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Assistive devices for persons with limited motor control translate or amplify remaining

functions to allow otherwise impossible actions. These assistive devices usually rely on

just one type of input signal which can be derived from residual muscle functions or any

other kind of biosignal. When only one signal is used, the functionality of the assistive

device can be reduced as soon as the quality of the provided signal is impaired. The qual-

ity can decrease in case of fatigue, lack of concentration, high noise, spasms, tremors,

depending on the type of signal.To overcome this dependency on one input signal, a com-

bination of more inputs should be feasible. This work presents a hybrid Brain-Computer

Interface (hBCI) approach where two different input signals (joystick and BCI) were moni-

tored and only one of them was chosen as a control signal at a time. Users could move a

car in a game-like feedback application to collect coins and avoid obstacles via either joy-

stick or BCI control. Both control types were constantly monitored with four different long

term quality measures to evaluate the current state of the signals. As soon as the quality

dropped below a certain threshold, a monitoring system would switch to the other control

mode and vice versa. Additionally, short term quality measures were applied to check for

strong artifacts that could render voluntary control impossible.These measures were used

to prohibit actions carried out during times when highly uncertain signals were recorded.

The switching possibility allowed more functionality for the users. Moving the car was still

possible even after one control mode was not working any more. The proposed system

serves as a basis that shows how BCI can be used as an assistive device, especially in

combination with other assistive technology.
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1. INTRODUCTION

Brain-computer interfaces (BCIs; Wolpaw et al., 2002) provide a

means of communication for patients who have lost most of their

residual muscle functions and are therefore incapable to interact

with their environment. Examples of these kinds of severe impair-

ments are people suffering from symptoms of amyotrophic lateral

sclerosis (ALS), people in a locked-in state, and people who have

a spinal cord injury close to the brain.

A BCI makes use of brain signals which can be derived from

various sources with different methods. In this study we used a

non-invasive method to record electrical brain signals, the elec-

troencephalogram (EEG; Mason et al., 2007). EEG-based BCIs

can be subdivided into three categories according to the used

signal types: first, dynamics of brain oscillations such as event-

related (de)synchronization (ERD/ERS; Pfurtscheller and Lopes

da Silva, 1999) which establish the basis for motor imagery (MI)

BCI (Pfurtscheller and Neuper, 2001; Neuper et al., 2006); sec-

ond, steady-state evoked potentials (SSEPs; Middendorf et al.,

2000; Müller-Putz et al., 2006); and third, evoked potentials

(Regan, 1989) with the well-known example, the P300 (Farwell

and Donchin, 1988).

The benefit of BCI is the independence from any remaining

muscular functions, which means that muscle fatigue is irrelevant.

However, one major drawback with BCIs is that the performance

for most users is still far from perfect. BCIs are often afflicted

with low bit rates, low accuracy, and bioelectrical signals are gen-

erally prone to be corrupted with artifacts. Because it is difficult

to improve BCI technology itself, applications could be developed

that make better use of BCIs, acknowledging the advantages and

disadvantages and deal with them in the most appropriate way. For

example, a BCI can be used to provide additional communication

channels on top of other assistive devices that are used by people

who still have some residual motor functions (Rupp and Gerner,

2004).

To increase the attractiveness of BCI technology for patients it

is essential to find practical applications that provide maximum

control at all times, depending on the current physical and/or

mental condition of the patient. Thus, providing the best means

of communication at any time would be reasonable. As long as

residual motor functions are still working, they offer a more reli-

able and natural communication channel. However, due to fatigue

and/or additional interferences like tremors or spasms, a signal
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based on motor functions may lose its control capability after a

long time of usage. At this moment, a switch to a control mode

which is not based on muscular activity might become a lot more

attractive and could be used to restore control over the assistive

system. This approach can be realized by using a multimodal inter-

face (Blattner and Glinert, 1996; Jaimes and Sebe, 2007) which is

able to deal with at least two different control signals. A particu-

lar multimodal interface which incorporates BCI is called hybrid

BCI (hBCI; Scherer et al., 2007; Allison et al., 2010; Millán et al.,

2010; Pfurtscheller et al., 2010). Here, a BCI is combined with

any other user-driven signal. This signal can be a biosignal like

electromyogram (EMG), electrocardiogram (ECG), electrooculo-

gram (EOG), or EEG not used for BCI, but also sensor signals and

other control signals generated from assistive devices like shoulder

joysticks, mouses, buttons, and eye trackers (Zander et al., 2011).

