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ABSTRACT

Two second-order bandpass delta-sigma A/D modulators have been implemented in a  BiC-

MOS process [1] to demonstrate the feasibility of converting a 10.7 MHz radio IF signal to digital

form. The circuits, based on switched-capacitor biquads, demonstrated 57dB SNR in a 200 kHz

bandwidth when clocked at , dissipating 60mW from a 5V supply.

I. INTRODUCTION

There is broad industrial interest in A/D conversion at the intermediate-frequency (IF) stage of a

radio, because that allows digital channel-select filtering, gain control and demodulation. The

robustness of the digital circuitry gives manufacturing advantages and allows the use of sophisti-

cated algorithms, which are especially useful with digitally coded transmissions and where multi-

ple transmission standards are in use. Because this is a new application area for A/D conversion

the system-level trade-offs needed to specify the converters are still a matter of debate. This work

contributes by demonstrating experimentally that it is feasible to make a fully monolithic con-

verter with the bandwidth required for a per-channel GSM radio or several channels of IS-54 [2]

and enough dynamic range to simplify gain-control and adjacent-channel rejection. It also sug-

gests a preferred clocking scheme for high speeds.

We extrapolate from the experimental part to suggest that it is practical to build a converter able to

cover an entire  band for narrowband personal communications basestations or the

 that covers all of the North American cellular standards from IS-95 to AMPS, and with

enough dynamic range to do all channel selection and gain control functions on the digital side.

For telephony there are two distinct variants of the radio design problem — one for base stations

and the other for the terminals. For example, the base station is expected to handle several chan-

nels, while the terminal generally operates only on a single channel; on the other hand power con-

straints are tighter in the terminal. The converter we demonstrate is aimed at a single channel of

GSM telephony and has low enough power for a terminal, and the wider-band converters we

extrapolate to are intended for base stations.

The A/D conversion required can be done at baseband on quadrature channels (using a “zero-IF”

receiver), but (for the multi-channel problem) that requires precision matching and (for both base
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stations and terminals) is susceptible to a variety of DC instabilities and electromagnetic compati-

bility problems. Alternately a bandpass signal can be directly converted either with a conventional

or noise-shaped converter. Noise-shaped (or ) converters, which we demonstrate here, consist

of a filter and comparator in a feedback loop as in Fig.  1, and are oversampled. (that is, sampled

well above the Nyquist rate for the bandwidth required). The type of filter used in the loop is a key

determinant of the performance possible.

II. PRIOR ART

Monolithic bandpass delta-sigma modulators have been reported [3][4][5] with centre frequencies

of 455kHz, 2MHz, and 50MHz, and with bandwidths of 10kHz, 30kHz and  respectively

and resolutions of nine to fourteen bits. These bandwidths are suitable for broadcast and voice

AM, IS-54 cellular telephony and GSM telephony respectively. Another device obtained a 

SNR performance with a  centre frequency [6] and  bandwidth using off-chip

inductors as resonators.

Using oversampling with wideband signals necessarily implies fast clocking, so there is a ques-

tion as to how wideband a monolithic realization can be. Brandt and Wooley showed that a 1MHz

bandwidth is possible in the lowpass case with a MASH architecture [7], and Song demonstrated

switched-capacitor (switched-C) bandpass filtering at 10.7MHz [8]. This work demonstrates in a

second-order modulator prototype that a 10.7MHz bandcentre is possible, with 57dB SNR perfor-

mance in a 200kHz band.

When channel-select filtering is to be performed after A/D conversion in a radio system it is of

prime importance to have high linearity, or else strong interferers may intermodulate in the con-

verter and mask the desired signal. This study focuses on switched-C technology because it is

proven for high resolution and linearity at baseband and because it is a monolithic technology

capable of delivering precision analog performance. Inductor- [6][9][10] or transconductor-based

[5] technologies can be expected to dominate at very high speeds, but are more difficult in that

they involve off-chip components or tuning; their linearity is also compromised by “intersymbol

interference” effects in the pulse feedback used as well as in the loop filter. Switched-C should be

expected to dominate up to some upper bandwidth limit, and this work helps estimate that limit.

