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Humans can adapt to abruptly changing situations by coordinating redundant

components, even in bipedality. Conventional adaptability has been reproduced by

various computational approaches, such as optimal control, neural oscillator, and

reinforcement learning; however, the adaptability in bipedal locomotion necessary

for biological and social activities, such as unpredicted direction change in

chase-and-escape, is unknown due to the dynamically unstable multi-link closed-loop

system. Here we propose a switching adaptation model for performing bipedal

locomotion by improving autonomous distributed control, where autonomous actuators

interact without central control and switch the roles for propulsion, balancing, and leg

swing. Our switching mobility model achieved direction change at any time using only

three actuators, although it showed higher motor costs than comparable models without

direction change. Our method of evaluating such adaptation at any time should be utilized

as a prerequisite for understanding universal motor control. The proposed algorithm may

simply explain and predict the adaptation mechanism in human bipedality to coordinate

the actuator functions within and between limbs.

Keywords: sensory-motor system,multi-link system, closed-loop system, autonomous distributed control, flexible

bipedal locomotion

INTRODUCTION

We can adaptively operate our bipedal body by cooperating with others in an emergency (Hutchins,
1995; Fujii et al., 2016) and sometimes competing with others (Yamamoto et al., 2013; Fujii et al.,
2015b). Current technology can succeed in reproducing such real-time adaptation in video game
tasks (Mnih et al., 2015) and overcoming unpredicted deficits (Yoshihara et al., 2007; Cully et al.,
2015), although such adaptation is limited to a certain part of the agent’s body. However, with regard
to bipedal locomotion, which is more dynamically unstable than that of more than four-legged
species (Golubitsky et al., 1999), researchers have not paid attention to the adaptive movements
when motor commands change suddenly in response to a change in the situation, such as chase-
and-escape behavior (Kamimura and Ohira, 2010; Fujii et al., 2015b), which have been acquired in
over the course of evolution as biological (Carvalho et al., 2012) and social (Helbing et al., 2000)
features essential for life activities. For example, it is considered that a sudden intentional direction

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
http://www.frontiersin.org/Human_Neuroscience/editorialboard
https://doi.org/10.3389/fnhum.2017.00298
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2017.00298&domain=pdf&date_stamp=2017-06-07
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive
https://creativecommons.org/licenses/by/4.0/
mailto:keisuke198619@gmail.com
https://doi.org/10.3389/fnhum.2017.00298
http://journal.frontiersin.org/article/10.3389/fnhum.2017.00298/abstract
http://loop.frontiersin.org/people/192029/overview
http://loop.frontiersin.org/people/431898/overview
http://loop.frontiersin.org/people/431866/overview
http://loop.frontiersin.org/people/314710/overview


Fujii et al. Switching Adaptability in Bipedal Locomotion

change opposite to the original direction, such as in interpersonal
sports (Fujii et al., 2015b), is quite difficult to achieve and
thus has been ignored in the fields of robotic engineering
(Koolen et al., 2016; Kuindersma et al., 2016) and computational
neuroscience (Taga et al., 1991; Song and Geyer, 2015), with the
focus primarily being placed on bipedal adaptation to external
disturbances. Here, we refer to this as switching adaptation
in bipedal locomotion because both motor commands (i.e.,
situation or task) and motor system requirements will switch in
this case.

Although most previous studies on human motor control
were based on the optimal control theory (Todorov and Jordan,
2002; Scott, 2004), which is considered to be physiologically
related to the cerebellum (Shadmehr and Krakauer, 2008), this
theory cannot necessarily apply to universal motor control. The
theory focuses on optimizing the system based on the centralized
invariant cost functions, such as the deviation of target trajectory
(Uno et al., 1989) or motor cost as muscle activity (Anderson
and Pandy, 2003), such as in arm movement. However, an
unstable multi-link closed-loop system with large inertia and a
narrow base of support in abruptly changing situations, such as
switching adaptation in bipedal locomotion, is difficult to control
optimally. This is because it cannot determine the optimal target
trajectory due to the large control component with physiological
constraints (e.g., joints and muscles), the observation component
with cognitive constraints (e.g., ground and opponent) and the
context (e.g., the predicted optimal strategy could be defeated
by the opponent’s counter-attack; Fujii et al., 2015b). Thus,
switching adaptation in bipedal locomotion, which is difficult to
control even in current robotics (Koolen et al., 2016; Kuindersma
et al., 2016), is an excellent example to shed more light on the
mystery of universal motor control.

