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We propose different designs of switchable coupling between a superconducting flux qubit and a
microwave transmission line. They are based on two or more loops of Josephson junctions which are
directly connected to a closed (cavity) or open transmission line. In both cases the circuit induces
a coupling that can be modulated in strength, reaching the so-called ultrastrong coupling regime in
which the coupling is comparable to the qubit and photon frequencies. Furthermore, we suggest a
wide set of applications for the introduced architectures.
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Superconducting quantum circuits [1] possess ingredi-
ents for quantum information processing and for devel-
oping on-chip microwave quantum optics [2]. After the
first manipulations of few-level superconducting systems
(qubits) [3–5], the real boost came with the achievement
of the strong coupling regime between qubits and con-
fined microwave photons [6–8]. The initial qubit-cavity
couplings of 10-100 MHz, exceeded by orders of magni-
tude the rate at which photons leak out the resonator, but
the use of the transmon qubit [9] improved those num-
bers by a factor of 2-3 reaching a strength that is only
comparable to the state-of-the-art in microwave quantum
optics [10, 11]. More recently, proof-of-principle theo-
retical and experimental studies have paved the way to
the ultrastrong coupling regime [12–14], where the cou-
pling approaches the qubit transition frequency and the
Jaynes-Cummings model of cavity QED [10, 14] breaks
down [15, 16] and a door opens to the rather unexplored
physics beyond the rotating-wave approximation [17, 18].

The strong coupling regime in circuit QED has made
possible an incredible variety of experiments, such as
dispersive readouts of qubits [19], resolving the pho-
ton numbers in cavity [20], multiphoton excitations of
the Jaynes-Cummings model [21], preparing nonclassical
states of a resonator [22], full quantum tomography of the
microwave radiation field [23], or the Tavis-Cummings
model [24], etc. However, all those experiments have
something in common: the microwave field is confined
inside a resonator. In other words, the transmission line
spectrum is discrete and the coupling between qubits
and photons could be switched on and off by tuning the
qubit [25] or cavity frequency [26]. While the switcha-
bility of the coupling has been demonstrated for open
lines [27, 28], this has not been achieved in the ultra-
strong coupling regimes.

In this work, we will introduce a novel circuit QED de-
sign where the qubit is ultrastrongly coupled to a trans-
mission line, open or not, with a coupling that can be

FIG. 1: Schemes for ultrastrong coupling between a qubit and
a transmission line. (a) Basic setup of a qubit coupled directly
to the line. ∆ψ is the phase difference between the nodes in
which the qubit and line intersect. (b) With a second loop,
the coupling can be modulated. (c) A slightly improved setup
in which the qubit is better decoupled from the flux f2.

tuned in strength and kind by applying an external flux
bias. Our proposal uses the type of designs shown in
Fig. 1, where the qubit is built in direct contact with the
transmission line. It has been shown theoretically [14],
and demonstrated experimentally [13], that the system
admits an effective description based on a two-level sys-
tem —the current in the loop— ultrastrongly coupled
to the photons in the line. We will boost these ideas
and show that, by means of induced quantum interfer-
ence, one is capable of cancelling the ultrastrong cou-
pling, effectively rotating the qubit basis or activating
higher-order nonlinearities. This fully controllable cou-
pling tunability opens the path for new experimental re-
sults and nontrivial applications. A very important one
is switching on and off the interaction in order to con-
trol the qubit evolution with sub-nanosecond resolution,
allowing to resolve the emission and propagation of sin-
gle photons, measuring their light cone and studying the
propagation of entanglement between qubits coupled to
the same transmission line [29]. Straightforward exten-
sions of this work will also allow the implementation of
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ultrafast quantum switches between cavities and remote
qubits, or the design of qutrits with tunable couplings.