Moreover, the use of hybrid BCIs may be an interesting tool for

healthy users in special working environments where common

control mechanisms are unreliable or not enough, e.g., operating

an additional EEG-based command in a spacesuit, or also in the

field of gaming (Zander and Kothe, 2011).

According to (Pfurtscheller et al., 2010), an hBCI must ful-

fill following four conditions: “(i) the device must rely on signals

recorded directly from the brain; (ii) there must be at least one

recordable brain signal that the user can intentionally modulate to

effect goal-directed behavior; (iii) real time processing; and (iv) the

user must obtain feedback.”The hBCI introduced in this paper will

follow these definitions except one small deviation: the BCI pro-

vided is purely optional, just like any other input into the system;

users are not forced to use BCI when there is a better alternative.

This approach concurs with the concept developed and described

in (Millán et al., 2010). A more detailed description of the hBCI

platform can be found in (Müller-Putz et al., 2011).

The combination of multiple inputs can be handled in a few

different ways: (i) each input can be linked to a single application;

(ii) all the inputs are fused and weighted to generate a single output

which controls an application (Leeb et al., 2011); (iii) a monitor-

ing module monitors inputs and decides which is best suited to be

used as a control signal.

The goal of this work was to evaluate a practical combination of

multimodal inputs with the sole purpose of making an application

more usable for patients. This means, on the one hand, that a sys-

tem should be easy to use and functional all the time by providing

different options to communicate with it, but also, on the other

hand, that an application can be controlled for a longer time than

usual. Interaction with the assistive device should still be possible

after the primary control strategy would no longer be possible due

to fatigue and/or a growing lack of concentration. Therefore, the

hBCI system presented in this paper is relying on the approach

(iii): a monitoring module monitors inputs and decides which is

best suited to be used as a control signal. A joystick (JS) signal

to simulate assistive devices and a control signal derived from an

MI-based BCI were constantly monitored and weighted to achieve

a solution with long functionality for the user. The weighting was

based on four individual quality measures per control mode. These

measures were designed to detect signal specific artifacts and mal-

functions, e.g., noisy EEG or a joystick signal made unusable due

to strong tremors.

The proposed combination of inputs was used in a car game.

A constantly moving car could be controlled with either one of

the two inputs to collect coins and avoid obstacles. We investi-

gated how well the selection of quality measures could detect a

low performance, caused by a poor signal quality. To speed up

the simulation an artificial deterioration was used for the joystick

signal to simulate signal impairments that can be expected from

patients. BCI was not deteriorated, as artifacts were expected to

occur all the same.

Additionally, we investigated how the switching capability

increased the maximum score when compared to a simulation

without switching.

After running the experiments and evaluating the data we could

show increased scores and a trend that links good performance

during the car game with the quality rating determined by the

quality measures.

2. MATERIALS AND METHODS

In the feedback application subjects could move a car on a

vertically scrolling street, see Figure 1. On the sides of the

street coins and obstacles (barriers) appeared randomly. Sub-

jects were asked to collect as many coins as possible with the

car while avoiding obstacles. The car was controlled either man-

ually with a joystick, or mentally with BCI. The joystick repre-

sented any kind of assistive device, relying on muscular functions.

This device could stop working permanently, after a long usage

due to fatigue, or temporarily, during periods of tremor and

spasm.

BCI on the other hand is prone to noise, distraction, and fatigue

as well. Considering the drawbacks of both input modalities, the

system offered switching between inputs to increase flexibility and

FIGURE 1 | Online car game. The current trial’s task is to collect coins on

the right side and to avoid the barriers on the left. The active mode is still

JS, but a switch to BCI is imminent due to the low quality of the JS input,

visualized with a quality bar on the left screen side. The current score in

relation to the maximum possible score at the moment is displayed on the

bottom of the screen. The right number indicates the number of the active

trial. The finish line depicts the end of a trial after which the switching is

carried out.
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functionality for the users. The switching was carried out whenever

the quality rating (QR) of one signal was considerably worse than

the other’s. An overview of the proposed system is demonstrated

in Figure 2.

2.1. INPUTS

Both inputs, BCI and joystick, provided control signals from −1

to +1 where −1 would move the car to the left side of the street

and +1 to the right. The joystick was limited mechanically so it

could not generate values out of this range. BCI, which used an

LDA classifier to discriminate between two MI classes, was satu-

rated at −1 and +1. The joystick signal was further processed with

artificial artifacts.