This paper presents and compares (experimentally) two different types of second-order switched-

C bandpass  modulators. The two structures both use fully differential BiCMOS op-amps with

continuous-time common-mode feedback, but employ different clock phasings to experiment
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with trade-offs between active and passive sensitivities.

This paper is concerned with A/D modulation. To make a complete A/D converter decimation is

also required. Brandt and Wooley have recently shown that this can be done at low power for a

similar set of specifications: with 11.3MHz data and a 3V power supply they consumed only

6.5mW. [11] Extrapolating to our higher data rate suggests that 30mW should be sufficient.

II. MODULATOR DESIGN

The basic one-bit modulator consists of a quantizer and a loop filter as shown in Fig.  1 [12]. Tra-

ditionally the filter block would just be an integrator resulting in a first-order lowpass  modula-

tor. By choosing the loop filter [3][10][13] we can shape the noise away from any frequency band

desired. Modelling the quantizer by a linear white noise source, (shaded area in Fig.  1) we can

derive a noise transfer function  and a signal transfer function . In terms of the loop-

filter gain 1 they are

  ...(eq.1)

and 

  ...(eq.2)

and the overall output is a superposition of shaped noise and signal

  ...(eq.3)

For high-order filters or spectrally rich inputs the quantization noise is approximately white, [14]

so a deep notch in  makes for a good signal-to-noise ratio in a narrow band.

For a simple second-order BP  modulator with a centre frequency at one-quarter of the sam-

pling frequency 

  ...(eq.4)

the filter response is given by  giving noise gain 

and signal gain . The output spectrum of the resulting ideal modulator with an

1. A quantizer also has a signal-dependent equivalent gain, which we have included in .
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input sine wave at midband is shown in Fig.  2. For the simulation a small random dither was

added to the input (in practical designs thermal noise is sometimes exploited to do this) to whiten

the quantizer noise and remove tones.

This particular loop filter, which is the one we implemented, has a precise mathematical relation-

ship to the well-understood first-order lowpass  modulator: a change of variable [15]

  ...(eq.5)

gives 

   ...(eq.6)

The mathematical properties of the first-order lowpass prototype delta-sigma converter using 

are fairly well understood, including a simple stability guarantee and properties of the limit

cycles. These properties carry over to a bandpass version designed according to (eq. 5), with the

square term in the substitution giving the bandpass modulator the behaviour of two interleaved

first-order converters, each of them “highpass” because of the negative sign in (eq. 5). 

This transformation gives our circuit the noise-shaping behaviour of a first-order lowpass con-

verter, with  improvement in SNR for each octave of oversampling. It is also the one that

guarantees the stability of Longo’s fourth-order circuit [4] and gives it  shaping.

FILTER STRUCTURE

There are many filter structures implementing a given , and with an ideal realization of the

filter all of them would give modulators with identical behaviour. In the presence of errors in

capacitor ratios and of finite gain and bandwidth in op-amps, though, they behave differently. The

most important effect is that the positions of the filter poles are affected in different ways by these

errors: if filter poles are at the wrong frequency (wrong angle, in the -plane) then the noise notch

(see Fig.  2) will not be properly centered, and if they move off the unit circle (wrong magnitude

of the complex pole, in the -plane) then the notch will be shallower. Fig.  3 plots effects of pole

position on overall SNR. It is also known that the effects of poles moving inside the unit circle are

subtly worse than those of moving slightly outside [16][17][18] because an “over-stable” filter

allows “deadbands” where limit cycles persist, and this can cause intermodulation distortion. 