The basic design of the switchable coupling can be
understood using a few rules that focus on the induc-
tive terms of the Hamiltonian. More precisely, we will
concentrate on the dominant contributions to the en-
ergy, which are given by the Josephson junctions as
V (φn) = −EJn cos(φn). Here, EJn denotes the Joseph-
son energy of the n−th junction and φn is the phase dif-
ference between both sides of the junction. These phases
are by the Josephson relation proportional to the flux
across the device, φ = ϕ/ϕ0 with the reduced flux quan-
tum ϕ0 = ~/2e. The next rule is that around close loops
the total flux is quantized in a multiple of h/2e. This
quantization imposes relations between the flux jumps
on different junctions, reducing the complexity of the
problem,

∑
n φn = f + 2π × n but it also introduces

a control parameter which is the externally applied mag-
netic flux inside the loop, fϕ0. Finally, we will include an
additional flux difference, ∆ψ, along the segment that is
shared with the transmission line (see Fig. 1a) and which
is the source of the coupling.

With these rules, one can analyze the setup from
Fig. 1a and impose the usual flux qubit configuration,
with two equal junctions EJ1 = EJ3 = EJ , and a
smaller one EJ2 = αEJ (α < 1), and the quantization
φ1 +φ2 +φ3−∆ψ = f+2π×n. The result is an effective
Hamiltonian that, for f = π, reads

HJ = −EJ cos(φ1)− αEJ cos(φ2)− EJ cos(φ3) (1)
= EJ [α cos(φ+)− 2 cos(φ−/2) cos(φ+/2)]

+αEJ∆ψ sin(φ+) +O(∆ψ2) .

Note how this model combines a flux qubit term [4],
where the most important variable is the linear combi-
nation φ+ = φ3 + φ1, with a coupling between the qubit
degrees of freedom and the transmission line. When we
introduce the capacitive terms the qubit can be diago-
nalized and the model becomes

H ∼ 1
2Ωσz + αEJ∆ψσx . (2)

It is noteworthy to mention that the qubit-line coupling
can remain in the ultrastrong regime [14], because it is
proportional to the Josephson energy, αEJ . However, the
coupling always has the form σx∆ψ and there are no
parameters to tune the interaction.

A more versatile design, shown in Fig. 1b, separates
the three qubit junctions and the transmission line by
a loop. The new Josephson junction adds a contribu-
tion to the energy which is of the form EJ4 cos(φ4) =
α4EJ cos(f2 − φ2 − ∆ψ), while keeping the flux qubit
quantization independent of the transmission line flux,
∆ψ. The result is now

H = EJ [−α cos(f1 − φ+)− 2 cos(φ−/2) cos(φ+/2)] +
+α4EJ cos(f1 + f2 −∆ψ + φ+) , (3)
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FIG. 2: For the Fig. 1b setup, coupling strengths as a
function of the external flux f1 and the qubit junction size
α = EJ2/EJ1, for f2 = π/2. We plot (a) the normalized first
order coupling along the Z direction, c1zσz∆ψ, and (b) across
the XY plane.

with two independently adjustable parameters, f1 and
f1 + f2. A numerical evaluation of the Hamiltonian in
the qubit basis reveals that for f2 = π/2 the effective
coupling

H ∼ 1
2Ωσz + α4EJ∆ψ

∑
r=x,y,z

c1r(α, α4, f1)σr , (4)

is linear in the field and has a tunable orientation,
c1r(α, α4, f1).

Moreover, since the coupling term is strictly indepen-
dent of the qubit Hamiltonian, it now becomes possible
to switch on and off of the interaction. The simplest way
is to replace the fourth junction, EJ4, with a SQUID, so
that a control flux over this loop will allow us to dynami-
cally tune the coupling strength, α4. Using this technique
the mutual influence between the qubit and the transmis-
sion line can be completely suppressed in times of about
0.1 ns, that is much faster than the qubit-resonator dy-
namics [30]. Remark that in the ultrastrong coupling
regime the rotating-wave-approximation cannot be made,
and the physics of Rabi oscillations does not apply.