Human bipedality, which is considered to be the result
of adaptations to environmental variabilities (Carvalho et al.,
2012), is one of the controversial problems to control. While
the efficiency of bipedal locomotion in the optimal control
theory (Srinivasan and Ruina, 2006) was explained by the
dynamics only in the ground phase, neural oscillator control
(Taga et al., 1991) that is physiologically located in the spinal
central pattern generator (Grillner, 1985; Dimitrijevic et al.,
1998) can reproduce the whole of aperiodic adaptive bipedal
locomotion in a self-organized manner rather than explicitly
calculating the target trajectory or joint torques. However, the
oscillator system is considered to be limited in cyclic movement
with adaptation only to external disturbances (Thelen et al.,
1987; Taga et al., 1991). For example, active adaptation to a
changing situation will result in excessive deviation from the
aperiodic locomotion generated by the oscillator (e.g., in the
opposite direction) because the motor command itself changes
drastically. In recent years, using a physiological reflex model,
the diversity of walking including a direction change of 50◦

was reproduced (Song and Geyer, 2015), but in situations such
as escape or pursuit, robustly faster direction change at any
time (Fujii et al., 2015a) is needed. Furthermore, it is unknown
which factors make such adaptive bipedal locomotion difficult
because previous locomotion models (Taga et al., 1991; Song
and Geyer, 2015) includingmultiple neural oscillators, peripheral

reflexes and multi-link body dynamics were implemented in
a complicated manner, whereas as far as the passive walk,
the previous model simply accomplished it (McGeer, 1990).
Therefore, as a prerequisite for such adaptability, it is important
to examine a minimal control model that achieves direction
change at any time in the opposite direction with a small
number of components and a simple algorithm, and to establish
a methodology for evaluating it.

Distributed autonomous control, in which autonomous
components implicitly function as a whole by interacting with
each other without central control, such as in multi-agent
(Couzin et al., 2002) or multi-link (Watanabe et al., 2012)
biological systems, is applicable to real-time adaptation to the
rapid impairment of components (Yoshihara et al., 2007). This
control system is biologically plausible than explicit simulation
because the system can perform self-modeling (Bongard et al.,
2006) to adapt to the situation beyond its framework. The
differences and advantages of the distributed autonomous
control compared with the neural oscillator control are that
the local components autonomously set the local target and
have flexibility in the rule-based interaction among components.
Among the autonomous system, self-repairing robots (Bongard
et al., 2006; Cully et al., 2015) are remarkable, but the switching
adaptation task in this study requires more improvisational
adaptation (e.g., within 1 s). The mobility control (Yoshihara
et al., 2007) based on the design of autonomous systems, in
which an autonomous mobile component moves prior to an
immobile component, can execute arm reaching movement
when confronting a real-time deficit of the component with
improvisational adaptation. We thus assumed that mobility
control can be a key factor in the switching adaptability with
a minimal algorithm due to the real-time adaptability without
the explicit control of the components. However, in bipedal
locomotion, in addition to the control of the center of mass
in locomotion (equal to endpoint control in arm movement),
balance and leg swing control are necessary and often conflict,
so not only the operation of equivalent rules for each component
but also the switching of rules according to the situation should
be important.

In this paper, we adopted switching autonomous system,
which extended (i.e., incomplete) distributed autonomous
control scheme, because the current task can be accomplished
by solving multiple conflicting functions. For example, it
would be more advantageous for multiple actuators to switch
roles to maintain balance by the leading leg and to move
the center of mass by the trailing leg (Yamashita et al.,
2013). In neurophysiology, this mechanism may be related
to postural control in the reticulospinal tracts found in cats
(Mori et al., 1998), but its mechanisms of interaction and
switching the function of actuators (i.e., muscles) have remained
unknown. We therefore implemented an adaptive bipedal model
into role-switching for propulsion, balance, and leg swing
control with switching mobility control. The objective of this
study is to propose a new control algorithm and evaluation
methodology of a switching adaptive model for performing
bipedal locomotion as a prerequisite for universal motor
control.
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MATERIALS AND METHODS

Model Overview
In this study, we constructed a three-mass model as a toy model
(i.e., a minimally redundant model) of a sidestep locomotor
system (Figure 1A). The three masses were linked with three
actuators, springs, and dampers that represent the legs and inter-
leg (i = 1–3: inter-leg, right leg and left leg, respectively). For
simplicity of the spatially symmetrical configuration of three
actuators, inter-leg actuator 1 was modeled as a hip abductor
and adductor muscles to swing the legs. Passive parameters are
partly based on the human-like model in a previous study (Taga
et al., 1991), as shown in Table S1. In this model, the segments
were stretchable, but if a leg exceeded a certain length (1.1 times
its initial length), we increased the elastic coefficients (Table S1).
We also increased the leg elasticity in the foot contact phase
compared with that in the flight phase (Table S1).

