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Abstract

Objective—The purpose of this work is to regulate the blood glucose level in Type 1 Diabetes 

Mellitus (T1DM) patients with a practical and flexible procedure that can switch amongst a finite 

number of distinct controllers, depending on the user's choice.

Methods—A switched Linear Parameter-Varying (LPV) controller with multiple switching 

regions, related to hypo-, hyper-, and euglycemia situations is designed. The key feature is to 

arrange the controller into a framework that provides stability and performance guarantees.

Results—The closed-loop performance is tested on the complete in silico adult cohort of the 

UVA/Padova metabolic simulator, which has been accepted by the U.S. Food and Drug 

Administration (FDA) in lieu of animal trials. The outcome produces comparable or improved 

results with respect to previous works.

Conclusion—The strategy is practical because it is based on a model tuned only with a priori 
patient information in order to cover the interpatient uncertainty. Results confirm that this control 

structure yields tangible improvements in minimizing risks of hyper- and hypoglycemia in 

scenarios with unannounced meals.

Significance—This flexible procedure opens the possibility of taking into account, at the design 

stage, unannounced meals and/or patients' physical exercise.
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I. Introduction

People with Type 1 Diabetes Mellitus (T1DM) generally fail to maintain glucose 

homeostasis, typically resulting in chronic hyperglycemia. This may cause severe health 

problems in later life, e.g., cardiovascular diseases, nephropathy, retinopathy, and 

neuropathy [1]. Treating T1DM with insulin is effective, but requires vigilance and may be 

difficult even for experienced patients. Insulin over-delivery may cause hypoglycemia, 

which can lead to seizures, coma and death. Automatic feedback control of blood glucose 

levels has been an active research topic since the 1970s [2], but, by the development of the 

Continuous Glucose Monitoring (CGM) [3], has gained momentum only in recent years [4]–

[7], and only lately in an outpatient setting [8]–[12]. Glucose controllers based on Model 

Predictive Control (MPC) [12]–[18], Proportional-Integral-Derivative (PID) control [19], 

[20] or fuzzy logic [21], [22] have been proposed and tested in human trials. Additional 

control schemes have been tested in silico, e.g., ℋ∞ robust control design was employed in 

[23]–[25], and by the authors in [26]–[28].

In particular the subcutaneous-subcutaneous Artificial Pancreas (AP) scheme is considered 

here, where insulin delivery (control input) is performed by a Continuous Subcutaneous 

Insulin Infusion (CSII) pump, and glucose sensing (output measurement for feedback) is 

based on a CGM [3]. The difficulty is the large delay of both the subcutaneous sensing and 

actuation, in contrast to, e.g., intra-peritoneal or intravenous alternatives. In response to 

hyperglycemic events a long delay in the insulin action frequently causes a feedback 

controller to over-deliver insulin, inducing hypoglycemia – a condition that should be 

avoided. For a given control strategy the solution to such controller-induced hypoglycemia is 

to detune the control law, making it respond more conservatively throughout controller 

operation. However, this typically leads to elevated average glucose levels, and a sluggish 

return to a safe level following postprandial hyperglycemia.

Previous work by the authors was presented in [28]. There, a robust ℋ∞ controller with a 

so-called Safety Mechanism (SM) and Insulin Feedback Loop (IFL) reduced the risks of 

hyper- and hypoglycemia in T1DM. A time-varying controller that reproduces this ℋ∞ 
control structure, but in an Linear Parameter-Varying (LPV) framework, was presented in 

[29] and achieved similar results. In this work we continue to pursue the LPV controller 

framework. The contribution of this paper is to consider a switched LPV controller that 

switches between a selection of multiple LPV controllers that individually have been 

designed for slightly different tasks (for another switched-LPV approach, see [30]). 

Specifically, in this paper the possibility of switching between only two LPV controllers is 

investigated, where one controller is dedicated to dealing with large and persistent 

hyperglycemic excursions, e.g., as occur after a meal, and the second controller is 

responsible for glucose control at all other times. The proposed strategy results in a 

controller that is conservative most of the time but switches into an “aggressive” mode when 
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the need arises. In this work the “need” is based purely on CGM feedback, with no need of 

meal announcement, via an estimator that detects persistent high glucose values. This is akin 

to the proposal of [31]. However, the notion of switched LPV control can be expanded to 

other cases, e.g., for the controller to be triggered into a “meal” mode by means of an 

auxiliary meal-detection algorithm [32], [33], or by user notification. In this work simulation 

scenarios with only unannounced meals are investigated, as this is, in some sense, the most 

difficult case with respect to correcting hyperglycemia and preventing controller-induced 

hypoglycemia. Simulations are performed using the Food and Drug Administration (FDA) 

accepted UVA/Padova metabolic simulator [34].

