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Switched affine systems using sampled-data controllers: robust and
guaranteed stabilization

Pascal Hauroigné, Pierre Riedinger, Claude Iung

Abstract

The problem of robust and guaranteed stabilization is addressed for switched affine systems
using sampled state feedback controllers. Based on the existence of a control Lyapunov
function for a relaxed system, we propose three sampled-data controls. Global attracting
sets, computed by solving a sequence of optimization problems, guarantee practical and global
asymptotic stabilization for the whole system trajectories. In addition, robust margins with
respect to parameters uncertainties and non uniform sampling are provided using input-to-
state stability. Finally, a buck-boost converter is considered to illustrate the effectiveness of

the proposed approaches.
Keywords: switched affine systems, stabilization of hybrid systems, input-to-state stability,

robust control

1. Introduction

During the past decades, hybrid systems have attracted a large interest from the scientific
community. Indeed, a wide range of systems can be modeled in a hybrid context: physical
systems involving impacts, multi-model approaches, electrical circuits containing switching
elements (diodes, transistors,...), etc. Here, we study a particular class of hybrid systems:
switched affine systems. It consists in a finite collection of affine subsystems which are se-
lected by a switching rule. Usually, the control design of these systems relies on an averaged
model [1]. Averaging methods [2, 3| are largely used in power electronics in order to provide
feedback strategies using Pulse Width Modulation (PWM) control. Advanced methods such
as passivity based control [4], sliding modes [5, 6], optimal |7, 8, 9] and predictive control

[10, 11, 12, 13, 14] are attractive in order to improve dynamic performances. These methods,
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in which a direct selection of the active subsystem is made, provide strategies to take into
account the discontinuities introduced by switchings.

Two main problems are related to the stability of switched systems: the first concerns
the stability conditions for an arbitrary switching law and the second concerns the switching
strategy which keeps the system stable. In this paper, we treat the latter problem. Several
surveys are available [15, 16, 17, 18] on this topic. Most of the available techniques for
either analyzing the stability or synthesizing control laws are based on Lyapunov functions:
quadratic [19], multiple |20, 21, 22|, piecewise quadratic [23, 24|, etc. In [17|, the author
presents a Lie algebra approach for the study of switching systems. The role of dwell time
and the impact of time-delay have also been emphasized in [25, 26]. Even various techniques
are employed, most of them deal with switched systems whose subsystems share a common
equilibrium.

Unlike these studies, we address the case where no common equilibrium can be defined. A
large class of systems having a practical interest, such as DC-DC power converters is covered
by this framework. Based on the existence of a common quadratic Lyapunov function, a
continuous time stabilizing switching strategy is provided in a recent paper [27]. In [28], in
a discrete time framework, a positively invariant set [29] formed by the union of bounded
ellipsoids is determined and used in a predictive control algorithm to steer the state inside.
However, the method uses a LMI formulation to compute these ellipsoids which introduces
some conservatism in the result. Indeed, LMIs imply that the switched system possesses a
switching sequence S of a prescribed length for which a property of uniform stability w.r.t.
the initial condition is satisfied. So, the computed invariants are not particularly tight around
the target.

In this paper, based on the existence of a Control Lyapunov Function (CLF) for a relaxed
system - obtained by relaxing the control domain to its convex hull -, robust stability for
sampled switched strategies is investigated. In this framework, the referred targets, named
operating points, are defined as the equilibria of the relaxed system. Assuming that a con-
tinuous time CLF is known for the relaxed system, different sampled switched strategies are

deduced. A method which computes estimation of tight positive invariant sets around the



targets is given. The global and practical asymptotic stabilization is thus guaranteed.

Precisely, we prove that positive invariant sets can be obtained by solving optimization
problems. Since no assumption is made on the CLF, this problem is in general non trivial and
non-linear. Fortunately, when the target defines a stable equilibrium of the relaxed system, a
quadratic Lyapunov function can be easily exhibited and the optimization problem reveals to
be a quadratically constrained quadratic program (QCQP) for which efficient solvers exist.

The robustness aspects of the proposed sampled switched strategies in case of non uniform
sampling and parameter uncertainties are also studied and discussed. The Input-to-State
Stability (ISS) formulation [30, 31] is used in order to provide stability margins.

