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Swit
hed a�ne systems using sampled-data 
ontrollers: robust andguaranteed stabilizationPas
al Hauroigné, Pierre Riedinger, Claude Iung
Abstra
tThe problem of robust and guaranteed stabilization is addressed for swit
hed a�ne systemsusing sampled state feedba
k 
ontrollers. Based on the existen
e of a 
ontrol Lyapunovfun
tion for a relaxed system, we propose three sampled-data 
ontrols. Global attra
tingsets, 
omputed by solving a sequen
e of optimization problems, guarantee pra
ti
al and globalasymptoti
 stabilization for the whole system traje
tories. In addition, robust margins withrespe
t to parameters un
ertainties and non uniform sampling are provided using input-to-state stability. Finally, a bu
k-boost 
onverter is 
onsidered to illustrate the e�e
tiveness ofthe proposed approa
hes.Keywords: swit
hed a�ne systems, stabilization of hybrid systems, input-to-state stability,robust 
ontrol1. Introdu
tionDuring the past de
ades, hybrid systems have attra
ted a large interest from the s
ienti�

ommunity. Indeed, a wide range of systems 
an be modeled in a hybrid 
ontext: physi
alsystems involving impa
ts, multi-model approa
hes, ele
tri
al 
ir
uits 
ontaining swit
hingelements (diodes, transistors,...), et
. Here, we study a parti
ular 
lass of hybrid systems:swit
hed a�ne systems. It 
onsists in a �nite 
olle
tion of a�ne subsystems whi
h are se-le
ted by a swit
hing rule. Usually, the 
ontrol design of these systems relies on an averagedmodel [1℄. Averaging methods [2, 3℄ are largely used in power ele
troni
s in order to providefeedba
k strategies using Pulse Width Modulation (PWM) 
ontrol. Advan
ed methods su
has passivity based 
ontrol [4℄, sliding modes [5, 6℄, optimal [7, 8, 9℄ and predi
tive 
ontrol[10, 11, 12, 13, 14℄ are attra
tive in order to improve dynami
 performan
es. These methods,Preprint February 25, 2011



in whi
h a dire
t sele
tion of the a
tive subsystem is made, provide strategies to take intoa

ount the dis
ontinuities introdu
ed by swit
hings.Two main problems are related to the stability of swit
hed systems: the �rst 
on
ernsthe stability 
onditions for an arbitrary swit
hing law and the se
ond 
on
erns the swit
hingstrategy whi
h keeps the system stable. In this paper, we treat the latter problem. Severalsurveys are available [15, 16, 17, 18℄ on this topi
. Most of the available te
hniques foreither analyzing the stability or synthesizing 
ontrol laws are based on Lyapunov fun
tions:quadrati
 [19℄, multiple [20, 21, 22℄, pie
ewise quadrati
 [23, 24℄, et
. In [17℄, the authorpresents a Lie algebra approa
h for the study of swit
hing systems. The role of dwell timeand the impa
t of time-delay have also been emphasized in [25, 26℄. Even various te
hniquesare employed, most of them deal with swit
hed systems whose subsystems share a 
ommonequilibrium.Unlike these studies, we address the 
ase where no 
ommon equilibrium 
an be de�ned. Alarge 
lass of systems having a pra
ti
al interest, su
h as DC-DC power 
onverters is 
overedby this framework. Based on the existen
e of a 
ommon quadrati
 Lyapunov fun
tion, a
ontinuous time stabilizing swit
hing strategy is provided in a re
ent paper [27℄. In [28℄, ina dis
rete time framework, a positively invariant set [29℄ formed by the union of boundedellipsoids is determined and used in a predi
tive 
ontrol algorithm to steer the state inside.However, the method uses a LMI formulation to 
ompute these ellipsoids whi
h introdu
essome 
onservatism in the result. Indeed, LMIs imply that the swit
hed system possesses aswit
hing sequen
e S of a pres
ribed length for whi
h a property of uniform stability w.r.t.the initial 
ondition is satis�ed. So, the 
omputed invariants are not parti
ularly tight aroundthe target.In this paper, based on the existen
e of a Control Lyapunov Fun
tion (CLF) for a relaxedsystem - obtained by relaxing the 
ontrol domain to its 
onvex hull -, robust stability forsampled swit
hed strategies is investigated. In this framework, the referred targets, namedoperating points, are de�ned as the equilibria of the relaxed system. Assuming that a 
on-tinuous time CLF is known for the relaxed system, di�erent sampled swit
hed strategies arededu
ed. A method whi
h 
omputes estimation of tight positive invariant sets around the2



targets is given. The global and pra
ti
al asymptoti
 stabilization is thus guaranteed.Pre
isely, we prove that positive invariant sets 
an be obtained by solving optimizationproblems. Sin
e no assumption is made on the CLF, this problem is in general non trivial andnon-linear. Fortunately, when the target de�nes a stable equilibrium of the relaxed system, aquadrati
 Lyapunov fun
tion 
an be easily exhibited and the optimization problem reveals tobe a quadrati
ally 
onstrained quadrati
 program (QCQP) for whi
h e�
ient solvers exist.The robustness aspe
ts of the proposed sampled swit
hed strategies in 
ase of non uniformsampling and parameter un
ertainties are also studied and dis
ussed. The Input-to-StateStability (ISS) formulation [30, 31℄ is used in order to provide stability margins.The paper is organized as follows. Se
tion 2 gives notations and de�nitions used through-out the paper. The system des
ription is given and the operating points are de�ned in Se
tion3. In Se
tion 4, we propose three di�erent sampled-data 
ontrols for the swit
hed system,dedu
ed from a known CLF for the relaxed system. Using this CLF, a set of optimizationproblems is also formulated. In Se
tion 5, we prove that the solutions of these problems allowto de�ne global attra
ting sets for the sampled swit
hed a�ne system. Se
tion 6 providessome relations of in
lusions between these attra
ting sets. An extension of those results inthe 
ase of parameter un
ertainties and non-uniform sampling is given in Se
tion 7. The 
om-putational aspe
ts are addressed in Se
tion 8. A bu
k-boost 
onverter is used in Se
tion 9 toillustrate our results. We show that the stability is guaranteed even in presen
e of parameterun
ertainties. To 
on
lude, Se
tion 10 summarizes the results of this paper and their interestin the resear
h �eld of swit
hed a�ne systems.2. NotationsLet R, N and N∗ denote the set of real, natural and stri
tly positive natural numbers,respe
tively. Moreover, for any a ∈ N, let N≤a denotes the set {k ∈ N | k ≤ a}. ‖ · ‖ is theEu
lidian norm of a ve
tor and ‖ · ‖∞ the in�nite norm of a fun
tion. In this paper, systemsare of the form ẋ(t) = f(x(t), u(t)) where f : R
n × R

m → R
n is lo
ally Lips
hitz 
ontinuous.So, for a given input u, there is a unique solution of the initial value problem and is denoted

x(t, x0, u) for ea
h initial state x0. 3



De�nition 1 (N0, K and K∞−fun
tions). A fun
tion α : R
+ → R

+ is a N0−fun
tion, if itis 
ontinuous, nonde
reasing and satis�es α(0) = 0. Moreover, α is a K−fun
tion if α ∈ N0and is stri
tly in
reasing. α is a K∞−fun
tion if it is an unbounded K−fun
tion.De�nition 2 (KL−fun
tion). A 
lass KL−fun
tion is a fun
tion β : R
+ × R