This work focuses on switching to improve the controller's response with respect to 

hyperglycemia. However, the proposed switching strategy is inherently flexible, and 

extensible to a variety of other scenarios also, e.g., in order to deal strategically with 

exercise. Analogously as with meal-related hyperglycemia, the proposed switching 

framework would allow to design to handle hypoglycemia that typically follows exercise, by 

strategically including modes, e.g., where exercise is inferred from CGM trends, or through 

an auxiliary exercise detection mechanism, or by user input. However, the exercise 

component is not explicitly investigated in this work, because the FDA accepted UVA/

Padova simulator currently has no means of simulating a person's exercise response.

The paper is organized as follows. The next section presents the controller design and 

analysis. Section III details the results obtained by testing the controller on the complete 

adult cohort of the UVA/Padova simulator. Conclusions and future research directions are 

discussed in Section IV.

II. Methods

Two LPV controllers are designed for each in silico Adult #j of the complete UVA/Padova 

simulator: i,j with i ∈ {1, 2}. Controller 1,j is designed to control most of the time, while 

2,j is applied only when high and rising glucose values are estimated, e.g., after a meal. 

Because this strategy can estimate decreasing glucose values as well, perturbations like 

physical exercise may be detected and managed by another controller that was purposefully 

designed for such situations.

A. Patient design model

The model structure presented in [35], and slightly adapted in [28], is considered here to 

design both 1,j and 2,j. The main advantage of such a model structure is that it can be 

personalized based solely on a priori clinical information that can easily be obtained with 

high accuracy. Therefore, for each in silico Adult #j, the following individualized discrete-

time transfer function Gi,j(z) from the insulin delivery input (pmol/min) to the glucose 

concentration output (mg/dl) is defined:

(1)
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where Fi is a design factor (unitless) defined in (3) and (4), rj = 1800/TDIj, which is based on 

the 1800 rule [36], adapts the model's gain to the total daily insulin (TDI) [U] of Adult #j 
(TDIj), p1 = 0.965, p2 = 0.95 and p3 = 0.93 are the poles, and the constant

(2)

is a constant that scales units and sets the correct gain. The factor Fi is defined as follows:

(3)

(4)

where:

(5)

with Mj and CRj the body weight and the carbohydrate ratio, respectively, of Adult #j, and 

with M̅ and , the mean population values based on the 10 virtual adult patients of the 

distribution version of the UVA/Padova simulator. The decision to base the average values 

on the 10 subject simulator's parameters was made in order not to over-design with respect 

to the complete simulator. Instead, the TDI is readily and accurately obtainable from 

subjects, hence in that case, the value is based on the complete cohort of adults.

The factor F1 is defined to make a finer adjustment to the model's gain, including the effect 

of both M and CR. Thus, patients with low M and high CR are associated with an F1 value 

greater than unity, and therefore, with a more conservative model. On the other hand, F2 is 

intentionally smaller than F1 in order to obtain a more aggressive control law when high and 

rising glucose levels are detected. However, according to the definition of F2, the more 

sensitive to insulin the patient, the higher the model gain, and, therefore, the less aggressive 

the control law. For example, if F1 = 2, the model's gain is not reduced to design 2,j.
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B. Controller Design

In this work, the Matlab Robust Control Toolbox™ was used to compute the controllers. 