The paper is organized as follows. Section 2 gives notations and definitions used through-
out the paper. The system description is given and the operating points are defined in Section
3. In Section 4, we propose three different sampled-data controls for the switched system,
deduced from a known CLF for the relaxed system. Using this CLF, a set of optimization
problems is also formulated. In Section 5, we prove that the solutions of these problems allow
to define global attracting sets for the sampled switched affine system. Section 6 provides
some relations of inclusions between these attracting sets. An extension of those results in
the case of parameter uncertainties and non-uniform sampling is given in Section 7. The com-
putational aspects are addressed in Section 8. A buck-boost converter is used in Section 9 to
illustrate our results. We show that the stability is guaranteed even in presence of parameter
uncertainties. To conclude, Section 10 summarizes the results of this paper and their interest

in the research field of switched affine systems.

2. Notations

Let R, N and N, denote the set of real, natural and strictly positive natural numbers,
respectively. Moreover, for any a € N, let N<, denotes the set {k € N | k£ < a}. | -] is the
Euclidian norm of a vector and || - ||« the infinite norm of a function. In this paper, systems
are of the form @(t) = f(x(t),u(t)) where f: R™ x R™ — R" is locally Lipschitz continuous.
So, for a given input u, there is a unique solution of the initial value problem and is denoted

x(t, xo,u) for each initial state .



Definition 1 (N, K and K. —functions). A function o : R™ — RT is a Ny—function, if it
is continuous, nondecreasing and satisfies a(0) = 0. Moreover, « is a K—function if o € Ny

and is strictly increasing. a is a Koo—function if it is an unbounded K— function.

Definition 2 (KL—function). A class KL—function is a function B : RT x RT — RT such
that B(-,t) € IC for each fized t > 0 and ¥Vr > 0, ((r,t) — 0 as t — +00.

Definition 3 (ISS). A system of the form @ = f(x,u) is said to be Input-to-State Stable (ISS)
if there exist some 3 € KL and v € IC such that ||z (t, xo, w)|| < B(||zoll,t) +v(||u]le), Yu Vio.

Definition 4 (Practical stability). A system of the form & = f(x,p) where p is a fized
parameter, 1s said to be practically stable if there exist some 3 € KL and a positive constant

c(p) such that ||z(t, zo,u)|| < B(||xoll,t) + c(p), Vao.

Definition 5 (0-GAS). A system of the form & = f(x,u) is said to be 0-Globally Asymptot-
ically Stable (0-GAS), if there exists some 3 € KCL such that ||x(t, zo,0)]| < B(||xoll,t), Vao.

Definition 6 (AG). A system of the form © = f(x,u) has the Asymptotic Gain property

(AG), if there exists some o € Ny such that limsup ||z(t, zo, u)|| < a(||u|«), Yu Vaq.
t—-+o00

Definition 7 (CLF). For a system of the form & = f(x,u), a control Lyapunov function is a
function V' that is continuous, differentiable, positive-definite, proper, and such that for all x,

there exists u for which the directional derivative along the trajectory satisfies V (x; u(z)) ==

oV,

= f(z,u(z)) < —y(||=]]) where v is a class K—function.

3. System Description

A switched affine system has the form:

i(t) = Aox(t) + Bo + D _u'(t)(Asz(t) + By) (1)
i=1
where u'(t), i = 1,...,m are component values of the control u(t) € U = {0,1}™ and

x(t) € R™ represents the state value at time ¢. A; and B; are real matrices of appropriate
dimensions. As previously claimed, the most studied case in the literature is the particular

case B; = 0, Vi € N.,,,. In this situation, all the subsystems (following the finite values of u)

4



share a common and unique equilibrium: the origin. The aim of this paper is to explore the
case where B; are all distinct from 0 and for which no common equilibrium can be defined,
e.g. DC-DC converters.

System (1) belongs to the class of nonsmooth systems for which the notion of solution can
be properly defined and generalized in the sense given by Fillipov [32, 33|. The generalized
solutions are defined by considering the following relaxed system:

i(t) = Aoz (t) + By + >_u'(t)(Ax(t) + B;)  with u'(t) € [0,1] (2)

i=1
where the control domain is now the convex hull co(U) of the original one. A link between
the solutions of the system (1) and those of the system (2) can be established by a density

theorem in infinite time [34]:

Theorem 1. If z is a global solution of (2) starting from zy and € : [0,4+00) — (0,400)
is continuous, then there erists a solution x of (1), starting from xo € B(zo,£(0)) such that

|2(t) — z(t)|| < e(t) for all t € [0, +00).

