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Abstract: This paper presents the design of a switched reluctance motor (SRM) for a direct-drive
propulsion application for a light sport aircraft. The SRM is designed to replace a 70 kW permanent
magnet synchronous motor used in aerospace application with similar dimensional constraints. As a
means of achieving high torque density and efficiency, a multi-objective design framework is used
to optimize the geometry parameters of the motor. In order to further reduce the weight, rotor
cutouts are implemented. The conduction angles for the asymmetric bridge converter are selected by
employing a multi-objective genetic algorithm to map the torque speed characteristics of the motor.
The core losses are evaluated with the modified Bertotti method to calculate the motor efficiency
and determine the steady-state and transient thermal performance at the base speed. The designed
coil winding is wound on a spindle winder, and the coil fitting, fill factor, and the coil retention are
validated experimentally.

Keywords: direct drive motor; electric aircraft propulsion; finite element analysis; genetic algorithm;
high power density motor design; light sport aircraft; switched reluctance motor

1. Introduction

There has been a paradigm shift in recent years in the transportation industry driven by
climate concerns. The commercial aviation sector is responsible for 2.4% of the greenhouse
gas (GHG) emissions in 2018, and the number of commercial aviation sector flights is to
triple by 2050 [1]. Current battery technology cannot support large and medium commercial
electric propulsion aircraft (EPA), but a bottom-up approach can be applied. This approach
would require smaller aircraft to be electrified, as the current battery technology is sufficient.
Light sport aircraft (LSA) are often driven by piston engines that use aviation gas. The
GHG emission from small piston aircraft is only 0.13% of the total aviation emissions [2].
However, most aviation fuels contain lead, which is discharged into the atmosphere. Small
piston aircraft contribute to 50% of the total lead discharged in the atmosphere. Exposure to
lead can have considerable health effects on neurological and cognitive functions, especially
in children [3]. It is estimated that there are 10,800 legacy training aircraft in the United
States alone, which on average are 48.1 years old. An electrified LSA fleet could replace the
older fleet with operational cost benefits that other fleet transportation sectors have gained.
For example, the electrified bus industry has estimated a 45.28% decrease in operational
cost [4]. The initial purchase price of an e-Flyer2, which is an electrified LSA, is USD
$289,000. The price of Cessna 172, which is a similar-sized internal combustion engine LSA,
costs USD $438,000. In addition, an electrically propelled aircraft can significantly reduce
the operational cost per hour by 84% [5].

Permanent magnet synchronous motors (PMSMs) dominate the electrified aircraft
industry due to their high-power density and high efficiency. SRMs are fault-tolerant, can
operate at high temperatures, and have simple construction without rare-earth permanent
magnets. For aviation applications, a fault-tolerant motor is essential for safety. PMSMs
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are not inherently fault-tolerant; they usually need redundant windings [6]. SRMs are
inherently fault-tolerant due to electrically isolated phases. Additionally, SRMs do not have
temperature sensitive magnets, allowing for a longer peak power duration [7].

SRM has a simple construction, which allows for more cost-effective mass production.
PMSMs are price-sensitive due to the rare-earth magnets used within their rotors. As the
industry moves towards electrification for various applications, the demand for electric
motors will increase. Relying on PMSMs would result in even more volatility and instability
on the rare-earth market and its supply chain. In addition, rare-earth materials such as
neodymium have a significant material footprint and mining risk footprint [8]. Besides,
the rare-earth mining, refining, and transport process have considerable effects in terms of
human health, ecological health, carbon footprint, and mining waste [9].

The utilization of SRMs in all- and more-electric aircraft has attracted attention due
to their high reliability, fault-tolerant operation, robustness, and high-speed operation.
Specifically, SRMs have been proposed for use in flap actuators [10,11] and have been
proposed in aerospace as high-speed integrated starter generators (ISGs) for all-electric
aircraft applications [12,13]. The durability of the rotor and built-in fault tolerance of SRM-
ISG make it an ideal option, and it has been rated and packaged by UTC Aerospace Systems
(UTAS) with a 270 VDC bus voltage, rendering it suitable for use in F-16 military aircraft [14].
Moreover, there have been research efforts to explore the feasibility of utilizing SRMs
in aircraft propulsion units. For instance, researchers adopted a reluctance mesh-based
magnetic equivalent circuit to design a high-lift motor (HLM) for NASA’s Maxwell X-57 [15].