+ → R
+ su
hthat β(·, t) ∈ K for ea
h �xed t ≥ 0 and ∀r ≥ 0, β(r, t) → 0 as t → +∞.De�nition 3 (ISS). A system of the form ẋ = f(x, u) is said to be Input-to-State Stable (ISS)if there exist some β ∈ KL and γ ∈ K su
h that ‖x(t, x0, u)‖ ≤ β(‖x0‖, t)+γ(‖u‖∞), ∀u ∀x0.De�nition 4 (Pra
ti
al stability). A system of the form ẋ = f(x, p) where p is a �xedparameter, is said to be pra
ti
ally stable if there exist some β ∈ KL and a positive 
onstant

c(p) su
h that ‖x(t, x0, u)‖ ≤ β(‖x0‖, t) + c(p), ∀x0.De�nition 5 (0-GAS). A system of the form ẋ = f(x, u) is said to be 0-Globally Asymptot-i
ally Stable (0-GAS), if there exists some β ∈ KL su
h that ‖x(t, x0, 0)‖ ≤ β(‖x0‖, t), ∀x0.De�nition 6 (AG). A system of the form ẋ = f(x, u) has the Asymptoti
 Gain property(AG), if there exists some α ∈ N0 su
h that lim sup
t→+∞

‖x(t, x0, u)‖ ≤ α(‖u‖∞), ∀u ∀x0.De�nition 7 (CLF). For a system of the form ẋ = f(x, u), a 
ontrol Lyapunov fun
tion is afun
tion V that is 
ontinuous, di�erentiable, positive-de�nite, proper, and su
h that for all x,there exists u for whi
h the dire
tional derivative along the traje
tory satis�es V̇ (x; u(x)) :=

∂V
∂x

· f(x, u(x)) ≤ −γ(‖x‖) where γ is a 
lass K−fun
tion.3. System Des
riptionA swit
hed a�ne system has the form:
ẋ(t) = A0x(t) + B0 +

m
∑

i=1

ui(t)(Aix(t) + Bi) (1)where ui(t), i = 1, . . . ,m are 
omponent values of the 
ontrol u(t) ∈ U = {0, 1}m and
x(t) ∈ R

n represents the state value at time t. Ai and Bi are real matri
es of appropriatedimensions. As previously 
laimed, the most studied 
ase in the literature is the parti
ular
ase Bi = 0, ∀i ∈ N≤m. In this situation, all the subsystems (following the �nite values of u)4



share a 
ommon and unique equilibrium: the origin. The aim of this paper is to explore the
ase where Bi are all distin
t from 0 and for whi
h no 
ommon equilibrium 
an be de�ned,e.g. DC-DC 
onverters.System (1) belongs to the 
lass of nonsmooth systems for whi
h the notion of solution 
anbe properly de�ned and generalized in the sense given by Fillipov [32, 33℄. The generalizedsolutions are de�ned by 
onsidering the following relaxed system:
ẋ(t) = A0x(t) + B0 +

m
∑

i=1

ui(t)(Aix(t) + Bi) with ui(t) ∈ [0, 1] (2)where the 
ontrol domain is now the 
onvex hull 
o(U) of the original one. A link betweenthe solutions of the system (1) and those of the system (2) 
an be established by a densitytheorem in in�nite time [34℄:Theorem 1. If z is a global solution of (2) starting from z0 and ε : [0, +∞) → (0, +∞)is 
ontinuous, then there exists a solution x of (1), starting from x0 ∈ B(z0, ε(0)) su
h that
‖z(t) − x(t)‖ < ε(t) for all t ∈ [0, +∞).Therefore, swit
hing laws u ∈ L∞([0, +∞), U) (where L∞ denotes the Bana
h spa
e of allessentially bounded measurable fun
tions) exist su
h that the traje
tory of the system (2) 
anbe approa
hed as 
lose as desired by the one of the system (1). For this reason, the operatingpoints set of the swit
hed system (1) denoted by Xref , is de�ned as the set of equilibriumpoints of the system (2):

Xref =
{

xref ∈ R
n : A0xref + B0 +

m
∑

i=1

ui
ref (Aixref + Bi) = 0, ui

ref ∈ [0, 1]
}

. (3)This set de�nes the 
ontrol targets for the state of the system (1).It is worth noting that none of the 
ontrols uref ∈ 
o(U)\U from (3) and 
orrespondingto an equilibrium xref , is admissible for the swit
hed system (1). The out
ome is that theswit
hed system state x 
annot be maintained on xref by a 
ontrol taking its values in U(unless the time duration between swit
hings tends towards 0). Consequently, if the targetfor the swit
hed system is an operating point xref , the asymptoti
 behavior of the traje
toriesof (1) is 
hara
terized by: 5



• a 
y
le near xref if a dwell time 
ondition is applied on the swit
hings (i.e. a lower limitexists for the time duration between swit
hings);
• an in�nite swit
hings sequen
e with a vanishing time duration between swit
hings as

t → ∞.These features 
on
ern indire
tly most of the 
ontrol designs whi
h use an averaged model[2, 3, 35℄.4. Sampled 
ontrol strategiesMany 
ontrol strategies like optimal [7, 11, 9℄, predi
tive [13, 36℄, sliding mode [37℄ orstabilizing 
ontrols [38, 6, 5℄ 
an be investigated to steer the state of the system (1) near ade�ned operating point xref ∈ Xref . As shown in [9℄, some singularities known as singularar
s that render parti
ularly hard the optimal 
ontrol synthesis, appear in the resolutionof optimal 
ontrol problems for the system (1) or (2). This 
ertainly explains why dis
retetime predi
tive formulation with 
ontrol restri
ted to U or Lyapunov based approa
hes seemto be more tra
table. Our aim is not to dis
uss the advantages and/or drawba
ks of ea
hmethod. The paper fo
uses on two pra
ti
al aspe
ts: the use of sampled swit
hed laws andthe guarantee of stability margins.For a given xref ∈ Xref , let us de�ne the 
hange of 
oordinates z = x− xref . The system(1) or (2) 
an be rewritten in the form:
ż = A(u)z + B(u) (4)with A(u) = A0 +