Therefore, switching laws u € L*>°([0,400),U) (where L*> denotes the Banach space of all
essentially bounded measurable functions) exist such that the trajectory of the system (2) can
be approached as close as desired by the one of the system (1). For this reason, the operating
points set of the switched system (1) denoted by X, is defined as the set of equilibrium
points of the system (2):

Xyef = {:Emf € R": Ayyes + Bo + Zuief(Aixref + B;) =0, uf,ef e [0, 1]} (3)
i=1

This set defines the control targets for the state of the system (1).

It is worth noting that none of the controls u,.; € co(U)\U from (3) and corresponding
to an equilibrium ., is admissible for the switched system (1). The outcome is that the
switched system state x cannot be maintained on z,.; by a control taking its values in U
(unless the time duration between switchings tends towards 0). Consequently, if the target
for the switched system is an operating point z,.r, the asymptotic behavior of the trajectories

of (1) is characterized by:



e a cycle near z,.s if a dwell time condition is applied on the switchings (i.e. a lower limit

exists for the time duration between switchings);

e an infinite switchings sequence with a vanishing time duration between switchings as

t — 00.

These features concern indirectly most of the control designs which use an averaged model

[2, 3, 35].

4. Sampled control strategies

Many control strategies like optimal [7, 11, 9], predictive [13, 36|, sliding mode [37] or
stabilizing controls [38, 6, 5| can be investigated to steer the state of the system (1) near a
defined operating point x,.; € X,.r. As shown in [9], some singularities known as singular
arcs that render particularly hard the optimal control synthesis, appear in the resolution
of optimal control problems for the system (1) or (2). This certainly explains why discrete
time predictive formulation with control restricted to U or Lyapunov based approaches seem
to be more tractable. Our aim is not to discuss the advantages and/or drawbacks of each
method. The paper focuses on two practical aspects: the use of sampled switched laws and
the guarantee of stability margins.

For a given x,.; € X,¢r, let us define the change of coordinates z =  — x,.¢. The system

(1) or (2) can be rewritten in the form:
zZ = A(u)z + B(u) (4)

with A(u) = Ag + X7, u'A; and B(u) = Aoxyes + Bo + 300 u'(Aiyer + B;).

Suppose that the following assumption is satisfied:

Assumption 1. A control Lyapunov function V' is known for the system (4) with a control

domain relazed to co(U).
Assumption 1 implies that a continuous time state feedback strategy:
u* = k(z) € co(U) (5)
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exists such that the system (4) is globally asymptotically stable (GAS). Once the origin is
reached, i.e. the target x,.s in x—coordinates, the relation u* = u,.; necessarily holds.

From Assumption 1, we can deduce three sampled switched control strategies:

1. Pulse-Width Modulation strategy is a simple way to apply a control defined by (5)
to the switched system. For a given sample period T, the i"® component of the control

u is approximated by:
V't Ts) = D T, tuim(t), VEE€RT (6)
k=0

where I4(.) stands for the indicator function which takes the value 1 when ¢t € A and 0
otherwise, t, = kTs and uy, = u(ty).
2. Steepest descent strategy consists in choosing at time , k£ € N, the most decreasing

direction of the CLF V among the finite values given by u € U:

’U(t,TS> = Z U ]I[tk, tk+1[(t)7 Vit S R+ (7)
k=0
where uj = arg HlellI]l V(2 0) (8)

with V (zx; u) the derivative of V in the direction given by A(u)z, + B(u).
3. Predictive strategy minimizes, over a horizon Ny and among a finite set of sequences,

V(2k+n,, ) from the current position z:

U(t, Ts) = Z UL H[tk, tk+1[<t)7 Vit € R+ (9)
k=0
where u = arg, min V(2k+Ny) (10)

N
Uk U157 Uk Ny —1 €U H

with arg; the first argument of the optimal sequence wuy, Ugt1, -, Upr Ny —1-

Note that all the proposed switching strategies define explicitly or implicitly a state feedback
control law:

U(taTs) = lis(tvz(t)?Ts)' (11)



Which stability guarantees can be given for these three strategies? To answer this ques-
tion, consider the closed loop obtained from one of the three feedbacks v. The resulting exact

discretization of (4) at time ¢, k € N, can be written as:
Zky1 = As(ks)zk + Bs(Ks). (12)

When the chosen strategy is the predictive or the steepest descent, Ag(ks) = eAw)Ts and
By (ks) = < i eA(“k)(TS_T)dT>B(uk) with ug given in (8) or (10). For the PWM strategy, the
right side expression is obtained recursively since this strategy defines a piecewise constant

control on each interval (¢x,t;11) depending on the value wuy, given in (6).