Typically, SRMs have three main drawbacks compared to PMSMs: acoustic noise
and vibration, torque ripple, and power density. But these drawbacks are not significant
challenges to utilize SRMs in LSA applications. In an LSA, the pilot cabin is isolated from
the power unit, and the propeller noise is considerably higher than the motor noise [16].
The main weight of electrified aircraft is the battery and the body weight; the motor
contributes about 4% of the total weight. Therefore, if an SRM has slightly higher weight,
that might not have significant impact to the overall weight of an LSA. In summary, SRM is
a strong candidate for the LSA propulsion system, and the drawbacks of SRMs are not too
challenging for LSA applications.

This paper presents the design of a switched reluctance propulsion motor proposed to
replace a permanent magnet machine used in a direct-drive LSA propulsion application. The
rest of the paper is organized as follows: Section 2 presents the benchmark motor. Section 3
describes the sizing and design of the LSA drive, and Section 4 investigates the coil design
process and experimental validation. Section 5 demonstrates the rotor-mass reduction with
cutouts. Performance results of the LSA SRM are presented in Section 6. Then, Section 7
provides the loss and efficiency calculations. Section 8 presents the steady-state and transient
thermal analysis of the design. Finally, the conclusions are presented in Section 9.

2. Benchmark Motor Specifications and Operational Requirements

Different motor designs are currently offered for different applications, such as air
taxi, unmanned aerial vehicle (UAV), LSA, and electrified regional aircraft. Some pioneers
of EPA are Lilium Jet (eVTOL), VoltAero Cassio, X57 Maxwell from NASA, ZeroAvia
(Hollister, CA, USA), and Skai (Tel Aviv-Yafo, Israel) (eVTOL). Several companies have
designed electric motors for LSA applications, such as Magnix (Everett, WA, USA), Pipistrel
(Ajdovščina, Slovenia), Rolls-Royce (London, UK), and Siemens (Munich, Germany). These
companies use innovative and unique motor designs, cooling systems, winding techniques,
and gearbox strategies. Pipistrel used axial flux permanent magnet synchronous motors
(AFPMSM) to reduce the motor axial length [17]. Magnix uses direct-drive PMSM with
redundant windings [18]. Siemens has designed several types of high-power density
PMSMs, of which some are direct drive, and many others have simple gearboxes [19]. In
this paper, an SRM is designed to replace a 70 kW direct-drive PMSM (SP70D) developed by
Siemens. This motor was used by the Bye Aerospace company to produce the e-Flyer2 [20].
The motor specifications are presented in Table 1.
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Table 1. Specification of SP70d PMSM [19].

Parameter Value

Continuous power 70 kW
Continues speed 2600 rpm

Continuous torque @ 2600 rpm 260 Nm
DC-link voltage 450 V

Mass 26 kg
Cooling system Water/Glycol
Max efficiency 95%

Estimated motor diameter ~300 mm
Estimated stack length 50 to 100 mm

Shaft diameter 50 mm

The motor is required to deliver 260 Nm at 2600 rpm at the take-off condition. During
take-off, high power is required to accelerate the aircraft, allowing it to reach level flight [21].
Due to the direct drive setting, the maximum possible speed at which the motor can operate
is limited by the propeller diameter and the speed of sound. In addition, to ensure that
the motor can operate at high speed for non-direct drive applications and drive various
propeller types, the motor should deliver 120 Nm at 4000 rpm.

3. Sizing and Design of LSA SRM

The synopsis of the SRM design is explored in this section. The number of electrical
phases of the SRM is limited to three to simplify the drive system. Different rotor and stator
pole numbers can operate in three phases. An 18/12 configuration is selected based on a
trade-off between the stator coil area, torque ripple, and motor dimensions.

3.1. Selection of the Core Material

The performance of an SRM is highly dependent on the magnetic properties of the
core material. To maximize torque density, the magnetic core material of the stator and
rotor cores should be selected carefully. The material must exhibit low core loss and
high saturation flux density. In light of their unique characteristics, HIPERCO® has been
investigated as the core material. Iron–cobalt vanadium alloys, such as HIPERCO® 50
and HIPERCO® 50A, have the highest magnetic saturation (2.4 Tesla) of all soft magnetic
alloys [22]. Besides, they have low core loss that can contribute to improving the efficiency
of an SRM.