∑m
i=1 uiAi and B(u) = A0xref + B0 +

∑m
i=1 ui(Aixref + Bi).Suppose that the following assumption is satis�ed:Assumption 1. A 
ontrol Lyapunov fun
tion V is known for the system (4) with a 
ontroldomain relaxed to co(U).Assumption 1 implies that a 
ontinuous time state feedba
k strategy:

u∗ = κ(z) ∈ co(U) (5)6



exists su
h that the system (4) is globally asymptoti
ally stable (GAS). On
e the origin isrea
hed, i.e. the target xref in x−
oordinates, the relation u∗ = uref ne
essarily holds.From Assumption 1, we 
an dedu
e three sampled swit
hed 
ontrol strategies:1. Pulse-Width Modulation strategy is a simple way to apply a 
ontrol de�ned by (5)to the swit
hed system. For a given sample period Ts, the ith 
omponent of the 
ontrol
u is approximated by:

vi(t, Ts) =
∞
∑

k=0

I[tk, tk+ui
k
Ts[(t), ∀t ∈ R

+ (6)where IA(.) stands for the indi
ator fun
tion whi
h takes the value 1 when t ∈ A and 0otherwise, tk = kTs and uk = u(tk).2. Steepest des
ent strategy 
onsists in 
hoosing at time tk, k ∈ N, the most de
reasingdire
tion of the CLF V among the �nite values given by u ∈ U :
v(t, Ts) =

∞
∑

k=0

uk I[tk, tk+1[(t), ∀t ∈ R
+ (7)where uk = arg min

u∈U
V̇ (zk; u) (8)with V̇ (zk; u) the derivative of V in the dire
tion given by A(u)zk + B(u).3. Predi
tive strategy minimizes, over a horizon NH and among a �nite set of sequen
es,

V (zk+NH
) from the 
urrent position zk:

v(t, Ts) =
∞
∑

k=0

uk I[tk, tk+1[(t), ∀t ∈ R
+ (9)where uk = arg1 min

uk,uk+1,··· ,uk+NH−1∈UNH

V (zk+NH
) (10)with arg1 the �rst argument of the optimal sequen
e uk, uk+1, · · · , uk+NH−1.Note that all the proposed swit
hing strategies de�ne expli
itly or impli
itly a state feedba
k
ontrol law:

v(t, Ts) = κs(t, z(t), Ts). (11)7



Whi
h stability guarantees 
an be given for these three strategies? To answer this ques-tion, 
onsider the 
losed loop obtained from one of the three feedba
ks v. The resulting exa
tdis
retization of (4) at time tk, k ∈ N, 
an be written as:
zk+1 = As(κs)zk + Bs(κs). (12)When the 
hosen strategy is the predi
tive or the steepest des
ent, As(κs) = eA(uk)Ts and

Bs(κs) =
(

∫ Ts

0 eA(uk)(Ts−τ)dτ
)

B(uk) with uk given in (8) or (10). For the PWM strategy, theright side expression is obtained re
ursively sin
e this strategy de�nes a pie
ewise 
onstant
ontrol on ea
h interval (tk, tk+1) depending on the value uk, given in (6).De�nition 8 (Level sequen
e and sublevel set sequen
e). For a sequen
e {z0, · · · , zN} oflength N + 1 generated by the system (12) from an initial 
ondition z0, let us de�ne the levelsequen
e by:
Lk(z0) = V (zk), k ∈ N≤N , (13)and the sublevel set sequen
e by:

SLk
(z0) = {z : V (z) ≤ Lk(z0)}, k ∈ N≤N . (14)Following the fa
t mentioned at the end of the previous se
tion that a swit
hed system
annot be maintained on xref , it is 
lear that non-monotone de
reasing sequen
es Lk(z0),

k ∈ N≤N , may exist for some z0. Intuitively and as one 
an expe
t, 
y
li
 path is followednear the operating point xref . Thus, the notion of pra
ti
al stability seems 
onvenient to
hara
terize an attra
ting set w.r.t. the period Ts.To get some insights: for a sequen
e {z0, · · · , zN}, generated by the system (12) froman initial 
ondition z0, one 
an sear
h w.r.t. z0, the highest level LN(z0) at the end of thesequen
e that 
an be rea
hed from a lower level L0(z0). Denote this optimization problem by
PN :

PN : max
z0∈Rn

LN(z0) (15)s.t. zk+1 = As(κs)zk + Bs(κs), k ∈ N≤N−1 (16)
LN(z0) ≥ L0(z0) (17)8



Remark 1. For all N ≥ 1, the 
onstraints (16) and (17) 
an be trivially satis�ed with aninitial 
ondition z0 = 0. Therefore z0 = 0 is always a feasible argument for PN .If z∗0 is an optimal argument of PN , then L∗
N = LN(z∗0) denotes the optimum and S∗

LN
=

SLN
(z∗0) the 
orresponding sublevel set.De�nition 9. The problem PN is said to be bounded if the optimum L∗

N is �nite.From the de�nition of PN , any sequen
e {z0, · · · , zN} with z0 outside S∗
LN


learly satis�es
LN(z0) < L0(z0). The next se
tion uses this feature, 
onne
ts the asymptoti
 properties ofthe system (12) to the set S∗

LN
, N ∈ N∗, and proves pra
ti
al stability results for the system(12).5. A su�
ient 
ondition for global and pra
ti
al stabilizationLet us begin by re
alling some de�nitions:De�nition 10. A set Ω is said to be positively invariant for the system (12), if for all z0 ∈ Ω,the state sequen
e zk ∈ Ω, k ∈ N∗.De�nition 11. A traje
tory is said to approa
h a set Ω, if the distan
e d(zk, Ω) = min

ω∈Ω
‖zk −

ω‖ → 0 as k → ∞.De�nition 12. A 
losed positively invariant set Ω is said to be a global attra
ting set of (12),if for all initial 
onditions z0 ∈ R
n, the traje
tories approa
h Ω.Now, some properties 
on
erning the sublevel sets S∗

LN
, N ∈ N∗ 
an be established:Theorem 2. Under Assumption 1, if the problem PN is bounded, then S∗

LN
is a global at-tra
ting set for all traje
tories of the system (12).Proof. Consider a traje
tory (zk)k∈N of the system (12) obtained from an arbitrary initial
ondition z0. First, let us prove that S∗