Definition 8 (Level sequence and sublevel set sequence). For a sequence {zy, -+ ,zn} of
length N + 1 generated by the system (12) from an initial condition 2y, let us define the level
sequence by:

Ek(Zo) = V(Zk), ke N§N7 (13)

and the sublevel set sequence by:
Sﬁk(ZO) = {Z : V(Z) < Ek(ZO)}, ke NSN- (14)

Following the fact mentioned at the end of the previous section that a switched system
cannot be maintained on z,.f, it is clear that non-monotone decreasing sequences Ly (2p),
k € Ny, may exist for some z,. Intuitively and as one can expect, cyclic path is followed
near the operating point z,.;. Thus, the notion of practical stability seems convenient to
characterize an attracting set w.r.t. the period T.

To get some insights: for a sequence {zp,---,zyn}, generated by the system (12) from
an initial condition 2, one can search w.r.t. zo, the highest level Ly(zo) at the end of the

sequence that can be reached from a lower level £(zy). Denote this optimization problem by

PN:
Pn : max Ln(20) (15)
s.t. zpr1 = As(ks)zk + Bs(ks), k€ Nen_y (16)
Ly (z0) > Lo(20) (17)



Remark 1. For all N > 1, the constraints (16) and (17) can be trivially satisfied with an
inttial condition zg = 0. Therefore zo = 0 is always a feasible argument for Py.
If 25 is an optimal argument of Py, then £} = Ly(25) denotes the optimum and S =

Scy (25) the corresponding sublevel set.
Definition 9. The problem Py is said to be bounded if the optimum L} is finite.

From the definition of Py, any sequence {2, --- , 2y} with z outside Sy clearly satisfies
Ln(z0) < Lo(z0). The next section uses this feature, connects the asymptotic properties of
the system (12) to the set S} , N € N,, and proves practical stability results for the system
(12).

5. A sufficient condition for global and practical stabilization

Let us begin by recalling some definitions:

Definition 10. A set Q) is said to be positively invariant for the system (12), if for all zo € €2,

the state sequence z, € 0, k € N,.

Definition 11. A trajectory is said to approach a set Q, if the distance d(z, <)) = rnelg |2k —

w|| — 0 as k — oo.

Definition 12. A closed positively invariant set ) is said to be a global attracting set of (12),

if for all initial conditions zg € R™, the trajectories approach ).
Now, some properties concerning the sublevel sets S, N € N, can be established:

Theorem 2. Under Assumption 1, if the problem Py is bounded, then S; . is a global at-
tracting set for all trajectories of the system (12).

Proof. Consider a trajectory (zj)ren of the system (12) obtained from an arbitrary initial
condition zq. First, let us prove that S7  is a positive invariant set for all infinite subsequences
(zpn4r)pen, 7 € Ney_1. Suppose that a state z, € S; exists such that V(z,) < Ly <

V(zr4n). Then, z. leads to a bounded solution for Py better than the optimum, which is



absurd. Consequently, if V(z,) < L3 then V(z,n4) < Ly, for all p € N, which means that
SZN is a positive invariant set for infinite subsequences of the form (z,nr)pen, 7 € Nay_.
Now, let show that Sy is a global attracting set for the system (12). Assume that an

index s € Noy_; exists such that z; ¢ Sr,» then two cases must be distinguished:

e cither an index py € N, exists such that V(z,,n+s) < L} then the positive invariance

property of Sy implies Vp > py € Ny, zpn1s € Sz

e or this index py does not exist, then, following the definition of L}, a strict decreasing of
the sequence V(z,n4s), Vp € N, is mandatory. The relation V(z,n+5) > V(2p41)8+s) >
L3 necessarily holds, for p € N,. As V is also continuous and the sequence is bounded,
a limit ¢, exists such that plLIgO (zpnys) = ls. Assume ¢, > L. By compactness,
a subsequence (zy,(pn+4s))pen (With ¢ © N — N strictly increasing), that converges
to a limit point ys can be extracted. Moreover, ys necessarily satisfies V (ys) = /.
Considering yI the N'™ iterate of y, by (12), the relation V(yS) = V(y,) = £, also
holds. However, V(yf) = V(ys) implies that y, is a possible argument for Py which is

absurd. Therefore the sequence (z,n+s)pen fulfills plirgo V(zpnys) = Ly

Since all subsequences of the form (z,n+s)pen, S € N<y_1, follow one of the two aforementioned
cases, then the whole sequence (z;)ren approaches Sy i.e. limsup V(z) < L3. Therefore,
k—oo

from Definition 12 and the fact that Sz is a positively invariant set, 7. is a global attracting

set for the system (12). O
Corollary 1. A sufficient condition for the global and practical stabilization of the sampled
switched system (12) is that an integer N exists such that Py is bounded.
6. Relations of inclusion and smallest attracting set

A natural question concerns how the sets S; , N € N,, are imbricated.