Because that toolbox provides a solution only to the continuous-time LPV control synthesis 

problem, the discrete-time plant model Gi,j(z) is converted to the continuous-time plant 

model Gi,j(s) at the design stage. However, the desired control system operates in discrete-

time, therefore the derived continuous-time control law is converted to a discrete-time 

control law later, prior to implementation. The augmented continuous-time model for 

controller design is depicted in Fig. 1, where:

(6)

r and e are, respectively, the reference and error signals, u is the control action, and Wu,i and 

Wp,i(s) are the design weights. As shown in Fig. 1, two parameters have been included in 

each augmented model in order to adapt the controller during the closed-loop 

implementation. The time-varying parameters are  and . The 

first parameter is real-time measurable and depends on the glucose level g(t) measured by 

the CGM. The second parameter depends on [ipe(t),ipb], which are the estimated current and 

basal plasma insulin levels, respectively. The estimation is performed through the 

subcutaneous insulin model proposed in [37], considering its mean population values. In the 

case of ipe(t), the input to the model is the current injected insulin, and in the case of ipb, the 

basal insulin dosage. Note that ipb can be obtained off-line, before the simulation.

In order to design both LPV controllers, the performance and actuator weights are defined as 

follows:

(7)

(8)
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with T1 = 200, T2 = 105/7, Ai = {8, 7}, α = 3, R1,i = {1/4, 1/8} and R2 = 104/18. Here Cu,i(t) 
is linear in the time-varying parameters, therefore, as they increase, Wu,i forces a less 

aggressive control. According to these parameters, both design weights related to 2,j are 

defined slightly less conservatively than those related to 1,j. The weight Wp,i(s) is chosen 

to be a low-pass filter to induce fast tracking of the safe blood glucose levels. On the other 

hand, note that in the case of time invariant θ1(t) = θ1(0) = θ10 and θ2(t) = θ2(0) = θ20 ∀t ∈ 
[0, ∞), then:

(9)

is Linear Time Invariant (LTI) and resembles a derivative at low frequencies. Therefore, it 

helps to penalize fast changes in the insulin delivery. In addition, the model is strictly proper, 

in order to have the closed-loop system affine in the time-varying parameters.

The parameter θ(t) = [θ1(t), θ2(t)]T is constrained to lie within the rectangular sets 1 = 

[0.2, 5] × [0, 8] and 2 = [0.2, 1] × [0, 8] for 1,j and 2,j, respectively. Therefore, both 

sets 1 and 2, which are depicted in Fig. 2, have υ = 4 vertices. The lower and upper 

bounds of the set 1 are related to the expected minimum and maximum values of the 

corresponding variables g(t) and ipe(t), i.e., 20 ≤ g(t) ≤ 550 mg/dl and ipe(t) from 0 to 8 times 

its basal value. Note that in the case of the set 2, the maximum value of θ1(t) is unity, i.e., 

g(t) = 110 mg/dl. As will be shown in Section II-D, that value corresponds to the glucose 

threshold used by the switching signal algorithm to detect the hyperglycemia condition. An 

increase in θ1(t) due to a low glucose level and/or in θ2(t) due to a high level of Insulin on 

Board (IOB) reduces fast and aggressive increases in insulin injection. Because the 

augmented open-loop model matrices (see Fig. 1 and Eqns. (7) and (8)) depend affinely on 

the parameter θ(t) = [θ1(t), θ2(t)]T, and that the parameter regions are convex polytopes with 

a finite number of vertices (see Fig. 2), the optimization problem related to the LPV 

controller synthesis can be stated in terms of a finite number of Linear Matrix Inequalities 

(LMIs). Specifically, for each LPV controller, the problem is solved in terms of 2υ + 1 

LMIs, i.e., a common Single Quadratic Lyapunov Function (SQLF) for each set of υ = 4 

vertices. Note that the vertex controllers can be synthesized off-line.

During the implementation phase, the two LPV controllers for i = 1, 2 can be computed as 

follows:

(10)
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(11)

where ηℓ(t) ≥ 0 ∀t ∈ [0, ∞) are the polytopic coordinates of the measured parameter θ(t), 
and θi,ℓ are the vertices of i.

One of the problems of the LPV control is known as the “fast poles” problem. By “freezing” 

any point in the parameter variation set, the resulting LTI model usually presents a small 

number of poles with a small (i.e., large negative) real part [38], [39]. Fast poles lead to 

problems from the practical point of view, e.g., integration and/or implementation becomes 

difficult with these fast dynamics. The approach utilized to deal with these difficulties is 

LPV pole placement [39]. Through LMI constraints, the objective of the LPV pole 

placement is to keep the poles of each LTI closed-loop system, resulting from holding the 

parameter fixed at each point of the parameter variation set, in a prescribed region of the 

complex plane. Therefore, in order to solve numerical issues in the implementation and/or 

simulation, for each LPV controller, the (continuous-time) closed-loop poles are constrained 

to the region , i.e., at least ten times slower than the controller 

sampling time Ts = 10 min. This pole-placement region forces the closed-loop (frozen) poles 

not to be faster than 1 × 10−3 rd/s in order to obtain a closed-loop response as fast as 

possible for meal perturbation, but also taking into account that the achievable closed-loop 

bandwidth is limited since insulin cannot be removed in case of overdelivery [35].