The “lossless discrete integrator” (LDI) loop of Fig.  4 has its poles at the zeros of , where

 is the loop gain. The numerator of  is , and the equal coefficients
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on the squared and constant terms force the roots to be exactly on the unit circle. This seems very

desirable, since the noise notch of the modulator will then be very deep. We use a nominal value

, for which the centre frequency should be , but gain errors can affect this. Jantzi’s

modulator, and one of ours, use this structure. On the other hand, gain errors in either of the inte-

grators contribute to frequency errors, which can be even worse for SNR (Fig.  3).

Our second version of the modulator uses a “Forward Euler” (FE) loop as shown in Fig.  5. It con-

sists of two “delaying” integrators  rather than the mix of delaying and non-delaying

( ) integrators in the LDI structure. The second integrator has to be heavily “damped”

with a feedback  because the basic FE loop is highly unstable, and the poles of the loop are at

the roots of . We choose  to get a pole at . The dis-

advantage of this circuit is that errors in  and  can now move poles above or below the unit cir-

cle; there is some compensation from the fact that gain errors in the first integrator and  have no

first-order effect on notch frequency. More significantly, we show in the next section another off-

setting advantage in that one of the op-amps used to implement the circuit can settle more quickly.

The FE and LDI loops trade off active and passive sensitivities differently.

Longo [4] used a switched-C implementation of a pure delay to make the loop shown in Fig.  6,

which has characteristic equation . This is exactly the inverse of the LDI loop in the sense

that the angle (frequency) of the poles is fixed, but the magnitude (notch depth) is sensitive to loop

gains. This structure can only be used for the particular case of bandpass modulators centered at

.

SC FILTER DESIGN

The loops of Fig.  4 to Fig.  6 can be implemented in switched-C technology in a number of ways,

resulting in different demands on the op-amps. We compare them first using an optimistic simple

model of an op-amp as a pure transconductor, modelling the effects of finite op-amp gain and

slew-rate in a second pass. 

The LDI loop, in particular, can be implemented either with the timing used in [3], where both op-

amps are connected together during settling or so that they are decoupled [19]. We decoupled the

op-amps for settling, obtaining the modulator design shown in Fig.  7. (ignore clock phasings in

parentheses “()” and connections shown as dashed lines at this point) Component values are as

given in Table 1.
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The settling behaviour of this circuit is analyzed using the simplified version in Fig.  8, where a

single-ended representation of the second op-amp A2 is shown as connected in each phase. (A1

sees the same connections on the opposite phases) Notice that the amplifier has to simultaneously

handle an input transient and drive a load on phase 1, and then does nothing on phase 2. This is

inefficient, unless more complex circuitry is used either to multiplex a single amplifier [19] or to

turn off power in the idle phases. Modelling the amplifier as a pure transconductor with conduc-

tance  the settling time-constant on phase 1 would be

  ...(eq.7)

where input and load parasitics  and  play important parts. For our amplifier representative

values are:  ,  ,  and other values are as in Table 1, giv-

ing  so that  settling will take about .

The second-order settling of the coupled structure of [3] makes a formula more cumbersome, but

using the same component values a linear model settles to the same  in 22.4ns.

Longo’s implementation uses the delay circuit of Fig.  10. The op-amps here also settle input and

load transients simultaneously, so that broadly similar performance can be expected, though the

loop gains are lower and hence settling should be slightly better. Both op-amps are active on both

phases. Using the same op-amp with all load and integrator capacitors equal at  (making

them significantly smaller would compromise phase margin) gives . Some care has to

be taken because the op-amp is open-circuit between clock phases.

The second filter topology that we chose to implement, using Forward Euler phasing, is very sim-

ilar to the LDI: Fig.  7 shows both, with clock phasings for FE shown in parentheses where they

differ from the LDI, and with the extra “damping” capacitor  shown connected with dashed

lines. There is also a sign change in the overall feedback, shown with the comparator output signs

in parentheses. The main advantage of this structure is that the op-amps settle their input tran-

sients on one phase, then drive a load on the next. The time-constant for A2 driving its load, which

is large because of , is

  ...(eq.8)
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which, for our sample values, comes to . This is the worst-case time-constant for this

circuit. and A1 is significantly faster because of its lower load. When only one op-amp contributes

settling errors, the net effect is better by a factor of roughly two.