Theorem 3. Assume problem Py is bounded. Then Vp € N, the problem P,y is bounded
and the following inclusions hold:

St CShy
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Proof. Following Remark 1, the set of candidates is not empty since for all N, zp = 0 is
always an initial candidate. Consider a sequence z;, k € N¢,y, for any positive integer p, and
suppose that z,x ¢ Sy . As in the proof of Theorem 2, the subsequence V(z;n), j € Ng,, is
necessarily strictly decreasing and then, this sequence is not feasible for P,x. It implies that
the optimal sequence 2}, k € Neyy, for Py fulfills 27y € Sp: (and a fortiori z;5). Then Py

is bounded since Py is bounded. O

One might expect a strict inclusion between the sets S . This is not the case in general
and it is easy to exhibit an example showing that a relation as L3 > Ly, ,,VN € N,, cannot

hold. However, the upper bound £} > L}, VN € N, remains valid when P; is bounded.

Corollary 2. Assume that a non empty set of integers I exists (necessarily infinite following

Theorem 3) rendering P;, i € I, bounded. Then S = (| Sy, = liminf S}, is the smallest
iel i—00

attracting set of the system (12) given by the set of problems P.

7. Robust stabilization

In order to investigate the robustness of the proposed sampled-data controllers, an input-
to-stable stability property with the sample time as input is given hereafter. Then, in the next
subsection, a generalization of this result is provided in the case of parameter uncertainties

and non-uniform sampling.

7.1. Input-to-state stability w.r.t. the sample time

Theorem 4. Under Assumption 1 and assuming for every sampled period Ty, 0 < Ty < T |

that an integer N (Ts) exists such that the problem Py is bounded, the system (12) when Ty — 0
is 0—GAS.

In order to establish the proof of this theorem, consider the following definition:

Definition 13 (Supporting hyperplane). A hyperplane H of dimension (n — 1) is said to
support a closed and convex set M (C R™) on point y € (8M N H) if M is completely located
in one of the two closed half-spaces determined by H (where OM is the boundary of M ). If

11



a vector X\ is inward-pointing normal to this supporting hyperplane H of M on point y then

T, _ - T
/\y—zlgj\f/lkz.

Proof. First, we show that the system (12) is GAS whatever the chosen switched strategy
is, when 7y — 0. For the PWM strategy, since Tlsigov(t,Ts) = u(t) = k(z(t)) holds almost
everywhere, the control law corresponds exactly to the feedback given by the CLF. So, from
Assumption 1, the system is 0—GAS when T, — 0.

For the Ny—step predictive strategy, the best decreasing value for V(21 n,, ) from V(z),
when T} vanishes, corresponds to the direction given by arg 2%111]1 V(zk, u) which precisely cor-
responds to the steepest descent. A first order Taylor expansion can be used to prove this
point. So it only remains to prove the fact that the steepest descent strategy is GAS when
T, — 0.

Notice that the instantaneous switching law from a current position z along the trajectory

is given by arg Hé%l V(z;u). Now, if

min V(z;u) < V(2 6(2)) < —(|12]) (18)

uelU

where ~ is a class K—function, the GAS property holds. Note that the existence of the
function v is deduced from the definition of a CLF.
In order to prove the left side inequality of (18), observe that along the trajectory, the

derivative of V is given by V(z(t);u) = %—‘;T (z,u). For a fixed z, f(z,u) = A(u)z + B(u)
is affine w.r.t. w. So, the set defined by {f(z,u),u € CO(U)} matches with the set A =

co Z,U),u € and 1s a closed polyhedron. Let A = 5=(2) an 1ts supportin erplane
{f(z,u),u € U} and is a closed polyhedron. Let A = %%(z) and G its supporting hyperpl

on A. Denote u* = argm&n)\Tf(z,u). Then, on the point p = f(z,u*), we have \Ip =
ruI)IEIR AMw. Two cases must be distinguished: either p is single, then p is a vertex of the
polyhedron A and u* € U, or p is non single, then p belongs to an edge or a face of the
polyhedron A. At least one vertex § exists such as § € JA NG (Figure 1). So, a control
u* € U always exists such that (18) holds.

