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Abstract

In this paper, we compare and analyse three switched integra-
tor control schemes for integrating plants. The schemes attempt
to circumvent a fundamental limitation of linear time invariant
(LTI) control, namely, that the closed loop response to a step
change in the reference must overshoot if both the controller
and the plant contain an integrator. We show that, for a simple
example, the switched schemes all have significantly less over-
shoot than their LTI counterpart. The stability properties of the
schemes are also studied. It is first shown that bounded input
bounded state stability is guaranteed. Sufficient frequency do-
main conditions for asymptotic stability are then derived using
passivity analysis.

1 Introduction

Consider the standard feedback system shown in Figure 1. If
either the plant ������� or the controller 	
����� contains an inte-
grator, then the steady state error in response to a constant ref-
erence signal will be zero. In the case where constant input
disturbances are present, integral action is required in the con-
troller. In this case, if ������� also contains an integrator, then �
must satisfy the following integral constraint [11]:��� ����������������� (1)

This constraint implies that there will always be overshoot in
the step response of such a system.���  "! #$�  �!% & '(�)

Figure 1: LTI feedback control loop.

It has been observed in [3], that whilst some constraints hold
for any internally stabilising controller, others, such as the ex-
ample given above, are dependent on the linear time invariance
of the controller. For such constraints, which apply only to LTI
control, a natural question to ask is to what extent can nonlin-
ear or time-varying control be used to circumvent these con-
straints. In this paper, we consider the use of switched linear

control, a particular type of nonlinear control, to circumvent
constraint (1).

The control problem to be considered in this paper can be sum-
marised as follows: The plant contains at least one integrator
and can be represented by a strictly proper transfer function������� . It follows that * + ,

-�. � �������/�102�
The input to the plant is disturbed by �3����� , where4 �3����� 4�5 �7698;:=<
�;> (2)

and �7698;: is known a priori. Large changes are permitted in
the reference signal ?������ , and the control aim can be loosely
described as maintaining good error performance with ‘reason-
able’ control energy. This should be achieved in the presence
of either reference or disturbance changes.

We analyse and compare three switched control schemes of the
form shown in Figure 2. The corresponding switched integra-
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Figure 2: Block diagram of the switched integrator schemes.

tors shall be referred to as the resetting, saturating, and holding
integrators. The motivation for all of the schemes is that inte-
gral action in the controller is required only for rejecting step
disturbances, not for reference tracking. Hence, constraint (1)
can be ameliorated by switching the integrator off when the
feedback system is responding to a change in the reference.
The schemes use the size(s) of the error and/or the integrator
output to decide when to switch off the integrator.1

We note that the use of resetting to improve the performance
of linear controllers is not new. Previous examples include the

1We assume that we have no direct knowledge of whether a change in the
reference or the disturbance has occurred.



Clegg integrator [2] and the first order reset element (e.g., [1]).
The resetting integrator scheme which is studied in this paper
is a slight generalisation of the switched linear controller pro-
posed in [3], and was also studied in [8]. In [3], it was shown
that, for the particular case of ��� ����������� and ������� ���
	 � ,
the switched scheme ameliorates constraint (1).

Saturating integrators have also been used in control applica-
tions in the the past. In particular, they have been used in
anti-windup control to reduce the effects of actuator saturation.
Here, the saturation serves a different purpose. Hence, the sat-
uration limit may be much smaller than the available actuation.

We also introduce a holding integrator scheme which combines
the switching conditions of the resetting and saturating integra-
tors. This scheme attempts to combine the performance of the
resetting scheme with the stability properties of the saturating
scheme.

An outline of the paper is as follows: We first describe the
three schemes in detail and introduce the state space models
which are used throughout the paper. Then, in Section 3, we
briefly address the technical issue of existence of solutions to
the differential equations governing the closed loop systems.
In Section 4, we analyse and compare the performance of the
schemes for the case in which ��� ����������� and ������� ��
	 � .
Time responses for a particular choice of ��� and ��� are given
in Section 5, and Section 6 is concerned with stability proper-
ties of the schemes. Section 7 concludes the paper.

