LDR [5] is compared under the same experimental settings.

settings HDR with blending HDR without blending

Interval K = 10 K = 20 K = 30 K = 40 K = 10 K = 20 K = 30 K = 40

BTPNim+BTPNvd 0.031 0.034 0.038 0.042 0.119 0.160 0.216 0.244
BTPNim+BTPNvd 0.028 0.031 0.034 0.038 0.096 0.115 0.146 0.156
BTPNim+BTPNvd 0.027 0.030 0.034 0.037 0.098 0.121 0.142 0.159

HDRCNN [5] 0.038 0.480

log(H + ε), where H denotes an HDR image and ε is set to 0.01. Since the im-
age irradiance values recorded in HDR images vary significantly across cameras,
naively merging different datasets together often generates domain differences in
the training samples. To resolve this issue, before merging the datasets acquired
by different cameras, we subtract from each input image the mean value of its
corresponding dataset. We use the same data augmentation as in [5] of varying
exposure values and camera curves [29] during training. During testing, we fol-
low [5] to blend the inverse HDR image created from the input LDR image with
the HDR image predicted by our TPN network to obtain the final output HDR
image. More details are presented in the supplementary material.

We compare the RMSE of the generated HDR frames for different intervals
between the key-frames, with or without the blending of LDR information with
the HDR image generated by the TPN in Table 3. Our results indicate that the
switchable TPN can also significantly improve the results for HDR propagation
compared to the basic TPN. We also compare with the frame-wise reconstruc-
tion method [5], with and without the blending-based post-processing in Fig. 6.
As shown, our TPN recovers HDR images with up to K = 30 frames away from
each key frame. The reconstructed HDR images preserve the same scene details
as the ground truth, under different tone mapping algorithms. More results are
presented in the supplementary material. As noted earlier, since we have addi-
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Table 4. Comparisons for video segmentation on the DAVIS dataset.

J-mean F-mean

VPN [4] OSVOS [32] SEG(t) SEG(t+s) VPN [4] OSVOS [32] SEG(t) SEG(t+s)

70.2 79.8 71.1 76.19 65.5 80.6 75.65 73.53

tional HDR key-frames as input, it is not an apples-to-apples comparison with
single-image based HDR methods like [5]. Nevertheless, the results in Fig. 6 show
the feasibility of using sparsely-sampled HDR key-frames to reconstruct HDR
videos from LDR videos with the proposed TPN approach.

5.4 Segmentation Mask Propagation in Videos

In addition, we conduct video segmentation on the DAVIS dataset [25] with the
same settings as VPN [4], to show that the proposed method can also generalized
to semantic-level propagation in videos. We note that maintaining style consis-
tency does not apply to semantic segmentation. For each frame to be predicted,
we use the segmentation mask of the first frame as the only key-frame, while
using the corresponding RGB images as the input to the guidance network. We
train two versions of the basic TPN network for this task: (a) A basic TPN
with the input/output resolution reduced to 256 × 256, the U transformed to
64× 64× 16, in the same manner as the color propagation model. We used the
same guidance network architecture as [7], while removing the last convolution
unit to fit the dimensions of the propagation module. This model, denoted as
SEG(t) in Table 1, is much more efficient than the majority of the recent video
segmentation methods [4, 25, 32]. (b) A more accurate model with an SPN [7]
refinement applied to the output of the basic TPN, denoted as SEG(t+s). This
model utilizes the same architecture as [7], except that it replaces the loss with
Sigmoid cross entropy for the per-pixel classification task. Similar to color and
HDR propagation, We pretrain (a) on the MS-COCO dataset and then finetune
it on the DAVIS training set. For the SPN model in (b), we first train it on
the VOC image segmentation task as described in [7]. We treat each class in an
image as binary mask in order to transfer the original model to a two-class classi-
fication model, while replacing the corresponding loss module. We then finetune
the SPN on the coarse masks from the DAVIS training set, which are produced
by an intermediate model – the pre-trained version of (a) from the MS-COCO
dataset. More details are introduced in the supplementary materiel.

We compare our method to VPN [4] and one recent state-of-the-art method [32].
Both VPN and our method rely purely on the propagation module from the
first frame and does not utilize any image segmentation pre-trained modules (in
contrast with [32]). Similar to the other two tasks, both models significantly
outperform VPN [4] for video segmentation propagation (see Table 4), while all
running one order of magnitude faster (see Table 1). The SEG(t+s) model per-
forms comparatively to the OSVOS [32] method, which utilizes the pretrained
image segmentation model and requires a much long inference time (7800 ms).
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