A different setup which we consider in this work is
shown in Fig. 1c. We now included two equal junctions,
EJ5 = EJ4 = α4EJ , and we add a new loop above the
qubit with a control flux f3. Working at f3 = π− f2− f1
we cancel a contribution cos(f1+f2+φ+) that appears in
Eq. (3) when we move away from f2 = π/2. The effective
Hamiltonian now reads

H =
1
2
Ωσz +α4EJ

∑
n=1,2...

∆ψn
∑

r=x,y,z

cnr (α, α4, f1, f2)σr.

(5)
With the two free parameters {f1, f2} we can (i) switch
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on and off the interaction, (ii) change the orientation and
(iii) increase the relevance of higher order couplings.

We have analyzed these setups numerically, confirming
that the coupling is ultrastrong and can be arbitrarily
tuned. In order to do so, we first completed the theoret-
ical model to include the capacitive terms which appear
in the junctions and the line itself. We then diagonalized
the Hamiltonian of what we identify as the qubit degrees
of freedom, and verifying that they can still be treated
under a two-level approximation. Finally, we expanded
the interaction between the qubit and the transmission
line in powers of the flux ∆ψ, and computed the matrix
elements of the interaction in the qubit basis.

The main results are shown in Figs. 2 and 3, corre-
sponding to setups in Figs. 1b and 1c. In the first figure
we have explored the simplest switchable setup for vari-
ous configurations of the qubit, α, and of the externally
applied flux, f1. It is important to remark that we have a
very good qubit for values of α well above the 0.8 which
is normally considered. Furthermore, when f1 = π both
for α < 1 and α > 1 the ground states are superpositions
of left- and right-moving currents, and the interaction is
proportional to σx, transversely to the qubit basis. When
we apply a small flux difference, increasing or decreas-
ing f1 we unbalance the populations of the two current
states, the ground state acquires an effective magnetic
dipole and the interaction rotates from σz to σx,y.

The second set of plots is shown in Fig. 3 and corre-
sponds to the three loops setup, Fig. 1c. We have chosen
α = 2 because it allows for a finer control in the rotation
of the interaction σx to σz, but it is not essential. The
tunability of the qubit manifest as follows: when f1 is in-
creased the strength of c1,2

x decreases, causing an increase
of c1,2

z , much like in Fig. 2. But in addition to this, we
now have complete freedom to change the value of f2.
Changes in this second flux result in a simultaneous de-
activation of all couplings, cx,y,z, which become zero as
seen in the dark horizontal stripes for f2 = (2n + 1)π/2
in Fig. 3a, and in the zeros of cx in Fig. 3b. The switch-
ing capability, measured as min cx/cz, is rather strong,
6× 10−4 in this example, improves by increasing α.

We may now address the absolute strength of the
qubit-line coupling. For clarity, we will restrict to the
case in which the line forms a single-mode resonator,
which admits a trivial generalization to the continuum
by summing over modes. The phase slip then becomes
approximately [14]

∆ψ =
∂xu(x)∆x

ϕ0

√
~
ωC

(a+ a†) =
2π∂xΨ(x)∆x

Φ0
(a+ a†).

Here, u(x) is the photon mode eigenfunction in the cavity,
∆x is the separation between the two qubit-line intersec-
tions, ω is the cavity mode frequency and C the reso-
nantor total capacitance. The dependence is thus similar
to previous works meaning that we can achieve compa-
rable ultrastrong couplings. Assuming a flux gradient
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FIG. 3: (a) Following Eq. (5), normalized transverse coupling,
c1x, as a function of external fluxes f1 and f2 for the setup in
Fig. 1c, using α = 2.0 and α4 = 0.1. (b) Cut at f1 = 0.5
shows first-order (solid) and second-order couplings (dashed)
of longitudinal (cz, blue) and transverse (cx red).