Figure 1 shows the magnetization characteristics of HIPERCO® 50/50A. They both
have high magnetic saturation level, but slightly different permeability. Figure 2 shows the
static torque performance for the same geometry and the current-density levels applied
to LSA SRM. The static torque performances are close at low current density where the
magnetic field intensity is small. As the current density increases, HIPERCO® 50A shows
higher static torque in the entire electrical cycle. This helps improving the torque density
of the LSA SRM design. Therefore, the HIPERCO® 50A with a lamination thickness of
0.1524 mm from Carpenter Technology is selected as the core material.
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The authors proposed a multi-objective design framework in [23] for the design of a 

high power density SRM. A similar approach is employed in the design process of the 
LSA SRM. The design process is divided into two stages for control optimization and ge-
ometry optimization. As illustrated in Figure 3, the first stage finds all the geometry com-
binations with high static average torque. The geometry combinations are clustered and 
put through the second layer of the framework, the dynamic design stage. The objective 
of the dynamic design stage is to improve the average torque, and reduce radial force and 
torque ripple. The dynamic design consists of a loop involving control and geometry op-
timization. The limited boundary of changes limits the variation of the optimum control 
parameters. After applying the dynamic design to all high-static-average-torque combi-
nations, the best design is selected as the final design. 
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3.2. Electromagnetic Design with the Proposed Framework

The authors proposed a multi-objective design framework in [23] for the design of a
high power density SRM. A similar approach is employed in the design process of the LSA
SRM. The design process is divided into two stages for control optimization and geometry
optimization. As illustrated in Figure 3, the first stage finds all the geometry combinations
with high static average torque. The geometry combinations are clustered and put through
the second layer of the framework, the dynamic design stage. The objective of the dynamic
design stage is to improve the average torque, and reduce radial force and torque ripple.
The dynamic design consists of a loop involving control and geometry optimization. The
limited boundary of changes limits the variation of the optimum control parameters. After
applying the dynamic design to all high-static-average-torque combinations, the best design
is selected as the final design.
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3.3. Static Design and Results

The static characteristic of an SRM refers to its performance under a single-phase
constant-current excitation. The static design aims to identify the geometry combinations
with the best static performance, such as high average torque and low induced voltage.

Various geometry parameters, such as pole arc angles, rotor outer radius and radius
of the stator back iron have been selected as design parameters in the design of experiment
(DOE). In the static design loop, three different optimization algorithms (global response
surface method (GRSM), genetic algorithm (GA), and particle swarm optimization (PSO))
with two different surrogate models (neural network (NN) and radial basis function (RBF))
were employed as shown in Figure 4 to include as many geometry variations as possible.
Two different currents are used to ensure that the maximum induced voltage is limited at
light- and full-load operation. The voltage drop across the switching devices is considered
negligible compared with the DC link voltage.
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The static design for the given constraints and objectives found a list of more than
260 geometry combinations with high static average torque. Figure 5 shows the distribution
of these combinations with respect to the geometry parameters that have the highest
correlation to average torque. The resulting clustered data is verified with FEA models to
ensure that the surrogate model was accurate. The error of the surrogate model was less
than 0.9%.
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3.4. Dynamic Design Process and Results

Figure 6 shows the block diagram of the dynamic optimization stage. It integrates
the control optimization and tuning of the motor geometry in a design loop. The dynamic
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design process is performed for each of the geometry combinations calculated from the
static design. Table 2 shows the changes in the motor geometry and performance improve-
ments from the initial iteration to the last iteration for the selected final design. After five
iterations of the dynamic optimization, 3.4% higher average torque was achieved, torque
ripple remained the same, and the radial forces were improved.
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Table 2. The improvements of the motor performance after five iterations in the dynamic design
process for the selected design.