The advantage that LDI phasing has, of having the magnitude of the filter poles independent of

capacitors, comes at the expense of connecting input and output on the same phase giving the op-

amps only half a clock cycle to settle. With a 42.8 MHz non-overlapping clock each op-amp will

have to settle in less than 11.7 ns, and amplifier transconductance will have to be higher than in

the example. We designed with a nominal small-signal .

OP-AMP SLEWING AND GAIN

The effects of finite opamp gain, bandwidth and slew rate were considered when determining the

equations that would predict the phase and magnitude errors in the two different biquads. The

effects of finite gain and bandwidth on switched-C biquads for op-amps with zero output imped-

ance were first investigated by Martin and Sedra [20] and the results were generalized to transcon-

ductance opamps by Ribner and Copeland [21]. Neither of these methods considered slew rate

limited opamps or input and output parasitic capacitances.

Delta-sigma modulators differ in settling behaviour from linear filters in that the internal states are

driven by a great deal of high-frequency energy from shaped quantization noise, and so slew on

every cycle even with small input signals. For this reason we model the effect of slew-rate limiting

as a loss of a few nanoseconds at the beginning of every cycle during slew, followed by linear set-

tling. The transition from slew to linear settling is of course gradual, so we model the op-amp as

having an “effective” transconductance  during settling, which is lower than the small-sig-

nal . 

The effects of op-amp bandwidth on overall performance are dominated by the worst-case settling

studied in the previous section, but are affected by both amplifiers. Table 2 below summarizes, for

the LDI case, the net effects on pole positions (both magnitude and angle) of DC gain , finite

slew rate  and finite linear bandwidth . Slew rate and bandwidth both depend on load capac-

itance, so they are subscripted in the form  where  specifies the integrator (1 or 2) and 

the clock phase. Op-amp non-idealities contribute to pole-magnitude errors  and integrator gain

errors , defined by
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  ...(eq.9)

In the ideal integrator . Errors in the individual integrators then produce magnitude

and angle errors in the overall poles according to the formula in the first row of the table. Notice

that the gain  does not affect , as we know for LDI. The second row of the table shows how

finite gain affects  and , while the third row shows the effects of slew rate and bandwidth

(via ).

Auxiliary terms used in modelling bandwidth effects are

  ...(eq.10)

  ...(eq.11)

  ...(eq.12)

  ...(eq.13)

 is a scaling factor for the slew rate errors;  is the expected step size for slewing, which we

take to be the reference voltage for the A/D;  is the number of time-constants of linear settling

available after penalizing for slew and the “non-overlap” time ;  is the linear settling time con-

stant;  represents all the capacitors connected to the input of the opamp, not including the

input parasitic;  is the integrating capacitor;  is the parasitic capacitance at the input of the

opamp;  is the parasitic capacitance at the output of the op-amp and  is the total capacitive

load on the op-amp output, including parasitics and the feedback network. In the tables  refers

to all the capacitors which are connected from the output of the opamp to ground, not including

the output parasitic.

The errors for the FE biquad are given in Table 3 in a similar fashion.

OP-AMP AND COMPARATOR CIRCUITS

A fully differential folded cascode opamp with continuous time common mode feedback was

designed in the  BiCMOS process (Fig.  12). An infinite input impedance was required for

the switched-C filters to avoid charge leakage, so we used MOS inputs. PMOS devices were used

so that the much faster NPN bipolar devices could be used as the cascoding devices that set the
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second pole to roughly its . The simulated parameters for the folded cascode opamp are given in

Table 4.

An NMOS-NPN (non-folded) cascode has the potential for even faster operation, or for better

power efficiency, but is more sensitive to bias errors. We chose to leave it for a later revision, and

are fabricating a prototype.