LN
is a positive invariant set for all in�nite subsequen
es

(zpN+r)p∈N, r ∈ N≤N−1. Suppose that a state zr ∈ S∗
LN

exists su
h that V (zr) ≤ L∗
N <

V (zr+N). Then, zr leads to a bounded solution for PN better than the optimum, whi
h is9



absurd. Consequently, if V (zr) ≤ L∗
N then V (zpN+r) ≤ L∗

N , for all p ∈ N, whi
h means that
S∗
LN

is a positive invariant set for in�nite subsequen
es of the form (zpN+r)p∈N, r ∈ N≤N−1.Now, let show that S∗
LN

is a global attra
ting set for the system (12). Assume that anindex s ∈ N≤N−1 exists su
h that zs /∈ S∗
LN

, then two 
ases must be distinguished:
• either an index p0 ∈ N∗ exists su
h that V (zp0N+s) ≤ L∗

N then the positive invarian
eproperty of S∗
LN

implies ∀p ≥ p0 ∈ N∗, zpN+s ∈ S∗
LN

;
• or this index p0 does not exist, then, following the de�nition of L∗

N , a stri
t de
reasing ofthe sequen
e V (zpN+s), ∀p ∈ N∗ is mandatory. The relation V (zpN+s) > V (z(p+1)N+s) >

L∗
N ne
essarily holds, for p ∈ N∗. As V is also 
ontinuous and the sequen
e is bounded,a limit ℓs exists su
h that lim

p→∞
V (zpN+s) = ℓs. Assume ℓs > L∗

N . By 
ompa
tness,a subsequen
e (zϕs(pN+s))p∈N (with ϕs : N → N stri
tly in
reasing), that 
onvergesto a limit point ys 
an be extra
ted. Moreover, ys ne
essarily satis�es V (ys) = ℓs.Considering y+
s the N th iterate of ys by (12), the relation V (y+

s ) = V (ys) = ℓs alsoholds. However, V (y+
s ) = V (ys) implies that ys is a possible argument for PN whi
h isabsurd. Therefore the sequen
e (zpN+s)p∈N ful�lls lim

p→∞
V (zpN+s) = L∗

N .Sin
e all subsequen
es of the form (zpN+s)p∈N, s ∈ N≤N−1, follow one of the two aforementioned
ases, then the whole sequen
e (zk)k∈N approa
hes S∗
LN

i.e. lim sup
k→∞

V (zk) ≤ L∗
N . Therefore,from De�nition 12 and the fa
t that S∗

LN
is a positively invariant set, S∗

LN
is a global attra
tingset for the system (12).Corollary 1. A su�
ient 
ondition for the global and pra
ti
al stabilization of the sampledswit
hed system (12) is that an integer N exists su
h that PN is bounded.6. Relations of in
lusion and smallest attra
ting setA natural question 
on
erns how the sets S∗

LN
, N ∈ N∗, are imbri
ated.Theorem 3. Assume problem PN is bounded. Then ∀p ∈ N∗, the problem PpN is boundedand the following in
lusions hold:

S∗
LpN

⊆ S∗
LN

.10



Proof. Following Remark 1, the set of 
andidates is not empty sin
e for all N , z0 = 0 isalways an initial 
andidate. Consider a sequen
e zk, k ∈ N≤pN , for any positive integer p, andsuppose that zpN /∈ S∗
LN

. As in the proof of Theorem 2, the subsequen
e V (zjN), j ∈ N≤p, isne
essarily stri
tly de
reasing and then, this sequen
e is not feasible for PpN . It implies thatthe optimal sequen
e z∗k, k ∈ N≤pN , for PpN ful�lls z∗pN ∈ S∗
LN

(and a fortiori z∗0). Then PpNis bounded sin
e PN is bounded.One might expe
t a stri
t in
lusion between the sets S∗
LN

. This is not the 
ase in generaland it is easy to exhibit an example showing that a relation as L∗
N ≥ L∗

N+1,∀N ∈ N∗, 
annothold. However, the upper bound L∗
1 ≥ L∗

N , ∀N ∈ N∗ remains valid when P1 is bounded.Corollary 2. Assume that a non empty set of integers I exists (ne
essarily in�nite followingTheorem 3) rendering Pi, i ∈ I, bounded. Then S∞ =
⋂

i∈I
S∗
Li

= lim inf
i→∞

S∗
Li

is the smallestattra
ting set of the system (12) given by the set of problems P.7. Robust stabilizationIn order to investigate the robustness of the proposed sampled-data 
ontrollers, an input-to-stable stability property with the sample time as input is given hereafter. Then, in the nextsubse
tion, a generalization of this result is provided in the 
ase of parameter un
ertaintiesand non-uniform sampling.7.1. Input-to-state stability w.r.t. the sample timeTheorem 4. Under Assumption 1 and assuming for every sampled period Ts, 0 < Ts ≤ Tsmax
,that an integer N(Ts) exists su
h that the problem PN is bounded, the system (12) when Ts → 0is 0−GAS.In order to establish the proof of this theorem, 
onsider the following de�nition:De�nition 13 (Supporting hyperplane). A hyperplane H of dimension (n − 1) is said tosupport a 
losed and 
onvex set M(⊂ R

n) on point y ∈
(

∂M ∩H
) if M is 
ompletely lo
atedin one of the two 
losed half-spa
es determined by H (where ∂M is the boundary of M). If11



a ve
tor λ is inward-pointing normal to this supporting hyperplane H of M on point y then
λT y = inf

z∈M
λT z.Proof. First, we show that the system (12) is GAS whatever the 
hosen swit
hed strategyis, when Ts → 0. For the PWM strategy, sin
e lim

Ts→0
v(t, Ts) = u(t) = κ(z(t)) holds almosteverywhere, the 
ontrol law 
orresponds exa
tly to the feedba
k given by the CLF. So, fromAssumption 1, the system is 0−GAS when Ts → 0.For the NH−step predi
tive strategy, the best de
reasing value for V (zk+NH

) from V (zk),when Ts vanishes, 
orresponds to the dire
tion given by arg min
u∈U

V̇ (zk; u) whi
h pre
isely 
or-responds to the steepest des
ent. A �rst order Taylor expansion 
an be used to prove thispoint. So it only remains to prove the fa
t that the steepest des
ent strategy is GAS when
Ts → 0.Noti
e that the instantaneous swit
hing law from a 
urrent position z along the traje
toryis given by arg min

u∈U
V̇ (z; u). Now, if

min
u∈U

V̇ (z; u) ≤ V̇ (z; κ(z)) < −γ(‖z‖) (18)where γ is a 
lass K−fun
tion, the GAS property holds. Note that the existen
e of thefun
tion γ is dedu
ed from the de�nition of a CLF.In order to prove the left side inequality of (18), observe that along the traje
tory, thederivative of V is given by V̇ (z(t); u) = ∂V
∂z