2 Switching Details and System Descriptions

In this section, we discuss the resetting, saturating and holding
schemes in detail. The schemes can be described by the block
diagram in Figure 2 with the following switching and resetting
conditions:

Reset. integ.: sw. closed iff
4 � 4������ (R)

integ. reset when sw. open

Sat. integ.: sw. closed iff
4 � 4�����

or
� � � � (S)

Hold. integ.: sw. closed iff4 � 4������ and (
4 � 4�����

or
� � � � ) (H)

Note that for the holding and saturating schemes, it is assumed
that

4 � � �7� 4�5��� , and that we refer to the three switching condi-
tions as switching conditions (R), (S) and (H), respectively.

In each of the three schemes, ��������� and ��� are chosen so that
the two frozen linear systems (the systems which are obtained
by ‘freezing’ the switch in the open or the closed position) are
asymptotically stable. The parameters

��� > ��� and
��

should also
satisfy certain constraints (lower bounds). These are discussed
in detail in Section 2.2.

We now describe the state space models which will be used
throughout this paper. Remove the switched integrator from
the scheme in Figure 2. Let � be the state of the remaining
subsystem consisting of the feedback arrangement of ��� �����
and ������� and let � ����$> ?! #" . The (full) switched integrator

scheme can be modelled as follows:$� �&%'�)(�*+� � (�*,� (3)

$� � - ������?�.=	�� �;> sw. closed >��> sw. open > (4)� ���0/1 ���2� for the resetting scheme only, (5)2 ��	�� > � � ?�.=	�� � (6)

Here,
� � 1 � denotes the sequence of times at which the switch

opens and *�3 is the 4 th column of * . We let 5 �6� �7"/> �  #" ,�%1�98 % *+�.'��� 	 �;: > �* �98 *+�<*��� ���=: and
�	 ��� 	=�> �

We note that 5 is the system state, � is the system input, and% and
�% are Hurwitz matrices. It should also be noted that the

state space realisations above may, in general, be non-minimal.
However, they are detectable and stabilisable.

2.1 Notation

Consider the linear feedback system obtained by keeping the
switch closed at all times. �@?������ denotes the response at � to
a unit step disturbance. � � ����� , � ?������ and

�7� ����� are similarly
defined signals. We let ��A? �CBEDGF ��4 �
?������ 4 � . � A? and

� A� are
defined similarly. � A� ��BEDGF � . � � ����� � , and corresponds to the
maximum overshoot of the step response with the switch closed
( < � ). HJIEK ����� is the sensitivity transfer function of the system,
i.e., the transfer function from ? to � with the switch closed.L
M#L 3ON@P denotes the induced Q  norm of a transfer function.
The upper case characters are frequently used to denote the
Laplace transform of a signal, for example, R ����� , S
����� .
2.2 Constraints on the Switching Thresholds

The switching thresholds
���

,
���

and
��

should be chosen so that
at least the following condition is satisfied:

Steady State (SS) Condition
For step input disturbances bounded by ��698;: , the steady state
error is zero.

We can also impose further conditions such as the following:

Bounded Step Disturbance (Bdd. Step Dist.) Condition
For

� � �7�9� � and ?������ � � the switch remains closed for step
input disturbances bounded by ��698;: .
Bounded Disturbance (Bdd. Dist.) Condition
For

� � �7� � � and ?������ � � the switch remains closed for any
input disturbance bounded by ��698;: .
For the resetting scheme, we note that when the switch is open,� ����� � � . It follows that the maximum steady state error with
the switch in the open position is ��698;:�	
����� �7� , and hence that
the SS condition is met iff�@��T �7698;:��� � �7� � (7)

This inequality is strict because ������� approaches its steady state
value asymptotically.



Similar inequalities can be derived [7] for
���

and
��
, and for

each of the other conditions. These inequalities are summarised
in Table 1. We note that, for the holding scheme, the constraints
on
���

and
��

both have to be satisfied for the corresponding
condition to be met.