2.2. ARTIFICIAL ARTIFACTS FOR THE JOYSTICK INPUT

To simulate the system on healthy subjects instead of patients the

joystick signal was deteriorated with artificial noise. This deteri-

oration can be expected from patients with a spinal cord injury

at C4/C5 which causes loss of hand control and heavily limited

shoulder function. The artificially induced deterioration included

tremors (Anouti and Koller, 1995), spasms (Kawamura et al.,

1989), and an increasing weakness over time. To speed up the sim-

ulation, unrealistically high values were chosen: maximum fatigue

was reached within minutes and tremors and spasms occurred

frequently as long as fatigue was still low.

2.2.1. Tremors

During periods of a tremor a heavily shaken JS can be expected

which renders control completely unreliable. We simulated this

effect by adding a normally distributed random signal, band-pass

filtered between 2 and 10 Hz, to the recorded JS signal. The tremor

signal’s amplitude and probability of occurrence was inversely

proportional to the current weakness. Every 20 s, with a proba-

bility of p = 100 − weakness level in %, either a tremor or a spasm

was triggered at random. The amplitude of the tremor signal was

affected directly by the current weakness as the whole JS signal was

decreased.

2.2.2. Spasms

These involuntary muscle contractions can also have a strong and

negative effect. We simulated spasms by applying a heavy bias to

either the left or the right. The same rules were applied here as for

the tremor activation. The added bias was also reduced with the

weakness level.

2.2.3. Weakness

The most important factor was the weakness as it was used to sim-

ulate fatigue. The parameters were set to allow a stepwise increase

of weakness after each trial. A weakness level of 0% indicated no

impairment, whereas 100% were reached as soon as subjects were

no longer able to collect coins due to the strong reduction of ampli-

tude. How fast the maximum weakness was reached depended on

the stage of the experiment, either at the 10th or the 30th trial.

Weakness could recover, with the same rate it was increased before,

during times of no active joystick usage.

2.3. QUALITY MEASURES

The currently active control signal was evaluated with four spe-

cific long term quality measures. These measures were customized

to check specifically for indicators of a bad quality. These indi-

cators could be a high noise level or unreliable behavior like an

unstable classifier output. Both signals were measured individu-

ally. On top of these long term measures, both input types had

one short term measure. Basically, short term measures were an

additional effect when the worst indicators, used for long term

FIGURE 2 | Overview of the online setup. All the data is acquired with the

help of the TOBI Signal Server and passed on to Matlab/Simulink. The signals

are weighted by specific quality measures and fed to the switching block

which chooses the input to use as a control signal. This control signal and

information about the current state are passed on to the feedback, the car

game.
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measures, were detected, e.g., noisy EEG and a heavily shaking

joystick. When short term measures were active, control of the car

was no longer possible because the car was fixed to the middle

lane.

2.3.1. Joystick measures

The quality score depended on following factors: shaking caused

by tremors, low range of movement as a result of weakness, invari-

ability (a total lack of movement possibly indicating hardware

defects), and bias induced by an imbalanced preference of one

side which can be caused by spasms.

2.3.2. BCI measures

These measures monitored the noise of the EEG signal caused by

EMG artifacts, instability due to unreliable classification, invari-

ability (indicating hardware or software errors), and also bias for

a one-sided classifier output.

The problem about setting the weights for the measures was to

find the right values in order to rate negative effects correctly.

That is, very strong impairments should cause a fast decrease

of quality and minor impairments only a slow decrease. These

weights were initially set to arbitrary values. However, we tried to

give strong negative effects like strong noise and shaking heavier

weights. In contrast, not so acute effects were weighted lower, e.g.,

effects like fatigue whose influences built up over a longer time. All

weights were adjusted empirically while conducting preliminary

tests before running the final experiments.

The differently strong impacts on the quality for the final mea-

sures were as follows: BCI noise and JS shaking would decrease

the quality by 10(%/s), BCI instability by 5(%/s), low JS ampli-

tude by 2(%/s), BCI and JS invariability by 1(%/s), whereas the

bias was proportional to the bias itself; a strong bias over a long

time would increase the weight steadily. All those measures were

able to recover individually whenever they were not currently

detected. Additionally, all individual quality measures for one con-

trol mode recovered when the other mode was currently active;

i.e., BCI measures recovered with 1(%/s) during joystick mode

and vice versa. The currently inactive signal was never monitored,

i.e., the quality of an inactive signal was only allowed to increase,

not decrease. The described measures are also demonstrated in

Table 1.