The comparator (Fig.  13) was a version of an existing part [22] modified by replacing bipolar

inputs with NMOS devices so as not to load amplifier A2 at DC. (which would reduce its gain and

settling accuracy) It has approximately eight-bit accuracy at 200 MHz, which is sufficient for our

modulators, since  circuits are known to be tolerant of comparator offsets and hysteresis. It

consumes 10mW.

The overall circuit consumes 60mW (experimentally). In a time-division multiple-access receiver

application where it need only be active  of the time the average power would be under

10mW.

EXPERIMENTAL RESULTS

Fig.  14 is a photomicrograph showing both the FE (labelled “SigDel2ph” on the layout in refer-

ence to the two-phase delay around the loop) and LDI (SigDelLDI) BP∆Σ modulators. Test struc-

tures were also fabricated for an individual op-amp and a switched-C settling test circuit. The op-

amp tested alone showed a DC gain of , and the settling tester responded to a  differ-

ential step with a 10% to 90% rise-time of ; that included approximately  of slewing.

A typical output spectrum, one for the LDI BP∆Σ modulator when clocked at 45 MHz, is shown

in Fig.  15a. It broadly matches the simulated spectrum in shape (with a fatter noise band attribut-

able to the larger variance expected from using a larger number of bins), but has significant tone

power well out of band at about  and  of the clock frequency. The FE modulator produces

a very similar spectrum, as shown in Fig.  16a.

Fig.  15b and Fig.  16b are expanded in-band plots measuring in-band SNR and intermodulation

distortion for the two modulators. Two input tones, each 6dB below the saturation level, were

applied in-band. (this was also the case for Fig.  15a and Fig.  16a, but the two tones are too close

to distinguish on that scale) Clock and input frequency generators were asynchronous, so the

input tones are not confined to a single FFT bin, and there is also sideband power from both fre-

quency sources. Note that the spectra in these experiments are obtained digitally, rather than (as is

f t
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commonly done) simply by running the digital stream into an analog spectrum analyzer. The latter

technique can be misleading because it hides the effects of clock jitter.

In-band noise is evaluated by averaging noise power over the band of interest. The noise compo-

nents are averaged over FFT bins of bandwidth . Intermodulation

products are below the noise for the LDI case but peaks are clearly visible in the FE case (Fig.

 16b) at about . The third-order intercept point is thus  relative to the saturation

level for the FE case, and somewhat higher for the LDI.

The in-band spectra slope to the left, which shows that the notch is slightly low, and we attribute

this partly to capacitor ratio errors and partly to finite DC gain and incomplete settling. The prob-

lem is much more evident for the LDI case, which we would expect from our settling analysis. 

In order to separate the effects of DC errors and incomplete settling, bit streams were obtained for

both modulators at several different clock frequencies. A Hanning-windowed 65536 point. FFT

was performed on the bit streams and the notch frequency was determined to give the points plot-

ted in Fig.  17. Assuming that the  gain from the test op-amp applied to the modulators, a

+0.3% error in the capacitor ratio Cd/Ci2 and +0.2% error in the capacitor ratio Cr/Ci1 were esti-

mated to be the capacitor ratio mismatches, resulting in a small frequency error even at low clock

rates. These mismatches are quite plausible given the small unit capacitor value we are using. The

plot shows that settling is essentially complete below about 30MHz and that the FE structure is

still good to 1% at the 42.8MHz clock needed for a 10.7MHz IF. 

Signal levels were varied at a constant clock frequency of 20MHz, where settling is complete,

producing the plot of SNR against signal level shown as Fig.  18. There is a large deviation from

the straight-line behaviour predicted by the linear model and by simulations: this is similar to the

characteristic already known for first-order lowpass ∆Σ modulators in the presence of a small off-

set, and which should be expected for second-order bandpass. It suggests that tones tend to be out-

of-band at low input levels, making for anomalously good SNR.