The model can perform 2D lateral locomotion by sending
appropriate commands to the actuators (Figure 1A) according to
the following equation of motion:

mẍ =
∑3

i
F ai +mg+ F passive (1)

where x is a position vector of the three mass points, Fai
is an active force vector generated from the three actuators,

g is a gravity acceleration vector, and Fpassive is a passive
force vector including viscoelasticity of the leg, its extension
limit, and auxiliary action in the trunk (Table S1). The last
auxiliary viscoelasticity prevents falling if the horizontal distance
between the trunk and either leg is within 0.15 m. This value
of 0.15m is heuristically determined based on the trade-off of
falling and propulsion in observation. We improved distributed
autonomous control (Figures 1B–D), which is based on the
rule that the velocity commands are determined from the
instantaneous “mobility” of each actuator in real time. This rule
will be given in an autonomous decentralized form, which is
explained in the paragraphs below.

Switching Mobility Control
For switching mobility control, here we consider the velocity
command for actuator i. Command using positional information
is not appropriate in this study because the calculation of the
precise target trajectory is not needed. Velocity sensing and
command may be reasonable such as due to the utilization of
visual optical flow in a self-driven agent. It is assumed that the
sensory (i.e., proprioceptive) information of the system including
actuator lengths and angles and these derivative values was
used. In this section, we consider the following two steps to
construct the model: (i) First, the mobility index was defined

FIGURE 1 | Three-mass locomotion model. (A) The three masses (trunk and feet) were linked with three actuators, springs, and dampers that represent the hips

(actuator 1) and legs (actuators 2 and 3). For simplicity of spatially symmetrical configuration in the three actuators, inter-leg actuator 1 was modeled as a hip abductor

and adductor muscles to swing the legs. These segments were stretchable, but if a leg exceeded a certain length, we increased the elasticity (Table S1). The

horizontal desired velocity is given as a single global command from the experimenter. Unidirectional arrows at the three masses and bidirectional arrows at the three

actuators illustrate local desired velocities of autonomous actuators and actuator forces, respectively. (B) Local desired velocity without balancing (the same as in a

previous study; Yoshihara et al., 2007). For propulsion rightward, the inter-leg (actuator 1) and trailing leg (actuator 3) are designed to be lengthened and the leading

leg (actuator 2) is designed to be shortened. (C) During grounding of the right leading leg, with a risk of falling forward, the inter-leg actuator and the leading leg are

designed to be lengthened. (D) During grounding of only the left trailing leg, with a risk of raising the leading leg too high, the inter-leg actuator is shortened. Details in

a coefficient a within brackets and unit vector exi are given in Section Materials and Methods.
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as the difference between each local actuator’s desired velocity
(vl

di
) and the actual velocity vi. (ii) Based on the mobility index,

global desired velocity vd was allocated preferentially to mobile
actuators and control input in each actuator was determined.

In the first step, actuator i divides vd into two components:
a local vector vl

di
and a residual vector vr

di
. The former is the

component of vd that actuator i could generate through its own
stretching and shortening and the latter is the component that
actuator i is incapable of generating in the current leg posture
(Figure 1B):

vldi = ai (exi · vd) exi (2)

vrdi = vd − vldi (3)

exi is a unit vector to produce the force in actuator i. exi in
the inter-leg is defined as the unit vector from the trailing leg
to the leading leg. Switching coefficient ai is basically 1 for
propulsion but switches for balancing and leg swing based on the
related segment sensory information (the schematics are shown
in Figure S1). A notable difference from a previous robot arm
study (Yoshihara et al., 2007) is that the local desired velocity is
modified by coefficient ai in the situations because of a temporal
constraint to apply the force to the ground. When i is 2 or 3 (i.e.,
right or left leg) in the flight phase (Figure S1 right), ai was set
to 1/2 because the leg cannot apply force to the ground and the
contribution of the leg to trunk movement halved (Figure 1C:
vl
d3
, Figure 1D: vl

d2
). Additionally, when the trunk approaches

the anterior leg within 0.2 m, ai was set to −1 to prevent falling,
regardless of being in the flight or supported phase (Figure 1C:
vl
d2
). When the posterior leg in the flight phase extended over

its natural length, ai was also set to −1 to attract the leg to the
trunk as the swing for the next step (Figure 1C: vl

d3
). These two

corrections reflect the balance and leg swing, those conflict with
propulsion, respectively.