SS BSD BD���?������ T �
	
����� �7� �@A? L �������EHJIEK ����� L 3ON@P�	?������ 
 1
� A? �������� � -�������� � -��- ��� 3ON@P���?������ T � �	 / ?������ �?������ ��� � � � � A? L �������EHJIEK ����� L 3ON@P

Table 1: Lower bounds on
���

,
���

and
��

for the Steady State
(SS), Bdd. Step Dist. (BSD) and Bdd Dist. (BD) conditions.

3 Existence of Solutions for the Schemes (Well-
posedness)

Before we analyse the three switched schemes it is important to
consider whether they are well-posed, i.e., whether a solution
to the differential equations governing the closed loop systems
exist. The question of existence is discussed in some detail in
[7]. This section contains a brief summary of the main conclu-
sions in [7].

By using arguments similar to those in [5], it may be shown
that the saturating scheme has solutions in the sense of
Carathéodory provided that ? and � are piecewise continuous
and bounded.

It is not clear whether solutions exist for the resetting and hold-
ing schemes (as described in Section 2). However, in each of
these cases, existence may be guaranteed by adding hysteresis
to the switch. We let � T � and define � � by

� � ���;> � ���  !" !# ��> 4 ������� 4�5 � >��> 4 ������� 4 
 � ($� >� � ����% > � �;> otherwise �
We assume that � � � �&%/> � � � � . Hysteresis can be added to the
switch in the resetting integrator scheme by replacing switch-
ing condition (R) by the following:

sw. closed iff � � ���;> �@� ���6��� (RH)

Similarly, we can add hysteresis to switching condition (H) as
follows:

sw. closed iff � � ���;> ��� ���6� and � 4 � 4����� or
� � � �7�;� (HH)

When these switching conditions are used, existence is guaran-
teed if � and ? are bounded, and ? is piecewise right continuous
with a bounded derivative and a minimum piece size. Since
the hysteresis level � can be arbitrarily small, we assume that� �2� in Sections 4 and 5 to simplify the analysis.

4 Example Performance Comparison

In this section, we compare the performance of the three
schemes, when ������� � �
	 � and ���������,����� T � . We note

that this example was studied in [3], and that, in this case, the
controller switches between proportional (P) and proportional
integral (PI) control.

Following [3], we assume that with the PI controller, the closed
loop system has distinct real poles. Let the poles be at .('J� and.(' � , where '7� T ' � T � , and let )��*' �
	�'7� . In this case, the
sensitivity function with the switch closed is given by

HJIEK ������� � �� � (���� � (���� � � ���� ($'7� � ��� ($' ��� �
We note that ���9�+'7� ($' � and ��� �,'7�-' � .
The following lemma summarises some useful properties of
the PI controlled system responses. The reader should refer to
Section 2.1 for definitions of

� ? , � A? etc.

Lemma 4.1 For the example described above,

(a)
� A? � � and

� ?������ decreases monotonically from � to .+�
(b) � A� �.) ��/10�3210 (c) � A? � �'7� ) 0�3210
(d)
� A� �+' �4) 0�3210 (e)

L �������EHJIEK ����� L 3ON@P �,5 �@A?
(f)

���� ��� �������EHJIEK ������
���� 3ON@P �6�

Proof See [7]. 6
We let

�� ���7698;: , �@� ���7698;:�	
��� and
��� �+5 �7698;:�	
��� . These

values are the lower bounds given in the SS column of Table 1,
and hence give the ‘limiting performance’. It can be shown [7]
that

�@�
satisfies the bdd. step dist. condition but not the bdd.

dist condition.
���

satisfies the bdd. dist. condition.

We note that, if ?������ � �? , �3����� � �� , and the PI closed loop has
initial conditions ����� � � and

� ��� � � , then for �0� T � ,
����� � (=�0� �/�2����� � ��� � ���0��� (87 ���( � ��� � ��9 �
?7���0� � and (8)� ��� � (=�0� �/�2����� � � �7� ���0���J( � ��� � � (87 ���( � ��� � ��9 � ?����0���;� (9)

We compare the overshoot (in 2 ) of the three schemes when�3�����/�2� and ?������ is a step of height
�? . Without loss of general-

ity, we assume that
�? T � . For a given pair of eigenvalues ( .('J�

and .(' � ), we define 2 A� � �?�>�'7� >�' � � as the overshoot for the re-
setting integrator scheme. The functions 2 A- and 2 A� are defined
in a similar manner for the saturating and holding schemes, re-
spectively.