Fig.  19 summarizes the effect of changing clock rate on SNR in a given bandwidth. At low clock

rates there is insufficient oversampling to get good SNR, and when the clock rate exceeds about

 the notch frequency drifts off-centre and reduces SNR again. The measurements were

made with the signal 10dB below saturation (where Fig.  18 shows that we only have about 45dB

of SNR) The best SNR is obtained for the FE structure near the nominal 42.8MHz, and is about

47dB relative to the -10dB input signal, giving a peak SNR of 57dB relative to the modulator’s

22.5MHz 32768⁄ 686Hz≈

60dB– +28dB

55dB

40MHz
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saturation level. The curve shows experimental SNR together with the mathematical model of

Table 2 and Table 3. The mathematical fit is not nearly as good as for Fig.  17 because SNR mea-

surements are affected by non-ideal tone behaviour whereas notch frequencies are set accurately

by the behaviour of the linear filter.

OBTAINING A 1MHZ BANDWIDTH

As mentioned in the Introduction, some base-station applications need bandwidths of about

1.2MHz. Pushing the technology of this paper to 80MHz clocking (as simulation suggests may be

possible) would give an oversampling ratio of , which is quite low. The

high linearity requirements of digital radio may be a problem for the multi-bit or MASH

approaches that tend to be used at low oversampling rates, but digital correction to the 20-bit level

has recently been demonstrated for a three-state feedback A/D [23]. On the assumption that this is

possible for bandpass conversion, and designing a noise transfer function according to the method

of [3] with split notches and a conservative 5dB of out-of-band gain, Fig.  20 shows the SNR per-

formance that can be expected for modulators of order four, six and eight. Although an eighth-

order modulator sounds very aggressive, recall that it has the dynamics of a fourth-order lowpass

converter, of which examples are in commercial use.

CONCLUSIONS

Switched-capacitor bandpass  technology appears to be practical for A/D conversion of radio

IF signals at , although a production version of the chip would need an improved op-

amp (particularly to improve slew rate, and also to reduce power consumption) to get the perfor-

mance margin needed to cover process and temperature variation. We have initial simulations

showing that an op-amp almost twice as fast should be possible in the same process, using a sim-

ple rather than folded cascode, and a test version is in fabrication.

A second-order modulator gives a 57dB SNR in a 200kHz bandwidth when clocked at the nomi-

nal , but shows pronounced non-ideal noise behaviour. Using a fourth-order structure

(shown to work at lower clock rates in [3] and [4]) with the high-speed technology demonstrated

here should give improved bandwidth and SNR, which in turn should give more margin and flexi-

bility to the system designer. A bandwidth of about 1MHz seems attainable with present technol-

ogy, and at high order would benefit from the use of a three-level quantizer.

Forward-Euler switch phasing gives a significant speed advantage over LDI, and its sensitivity to

ratio errors does not appear to seriously degrade SNR. High-order quantizers with high relative

40MHz 1.2MHz⁄ 33.3=

∆Σ

10.7MHz

42.8MHz
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bandwidths tend to be less sensitive to magnitude errors in the poles, so the FE structure should

work even better there. A structure like that of [4][24] may have even better speed, but was not

compared on the same process as the LDI and FE circuits. At high clock rates it is more important

to design switched-C circuits for rapid amplifier settling than for low passive sensitivities.
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Figure Captions

Figure 1: Block diagram of delta-sigma modulator.

Figure 2: Output spectrum of ideal second order modulator. The abscissa contains 2048 bins.

Figure 3: Linear model prediction of SNR for a 2nd-order modulator which has errors in the mag-
nitude and angle of its filter pole. (input at -6dB)

Figure 4: The LDI loop, where pole magnitude is capacitor-insensitive

Figure 5: The Forward-Euler loop.

Figure 6: The two-delay loop.

Figure 7: 2nd-order BP∆Σ modulators in their differential form a) LDI modulator b) FE modulator
use clock phasing in () and dashed lines.

Figure 8: Op-amp loading in our LDI structure which has op-amps settling in parallel rather than
series

Figure 9: Op-amp loading in Jantzi structure.

Figure 10: Unit delay circuit used in Longo’s structure.