Parameter Initial Iteration Final Iteration

Stator pole arc angle, βs 13.25◦ 13.153◦

Rotor pole arc angle, βr 12.65◦ 12.74◦

Turn on angle −54.65◦ −47.9◦

Turn off angle 122.93◦ 125◦

Average torque 258.56 N.m 267.8 N.m
Torque ripple (%) 18.04 19.48

Radial force objective 245.45 241.52
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Figure 7 shows the reduction in the radial force harmonics after five iterations. Signif-
icant reductions are observed in the magnitudes of circumferential orders zero, six, and
twelve. There was a slight increase in the magnitude of the circumferential order eighteen,
which would potentially excite vibration mode zero due to sampling effect. The increase
in the magnitude of the circumferential order eighteen is smaller than the decrease in the
circumferential order zero. Therefore, the optimization process has reduced the radial force
harmonics while improving the average torque.
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4. Coil Design

In the proposed framework, the coil design is based on a constant current density
region in the static design stage. In the dynamic design stage, it uses a simplified stranded
conductor region. This approach enables a faster design and optimization. In each case, the
fill factor and maximum current density constraints were applied. For the final geometry,
the other coil and winding parameters, such as the wire size, number of strands, and
number of parallel paths, are determined.

4.1. Calculation of Coil Parameters

Figure 8 shows the block diagram of the script developed to identify the possible coil
parameters based on the fill factor, current density limit, and magnetomotive force. The
magnetomotive force is calculated based on the simplified stranded coil conductor region
of the final model from the dynamic design loop. The current density limit is based on the
cooling method, and the slot area is based on the selected geometry. Table 3 lists the feasible
coil configurations calculated from the script. As highlighted in the table, the six parallel
winding options are preferred. This is because parallel winding enables coils with a higher
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number of turns and fewer strands. Fewer strands allows an easier implementation of the
coils. If a coil is designed for a high number of strands, it might be necessary to wind the
strands one at a time for the given number of turns, especially when a winding machine is
used. Therefore, using fewer strands helps avoid resistance mismatch between the strands
of a coil. Fewer strands also enable better wire layout in the coil implementation, which
helps achieve a more consistent resistance in each coil and, hence, more balanced phase
resistances. Besides, a parallel winding configuration helps mitigate unbalanced magnetic
pull in case of eccentricity [24].
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Table 3. Coil possibilities for the design.

Winding
Pattern

Number of
Turns per Coil

Magnetic Wire
American WIRE

Gauge (AWG)

Number of
Strands

Copper Fill
Factor [%]

Current
Density (@120

A) [A/mm2]

Phase Resistance
(@25 ◦C) [mΩ]

6 coils in
series

14

9 1 53.36 18.10 53.31

12 2 53.23 18.14 53.43

14 3 50.25 19.21 56.64

15 4 53.17 18.16 53.57

16 5 52.61 18.35 54.05

2-parallel,
3-series

28

12 1 53.23 18.14 53.43

15 2 53.17 18.16 53.57

17 3 50.20 19.23 56.80

3-parallel,
2-series

42
14 1 50.25 19.21 56.64

17 2 50.20 19.23 56.80

17 1 49.60 19.23 56.126 coils in
parallel * 83

20 2 49.50 19.27 56.25

* Preferred winding pattern.

4.2. Calculation of AC Copper Loss

The preferred coil options for parallel winding configuration are summarized in
Table 4. Both options have similar phase resistance, fill factor, and current density. The first
option uses a thicker wire (17 AWG), but a single strand. The second option uses a thinner
wire (20 AWG), but two strands. In terms of practical implementation, the first option
might require higher bending force and the second option might require more complicated
layering. It is also essential to calculate the AC copper loss for these configurations to make
the final decision. In order to simulate the AC copper loss, both coil options are tested with
individual wires in FEA. A Python Pyflux function is developed to automate the conversion
from solid conductors to individual wires, as shown in Figure 9.
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Table 4. Comparison of different coil options.