|∂xΨ| = 65 × 10−6Φ0/µm, and a qubit size ∆x = 5µm,
we reach a coupling g = 2 × 10−3 × EJ , which for a
typical junction with EJ = 250 GHz implies a very
strong 500 MHz coupling. The previous numbers are
however pessimistic. An Aluminium thin film penetra-
tion depth λL = 150nm allows a larger flux gradient,
of 1.7 × 10−3Φ0/µm or 25 times the previous coupling
strength, that is up to 10 GHz. Either with these values,
or enhancing the phase slip with the use of an auxil-
iary junction [14], the fact is one can take the coupling
strength deep in the ultrastrong regime with an interest-
ing consequence, namely the possibility of inducing non-
linearities in the transmission line [Fig. 3]. In the crud-
est approximation, the second-order coupling strength is
proportional to α4EJ(2π∆x∂xψ/Φ0)2. For a phase slip of
0.01-0.03, that means a coupling EJ × (10−4 − 10−3), or
25 to 250 MHz, according to the values mentioned before.

Throughout this work we neglected the coupling be-
tween the qubit and photons induced by the junction



4

capacitances, that is terms of the form

Hcap =
α4

1 + 2α+ 4α4
2π~ω

∂xψ

Φ0
∆x× i(a− a†)q+, (6)

where q+ = (−i∂/∂φ+) is conjugate operator to the flux
qubit variable φ+. This term, and a similar one for EJ5

[Fig. 1c], gives a negligible coupling strength ∼ 10−3~ω.
We envision several applications of the switchable cou-

pling introduced before. The first one would be to per-
form quantum gates between arbitrary qubit pairs of a
row coupled to a transmission line. By decoupling all
qubits except those chosen to peform a two-qubit gate,
it should be possible to perform operations as the swap
of quantum information between the qubit and the line
modes, or between both qubits. This scheme has an im-
portant advantage, namely that the qubit switching hap-
pens for precise flux values, depending only on geometric
properties and not on the precise eigenenergies or fabri-
cated junction properties. A second application would be
decoupling a qubit from the transmission line and cou-
pling it to slower measurement devices, especially after
having performed an ultrastrong coupling evolution [31].
Furthermore, since the coupling may be switched on and
off in about 0.1 ns, this enhanced resolution can also be
used for the measurement of quantum microwaves as well.
More precisely, given that one qubit may act as a per-
fect mirror for individual photons, a combination of one
or more may be used as streak camera for stroboscopic
measurements of wavepackets. A fourth application is
the deterministic generation of propagating single- and
two-photon pulses. This would work by decoupling the
qubit, exciting it, and then activating an ultrastrong cou-
pling dynamics. The qubit would decay in a few nanosec-
onds, either emitting a single photon (linear coupling) or
two of them (nonlinear one) in a wavepacket whose shape
can be tailored with a second qubit.

In conclusion, we believe that the future access to the
physics of switchable ultrastrong coupling will pave the
way to novel and otherwise inaccessible physics, including
key applications to quantum microwave technologies.
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J. M. Fink, M. Göppl, L. Steffen, J. M. Gambetta,
A. Blais, et al., Phys. Rev. Lett. 102, 200402 (2009).

[20] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff,
J. M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. John-
son, M. H. Devoret, et al., Nature 445, 515 (2007).

[21] F. Deppe, M. Mariantoni, E. P. Menzel, A. Marx,
S. Saito, K. Kakuyanagi, H. Tanaka, T. Meno, K. Semba,
H. Takayanagi, et al., Nature Physics 4, 686 (2008).

[22] M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak,
E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M.
Martinis, and A. N. Cleland, Nature 454, 310 (2008).

[23] M. Hofheinz, H. Wang, M. Ansmann, R. C. Bialczak,
E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, J. Wen-
ner, J. M. Martinis, et al., Nature 459, 546 (2009).

[24] J. M. Fink, R. Bianchetti, M. Baur, M. Göppl, L. Steffen,
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