Before implementation, each polytopic LPV controller is converted to a representation 

which is affine in the time-varying parameters. Finally, a trapezoidal LPV state-space 

discretization is applied at the implementation stage (see pp. 143-169, [40]).

C. Stability and Performance Analysis

Note that the design was performed by computing a SQLF for each controller. In order to 

guarantee closed-loop stability and performance under arbitrary switching amongst 

controllers, a common SQLF is sought for both LPV controllers [41]. The block diagram of 

the closed-loop is depicted in Fig 3, where:

(12)

Only G1,j(s) is considered in the analysis, because it represents the “real” transfer-function 

(G2,j(s) is a fictitious system) and therefore, describes the patient's glucose-insulin dynamics 

more accurately.

To proceed, the following arguments will be used:
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• The dependence of the state space matrices AK,i,j [θ(t)], BK,i,j [θ(t)], CK,i,j [θ(t)], 
and DK,i,j [θ(t)] of both LPV controllers on the parameter θ(t) is affine.

• From Eqn. (8), only the output matrix Cu,i of Wu,i is a function of θ(t).

As a consequence, after tedious but straightforward algebra (see Appendix A for the details), 

the linear fractional interconnection between Lj(s) and the controllers i,j as depicted in Fig. 

3 produce the following closed-loop state space matrices that are also affine in the parameter 

θ(t):

(13)

(14)

(15)

(16)

Therefore, each affine LPV system can be completely defined by the vertex systems [42], 

i.e., the images of the υ vertices that make up each parameter set i, with i = 1, 2. In this 

way, the problem consists in seeking, for each Adult #j, a symmetric and positive-definite 

matrix Xj ∈ ℝn×n, with n the number of closed-loop states, that satisfies the following 2υ + 1 

LMIs:

(17)

(18)

for ℓ = 1, …, υ and i = 1, 2. Here (A, B, C, D)i,j,ℓ is the tuple of the model's closed-loop 

matrices that result from the feedback interconnection of Lj(s) and i,j evaluated at vertex 

θi,ℓ
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By solving one such set of 2υ + 1 LMIs for each patient, the existence of such matrices 

proved switching stability and performance in all cases. Due to the fact that a more 

restrictive condition is sought with respect to the design stage, the performance index γ is 

30% higher on average for all patients. In any case, this is only a necessary condition, 

because the final test is performed on the complete adult cohort of the UVA/Padova 

metabolic simulator in Section III.

D. Switching Signal

As mentioned above, 2,j is applied only when high and rising glucose values are detected, 

e.g., after a meal. The block diagram associated with the generation of the switching signal 

that commands which LPV controller is selected is depicted in Fig. 4. Because of the high 

measurement noise, some unrealistic hyperglycemic conditions may be detected. Therefore, 

in order to reduce the number of such false positive detections, the following algorithm, 

which is similar to the one presented in [33], is defined. The glucose measured by the CGM 

is filtered by a Noise-spike Filter (NSF), setting to 3 mg/dl/min the maximum allowable 

glucose Rate of Change (ROC) [43]. Then, gf(t) is filtered by a fourth-order Savitzky-Golay 

Filter (SGF) [44] to estimate the glucose ROC denoted by ġ̂(t). If gf(t) is higher than 110 

mg/dl, and if the last three estimated glucose ROC values are higher than 1.2 mg/dl/min or 

the last two are higher than 1.4 mg/dl/min, the signal hd(t), which is zero by default, is set to 

unity by the Hyperglycemia Detector (HD) block. When the latter condition is no longer 

met, hd(t) is reset to zero. In addition, in order to create a more robust system against the 

CGM measurement noise, it is considered that hd(t) can be set to unity only if the time 

period from the last falling edge to the new detection is longer than 30 min. The evolution of 

the index i that indicates which controller i,j is applied, is described by a continuous-time 

function σ(t) ∈ {1, 2}. The variables ġ̂(t) and hd(t) are inputs to the Switching Signal 

Generator (SSG) block to define σ(t) as follows. The sampling time after hd(t) is set to unity, 

σ(t) is set to two when ġ̂(t) ≥ 1 mg/dl/min. Thus, if σ(t) = 2, 2,j is selected until ġ̂(t) < 1 

mg/dl/min, consequently guaranteeing that θ(t) ∈ 2 while σ(t) = 2.