T
f(z, u). For a �xed z, f(z, u) = A(u)z + B(u)is a�ne w.r.t. u. So, the set de�ned by {

f(z, u), u ∈ 
o(U)
} mat
hes with the set Λ =
o{

f(z, u), u ∈ U
} and is a 
losed polyhedron. Let λ = ∂V

∂z
(z) and G its supporting hyperplaneon Λ. Denote u∗ = arg min

u
λT f(z, u). Then, on the point ρ = f(z, u∗), we have λT ρ =

min
w∈Λ

λT w. Two 
ases must be distinguished: either ρ is single, then ρ is a vertex of thepolyhedron Λ and u∗ ∈ U , or ρ is non single, then ρ belongs to an edge or a fa
e of thepolyhedron Λ. At least one vertex δ exists su
h as δ ∈ ∂Λ ∩ G (Figure 1). So, a 
ontrol
u∗ ∈ U always exists su
h that (18) holds.Corollary 3. Assuming for every sampled period Ts, 0 < Ts ≤ Tsmax

, an integer N(Ts) existssu
h that problem PN is bounded. Then, the system (12) is input-to-state stable w.r.t. the12
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lass of 
onstant input Ts.Proof. A 
lassi
al result [30℄ states that ISS is equivalent to 0-GAS property (
f. Theorem 4)and asymptoti
 gain property (the solutions are ultimately bounded) i.e. lim sup
k→∞

‖zk(z0, Ts)‖ ≤

γ(Ts) where γ is a N0−fun
tion for 0 < Ts ≤ Tsmax
. From the de�nition of S∞, de�ne the as-so
iated level L∞ = lim inf

i→∞
L∗

i . If L∞(Ts) is a 
lass N0−fun
tion for 0 < Ts ≤ Tsmax
, the resultis given by taking γ(Ts) = L∞(Ts). If not, it is always possible to de�ne a 
lass N0−fun
tion

γ by 
hoosing γ(Ts) ≥ sup
0<T≤Ts

L∞(T ) sin
e sup
0<T≤Ts

L∞(T ) is bounded and nonde
reasing forall Ts ≤ Tsmax
.Remark 2. Note that this ISS result is given for the 
lass of 
onstant input Ts.7.2. Non-uniform sampling and parameter un
ertaintiesAn improvement 
an be obtained if the 
lass of swit
hing laws is relaxed in the followingmanner: de�ne a minimum (resp. maximum) dwell time δmin (resp. δmax) as the minimum(resp. maximum) duration between two swit
hings. Let us de�ne the swit
hing time sequen
e

tk, k ∈ N, with duration 
onstraints:
δmin ≤ τk = |tk+1 − tk| ≤ δmax, (19)
orresponding to the time instants where the system (4) swit
hes from one mode to another.Assume also bounded parameter un
ertainties θ on the matri
es Ai and Bi in (4). Withoutloss of generality, the un
ertainties are given in the form:

−θmax ≤ θ ≤ θmax. (20)13



We relax the problem PN by:
PN(δmin, δmax, θmax) : max

z0,θ,τk

LN(z0) (21)s.t. zk+1 = As(⋆)zk + Bs(⋆), k ∈ N≤N−1 (22)
δmin ≤ τk = |tk+1 − tk| ≤ δmax (23)
− θmax ≤ θ ≤ θmax (24)
LN(z0) ≥ L0(z0) (25)where (⋆) = (τk, θ, κs).Remark 3. κs remains un
hanged and based on the unperturbed model (4).Remark 4. In this relaxed problem, the optimization depends on the initial 
ondition z0, theswit
hing time sequen
e tk and the parameter un
ertainties θ. Noti
e that the set of 
onstraints(22) is now time dependent following the integration duration τk.Remark 5. All the results 
on
erning the attra
ting sets S∗

Lk
remain valid sin
e the givenproofs do not depend on how the 
losed loop sequen
e (zk)k∈N is obtained from an initial guess

z0.Property 1. The optimal value of PN(δmin, δmax, θmax) is non-de
reasing w.r.t. δmax or θmaxand non-in
reasing w.r.t. δmin.Proof. It is 
lear that an optimal argument (z∗0 , θ
∗, τ ∗

k , k ∈ N≤N−1) for PN(δmin, δmax, θmax)is also an admissible argument for PN(δmin, δmax + δ, θmax) for all δ ≥ 0. The rest of theannoun
ed properties is also trivially established.Corollary 4. Assume (∆max, Θmax) > 0 exists su
h that for all δmin > 0 (∆max ≥ δmax ≥

δmin), an integer N(∆max, δmin, Θmax) exists su
h that the problem PN(δmin, ∆max, Θmax) isbounded. Then the system (12) with relaxed swit
hing laws (19) and parameter un
ertainties(20), is ISS with input (τ, θ) 
orresponding to the swit
hing duration sequen
e τ = (τ0, τ1, · · · )and the parameter un
ertainties θ. 14



Proof. The proof uses, as in Corollary 3, the equivalen
e between ISS and (0-GAS+AG) prop-erties [30℄. Taking δmin ≤ δmax → 0 and θmax → 0, 0-GAS property expressed in Theorem 4 re-mains valid with this 
lass of relaxed swit
hing laws and bounded un
ertainties. The AG prop-erty i.e. lim sup
k→∞

‖zk(z0, θ, τi, i ∈ N≤k−1)‖ ≤ γ(‖(τ, θ)‖∞) with ‖(τ, θ)‖∞ = max (sup
k

τk, θ),follows from the fa
t that the fun
tion φ(δmax, θmax) = sup
0<δmin≤δmax

L∞(δmin, δmax, θmax) isbounded and non-de
reasing w.r.t. δmax, for all δmax ≤ ∆max and respe
tively θmax, for all
θmax ≤ Θmax. Then, it is always possible to de�ne a 
lass N0−fun
tion γ by 
hoosing forexample γ(s) ≥ φ(s, s) with s = ‖(τ, θ)‖∞.8. Computational aspe
tsThis se
tion dis
usses some 
omputational aspe
ts that 
an be en
ountered when onesolves the optimization problems PN . Sin
e no assumption is made about the known CLFand sin
e the state feedba
k is generally a dis
ontinuous fun
tion of the state, the optimizationproblems PN are non-linear and non-smooth.Nevertheless, if the predi
tive or steepest strategies are 
onsidered, the feedba
k law leadsto a partition of the state spa
e w.r.t. the 
ontrol values u(z) ∈ U . Then, the smoothnessrequirement 
an be a
hieved if PN is solved for every �xed swit
hing sequen
es. In this 
on-text, additional 
onstraints related to the 
hosen swit
hing strategy must be added. Pre
iselyfor a �xed sequen
e:

• Steepest strategy: at ea
h time tk, the 
ontrol uk∗ of the 
hosen sequen
e has to verify
2m − 1 
onstraints:

V̇ (zk; uk∗) ≤ V̇ (zk; u), u ∈ U, u 6= uk∗, k ∈ N≤N−1. (26)Therefore, for a �xed sequen
e of length N , N(2m − 1) 
onstraints are added to PN .The problem is 
learly smooth in this 
ase, if the CLF is.
• NH−predi
tive strategy: at ea
h time tk, the 
ontrol uk∗ of the 
hosen sequen
e has toverify the 
onstraints:

min
uk∗,uk+1,··· ,uk+NH−1∈UNH

V (zk+NH
) ≤ min

uk,uk+1,··· ,uk+NH−1∈UNH

V (zk+NH
) (27)15



with uk 6= uk∗, k ∈ N≤N−1. The left minimization is done over 2m(NH−1) elements andthe right one over 2mNH − 2m(NH−1) elements for ea
h N element of the �xed sequen
e.As the left and right terms are 
ontinuous but not di�erentiable everywhere, a dire
tsear
h algorithm is needed in order to solve the problem (ex
ept the 
ase NH = 1: wherethe smoothness requirement is a
hieved).This 
aution 
an be avoided if, at ea
h time tk, the sequen
e uk∗, uk+1, . . . , uk+NH−1 inthe left term is �xed in advan
e. This pro
edure implies to de�ne a set of additionaloptimization problems 
orresponding to all possible sequen
es at all time tk. Then, thetotal number of optimization problems be
omes 2mNNH .
• PWM strategy: sin
e the state feedba
k laws u(z) are generally dis
ontinuous fun
tionsof the state, optimization problems are non-smooth. Nevertheless, there are two 
aseswhere PN 
an be solved without numeri
al issues: if u(z) is 
ontinuous or if u(z) ∈ Ualmost everywhere and allows to de�ne a partition of the state spa
e. In this 
ase, thesame previous methodology 
an be applied.Now, we have shown that the smoothness requirement 
an be met. It 
an be underlinedthat, for many pra
ti
al 
ases, quadrati
 Lyapunov fun
tion 
andidates 
an be exhibited.For example, in (4) as B(uref ) = 0, if A(uref ) is Hurwitz then there exists a quadrati
Lyapunov fun
tion asso
iated to the system ż = A(uref )z whi
h 
an be used with one of thegiven strategies. Passivity based 
ontrol is another way to get su
h quadrati
 CLF. It meansthat the obje
tive fun
tion and the 
onstrains are quadrati
 fun
tions. So, a quadrati
ally
onstrained quadrati
 program (QCQP) 
an be used. QCQP is a wide-studied problem in theoptimization literature having a large number of appli
ations [39℄. Relaxations of QCQP basedon semide�nite programming (SDP) and the reformulation-linearization te
hnique (RLT) 
anbe an e�
ient way to solve it. Global optimization solvers, su
h as GloptiPoly [40℄, that solvenon 
onvex global optimization problem of minimizing a multivariable polynomial fun
tionsubje
t to polynomial inequality, equality or integer 
onstraints, are parti
ularly e�
ient forQCQP. GloptiPoly allows to solve a series of 
onvex relaxations of in
reasing size, whoseoptima are guaranteed to 
onverge monotoni
ally to the global optimum. The result is an16



Table 1: Compared 
omputation timeSolver Computation Time (s)
L∗

1 L∗
4 L∗

6NL Matlab 0.98 399.2 4078Gloptipoly 1.36 3.91 14.9extremely fast solver. A 
omparison between the Non-Linear Solver fmin
on of Matlab andthe solver GloptiPoly is performed on the example given in the next se
tion. The results aresummarized for the steepest strategy 
ase in table (1).Now, if parameter un
ertainties and non uniform sampling are taken into a

ount, thelevel set 
omputed mat
hes to the worst 
ase for the dynami
s. In this 
ase, the program isnot a QCQP but a

urate polynomial approximations of (22) 
an be obtained using Taylorexpansion of e(A+∆A)(Ts+δTs) where ∆A and δTs de�ne the un
ertainties. More a

urate, apolytopi
 approximation of the dynami
 like in [26℄ 
ould be another way to deal with thisissue. If a polytopi
 approximation is used then the problem be
omes again a QCQP. So, theproposed solver remains adapted for both 
ases.9. Appli
ation9.1. DC-DC 
onverter des
ription
PSfrag repla
ements

E CL R

u D

vC

iL

Figure 2: Bu
k-boost 
onverterConsider a bu
k-boost 
onverter (Figure 2) whose state equation in 
ontinuous 
ondu
tionmode (the 
urrent passing through the indu
tan
e never falls to zero) is given by:
ẋ = A0x + B0 + u(A1x + B1)17



where x = [iL, vC ]T and
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, 0]Twith R = 50 Ω, C = 220 µF , L = 20 mH and E = 6 V .Let the target be xref = [0.24,−6]T ∈ Xref 
orresponding to uref = 0.5. As A(uref ) =

Aref = A0 + urefA1 is Hurwitz and as B(uref ) = 0, the solutions P = P T > 0 of AT
refP +

PAref + Q = 0 with Q = QT > 0 allow to de�ne quadrati
 CLFs V (z) = zT Pz for thesystem (4). Taking Q = 180× Id, one gets: P =


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
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. In the next two subse
tions,the results of the proposed approa
hes are illustrated through the steepest and predi
tivestrategy. The sample time is Ts = 2.5.10−5s.9.2. Attra
ting set estimations for the sampled strategiesFigure 3 shows a system traje
tory using the steepest des
ent feedba
k law and attra
tingsets determined by PN for N = 1 (red dashed line) and N = 2 (magenta solid line). Clearly,

S∗
L2

is an a

urate approximation of the all system traje
tories. Using Glotipoly software, the
omputation times are respe
tively 1.36 s and 0.97 s.
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Figure 3: Traje
tory in the state-spa
e and attra
ting sets for N = 1 and N = 2For a re
eding horizon NH �xed to NH = 2, Figure 4 shows the 
ase of the predi
tivestrategy. The bla
k solid ellipse is the estimation for a sequen
e of length N = 1. The18



estimation is still large 
omparing to the limit 
y
le. For a sequen
e of length N = 8, a betterapproximation is obtained. The 
omputation times, still using Glotipoly are respe
tively 1.6s and 29.103 s.
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Figure 4: Traje
tory in the state-spa
e and attra
ting sets for N = 1 and N = 8Figure 5 represents the evolution of L∗
N in fun
tion of N for the steepest (solid blueline) and the predi
tive strategies (dashed red line). Observe that the relations S∗