Figure 11: Worst case op-amp loading in FE structure.

Figure 12: Folded cascode op-amp with continuous time CMFB.

Figure 13: Pseudo-ECL latched comparator.

Figure 14: Photomicrograph of test chip a) Folded cascode opamp b) Switched-C unity gain con-
figuration c) Forward Euler BPDS modulator d) LDI BPDS modulator

Figure 15: Output spectrum of the LDI modulator when clocked at 45MHz. Two tone inputs each
at -6dB a) output spectrum, abscissa contains 32768bins b) expanded view of in-band
spectrum

Figure 16: Output spectrum of the FE modulator when clocked at 45MHz.Two tone input each at
-6dB. a) output spectrum, abscissa contains 32768bins b) expanded view of in-band
spectrum

Figure 17: Percentage error in notch frequency resulting from non-ideal OTAs. Points are experi-
mentally measured and lines are mathematically predicted by equations in Table 2 and
Table 3

Figure 18: SNR in a 200 kHz bandwidth centered at 5MHz while being clocked at 20MHz.

Figure 19: SNR in a 200kHz band centered at 1/4 the sampling frequency. (input at -10dB) Points
are experimentally measured and line are mathematically predicted.

Figure 20: Simulated SNR versus input amplitude for 4th-, 6th- and 8th-order 3-level modulators
with an oversampling ratio of 33.
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Figure 2 Output spectrum of ideal second order modulator. The abscissa con-
tains 2048 bins.
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Figure 8 Op-amp loading in our LDI structure which has op-amps set-
tling in parallel rather than series
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Figure 14 Photomicrograph of test chip
a) Folded cascode opamp
b) Switched-C unity gain configuration
c) Forward Euler BPDS modulator
d) LDI BPDS modulator
Page 21 of 27



0

-20

-40

-60

-80

-100

0

-20

-40

-60

-80

-100

0 11.25 22.5 11.2511.025 11.475
Frequency (MHz)

Po
w

er
 p

er
 b

in
 

(d
B

 r
el

at
iv

e 
to

 f
ul

l s
ca

le
)

Frequency (MHz)

Po
w

er
 p

er
 b

in
(d

B
 r

el
at

iv
e 

to
 f

ul
l s

ca
le

)

Figure 15 Output spectrum of the LDI modulator when clocked at 45MHz. 
Two tone inputs each at -6dB
a) output spectrum, abscissa contains 32768bins
b) expanded view of in-band spectrum

0

-20

-40

-60

-80

-100

0 11.25 22.5

0

-20

-40

-60

-80

-100

11.2511.025 11.475
Frequency (MHz) Frequency (MHz)

Po
w

er
 p

er
 b

in
(d

B
 r

el
at

iv
e 

to
 f

ul
l s

ca
le

)

Po
w

er
 p

er
 b

in
(d

B
 r

el
at

iv
e 

to
 f

ul
l s

ca
le

)

Figure 16 Output spectrum of the FE modulator when clocked at 45MHz.Two 
tone input each at -6dB.
a) output spectrum, abscissa contains 32768bins
b) expanded view of in-band spectrum
Page 22 of 27



 

 

Sampling frequency (MHz)

%
 e

rr
or

 in
 n

ot
ch

 f
re

qu
en

cy
(∆

ω
ο/

ω
ο)

0

-1.0

-2.0

-3.0

-4.0

-5.0

-6.0

-7.0
10 20 30 40 50 60 70

LDI

FE

Figure 17 Percentage error in notch frequency resulting from non-ideal OTAs. 
Points are experimentally measured and lines are mathematically 
predicted by equations in Table 2 and Table 3

55

50

45

40

35

30

25

0-5-10-15-20-25

SN
R

 (
dB

)

Input amplitude (dB)
(relative to full scale)

linear model

simulated

FE

LDI

Figure 18 SNR in a 200 kHz bandwidth centered at 5MHz while being 
clocked at 20MHz.
Page 23 of 27



 

FE

LDI

10 20 30 40 50 60 70

50

45

40

35

30

Sampling Frequency (MHz)

SN
R

 (
dB

)

9dB/octave

Figure 19 SNR in a 200kHz band centered at 1/4 the sampling frequency. 
(input at -10dB) Points are experimentally measured and line are 
mathematically predicted.