III. Results

All in silico adults of the complete UVA/Padova metabolic simulator are considered for 

simulations, using CGM as the sensor, a generic CSII pump, and with unannounced meals.

The two protocols (see Table I), and the same simulation and analysis conditions used in 

[28] are employed for controller performance comparison. Note that protocol #1 has a fairly 

high meal content, whereas protocol #2 has fasting periods. Thus:

• The fasting state of each subject is assumed at the start of the simulation.

• Open-loop control that infuses the basal insulin is applied during the first 4 

hours. After that, the switched LPV controller takes over the insulin delivery 

until the end of the simulation, with a constant setpoint of 110 mg/dl.

• A postprandial period (PP) and night (N) are defined as the 5 hour time interval 

following the start of a meal, and the period from midnight to 7:00 AM, 

respectively. In [28], both the Control Variability Grid Analysis (CVGA) plot 
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[45], as well as the average results, are computed based on the results of the third 

day for protocol #1, and based on the data from the second day for protocol #2. 

Therefore, to facilitate a direct comparison with the control strategy proposed in 

[28], in this paper we adopt the same analysis strategy to interpret the results.

During the implementation phase, the control action u(t) added to the basal insulin ib = Ib,j is 

delivered by the CSII pump. In order to avoid dangerous scenarios, when σ(t) = 1, gf(t) < 

130 mg/dl and ġ̂(t) < −0.3 mg/dl/min, the basal insulin is reduced 25%, i.e., ib = 0.75Ib,j. 

Based on the small gain theorem [46], the latter does not affect the closed-loop stability.

The average time responses to both protocols are depicted in Fig. 5. The CVGA plots and 

the average results related to both protocols are presented in Fig. 6 and Table II, respectively. 

Results for the ℋ∞, approach presented in [28] are also included in Fig. 6 and Table II for 

comparison. Note that the risk of hyperglycemia is substantially reduced, obtaining a High 

Blood Glucose Index (HBGI) < 3 with this Proposed Approach (PA). For example, the mean 

blood glucose is about 15 mg/dl lower, and the percentage of time in the range [70, 180] 

mg/dl is approximately 25% higher with this approach than with the ℋ∞, one. As a result of 

this more aggressive tuning, the CVGA plots are shifted to the right but the risk of 

hypoglycemia is scarcely increased, achieving a minimal Low Blood Glucose Index (LBGI 

< 1.1). Although a few more subjects are in the D-zone, it is not a problem if that implies an 

improvement in the general patient population. This is the case because this virtual patient 

database should be evaluated as a whole population covering different behaviors, and not as 

individuals. In addition, a more aggressive control action also increases the TDI but again, 

with no significant increase in the risk of hypoglycemia. Finally, it is worth noting that most 

of the closed-loop responses are in the upper B-zone. The main reason for that situation is 

that meals are unannounced, and therefore, blood glucose peaks after meals are difficult to 

prevent [28], [35], [47].

In order to show how the switching system works, an individual closed-loop response to 

protocol #1 is presented in Fig. 7. As shown in that figure, when 2,j is selected (σ(t) = 2), 

insulin delivery experiences spikes, reducing postprandial glucose levels. The delay between 

meal ingestion and controller switching is mainly related to the long sensing delays. In 

addition, it is well-known that high measurement noise appears when CGM is used as the 

sensor. Despite the noisy CGM signal as depicted in Fig. 8, the controller manages to 

maintain the blood glucose at a safe level.