When i is 1 (i.e., inter-leg: Figure S1 left), ai depended on
the phase of both legs. In the double support phase, ai was
set to 0 because of a lack of contribution to trunk velocity. In
the double flight phase, ai was set to 1/2 in the same manner
for both legs. Additionally, when the posterior leg length was
over 0.6 times the natural length in the double flight phase or
the anterior leg support phase, ai was set to −1 to attract the
posterior leg to the trunk. This value of 0.6 was heuristically
determined based on the following observation: if it is too large,
the model sometimes cannot perform the leg swing, and if it
is too small, it cannot move in the desired direction. Because
of the dependence on kinematic sensory information of other
segments, this system is not purely autonomous. However, this
switching system contributed to achieving the task by resolving
the trade-off between propulsion and balance.

For the adaptation under various environmental conditions,
the mobility measure ki must evaluate the instantaneous mobility
of each joint appropriately, which requires calculation of
kinematic and dynamic mobilities (Yoshihara et al., 2007). The
kinematic mobility is the ability of actuator i to move the trunk,
and represented by the absolute value of the local desired velocity,
i.e., geometric state of the actuator. Dynamic mobility is the same
ability as determined by the dynamic properties of the actuator,

which is represented by the difference between the actual state
and the geometric state of the actuator. The mobility measure ki
is defined as the corrected ratio of dynamic mobility to kinematic
mobility:

ki = exp[−4(ln2)(‖vldi − vi‖
2 + ε1)/ (‖v

l
di ‖

2 + ε2)] (4)

where vi is the velocity produced at the trunk generated by
actuator i, and ε1 and ε2 are small values (ε1: 10

−10, ε2: 10
−4)

to avoid dividing by zero. The denominator and numerator are
related to the kinematic and dynamic mobility of actuator i,
respectively. The mobility ki is supposed to take a value of 0 in
an immobile actuator, and 1 in a mobile actuator.

Next, by using ki, v
l
di
, and vr

di
(Equations 2–4), we intended to

design a real-time controller that would make the most mobile
actuator work dominantly, and make the other actuators work
cooperatively in order to satisfy vd. Actuator i basically tries to
move according to its own local vector vl

di
, and require the other

actuators to create its residual vector vr
di
. The required velocity

from actuator j to actuator i, v
cj

di
, is defined as a projection of vr

dj
to exi:

v
cj

di
= (exi · v

r
dj) exi (5)

The mobility ki of each actuator then determines how the
actuators interact with each other. We express this as follows:

ṽdi =
∏m

j 6= i
(1− kj) v

l
di +

∑m

j 6= i
kj v

cj

di
(6)

v∼
di

is the velocity command for actuator i. The first term
functions as an inhibitory interaction from actuator j, which
prevents actuator i from moving according to its own local
velocity vl

di
. In contrast, the second term functions as an

excitatory interaction make actuator i work cooperatively and
generate the residual velocity of actuator j. In this study, we
considered the minimal model which fully connected among
three components (i.e., the nearest neighbors equal to the
full connections). In more biological model, note that the
number of the connection will increase and we should examine
the connection configuration, such as based on the nearest
neighbors. The velocity command, v∼

di
, is transformed to torque

as follows:

F ai = Gi (ṽdi − vi) (7)

where Gi is the proportional gain of actuator i. We heuristically
set it to 3,000 kg/s to perform the task.

Simulation and Statistics
Initial horizontal and vertical positions of the trunk were set
as 0 and 0.92 m, respectively. Initially, three masses were
kept motionless in an equilateral triangular posture and double
support stance. The time step in the simulation was set to 10−5

s. To examine the parameter sensitivity, we ideally should use
the human parameter for the verification. Although we used the
skeletal parameters based on the human parameters (Taga et al.,
1991), the passive joint viscoelasticity should be approximated
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when we expressed it as a scalar value (Taga et al., 1991), because
muscle-tendon complex has many components with various
viscoelastic properties. Based on the assumption that we can
learn the (sub) optimal parameters in various motor tasks, we
approximated the passive joint viscoelasticity with the invariant
scalar value. Instead, we examined the following three parameters
from as broad a range as possible: the elasticity of legs, the
elasticity of ground, and the proportional gain of actuators. We
simulated themodels tomultiply each parameter by 10−1, 10−1/2,
1, 101/2, and 10. The details and the results were given by Figure
S3. In short, in the case of multiplying 10−1/2 or 101/2 by the
each original parameter, the model had sensitivity enough to
accomplish the direction change at any time.

To quantify the switching adaptability performance, the
reaching time was calculated as the time interval from the
direction change command to themovement at 2m displacement
after the direction change. To compare the switching mobility
model with the conventional models, we reproduced the two
model simulations in forward walking models (Taga et al., 1991;
Song and Geyer, 2015). In the neural oscillator model13, we used
the cited parameters, motion equations and set the constant input
as 6. The time step in the simulation was set to 10−6 s. In the
reflex control model15, we used the freely available MATLAB
code, and set the type of model to normal walk and the time step
of extraction to 10−3 s. Other parameters were set as the defaults,
including 1.3m/s as the initial horizontal moving velocity.