Parameter Option 1 Option 2

Pattern 6 P 6 P
American wire gauge (AWG) 17 20

Number of turns 83 83
Number of strands 1 2

Wire fill factor 0.59 0.59
Current density (120 A) 19.23 A/mm2 19.27 A/mm2

Phase resistance @ 25 ◦C 56.12 mΩ 56.25 mΩ
Phase resistance with end turn @ 200 ◦C 111.2254 mΩ 111.4831
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Figure 10 shows the AC copper loss for both options. The AC copper loss is about 1 to
6% higher than the power loss calculated from the RMS current and phase resistance. AC
copper loss with thinner wire and more strands is slightly lower. However, the difference
in the AC copper loss for the two options is not significant. The lower number of strands
for Option 1 makes a better fit for coil implementation and assembly, and it is selected as
the final coil design.
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4.3. Coil Retention Design

In order to ensure that the coils are secure inside the stator slots, a slot wedge design is
considered. The stator of the LSA SRM is designed without pole shoes so as not to impact
the flux path and cause a potential reduction in electromagnetic torque. Therefore, the
stator teeth are designed with grooves to insert the slot wedge as shown in Figure 11.
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It is essential to design the size and the shape of the grooves so that they do not
have a significant impact on the magnetic flux, slot area and, hence, the electromagnetic
performance. A simple design of the experiment is performed by varying the parameters
of the grooves to determine their location and size.

Figure 12 shows the effect of the groove on the torque production with a width of
0.8 mm. The boundary within which the groove parameters can be defined without a
significant effect on the torque production is shown in a dashed rectangle. Based on the
analysis, the dimensions of the grooves are set as W = 0.8 mm wide, D = 0.5 mm deep, and
L = 1 mm away from the edge of the stator teeth, as referred to Figure 11.
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4.4. Experimental Verification of Coil Retention and Coil Fit

It is essential to experimentally verify that the designed coils can be wound, inserted
into the stator slots, and then the designed slot wedges can be applied to retain the coils.
This also confirms the fill factor calculations and ensures that the stator core can be manu-
factured with the optimized dimensions. For this purpose, the stator core is 3D printed as
shown in Figure 13. The slot retention wedge is prototyped by 3D printing using glass-filled
nylon or durable nylon. Considering the size of the part and the required accuracy, selective
laser sintering (SLS) 3D printing is applied. These materials are mechanically and thermally
strong; they have been used in prototyping for similar purposes.
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The coils are wound using a spindle winding machine for 17 AWG wire with 83 turns
and using a single strand. As shown in Figure 13, the designed coils fit well in the slot
when the ground wall insulation with slot liners and the coil retention with slot wedges
are applied.

5. Rotor-Mass Reduction

To reduce the weight and inertia of the rotor, additional cutouts were introduced on
the rotor. Different cutouts were explored, and their impact on the static electromagnetic
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torque waveforms were analyzed. Twelve tapered elliptical cutouts were applied in line
with each rotor pole [25]. The dimensions of the cutouts are presented in Figure 14. Based
on the flux paths in the rotor back iron shown in Figure 15, cutouts were placed 9.42 mm
away from the shaft diameter and in line with the rotor poles. The rotor cutouts reduce the
rotor core area by 19.15% and reduce the rotor mass by approximately 3 kg.
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Figure 14. Rotor cutout dimension and general geometry (dimensions are in mm).
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Figure 15. Magnetic potential vector in the dynamic model of 18/12 SRM.

The static electromagnetic performance was analyzed for the new SRM geometry
with the tapered elliptical rotor cutouts. The static electromagnetic torque was studied
for half an electrical cycle in the motoring region at 2600 rpm with a current reference of
195 A. As shown in Figure 16, there was no significant difference in the torque with the
proposed rotor cutouts. The maximum deviation in torque before and after the cutout is
3.36% near the aligned position. On average, the static torque production deviates only
0.35% compared with the case without the cutouts.

A key consideration is the magnetic flux density level near the cutouts and rotor teeth.
A time variant current based on the dynamic model was applied to the FEA model to verify
the motor performance after the rotor mass reduction. In order to investigate the worst-case
scenario for the magnetic flux density level, a large conduction interval is applied. The
conduction angles are set to −50◦ and 125◦. Figure 17 shows the magnetic flux density
contour plot for this case, with phase C at the aligned position. The maximum flux density is
observed near the rotor and stator poles of Phase B and it is within the material’s operating
limits. Similarly, near the rotor cutouts and stator back iron, the maximum flux density is
within the operating limits, and the magnetic flux density is homogeneously distributed.
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Figure 16. Static torque for half of an electrical cycle with 195 A current reference before and after
rotor cutouts.
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The rotor cutouts are structurally validated using total deformation and von-Mises
stress analysis as depicted in Figures 18 and 19. For a single rotor lamination with the
HIPERCO® 50A material, the analyses were carried out for the rotor with and without the
cutouts at the maximum operating speed of 4500 rpm. The maximum displacement with
no cuts is 1.3 µm, and with the cutouts it was 1.9 µm. The maximum deviation is within
the rotor airgap clearance, and this ensures that there would be no contact. The maximum