The variation of θ(t) = [θ1(t), θ2(t)]T is depicted in Fig. 9. Note that there is a gray narrow 

stripe around θ1(t) = 1 and 0 ≤ θ2(t) ≤ 1, because θ2(0) = 0, but this subsequently increases 

until the estimated plasma insulin converges to its steady-state value. As shown in Fig. 9, 

both parameters evolve within a safe region. This means that when the blood glucose level 

decreases (θ1(t) increases), the plasma insulin level decreases (θ2(t) decreases), avoiding an 

overdose of insulin. On the other hand, when the blood glucose level increases (θ1(t) 
decreases), so does the plasma insulin level (θ2(t) increases), reducing in this way the risk of 

hyperglycemia. Consequently, dangerous scenarios like low blood glucose values and high 

plasma insulin levels or vice versa do not occur with this switched LPV approach. 

Furthermore, the darkest area, which represents the region where both parameters spend the 
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highest percentage of time, is (θ1, θ2) ≃ (1, 1). This means that glucose values are usually 

around the setpoint (110 mg/dl) without high levels of IOB, despite perturbations like 

unannounced meals.

Although for the design stage both parameters are included in a rectangular region that is 

larger than the region where the actual time-varying parameters evolve, this conservative 

choice is necessary in order to have stability and performance guarantees when this is not 

the case, e.g. due to a large measurement error.

IV. Conclusion

A general switched-LPV controller was designed in order to minimize risks of hyper- and 

hypoglycemia. This control structure naturally accommodates the time-varying/nonlinear 

dynamics and intra-patient uncertainty. The controller is based on a model tuned with the 

patient a priori information in order to cover the inter-patient uncertainty. Finally, a 

hyperglycemia estimator is used to predict perturbations, e.g., risky postprandial periods. 

The outcome is an improvement on previous results. The key feature is the possibility of 

taking into account, at the design stage, important perturbations: unannounced meals and/or 

patient's physical exercise. Here we have explored the first situation, due to the fact that the 

UVA/Padova simulator has no physical exercise model. Nevertheless, the same procedure 

could be applied to the latter situation by either estimating a negative ROC in glucose levels, 

or through a real-time measurement, e.g., increase in cardiac rhythm.
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Appendix A: Interconnection Between Lj(s) and 𝒦i,j

Consider that the performance and actuator weights are given by

(19)
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(20)

and the state-space realization of G1,j(s) has the following form:

(21)

Then, the augmented open-loop plant Lj(s) can be written as:

(22)

where

(23)

(24)

(25)
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(26)

Hence, the linear fractional interconnection between Lj(s) and the corresponding LPV 

controller

(27)

yields the closed-loop matrices (13)-(16), which are affine in θ(t).
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Figure 1. 
Augmented model for controller design.
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Figure 2. 
Glucose-insulin regions 1 and 2.
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Figure 3. 
Feedback interconnection of plant and controller.
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Figure 4. 
Block diagram of the switching signal algorithm. NSF: Noise-spike Filter; SGF: Savitzky-

Golay Filter; HD: Hyperglycemia Detector, and SSG: Switching Signal Generator.
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Figure 5. 
Closed-loop responses for all the in silico adults (complete UVA/Padova simulator) to 

protocol #1 (left) and to protocol #2 (right). The thick lines are the mean values, and the 

boundaries of the filled areas are the mean ±1 STD values.
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Figure 6. 
CVGA plots of the closed-loop responses of all in silico subjects (complete UVA/Padova 

simulator) for the proposed switched-LPV control (stars) and the previous ℋ∞ approach 

(circles) with respect to protocol #1 (left) and protocol #2 (right). The CVGA categories 

represent different levels of glucose control, as follows: accurate (A-zone), benign deviation 

into hypo/hyperglycemia (lower/upper B-zones), benign control (B-zone), overcorrection of 

hypo/hyperglycemia (upper/lower C-zone), failure to manage hypo/hyperglycemia (lower/

upper D-zone), and erroneous control (E-zone). See Table II for zone inclusion percentages.
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Figure 7. 
Switching LPV system functioning. Above: The black line is the insulin infusion rate (right 

axis), the gray line is the blood glucose (left axis), and the asterisks are the CGM 

measurements. Below: Variation of θ1(t) (gray line) and θ2(t) (black line).
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Figure 8. 
Closed-loop response for Adult #8, showing noisy CGM signal. The continuous line is the 

blood glucose concentration, and the asterisks are the glucose measurements via simulated 

CGM.
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Figure 9. 
Variation of θ1(t) and θ2(t) parameters for all the in silico adults (complete UVA/Padova 

simulator) to protocol #1 (left) and to protocol #2 (right).
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