100

90

80

70

60

50

40

30

20
0-10-20-30-40-50-60

Input amplitude (dB)
(relative to full scale)

SN
R

 (
dB

)

4th-order

6th-order

8th-order

Figure 20 Simulated SNR versus input amplitude for 4th-, 6th- and 8th-order 3-
level modulators with an oversampling ratio of 33. 
Page 24 of 27



Tables

Table 1:    Nominal capacitor values for both modulators

Table 2:    Effects of non-ideal OTAs on the LDI Biquad

Table 3:    Effects of non-ideal op-amps on the FE biquad

Table 4:    Simulated Performance of the Folded Cascode Amplifier
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Tables

Table 1: Nominal capacitor values for both modulators

Component

Value (pf) 0.2 0.2 0.5 0.3 0.5 0.6 0.6

Table 2: Effects of non-ideal OTAs on the LDI Biquad

errors due to finite DC 

gain
, 

errors due to finite BW 

and SR.

, 

Ca0 Cb0 Ci1 Ci2 Cx Cr Cd
*

z M1M2≈

∆θ
M1 M2 RP1P2–+( ) 2⁄

M1M2 M1 M2 RP1P2–+( )2
4⁄–

-------------------------------------------------------------------------------------
 
 
 

≈

R
Cr

Ci1
--------

Cx

Ci2
--------=

Mn 1
Cin n,

Ci n, Ao

----------------–≈ Pn Mn

Ci n, Cp+

Ci n, Ao

-----------------------–≈

Mn 1 λnζne
Kn–

–≈ Pn 1 αnζne
Kn–

–≈

λn

Co n, Cin n, Cp Ci n,+ +( )
Cin n, Cp+( ) Ci n, Co n, Clp+ +( ) Ci n, Co n, Clp+( )+

----------------------------------------------------------------------------------------------------------------------------=

αn

Cin n, Cp Ci n,+ +( ) Ci n, Co n, Clp++( )
Cin n, Cp+( ) Ci n, Co n, Clp++( ) Ci n, Co n, Clp+( )+

----------------------------------------------------------------------------------------------------------------------------=
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Table 3: Effects of non-ideal op-amps on the FE biquad

, 

errors due to finite DC 

gain
, 

errors due to finite BW 

and SR.

Table 4: Simulated Performance of the Folded Cascode Amplifier

Parameter Value

DC gain 57dB

Unity-gain frequency 500MHz

Phase-margin 75o

Settling time to 0.1% 9.0ns

Slew-rate 1000V/µs

Differential output range 5.2V

Power consumption 26mW

measurements for a 1pF load capacitor

z M1M2 RP1P2 DP2M1–+≈

∆θ
M1 M2 DP2–+( ) 2⁄

z
2

M1 M2 RP2–+( )2
4⁄–

----------------------------------------------------------------------
 
 
 

≈

R
Cr

Ci1
--------

Cx

Ci2
--------= D

Cd

Ci2
--------=

Mn 1
Cin n,

Ci n, Ao

----------------–≈ Pn Mn

Ci n, Cp+

Ci n, Ao

-----------------------–≈

Mn 1 λnζn 2, e
Kn 2,–

–≈

Pn 1 αnζn 1, e
Kn 1,–

–( ) 1 λnζn 2, e
Kn 2,–

–( )≈

λn

Co n,
Co n, Clp Ci n, Cp Ci n, Cp+( )⁄+ +
---------------------------------------------------------------------------------=

αn

Cin n, Cp Ci n,+ +

Cin n, Cp Ci n, Clp Ci n, Clp+( )⁄+ +
-----------------------------------------------------------------------------------=
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