For bivariate correlations, we used Pearson’s correlation
coefficient. For comparing the reaction time between during two
different phases, we used the unpaired t-test. Both statistics are
described with the corresponding degrees of freedom (denoted
by a subscript). For all the statistical calculations, p < 0.05 was
considered significant. All simulations and statistical analyses
were performed using MATLAB 2016a Statistics and Machine
Learning Toolbox (The MathWorks, Inc., MA, USA).

RESULTS

Bipedal Locomotion with Switching
Mobility Control
We first set the target speed to 2m/s and simulated
straightforward locomotion without direction change (Video
S1). Figure 2A shows the time series of the target and actual
velocities of the trunk mass. Similar to actual human bipedal
locomotion (Bruijn et al., 2013), the target speed was not always
achieved because the acceleration of the body can occur only
at the moment when the foot is grounded. The trunk velocity
is mostly obtained at the time of contact of the trailing leg
(Figures 2A,B) because the leading (right) leg was not designed
to overtake the trailing leg in the sidestep (Yamashita et al., 2013).
In particular, in this model, alternate grounding of the leading
and the trailing feet did not always occur (Figure 2B, Video S1).
Thus, the locomotion of our model was neither strictly walking
nor running. As is the case for skipping with the repeated same
foot contact (Minetti, 1998) and galloping with both the double
support and flight phase (Yamashita et al., 2013), in the model,
the same foot sometimes repeatedly contacted and showed a

double support and flight phase. Our model temporally changed
the four gaits characteristics, and thus cannot be categorized.
The longer term (60 s) characteristics are shown in Figure S2.
The mobility index of the three actuators (Figure 2C) alternately
increased and decreased to play their roles as determined by
switching coefficients (Figure 2D). Mobility seemed to increase
in the flight phase in both leg actuators (2 and 3) and at the phase
with either leg grounded in inter-leg actuator 1 (Figure 2C).
The switching coefficients seemed to switch appropriately to
propulsion (Figure 2D red, e.g., grounded in actuators 2 and 3),
balance (blue, e.g., grounded in actuators 2 and 1; in flight in
actuator 3), and swing (orange or light blue, in flight in actuator
2 or 3) separately in each actuator (Figure 2D: the algorithm is
given in Section Materials and Methods).

Direction Change at Various Timings
During the sidestep in Figure 2, we switched the target speed
to −2m/s at various timings and moved the trunk to 2m in
the opposite direction from that moment. The vertical axis
in Figure 2E shows the reaching time toward 2m after the
direction change command with a 0.03-s interval (horizontal
axis). First, the switching mobility model achieved direction
change at any time using only the three actuators. The reaching
time and its variation are the model performance (mean and
standard deviation of reaching time: 2.734 ± 0.567 s) and a
new evaluation method of the switching adaptation in bipedal
locomotion. The results showed the reaching time increased
during the trailing leg stance compared with the other timings
(2.940 ± 0.644 s vs. 2.604 ± 0.474 s, t99 = 3.01, p = 0.0033).
Figure 3 shows examples of the faster direction change (reaching
time: 1.478 s) after 1.861 s from the start of the simulation
(Figure 3B, Video S2) and in the delayed direction change
(reaching time: 4.280 s) after 2.161 s (Figure 3B, Video S3).
The faster trial involved a change in direction to switch the
mobility index and the switching coefficient and to include
fewer steps in a shorter cycle compared with the slower trial.
As a coarse grained explanation at the direction change timing,
the trailing leg stance increased the reaching time because the
trailing leg propelled the body (before the direction change)
and then will make the body difficult to change the inverse
direction.

As fundamental kinematic characteristics to investigate the
fine-grained fluctuation of the reaction time, we examined
the relationship of step numbers and foot height with the
direction change performance (Figure 4). The reaching time
was significantly increased with a greater number of steps
for both leading and trailing feet (Figure 4A, leading: r99 =

0.542, p = 4.7 × 10−9, trailing: r99 = 0.509, p = 5.4 ×

10−8). It was also significantly increased with maximum foot
height (Figure 4B) for the leading foot (r99 = 0.283, p =