O

Corollary 3. Assuming for every sampled period T, 0 < Ty < T, an integer N(Ty) exists

max )

such that problem Py is bounded. Then, the system (12) is input-to-state stable w.r.t. the

12



Figure 1: Supporting hyperplane G on A.

class of constant input Tj.

Proof. A classical result [30] states that ISS is equivalent to 0-GAS property (cf. Theorem 4)
and asymptotic gain property (the solutions are ultimately bounded) i.e. lim sup ||zx (20, T5)|| <
k—oo

v(Ts) where v is a No—function for 0 < T, < Ty, .. From the definition of S, define the as-
the result

max?

sociated level L., = liminf £;. If £L,(T}) is a class Ny—function for 0 < T, < T,
is given by taking v(T}) = L (7). If not, it is always possible to define a class Ny—function
v by choosing v(Ts) > sup Lo(T) since sup L (7) is bounded and nondecreasing for

0<T<T} 0<T<T;

all Ty < T O

max *

Remark 2. Note that this ISS result is given for the class of constant input Tk.

7.2. Non-uniform sampling and parameter uncertainties

An improvement can be obtained if the class of switching laws is relaxed in the following
manner: define a minimum (resp. maximum) dwell time 6,,;, (resp. dmqe) as the minimum
(resp. maximum) duration between two switchings. Let us define the switching time sequence

tx, k € N, with duration constraints:

5min < Tk = |tk+1 - tk| S 5ma:ca (19)

corresponding to the time instants where the system (4) switches from one mode to another.
Assume also bounded parameter uncertainties 6 on the matrices A; and B; in (4). Without

loss of generality, the uncertainties are given in the form:

_Qmax S 8 S Hmam- (20)

13



We relax the problem Py by:

Pn (Omin, Omazs Omaz) : nax Ly (20) (21)
.. 21 = As(x)zp + Bs(x), k€ Nay_q (22)

Omin < Tk = [tryr = ti] < Omas (23)

~ oz <0 < Opae (24)

(25)

L (z0) = Lo(20)
where (x) = (73,0, Ks).
Remark 3. x, remains unchanged and based on the unperturbed model (4).

Remark 4. In this relaxed problem, the optimization depends on the initial condition zy, the
switching time sequence ty, and the parameter uncertainties 8. Notice that the set of constraints

(22) is now time dependent following the integration duration Ty.

Remark 5. All the results concerning the attracting sets Sy, remain valid since the given
proofs do not depend on how the closed loop sequence (zy)ken is obtained from an initial guess

20-

Property 1. The optimal value of Pn(Omin, Omaz, Omaz) 1S non-decreasing w.r.t. dmaz 07 Omas

and non-increasing w.r.t. Omin.

Proof. 1t is clear that an optimal argument (z§, 0%, 7%, k € Ney_1) for Pn(0min, Omazs Omaz)
is also an admissible argument for Py (d,min, Omaz + 0, Omaz) for all 6 > 0. The rest of the

announced properties is also trivially established. O

Corollary 4. Assume (Anae, Omaz) > 0 exists such that for all dpmin > 0 (Apaz > Omaz >
Omin), an integer N(Apaz, Omin, Omaz) €zists such that the problem P (0min, Amazs Omaz) 18
bounded. Then the system (12) with relaxed switching laws (19) and parameter uncertainties
(20), is 1SS with input (7,0) corresponding to the switching duration sequence T = (7o, 71, )

and the parameter uncertainties 6.
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Proof. The proof uses, as in Corollary 3, the equivalence between ISS and (0-GAS+AG) prop-
erties [30]. Taking 0,in < Omar — 0 and 0,4, — 0, 0-GAS property expressed in Theorem 4 re-
mains valid with this class of relaxed switching laws and bounded uncertainties. The AG prop-
erty . limsup (o, 6,711 € Newoo)|| < (1728 ) with (76)]l = max (sup7.6),

k—o0
follows from the fact that the function ¢(0maz,Omaz) = sup Lo (0mins Omaz, Omaz) 18
0<5mzn§§ma7‘
bounded and non-decreasing w.r.t. 0,4z, for all d,,4: < Aae and respectively 6,,,., for all
Omaz < Omaz. Then, it is always possible to define a class Ny—function v by choosing for

example v(s) > ¢(s,s) with s = ||(7,0)]|co- U

8. Computational aspects

This section discusses some computational aspects that can be encountered when one
solves the optimization problems Py. Since no assumption is made about the known CLF
and since the state feedback is generally a discontinuous function of the state, the optimization
problems Py are non-linear and non-smooth.