QRBCI/JS = 100 +

N
∑

i=1

∫

wi (x (t )) dt

withx (t ) =

⎧

⎪

⎨

⎪

⎩

1 current mode, noise active

2 current mode, noise inactive

3 other mode, recovery

e.g., w1,BCI =

⎡

⎣

−10

+3

+1

⎤

⎦ ; w2,JS =

⎡

⎣

−2

+4

+1

⎤

⎦

(1)

Equation 1 shows a simplified formula of how the qualities

for both control modes were calculated during the online experi-

ment. In the equation QR depicts the quality rating of one of the

two control signals which always ranges between 0 and 100%. wi

Table 1 | BCI and JS quality measures.

BCI JS

Measures QR↑↓ (%/s) Measures QR↑↓ (%/s)

↓ ↑ ↓ ↑

EMG noise −10 +3 Shaking −10 +2

Instability −5 +1 Low amplitude −2 +4

Invariability −1 +4 Invariability −1 +4

Bias ∝ bias ∝ bias Bias ∝ bias ∝ bias

Four measures for both control modes, BCI and joystick, are shown. These mea-

sures can either decrease the quality (100% + numbers in the second and fifth

column) when they are currently detected but also recover over time otherwise

(third and sixth column). The bias’ measure, as an exception, is depending on

the magnitude of the bias itself. The decrease rate of the QR is higher than the

recovery rate to allow for a quick response in case of bad input signals. All quality

measures of one mode recover with 1(%/s) when the other mode is active at the

moment.

describes the N = 4 different weight vectors, one for each qual-

ity measure. The indexes of these vectors depend on the current

state of detected criteria and on the actual active control mode.

The weights either increase or decrease the whole quality of one

mode. The equation is simplified inasmuch as it does not include

context-sensitive factors that were considered additionally online.

These factors are represented in the following list which explains

the four long term quality measures per control mode, the rela-

tion with short term measures, and how exactly measures were

combined in the online model:

• BCI EMG noise: all EEG channels were filtered between 20 and

100 Hz, squared, averaged with a moving rectangle window of

1 s, and logarithmized. A threshold was set before online mea-

surements after subjects were instructed to produce EMG noise

and clean EEG. EMG noise was only detected within active tri-

als. When detected, an integrator would start to increase from 0

to 100% with 10% every second. Otherwise the integrator could

recover toward the minimum value of 0% with −3(%/s). These

and following values are given in Table 1, however with inversed

signs. EMG noise, when detected, also triggered the short term

measure of the BCI signal. This effect was shown in the car game

by fixing the car to the middle lane and a swiveling animation

of the car.

• BCI instability: this measure was based on the number of zero

crossings within active trials. As soon as the middle line of the

street was crossed more than three times within one trial, a sec-

ond integrator increased from 0 to 100% until the trial was over.

Anytime else the value could recover.

• BCI invariability: a total lack of LDA variance after 1 s started

a very slow increase of a third integrator, also limited between

0 and 100%, which would decrease four times faster in case of

any movement. This measure was active at all times.

• BCI bias: as soon as the system switched to BCI, the bias was

measured constantly. A one-sided classifier output resulted in

a continuously increasing weight. In detail, when the absolute
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value of the LDA classifier exceeded 0.2, an integrator was grow-

ing either toward +100 or −100%, depending on the sign of the

LDA output. This value was multiplied by 1/20. The absolute

value was then subtracted with 1 and the final weight passed

on to the fourth integrator. This way, the bias weight could lie

between 1 and 5(%/s) and recovered with 1(%/s), due to the

subtraction.

• BCI combination: the four BCI integrators were either increased

or decreased with the specific weights or each decreased with

−1(%/s) when JS was currently active. The outputs of all four

integrators were added but the total sum was limited to 100%.

This total value was finally subtracted from the current BCI QR

which started at 100%.

• JS shaking: the absolute value of the derivation of the JS input

was smoothed with a moving rectangle window of 1 s length. A

predefined threshold was found in foregoing measurements.

If the threshold was exceeded, the integrator increased and

decreased otherwise. This measure was active all the time. JS

shaking was the equivalent to BCI EMG noise in terms of the

short term measure, a detection of shaking also rendered control

of the car impossible.