Machines 2023, 11, 362 14 of 21

stress experienced by the reduced-weight rotor was 17.84 MPa, which is well below the
material’s yield strength of 212 MPa. From the following analysis, it can be concluded that
the rotor-mass reduction would not compromise the mechanical operation of the motor at
the maximum operational speed.
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6. Final Design and Performance Results

Table 5 presents the parameters for the final geometry and coil configuration of the
SRM. The final design meets the physical constraints that were set out. The SRM stack
length is 100 mm and the thickness of each lamination is 0.1524 mm. A stacking factor of
0.95 is estimated based on the given lamination thickness and manufacturing constraints.

Table 5. 18/12 SRM Final Geometry and Coil Configuration.

Parameter Value

Number of stator poles 18
Airgap length 0.4 mm

Stator outside diameter 280 mm
Stator pole arc angle 13.15◦

Stack length 100 mm
Wire gauge 17 AWG

Current density (RMS) 19.23 A/mm2

Phase resistance @ 200 ◦C 111.22 mΩ
Number of rotor poles 12

Shaft diameter 50 mm
Rotor pole arc angle 12.74◦

Wire fill factor 59%
Number of turns 83

Number of strands 1
Phase winding configuration 6 Parallel
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The static characterization of the final design is conducted in Altair Flux software
by energizing a single phase of the motor with a DC current for one electrical cycle.
The static voltage, torque, and flux linkage characterization were derived, as depicted in
Figures 20–22. For the dynamic analysis, an SRM drive model is built using the static flux-
linkage and torque characteristics. A three-phase asymmetric bridge converter with current
hysteresis control is modelled. The conduction angles obtained from a multi-objective
genetic algorithm optimization to maximize the average torque and minimize the torque
ripple. The dynamic current waveforms were acquired for the base speed of 2600 rpm with
200 A reference current, as shown in Figure 23. The average torque is 261.57 Nm with a
maximum torque ripple of 26.42%. For the optimized conduction angles, the calculated
current waveform is applied to the FEA model of the motor in Flux software and the
dynamic torque waveform is validated. In addition to the 2D electromagnetic FEA model, a
3D electromagnetic FEA model is developed, as shown in Figure 24, to validate the results.
The discrepancy between the average torque production in 2D and 3D FEA is 2.5%.
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Figure 20. Static voltage waveform at 2600 rpm for different current references. 
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Figure 21. Static electromagnetic torque for different current references. 

Figure 20. Static voltage waveform at 2600 rpm for different current references.
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The motor performance at different speed conditions is investigated by optimization
of control parameters. In Figure 25, the torque-speed characteristics and the optimized
turn-on and turn-off angles are presented. Based on the LSA load characteristics, the motor
speed is mainly limited to the region highlighted as the main operational region in Figure 25.
The torque required for critical speed points of 2600 rpm and 4000 rpm are achieved.
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where Bm is the maximum magnetic flux density, f is frequency, k1 and α1 are coefficient
and exponent for hysteresis loss term, k2 and α2 are coefficient and exponent for classical
loss term, and k3 and α3 are coefficient and exponent for excess loss term [26]. The estimated
coefficients and exponents for HIPERCO® 50A alloy are presented in Table 6. The average
error between calculated core losses from the defined model and core losses provided by in
the material datasheet is less than 3%.

Table 6. Modified Coef. and Exp. of Bertotti Method.

Exponents Value Coefficients Value

α1 1.61939 k1 54.56280
α2 2.113459 k2 0.0350734
α3 1.386721 k3 6.527015

The copper losses were calculated considering the AC losses with an estimated op-
erating temperature of 150 ◦C. In Table 7, the calculated core loss, copper loss, and the
efficiency at 2600 rpm are presented, which is the main operating point of LSA SRM.