When
�? is ‘small’, the overshoot for all three schemes is the

same as the overshoot with PI control, i.e.,
�? � A� . Expressions

for the overshoot when
�? is ‘large’ follow:

The overshoot in the resetting integrator scheme is given by [3],2 A� � �?�>�'7� >�' � ��� �@� � A� � �7698;:'7�;: �=< ' �'7�&> for
�? 
 �@� >

where : � �?)���� �0��(.)���% � ) ��/10�3210 . Graphs of the relative over-
shoot 2 A� 	 �? against

�? are given in Figure 3 for ' � � � and'7� � ��� ��>�5�>�@�> and � � . We observe that as ' � increases, the
overshoot with PI control decreases. Also, the resetting integra-
tor behaves as a linear (normal) integrator over a smaller range



of values for
�? (i.e., the length of the flat section of the graph

decreases). We note that, in the nonlinear region, 2 A� decreases
hyperbolically.
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Figure 3: Resetting scheme - overshoot vs. reference step size
for ' � �6� and several values of ' � .
For the saturating scheme, saturation will not occur for

�? ��� 	 � A� . If
�? 
 �� 	 � A� , the switch will open and close exactly

once. This can be seen from the following argument:

Let � � be the (first) time at which the integrator saturates and
the switch opens. Since

��
satisfies the SS condition, the switch

will close at some time �E� T � � . �����0��� � � because ������� is
continuous and changes sign at ���2�E� . From Equations (8) and
(9) we get ��������� �� �
?����>. �0� � (10)� ������� �� � ?����!. �0� �J( �� >
for � T �0� . Since the expression for

� ����� decreases monoton-
ically (Lemma 4.1) from

��
to � the switch will remain closed

for � T �0� .
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Figure 4: Saturating scheme - overshoot vs. reference step size
for ' � �6� and several values of ' � .
From Equation (10), it follows that

2 A- � �?�>�'7� >�' � �/� �� � A? � �7698;:'7� : - < ' �'7�&> for
�? 
 ��� A� >

where : - �?)�� � ) 0�3210 . Plots of 2 A- 	 �? against
�? are given in

Figure 4 for ' � � � and several values of ' � .

We now consider the holding scheme. It can be shown that���@� A� � � % � �7698;: � ��
. This implies that the integrator will

not saturate (when ? is a step and �3����� � � ), and so the hold-
ing scheme is similar to the resetting scheme with a switching
threshold of

���
. It follows that2 A� � �?�>�'7��>�' ����� ��� � A� � 5 �7698;:'7� : � < ' �'7� > > for

�? 
 ��� >
and so the overshoot is twice that of the resetting scheme. We
note, however, that

���
satisfies the bdd. step dist. condition

whilst
���

satisfies only the bdd. dist. condition. If
���

is doubled
so that it is equal to

���
(and satisfies the bdd. dist. condition),

then the overshoot of the two schemes will be the same. Graphs
of 2 A� 	 �? as a function of

�? are given in Figure 5.
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Figure 5: Holding scheme - overshoot vs. reference step size
for ' � �6� and several values of ' � .
For the case of ' � � � and ' � � 5 ( ��� � @ , ��� ��� ), the
relative overshoot for each scheme is plotted against

�? in Fig-
ure 6. The overshoot with (pure) PI control is also shown. We
observe that the saturating and holding integrators operate in
their linear region for a greater range of values of

�? , and hence
do not perform as well as the resetting scheme for small step
references. However, for large values of

�? , all three switched
schemes offer a significant improvement over PI control.