LpN
⊆

S∗
LN

, ∀p ∈ N∗ hold as stated in Theorem 3. While the relation L∗
N ≥ L∗

N+1 does not hold ingeneral. Figure 5 also shows that the above given approximations of the attra
ting sets area

urate although in the 
ase of predi
tive 
ontrol, this estimation appears not parti
ularlytight around the 
y
le. This 
an be 
learly justi�ed by the fa
t that there exists at least onesequen
e starting inside the sublevel set that rea
hes the level. This sequen
e is obviously thesolution of PN . In view of the evolution of the 
urve in Figure 5, an in
rease of N seems notto lead to a better estimation of S∞.In Figure 6, the evolution of L∗
2 w.r.t. Ts is drawn for both strategies. This �gure 
learlyillustrates the ISS property of the system. Finally, Figure 7 shows the exponential growth ofthe 
omputation time for the two strategies.9.3. Robust attra
ting set estimations for sampled strategiesSuppose now that all parameters L, R, E, C are known with 5% of un
ertainties and thatthe sample time Ts is time dependent with variation of 5% around its nominal value. Theproblem PN(δmin, δmax, θmax) gives the attra
ting set in the worst 
ase. Figure 8 shows insolid line the level sets 
orresponding to L∗

N for N = 1 (red line) and N = 8 (bla
k line) and19



1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

PSfrag repla
ements Predi
tivestrategy
Steepeststrategy

Figure 5: L∗

N
versus N

0 1 2 3 4

x 10
−3

0

100

200

300

400

500

600

700

800

900

PSfrag repla
ements Predi
tivestrategy Steepeststrategy
Figure 6: L∗

2
versus Ts ∈ [2.5, 4500]µsin dashed line the respe
tive level sets for the system without un
ertainties. This �gure alsoshows two traje
tories, simulated with a uniformly distributed random law for the sampletime variations, and two parameters sets inside the 5% of un
ertainties.It is worthy noti
ing that, as expe
ted, the attra
ting sets for the system with parametersvariations are bigger than the ones for the nominal system. However, the boundedness of theoptimization problem guarantees the stability of the perturbed system.10. Con
lusionIn this paper, robust stability for the 
lass of swit
hed a�ne systems has been investigated.Based on the existen
e of a CLF for the relaxed 
ontrol problem, sampled swit
hed strategieshave been proposed to stabilize the swit
hed a�ne system around an operating point.20
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onds) versus N
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Figure 8: Traje
tories in the state-spa
e and attra
ting sets for N = 1 and N = 8 in 
ase of un
ertaintiesThe proposed framework allows to 
ompute tight global attra
ting sets for the whole sys-tem traje
tories, by solving a set of 
onstrained optimization problems. Numeri
al aspe
tshave been dis
ussed and it has been shown that pra
ti
ally, the optimization problems re-veal to be QCQP or non 
onvex polynomial optimization problems for whi
h e�
ient globaloptimization solvers exist. In addition, ISS results with respe
t to the sample time and theparameter un
ertainties are formulated. In doing so, some stability margins are guaranted.The numeri
al illustration given on a bu
k-boost 
onverter shows that quadrati
 CLF
an be easily designed for DC-DC 
onverters. Applying the steepest or predi
tive strategies,numeri
al results also showed that it is not ne
essary to 
onsider a high order in PN to get agood a

ura
y in the over-approximation of S∞.As future work, a 
omparison between optimal 
ontrol and the given swit
hing laws wouldbe of interest in order to measure the ratio performan
es over design easiness.21



Referen
es[1℄ R. Middlebrook and G. Wester, �Low-frequen
y 
hara
terization of swit
hed DC-DC
onverters,� IEEE Trans. Aerosp. Ele
tron. Syst., vol. 9, pp. 376�385, 1973.[2℄ R. Middlebrook and S. Cuk, �A general uni�ed approa
h to modeling swit
hing 
onverterpower stages,� Int. J. Ele
tron., vol. 42, no. 6, pp. 521�550, 1977[3℄ S. Sanders, J. Noworolski, X. Liu, and G. Sender, �Generalized averaging method forpower 
onversion 
ir
uits,� IEEE Trans. Power Ele
tron., vol. 6, no. 2, pp. 151�159,1991.[4℄ F. Castanos, R. Ortega, A. van der S
haft, and A. Astol�, �Asymptoti
 stabilizationvia 
ontrol by inter
onne
tion of port-Hamiltonian systems,� Automati
a, vol. 45, pp.1611�1618, 2009.[5℄ H. Sira-Ramirez, R. Marquez-Contreras, and M. Fliess, �Sliding mode 
ontrol of DC-to-DC power 
onverters using re
onstru
tors,� Int. J. Robust Nonlinear Control, vol. 12,pp. 1173�1186, 2002.[6℄ P. Ri
hard, H. Cormerais, and J. Buisson, �A generi
 design methodology for sliding mode
ontrol of swit
hed systems,� Nonlinear Anal. Theory Methods Appl., vol. 65, no. 9, pp.1751�1772, 2006.[7℄ A. Be

uti, G. Papafotiou, and M. Morari, �Optimal 
ontrol of the bu
k DC-DC 
onverteroperating in both the 
ontinuous and dis
ontinuous 
ondu
tion regimes,� in Pro
. of the45th IEEE Conf. on De
ision and Control. San Diego, USA, 2006, pp. 6205�6210.[8℄ R. Loxton, K. Teo, V. Rehbo
k, and W. Ling, �Optimal swit
hing instants for a swit
hed-
apa
itor DC/DC power 
onverter,� Automati
a, vol. 45, pp. 973�980, 2009.[9℄ D. Patino, P. Riedinger, and C. Iung, �Pra
ti
al optimal state feedba
k 
ontrol law for
ontinuous-time swit
hed a�ne systems with 
y
li
 steady state,� Int. J. Control, vol. 82,no. 7, pp. 1357 � 1376, 2009. 22