4.1 × 10−3), but not that for the trailing foot (r99 = 0.03,
p = 0.976). These results suggest that the faster direction
change was derived from the movement with less motor
cost, estimated by fewer steps and a smaller leading foot
height. However, an underlying cause of difference between the
trials in the faster and the slower reaching time was difficult
to explain directly because the behaviors were interrelated
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FIGURE 2 | Straight lateral locomotion and a new method of evaluating switching adaptability. (A) Time series of the target speed (black line) and actual speed (green

line) of the trunk mass (top component). Target speed was set to 2m/s and actual speed fluctuated. (B) Contact with the ground of the right leading foot (red) and the

left following foot (blue). The left and right feet were not always grounded alternately. Detailed processes are shown in Video S1. (C) Mobility index ki of inter-leg (I,

black, i = 1), right (R, red, i = 2) and left (L, blue, i = 3) legs in the switching mobility control algorithm (a darker color indicates greater mobility). Mobility index of the

three actuators alternately increased and decreased to play their roles as determined by the switching coefficients (D). The mobility seemed to increase at the flight

phase in both leg actuators and at the grounded phase of either leg in the inter-leg actuator. (D) Switching coefficient ai of actuator i’s desired velocity. I, R, and L are

the same as in (C). Red (ai = 1) and blue (ai = −1) show propulsion and balance during the grounded phase, respectively. Orange (ai = 1/2) and light blue (ai = −1/2)

show leg swing for propulsion and balance during the flight phase, respectively. Green (ai = 0) is neutral (i.e., zero velocity command) for the grounded state of either

or both legs. The switching coefficients seemed to appropriately switch to propulsion (e.g., grounded in actuators 2 and 3), balance (e.g., grounded in actuators 2 and

1; in flight in actuator 3) and swing (in flight in actuator 2 or 3) separately in each actuator. (E) Reaching time (vertical axis) toward 2m after the direction change

command with a 0.03-s interval (horizontal axis). Time series corresponds to the timing of the direction change, which shows high variability (reaching time: 2.734 ±

0.567 s). The reaching time and its variation are the model performance and a new method of evaluating the switching adaptation in bipedal locomotion.

and generated from the closed-loop structure. This may be
generated from a subtle dynamic state difference and the
subsequent accumulation of integration error in the non-
integrable system.

Comparison with Conventional Models
To reveal the difference in motor output in the different
architectures, we reproduced two previous forward walk models
with a neural oscillator (Taga et al., 1991) and reflex control
(Song and Geyer, 2015; details are given in Section Materials
and Methods). Note that because there is no sidestep bipedal

model, except for ours, detailed comparisons between the
proposed and previous models are impossible (furthermore,
these models have parameter sensitivity, so we cannot match
the locomotion velocities). We thus focused on the fundamental
locomotion characteristics which differed greatly beyond the
mere specific parameters of the models. We first compared
the amplitude and variance of the inter-step interval for both
legs with a large number of steps (90 stable steps from the
11th to the 100th step) to quantify the stability in locomotion
(Figures 5A–C). The switching mobility model had much larger
variance in step interval, despite the lower horizontal moving
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FIGURE 3 | Examples of trials in fast and slow reaching upon direction change. Similar to Figure 2, this figure shows the actual trunk (green) and target (black)

velocities, and the left and right foot contacts in the faster direction change after 1.861 s from the start time (A) and in the delayed direction change after 2.161 s (B).

The upper right and lower right stick pictures are kinematic postures at the direction change command. The moment of the direction change command and at

reaching 2m (simulation end) are indicated by black dotted lines.

FIGURE 4 | Relationships between kinematic characteristics and performance. Performance was evaluated as the reaction time after the direction change command

(Figure 2E). Kinematic characteristics were quantified as (A) number of steps and (B) maximum vertical foot height of left foot (blue triangle, leading foot) and right

foot (red circle, trailing foot) after the direction change. Note that all of the data including foot definition were for after the direction change. (A) Reaching time was

significantly increased with the number of steps for both leading and trailing feet. (B) Reaching time was significantly increased with maximum vertical foot height for

the leading foot (blue triangle, left foot), but not that for the trailing foot (red circle, right foot).

velocity (leading leg: 0.298 ± 0.247 s, trailing leg: 0.257 ±

0.190 s at a mean velocity of 0.575 m/s) compared with the
forward walking models (neural oscillator model: 1.119 ±