Nevertheless, if the predictive or steepest strategies are considered, the feedback law leads
to a partition of the state space w.r.t. the control values u(z) € U. Then, the smoothness
requirement can be achieved if Py is solved for every fixed switching sequences. In this con-
text, additional constraints related to the chosen switching strategy must be added. Precisely

for a fixed sequence:

e Steepest strategy: at each time ¢, the control ug* of the chosen sequence has to verify

2™ — 1 constraints:
V(e upx) < Vi(zgu),u € Uyu # upx, k € Ney-1. (26)

Therefore, for a fixed sequence of length N, N(2™ — 1) constraints are added to Py.
The problem is clearly smooth in this case, if the CLF is.

e Ny—predictive strategy: at each time tj, the control u;* of the chosen sequence has to

verify the constraints:

min V(zkiny) < min V(zk+Ny) (27)

N N
UpHk, U1, Uk Ny —1 EUTH U Ukt 15 Ukt Ny —1 EUNH
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with uy # ugx, k € Noy_1. The left minimization is done over 2m(Nu=1) elements and
the right one over 27V — 2m(Nu—1) elements for each N element of the fixed sequence.
As the left and right terms are continuous but not differentiable everywhere, a direct
search algorithm is needed in order to solve the problem (except the case Ny = 1: where

the smoothness requirement is achieved).

This caution can be avoided if, at each time ¢;, the sequence wp*, ugt1, ..., Uprn,—1 ID
the left term is fixed in advance. This procedure implies to define a set of additional
optimization problems corresponding to all possible sequences at all time ¢;. Then, the

total number of optimization problems becomes 2™V V#

e PWM strategy: since the state feedback laws u(z) are generally discontinuous functions
of the state, optimization problems are non-smooth. Nevertheless, there are two cases
where Py can be solved without numerical issues: if u(z) is continuous or if u(z) € U
almost everywhere and allows to define a partition of the state space. In this case, the

same previous methodology can be applied.

Now, we have shown that the smoothness requirement can be met. It can be underlined
that, for many practical cases, quadratic Lyapunov function candidates can be exhibited.
For example, in (4) as B(uyer) = 0, if A(u,er) is Hurwitz then there exists a quadratic
Lyapunov function associated to the system Z = A(u,.s)z which can be used with one of the
given strategies. Passivity based control is another way to get such quadratic CLF. It means
that the objective function and the constrains are quadratic functions. So, a quadratically
constrained quadratic program (QCQP) can be used. QCQP is a wide-studied problem in the
optimization literature having a large number of applications [39]. Relaxations of QCQP based
on semidefinite programming (SDP) and the reformulation-linearization technique (RLT) can
be an efficient way to solve it. Global optimization solvers, such as GloptiPoly [40], that solve
non convex global optimization problem of minimizing a multivariable polynomial function
subject to polynomial inequality, equality or integer constraints, are particularly efficient for
QCQP. GloptiPoly allows to solve a series of convex relaxations of increasing size, whose

optima are guaranteed to converge monotonically to the global optimum. The result is an
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Table 1: Compared computation time

Computation Time (s)

Solver
L3 L L

NL Matlab | 0.98 | 399.2 | 4078

Gloptipoly | 1.36 | 3.91 14.9

extremely fast solver. A comparison between the Non-Linear Solver fmincon of Matlab and
the solver GloptiPoly is performed on the example given in the next section. The results are
summarized for the steepest strategy case in table (1).

Now, if parameter uncertainties and non uniform sampling are taken into account, the
level set computed matches to the worst case for the dynamics. In this case, the program is
not a QCQP but accurate polynomial approximations of (22) can be obtained using Taylor
expansion of eATANTAITY) where AA and 67, define the uncertainties. More accurate, a
polytopic approximation of the dynamic like in [26] could be another way to deal with this
issue. If a polytopic approximation is used then the problem becomes again a QCQP. So, the

proposed solver remains adapted for both cases.

9. Application

9.1. DC-DC converter description

Figure 2: Buck-boost converter

Consider a buck-boost converter (Figure 2) whose state equation in continuous conduction

mode (the current passing through the inductance never falls to zero) is given by:
T = A()l' + B() + U(All’ + Bl)

17



where = = [ir, vc]T and

0 0 0 1
AO - 1 Al - 1
0 —7s -0
E E
By = [Z>O]T By = [—POF

with R=50Q, C =220 uF', L=20mH and E =6 V.