5 Example Time Responses

We simulate the three schemes with ���9�*@ , ��� ��� , ������� ��
	 � , �7698;:1�;� , �@� � ��� 5 � , ��� � ��� � � , and
�� �;� . The

reference signal is a step of height
�? � � arriving at � � @ s,

and the input disturbance is set to zero. Figure 7 shows ������� and� ����� . The responses for the P and PI controllers are also shown.
From the plots it is clear that all of the switched integrators are
acting in their nonlinear region, and have less overshoot than
pure PI control. In this case, the resetting scheme is the best,
with an overshoot of approximately 1 percent. We note that
a plot of the percentage overshoot for the three schemes as a
function of

�? was given in Figure 6.

6 Stability

In this section, some stability results for the switched schemes
are presented. We first consider bounded input bounded state
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(BIBS) stability (defined in [7]) and then asymptotic stability.
For the resetting and holding schemes, the stability of the mod-
ified schemes (with hysteresis) is analysed.

The following theorems state that the switched schemes are
BIBS stable:

Theorem 6.1 If % and
�% are Hurwitz, then the resetting inte-

grator system described by Equations (3) to (6) with switching
condition (RH) is BIBS stable.

Proof The proof of this theorem is given in [8] for the case
in which the hysteresis level � �2� . A more detailed version, is
given in [6, Sect. 2.3]. The proof for the case in which � T � is
almost identical. The only difference is that, when the switch
is closed,

4 ������� 4J� �@� ( � instead of
4 ������� 4J� �@� . This affects

only the definition of ��� in [8] or ��� in [6]. 6
Theorem 6.2 If % is Hurwitz, then the switched linear system
described by Equations (3), (4) and (6) with switching condi-
tion (S) or (HH) is BIBS stable.

Proof Suppose that � and ? are bounded. The design of the
switching conditions, (S) and (HH), ensures that

4 � ����� 4�5��� < � .
Since % is Hurwitz, system (3) is BIBS stable. It follows that� is bounded because � and

�
are bounded. 6

When the exogenous inputs, ? and � , are set to zero the
switched integrator scheme of Figure 2 is equivalent to that

shown in Figure 8. We shall refer to this system as the un-
forced switched system.

� ����� is the closed loop transfer func-
tion from

�
to 2 (with the integrator removed) and is given by

� �����/� �������� ( �������0��� ����� �1	
�����,. % � % � *+��� (11)

Remark 1
�% is Hurwitz implies that � � � � �7�	�� � and that� � �7� and ��� have the same sign. Hence, we may assume,

without loss of generality, that
� � �7� T � .

It is possible to find examples of the switched schemes for
which the unforced system contains a limit cycle [6, 8]. So
although the schemes are always BIBS stable, they are not, in
general, asymptotically stable. In the following, passivity anal-
ysis is used to derive some sufficient conditions for asymptotic
stability.
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Figure 8: Block diagram of the unforced switched integrator
schemes.

We first consider the unforced resetting integrator scheme. It is
well known that the feedback connection of two output strictly
passive and zero state observable systems is asymptotically sta-
ble [4, Lemma 6.7]. The next theorem states that, although
the resetting integrator is only passive (not strictly passive),
the switching conditions are such that output strict passivity
of
� ����� implies asymptotic stability of the closed loop.

Theorem 6.3 Consider the unforced resetting integrator sys-
tem described by Equations (3) to (6) with switching condition
(RH). Suppose that % and

�% are Hurwitz and that �� T � s.t.
��� � � � ��� �  .�� 4 � � ��� � 4 � 
 ��� (12)

Then 5 � �2� is globally asymptotically stable.

Proof The following is an outline of the proof in [7]. We
assume that 2 is controllable from

�
to simplify the analysis.

Since % is Hurwitz, condition (12) implies that
� ����� is output

strictly passive [9, Thm. 2.3]. It follows that � a matrix � 
 �
s.t. � ��� � � � � "���� satisfies the following inequality2 [10, 13]:

� ��� � ��� ��� .�� ��� � � �7��� 5 � "� � ����� 2 �����>.�� 2 � ���������;� (13)

We now consider the resetting integrator. We note that ��� T �
(Remark 1), and let � � � � � � � � 	���5@��� � . When the switch is
closed

$�7� � � ������� � � ������������� . This is also true when the switch
is open because then

� � � . � � � � ������� is continuous when the
switch closes but it may decrease instantaneously when the in-
tegrator is reset. From this, it can be deduced that

�7� � � ��� ���!.��7� � � � �7��� 5 � "� . � ����� 2 ��������� (14)

2If the realisation is also observable, then � a matrix ��� � .