0.001 s at a mean velocity of 1.544 m/s, reflex model: 1.229 ±

0.004 s at 1.200 m/s; in both models, the intervals for the left
and right legs were the same). The step interval variance in
the switching mobility model was also much larger than the
measured human sidestep walking data (Yamashita et al., 2013;
∼1.0 ± 0.1 s at 1.3 m/s). In addition, from a visual analysis,

in the switching mobility model, sidestepping was performed
in a less efficient way with higher foot raising (Figure 5D) or
a repeated grounded phase in the same leg (Figure 2C, Video
S1) at the expense of switching adaptability. We calculated
the peak foot height frequency (Figures 5D–F) and showed
that the leading leg was sometimes raised higher than in
the comparable models, in which the foot height was strictly
controlled, especially in the computational reflex model (Song
and Geyer, 2015).
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FIGURE 5 | Comparison of step frequency with conventional locomotion models. Time series of step interval of trailing (blue) and leading (red) legs in (A) the switching

mobility model, (B) the neural oscillator model (Taga et al., 1991) and (C) the reflex control model (Song and Geyer, 2015). Left and center panels show the first 10

steps magnified and 90 subsequent steps, respectively. Note that the models for comparison were forward locomotion models, but the mean moving velocities were

largely different among them (the switching mobility model: 0.575 m/s, neural oscillator model: 1.544 m/s, reflex model: 1.200 m/s). The step interval variability in the

switching mobility model was much larger than in the conventional locomotion models. We also included signature leg raising in the switching mobility model and

show a histogram of peak foot height frequency in (D) the switching mobility model, (E) the neural oscillator model and (F) the reflex control model. The horizontal axis

represents the vertical foot height normalized by the trunk height. Comparable models (especially the computational reflex model; Song and Geyer, 2015) strictly

controlled the foot height, but the leading leg in the switching mobility model was sometimes raised higher than in the comparable models.

DISCUSSION

In this study, we constructed a minimal distributed autonomous
model achieving bipedal change in direction at any timewith only
three actuators, but without accurate features representing the
whole human body structure, such as a central pattern generator
and a lower limb joint, as reproduced in the previous comparable
models (Taga et al., 1991; Song and Geyer, 2015), that is, without
explicit optimization and cyclic movement in neural oscillators.
Simultaneously, we also developed a new method for evaluating
the ability to perform robustly faster direction change during
bipedal locomotion (Figure 2E). In previous studies of adaptive
bipedal locomotion in robotic engineering or neurophysiology,
such as when encountering an obstacle in the environment or
an external disturbance (Taga et al., 1991; Song and Geyer,
2015; Koolen et al., 2016; Kuindersma et al., 2016), it was not
considered whether the bipedal model can achieve direction
change at any time, which is not explicitly implemented (i.e.,
unpredictable for the model). Thus, to discuss this control
problem, it is necessary to reconstruct the frameworks from
the viewpoints of engineering control and neurophysiology, as
explained below. The expansion of the frameworks should be
necessary for understanding universal motor control.

From the viewpoint of engineering control, the switching
mobility model showed switching adaptability at the expense

of efficiency because it is difficult for the bipedal locomotion

model to satisfy the criteria of both efficiency and adaptability.
Previous research using an inverted pendulum locomotionmodel

(Srinivasan and Ruina, 2006) explained the energy efficiency in
various locomotion patterns based on the optimal control theory.
With regard to efficiency, the switching mobility model showed
highly costly movement in which a period of repeated grounding
of the same leg occurred (Figure 3), in contrast to that in the
conventional models (Taga et al., 1991; Song and Geyer, 2015),
even without a change in direction. Furthermore, at the time
of changing direction, it sometimes takes a long time to adapt
to the command to change direction (Figure 3B) because of a
greater number of steps (Figure 4A) and a higher leading leg
raise (Figure 4B). This leg raise was controlled in the neural
oscillator model (Taga et al., 1991) and strictly computed in the
reflex model (Song and Geyer, 2015) at a lower level than in the
switchingmobility model without direction change (Figure 5). In
adaptive bipedal locomotion, it is difficult to calculate the optimal
trajectory, so we confirmed the highermotor cost in the switching
mobility model, estimated from the much larger variance in step
interval and much higher leg raise, than in the conventional
models. This is also because there is no mathematical guarantee
of efficient movement inmobility control (Yoshihara et al., 2007),
which is different from the explicit optimal control or neural
oscillator control in cyclic movement. Instead, switchingmobility
control in the switching mobility model would have an advantage
regarding adaptability, even if the movement switches from a
cyclic to a non-cyclic pattern and vice versa and has difficulty in
control, such as large instability as in bipedal chase-and-escape
in interactive sports (Fujii et al., 2015b,c). We were not able
to perform a direct comparison with these control algorithms
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because there are no models to show the switching adaptability
(and performing a sidestep); however, a future model can be
compared by the proposed evaluation method in which the
model performs direction change at various timings.