[10℄ E. Silva, B. M
Grath, D. Quevedo, and G. Goodwin, �Predi
tive 
ontrol of a �ying
apa
itor 
onverter,� in Pro
. of IEEE Amer. Control Conf., vol. 1. New York City,USA, 2007, pp. 3763�3768.[11℄ A. Be

uti, G. Papafotiou, R. Fras
a, and M. Morari, �Expli
it hybrid model predi
tive
ontrol of the DC-DC boost 
onverter,� in Pro
. of the 37th IEEE Power Ele
troni
sSpe
ialist Conferen
e, vol. 1, 2007, pp. 2503�2509.[12℄ P. Colaneri and R. S
attolini, �Robust model predi
tive 
ontrol of dis
rete time swit
hedsystems,� in Pro
. of the IFAC Workshop Psy
o, Saint Petersburg, 2007.[13℄ M. Lazar and R. Keyser, �Non-linear predi
tive 
ontrol of a DC-to-DC 
onverter,� inPro
. of the Symposium on Power Ele
troni
s, Eletri
al Drives, Automation and Motion,2004.[14℄ B. Baumru
ker and L. Biegler, �MPEC strategies for optimization of a 
lass of hybriddynami
 systems,� J. Pro
ess Control, vol. 19, pp. 1248�1256, 2009.[15℄ D. Liberzon and A. Morse, �Basi
 problems in stability and design of swit
hed systems,�IEEE Control Syst. Mag., vol. 19, no. 5, pp. 59�70, 1999.[16℄ R. DeCarlo, M. Brani
ky, S. Petterson, and B. Lennartson, �Perspe
tives and results onthe stability and stabilizability of hybrid systems,� in Pro
. of the IEEE, vol. 88, no. 7,2000, pp. 1069�1082.[17℄ D. Liberzon, Swit
hing in systems and 
ontrol, Birkhäuser, Boston, 2003.[18℄ R. Shorten, F. Wirth, O. Mason, K. Wul�, and C. King, �Stability 
riteria for swit
hedand hybrid systems,� SIAM Rev., vol. 49, no. 4, pp. 545�592, 2007.[19℄ Z. Ji, L. Wang, and G. Xie, �Quadrati
 stabilization of swit
hed systems,� Int. J. Syst.S
i., vol. 36, no. 7, pp. 395�404, 2005.[20℄ M. S. Brani
ky, �Multiple Lyapunov fun
tions and other analysis tools for swit
hed andhybrid systems,� IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 475�482, 1998.23



[21℄ J. Daafouz, P. Riedinger, and C. Iung, �Stability analysis and 
ontrol synthesis forswit
hed systems: a swit
hed Lyapunov fun
tion approa
h,� IEEE Trans. Autom. Con-trol, vol. 47, no. 11, pp. 1883�1887, 2002.[22℄ W. P. Dayawansa and C. F. Martin, �A 
onverse Lyapunov theorem for a 
lass of dy-nami
al systems whi
h undergo swit
hing,� IEEE Trans. Autom. Control, vol. 44, no. 4,pp. 751�760, 1999.[23℄ J. Geromel and P. Colaneri, �Stability and stabilization of 
ontinuous-time swit
hed linearsystems,� SIAM J. Control Optim., vol. 45, no. 5, pp. 1915�1930, 2006.[24℄ M. Johansson and A. Rantzer, �Computation of pie
ewise quadrati
 Lyapunov fun
tionsfor hybrid systems,� IEEE Trans. Autom. Control, vol. 43, no. 4, pp. 555�559, 1998.[25℄ J. Hespanha and A. S. Morse, �Stability of swit
hed systems with average dwell-time,�in Pro
. of the 38th IEEE Conf. on De
ision and Control, 1999, pp. 2655�2660.[26℄ L. Hetel, J. Daafouz, and C. Iung, �Stabilization of arbitrary swit
hed linear systemswith unknown time-varying delays,� IEEE Trans. Autom. Control, vol. 51, no. 10, pp.1668�1674, 2006.[27℄ G. Deae
to, J. Geromel, F. Gar
ia, and J. Pomilio, �Swit
hed a�ne systems 
ontroldesign with appli
ation to DC-DC 
onverters,� IET Control Theory Appl., vol. 4, no. 7,pp. 1201�1210, 2010.[28℄ Y. Lee and B. Kouvaritakis, �Re
eding horizon 
ontrol of swit
hing systems,� Automati
a,vol. 45, pp. 2307�2311, 2009.[29℄ F. Blan
hini, �Set invarian
e in 
ontrol,� Automati
a, vol. 35, pp. 1747�1767, 1999.[30℄ E. Sontag and Y. Wang, �New 
hara
terizations of input-to-state stability,� IEEE Trans.Autom. Control, vol. 41, no. 9, pp. 1283�1294, 1996.[31℄ E. Sontag, Nonlinear and Optimal Control Theory, springer Berlin ed., 2008, 
h. Inputto State Stability: Basi
 Con
epts and Results.24



[32℄ A. Filippov, �Di�erential equations with dis
ontinuous righthand sides,� Mathemati
sand its Appli
ations (Soviet Series), vol. 18, 1988.[33℄ J. Cortes, �Dis
ontinuous dynami
al systems,� IEEE Control Syst. Mag., vol. 4, pp. 36�73, 2008.[34℄ B. Ingalls, E. Sontag, and Y. Wang, �An in�nite-time relaxation theorem for di�erentialin
lusions,� in Pro
. of the 2002 Ameri
an Mathemati
al So
iety, vol. 131, 2003, pp.487�499.[35℄ F. Huliehel and S. Ben-Yaakov, �Low frequen
y sampled data models of swit
hed modeDC-DC 
onverters,� IEEE Trans. Power Ele
tron., vol. 6, no. 1, pp. 55�61, 1991.[36℄ S. Mariethoz, S. Almer, M. Baja, A. G. Be

uti, D. Patino, A. Wernrud, J. Buisson,H. Cormerais, T. Geyer, H.Fujioka, U. T. Jonsson, C.-Y. Kao, M. Morari, G. Papafotiou,A. Rantzer, and P. Riedinger, �Comparison of Hybrid 
ontrol te
hniques for bu
k andboost DC-DC 
onverters,� IEEE Trans. Control Syst. Te
hnol., vol. Preprint, pp. 1�20,2010.[37℄ D. Pagano and E. Pon
e, �Sliding mode 
ontrollers design through bifur
ation analysis.�in Preprints of 8th IFAC Symposium on Nonlinear Control Systems NOLCOS 2010.,Italy, september 2010, pp. 1284�1289.[38℄ H. Sira-Ramirez and R. Ortega, �Passivity-based 
ontrollers for the stabilization of DC-to-DC power 
onverters,� in Pro
. of the 34th IEEE Conf. On De
ision and Control,vol. 4. New Orleans, USA, 1995, pp. 3471�3476.[39℄ J. Lasserre, Moments, Positive Polynomials and their appli
ations. Imperial CollegePress, 2010, vol. 1.[40℄ D. Henrion and J. Lasserre, �Gloptipoly: Global optimization over polynomials withmatlab and sedumi,� ACM Transa
tions on Mathemati
al Software, vol. 29, no. 2, pp.165�194, June 2003. 25