� ��� � ��� ��� and �7� � � ��� ��� are positive, and hence, they may be
removed from Inequalities (13) and (14). The inequalities can
then be added to yield

. �7� � � � �7���!.�� �7� � � �7��� 5 � "� . � 2 � ���������;�
It follows that 2 � Q ��� ��> �  uniformly in � , and therefore that2 � Q � .
From Theorem 6.1, 2 and

$2 are bounded. Thus ??�� � 2 � � is
bounded, and by Barbalat’s Lemma, 2 ��� � . So � � � T � s.t.,
for � T � � , 4 2 ����� 4>���@� and the switch is closed. Asymptotic
stability follows from the stability of the linear system with the
switch closed (

�% is Hurwitz). 6
We note that Theorem 6.3 includes the asymptotic stability re-
sults of [3] since, in this case, condition (12) is satisfied with
� �6�
	
��� .
In the case of the saturating scheme and the holding scheme
(with switching condition (HH)), the unforced switched system
can be written as a feedback connection of the linear system��� � ����� 	 � and a (bounded) time varying gain � ����� � � ��> � � .
Although absolute stability results, such as the circle criterion
[12, 4], apply to this class of systems, they cannot be used here
because the system is not asymptotically stable when � �����/�2� .
The following theorem resembles Popov’s criterion:

Theorem 6.4 Consider the unforced switched system de-
scribed by Equations (3), (4) and (6) with switching condition
(S) or (HH). Suppose that % and

�% are Hurwitz. If ��� T �
and 	 
 � with . �
 not a pole of

� ����� s.t.

� �����/� � (��0� (�	���� ��� � ������
and

��� � � � ��� �  .� 
 � < � ��� > (15)

then 5 � � � is asymptotically stable for all 53� �7� satisfying4 � � �7� 4�5��� .

Proof See [7]. 6
Let � � � � � ��� � ��� � � ��� �  and �/� � � ���

, � ��� � � ��� �  . The
above theorem implies that the saturating and holding schemes
are asymptotically stable if

�/� � �
� . ��� � � � � ��� ����� 	�� , � �  5 � ��� � �  G( � .�;� ���

If 	 T � an equivalent condition is that the plot of �/� � � 	�� .
��� � � � , which is the Popov plot of � � � � ��� � 	���� , lies below a
straight line of slope �
	�	 passing through the real axis at .+��(�� .
We have shown that the switched schemes are always BIBS sta-
ble and we have given sufficient frequency domain conditions
for asymptotic stability. In [7] we also show that Theorem 6.4
extends to the case of �3����� � � � (

4 � � 4�5 �7698;: ) and ?������ �1? � ,
but that this is not true for Theorem 6.3. The following lemma
suggests that the saturating and holding schemes are, in some
sense, more stable than the resetting scheme.

Lemma 6.5 Suppose that % and
�% are Hurwitz and that � � T� s.t. condition (12) holds. Then ��� T � and 	 
 � s.t. condi-

tion (15) holds.

Proof See [7]. 6
7 Conclusion

In this paper, the resetting, saturating and holding schemes
were studied. For the case in which the plant is an integrator
and ��� �����,� ��� , the closed loop responses to a step change
in the reference (with no input disturbance) were compared. It
was found that, in terms of the size of the overshoot in the re-
sponse, the resetting scheme was slightly better than the other
two schemes. However, all of the switched integrators offered
a significant improvement over a normal integrator.

It was shown that all the schemes are BIBS stable provided
that the two frozen linear systems are asymptotically stable.
Sufficient frequency domain conditions for asymptotic stabil-
ity were also found using passivity analysis. These conditions
suggest that the saturating and holding schemes are in some
sense ‘more stable’ than the resetting one.
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