Neurophysiologically, our switching mobility control
algorithm suggests the presence of reflex-like switching functions
of propulsion, balancing, and leg swing within and between
limbs to achieve the task. The algorithm does not directly
reflect the neural mechanism, but we can consider similarity
with human neurophysiology by a process of elimination.
The proposed model does not explicitly control the actuator
movements like cerebellum (Shadmehr and Krakauer, 2008)
and does not directly generate quasiperiodic movements such
as using neural oscillators (Taga et al., 1991) physiologically
located in spinal central pattern generators (Grillner, 1985;
Dimitrijevic et al., 1998). Instead, the previous work suggests
that diverse movements can be reproduced by incorporating
the multiple reflexes in the spinal feedback circuitry without
the central pattern generator (Song and Geyer, 2015). Among
these architectures, we can find the similarity between the reflex
control and the autonomous distributed control (Yoshihara et al.,
2007; Watanabe et al., 2012), which incorporates interaction
among components and environments (i.e., feedback of ground
reaction force) and can implicitly adapt to a rapid change of
command. In other words, the point at which each actuator
autonomously sets and executes a target movement according
to the situation in the switching mobility model matches that
in the physiological reflex mechanism in which the inputs
and outputs are locally automated. Our switching distributed
autonomous control algorithm provided the relationship among
the actuators (i.e., muscles) to switch functions of propulsion,
balancing, and leg swing within and between limb levels.
In a manner similar to long-latency reflexes, which would
possess an internal model of limb dynamics (Kurtzer et al.,
2008), the actuator in the switching mobility model rapidly
switched functions according to the situation. There is no
physiological evidence from the neural circuitry of a response
of such inter-limb reflexes to a drastic change of command
in the long neural pathway, but we believe that it would be
needed for the switching adaptation in bipedal locomotion.
The neural mechanism involved would be complicated
because of possible involvement with both voluntary and
reflex control overlapping in their neural substrates (Kurtzer
et al., 2008); however, it may be simply explained by the
simple interaction rule of our switching mobility control.
This constructive approach can contribute to understanding
intelligent motor control including biologically (Carvalho et al.,
2012) and socially (Helbing et al., 2000) essential activities,
such as escape from enemies, pursuit of prey, and search for
food.

However, there are some problems with the above
neurophysiological claims. One is that it claims to be
based only on the similarity in the architectures without
neurophysiological evidences. This is considered as a general
problem in finding evidences of long-latency reflexes, which
overlapped with voluntary movements in their neural substrates
(Kurtzer et al., 2008). Second is validation with real-world

human data satisfying both sidestepping (Yamashita et al.,
2013) and unpredicted change direction (Fujii et al., 2015b).
The latter study showed that the unpredicted competitive
situation (i.e., requiring the faster movement) delayed the
first step initiation more than 100 ms, suggesting the human
can decrease the delay more than the current switching
adaptability model. The real human locomotion mechanism
includes central pattern generators, peripheral reflexes,
and spring-damper system. The spring-damper property,
which contributes high speed locomotion according to a
quadruped robot study (Kimura et al., 2007), should be further
investigated.

Third is the sensitivity of the simulation to the choice
of some of the model parameters. Our supplementary results
(Figure S3) showed that the switching adaptability model
had strong sensitivity to the parameters. We suppose the
parameterization may be related with inherent adaptation to
the individual musculoskeletal system and might be relatively
independent of the motor control adaptation. As a further
alternative approach, for example, evolutionary algorithm (Song
and Geyer, 2015) and reinforcement learning (Lillicrap et al.,
2015) efficiently worked in previous bipedal locomotion studies.
These are complementary relationship in terms of inter- and
intra-generation progress, respectively. The reflex model (Song
and Geyer, 2015) optimized the control parameters with the
covariance matrix adaptation evolution strategy (Hansen, 2006).
Reinforcement learning enables the acquisition of efficient and
adaptive locomotion by trial and error on models, like humans
actually do, probably in the basal ganglia (Doya, 2000). However,
if learning a case of sudden change through evolutionary
algorithm and reinforcement learning (also in learning of
humans as an experimental condition; Fujii et al., 2013), there is
a possibility that it will not mean “unpredictable sudden change”
when performing an adaptive bipedal locomotion (Shinya et al.,
2009). In other words, it can be considered that the explicit
control rule should be difficult to estimate in principle in
these approaches (i.e., human bipedal locomotion can also
predictively adapt to the situation; Shinya et al., 2009). The
evolutionary algorithm and reinforcement learning will also have
the advantage to acquire the efficient movement in our less
efficient model. Satisfying the requirements of efficiency (e.g.,
obtained explicitly by using optimal control and implicitly by
evolutionary algorithm or reinforcement learning) and switching
adaptability proposed by our study will further contribute to
solving the general motor control problem.
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