Let the target be x,.; = [0.24, —6]" € X,.; corresponding to ey = 0.5. As A(Uer) =
Aver = Ag + trepAr is Hurwitz and as B(u,ep) = 0, the solutions P = PT > 0 of AfefP +
PA..; +Q = 0 with Q@ = Q7 > 0 allow to define quadratic CLFs V(z) = 27 Pz for the

_ 91.05 0.04 _
system (4). Taking @) = 180 x Id, one gets: P = . In the next two subsections,

0.04 1
the results of the proposed approaches are illustrated through the steepest and predictive

strategy. The sample time is T, = 2.5.10 s.

9.2. Attracting set estimations for the sampled strategies

Figure 3 shows a system trajectory using the steepest descent feedback law and attracting
sets determined by Py for N =1 (red dashed line) and N = 2 (magenta solid line). Clearly,
S}, is an accurate approximation of the all system trajectories. Using Glotipoly software, the

computation times are respectively 1.36 s and 0.97 s.

Figure 3: Trajectory in the state-space and attracting sets for N =1 and N = 2

For a receding horizon Ny fixed to Ny = 2, Figure 4 shows the case of the predictive

strategy. The black solid ellipse is the estimation for a sequence of length N = 1. The
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estimation is still large comparing to the limit cycle. For a sequence of length N = 8, a better
approximation is obtained. The computation times, still using Glotipoly are respectively 1.6

s and 29.10° s.

—2r

Figure 4: Trajectory in the state-space and attracting sets for N =1 and N =8

Figure 5 represents the evolution of £% in function of N for the steepest (solid blue
line) and the predictive strategies (dashed red line). Observe that the relations Sy &~ C
Sry» Vp € N, hold as stated in Theorem 3. While the relation £3 > L%, does not hold in
general. Figure 5 also shows that the above given approximations of the attracting sets are
accurate although in the case of predictive control, this estimation appears not particularly
tight around the cycle. This can be clearly justified by the fact that there exists at least one
sequence starting inside the sublevel set that reaches the level. This sequence is obviously the
solution of Py. In view of the evolution of the curve in Figure 5, an increase of N seems not
to lead to a better estimation of S..

In Figure 6, the evolution of £3 w.r.t. T is drawn for both strategies. This figure clearly
illustrates the ISS property of the system. Finally, Figure 7 shows the exponential growth of

the computation time for the two strategies.

9.3. Robust attracting set estimations for sampled strategies

Suppose now that all parameters L, R, E, C' are known with 5% of uncertainties and that
the sample time T, is time dependent with variation of 5% around its nominal value. The
problem Py (0min, Omaz, Omaz) gives the attracting set in the worst case. Figure 8 shows in

solid line the level sets corresponding to £} for N =1 (red line) and N = 8 (black line) and
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Figure 6: L3 versus T, € [2.5,4500]us

in dashed line the respective level sets for the system without uncertainties. This figure also
shows two trajectories, simulated with a uniformly distributed random law for the sample
time variations, and two parameters sets inside the 5% of uncertainties.

It is worthy noticing that, as expected, the attracting sets for the system with parameters
variations are bigger than the ones for the nominal system. However, the boundedness of the

optimization problem guarantees the stability of the perturbed system.

10. Conclusion

In this paper, robust stability for the class of switched affine systems has been investigated.
Based on the existence of a CLF for the relaxed control problem, sampled switched strategies

have been proposed to stabilize the switched affine system around an operating point.
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Figure 8: Trajectories in the state-space and attracting sets for NV =1 and N = 8 in case of uncertainties

The proposed framework allows to compute tight global attracting sets for the whole sys-
tem trajectories, by solving a set of constrained optimization problems. Numerical aspects
have been discussed and it has been shown that practically, the optimization problems re-
veal to be QCQP or non convex polynomial optimization problems for which efficient global
optimization solvers exist. In addition, ISS results with respect to the sample time and the
parameter uncertainties are formulated. In doing so, some stability margins are guaranted.

The numerical illustration given on a buck-boost converter shows that quadratic CLF
can be easily designed for DC-DC converters. Applying the steepest or predictive strategies,
numerical results also showed that it is not necessary to consider a high order in Py to get a
good accuracy in the over-approximation of S..

As future work, a comparison between optimal control and the given switching laws would

be of interest in order to measure the ratio performances over design easiness.
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