Table 7. Calculated Losses and Efficiency for Nominal Current Reference and Conduction Angles of
−47.9◦ To 125◦.

Parameter Value

Average core loss in the rotor 287.65 W
Average core loss in the stator 337.52 W

Copper loss (including AC copper loss) 3307.75 W
Efficiency 94.8%

8. Thermal Analysis

This section aims to analyze the steady-state and transient thermal analysis of the
proposed SRM based on the maximum continuous power operation and for the given
cooling system constraints. For the LSA SRM, thermally conductive and durable materials
are considered for the thermal management of the motor. Magnet wires are selected for
240 ◦C thermal class which are commercially available with polyimide or polyether–ether–
ketone (PEEK) insulation [27]. The Nomex® 818 is selected as the slot liner paper due to
its higher voltage endurance compared to traditional options. The slot area is also filled
with a low viscosity thermally conductive epoxy from Lord company. For thermal analysis,
the conductivity characteristics of the materials and maximum operating temperatures are
provided in Table 8.

Table 8. Thermal Conductivity Characteristics for Materials.

Application Material Thermal Cond. [W/m·K] Max Temp. [◦C]

Stator/Rotor Laminations HIPERCO® 50A [22] 29.83 704 *
Conductors Copper 394.0 1080

Magnetic Wire Polyimide [28,29] 0.26 240
Impregnation Material Lord CoolTherm® EP-2000 [30] 1.9 204

Coil retention DuraForm® PA plastic [31] 0.7 180
Liner Nomex 818 [32] More than 0.1 250

Cooling jacket Aluminum 247 660
Air Air 0.024 –

Moving air Air 0.24 –

* annealing temperature.

A water jacket is considered for the LSA motor with a 50/50 water–glycol coolant. A
finite element model is developed to analyze the performance of the thermal management
system. The convection coefficients and boundary conditions are selected based on the
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thermal management system constraints [33]. Table 9 shows the coefficients used in the
thermal model. Some additional simplifications are also considered, such as neglecting
endcap cooling to reduce the model complexity. Figure 26 shows the results for the
steady-state thermal analysis at the base speed and the maximum continuous power.
The maximum temperature within the stator slot area is 170.2 ◦C, which is below the
temperature limit of the materials.

Table 9. Heat Transfer Coefficients Guideline.

Cooling Type Heat Transfer Coefficient Applied [W/(m2·K)]

Air flow by salient rotor poles 150
Liquid cooled 6000
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In addition to the steady-state thermal FEA simulation with forced boundary con-
ditions, MotorCAD software is used to perform a three-dimensional analytical transient
thermal simulation to incorporate more details of the cooling system in the analysis. The
transient thermal performance of the motor is shown in Figure 27. As compared with
steady-state FEA with boundary conditions, the steady-state temperature of the winding
(hotspot) is higher, but the steady-state temperatures are still lower than the thermal limit
of the selected magnet wire and impregnation epoxy material.
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9. Conclusions

In this paper, the design of a direct drive 18/12 switched reluctance motor (SRM)
for a light sport aircraft (LSA) propulsion has been presented. A multi-objective design
framework was used for the design of the motor to obtain the required performance. The
required torque of 260 Nm at the base speed of 2600 rpm is achieved, while the radial
force magnitudes were reduced for the dominant circumferential orders. The winding
of the designed coils, the slot fill factor, and the slot wedge designed for coil retention
are experimentally validated on a 3D printed stator core for the optimized geometry. For
the base speed operation, the calculated efficiency is higher than 94%. The LSA SRM
design meets the torque speed, efficiency requirements, and dimensional constraints. To
further reduce the weight of the motor, rotor cutouts were applied without mechanical
and electromagnetic performance deterioration. The steady-state and transient thermal
performance of the LSA SRM were investigated both with steady-state thermal FEA simu-
lations and analytical three-dimensional transient simulations. At the continuous operation
of the motor, the maximum temperature is lower than the thermal class of the insulation
material. Hence, the final design is a suitable for the benchmarked LSA motor, Siemens
SP70D PMSM; it proposes significant advantages for this application, such as fault-tolerant
operation and no use of temperature-sensitive and volatile rare-earth materials.
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