• JS low amplitude: the absolute value of the JS input was com-

pared to the threshold value 1/3. Between −1
3 −

1
3 no object

collection was possible. Only during active trials, a second JS

integrator started to increase or decrease, depending on whether

the JS input was below the threshold or not.

• JS invariability: to detect hardware errors, this measure was

applied exactly the same way as BCI invariability.

• JS bias: the bias measure was similar to the BCI bias measure.

The only difference being the multiplication of 1/10 and a sub-

traction of 0.5. The resulting weights could therefore range from

0.5 to 10(%/s) with a recovery rate of 0.5(%/s).

• JS combination: JS weights were combined the same way as BCI

measures, however, only when the active control mode was JS.

2.4. EXPERIMENT SETUP

The experiment was designed to allow completion within one ses-

sion, not longer than 3 h. It consisted of three steps: (i) two runs

of offline BCI training to set up a classifier for the MI BCI; (ii)

two runs with a car game controlled only with a joystick to collect

data of runs without the switching system; (iii) six runs with com-

bined BCI and manual control to analyze how well the designed

switching approach worked online.

EEG was recorded with a g.USBamp amplifier (g.tec medical

engineering GmbH, Austria, Graz). Six Ag/AgCl electrodes were

placed anterior and posterior to C3, Cz, and C4 to obtain three

bipolar channels. Data was recorded with a sample rate of 512 Hz

and filtered between 0.5 and 30 Hz and an activated notch filter

at 50 Hz. After the BCI training session, which only needed pure

EEG, a joystick was added that provided an analog signal between

−1 and +1. This analog signal was later used to control the car;

−1 would move the car to the leftmost side of the street; +1 to the

right. Both input types were acquired with the TOBI Signal Server

(http://www.tobi-project.org/download; Breitwieser et al., 2011),

a software that is able to combine multiple inputs and provide

data in a standardized and synchronized way for various clients

via network protocols.

2.4.1. BCI training

In the beginning, two short BCI training runs were carried out,

each with 40 randomized trials of movement imagination, one half

both feet and the other half right hand. Subjects performed the

standard Graz-BCI training paradigm (Pfurtscheller and Neuper,

2001) to allow selection of features and calculation of a classifier

for MI. Trials contaminated with artifacts were removed manually

before searching for relevant features. The features consisted of

frequency bands recorded over the three bipolar channels. They

were selected manually after evaluating ERD/S maps (Graimann

et al., 2002). Here, the frequency bands with the most significant

differences between hand and feet MI were selected by plotting dif-

ference maps of both classes. ERD/S maps showed only significant

changes (α = 0.05) of frequency band-powers after the cue com-

pared to a reference period between 1.5 and 0.5 s before the cue.

The difference maps only showed significant differences between

two classes in the time after the cue with the same significance

level.

The band-powers of the best found frequency bands were used

to generate an LDA classifier. A time window, covering the time

between cue appearance and end of trial (5 s), was processed in

100 ms steps. At each step, the features corresponding to one time

step were used to calculate a temporary classifier with which the

data was analyzed by a 10 × 10 cross-validation. As soon as the

whole time window was tested, the best point in time was used to

set up the final classifier with the whole data set for online mea-

surements. Additionally, the 10 × 10 cross-validation was nested

within a 10 × 5 outer cross-validation that split data into an outer

training set and a validation set. Here, classifiers generated at the

best points in time, which were found via an inner cross-validation,

were applied on unseen data to make sure that these points were

really stable and to evaluate potential overfitting.

An online LDA classifier generates two outputs: the class label

(−1 or +1) and the distance (an analog value). The distance was

used to control the car in the later online runs. Scale and bias of the

classifier were adjusted to achieve a distance between −1 and +1

on average, similar to the joystick range, with an average of zero

for both classes combined. A possible transgression of −1 or +1

resulted in a saturation during later online experiments. A classi-

fication of foot MI would result in a negative distance value and

move the car to the left; a classification of hand MI in a positive

value and a movement to the right.

Additionally, the offline performance of this chosen classifier

was evaluated by testing the classifier’s accuracy on all 100 ms steps

between 1 s after cue appearance and end of trial.

2.4.2. JS only

The second part of the session simulated a system without BCI to

have a comparison of data with only joystick control and data with

joystick and BCI combined. Subjects were asked to perform two

runs controlling the car game, see Figure 1, with just the joystick.

The participants were asked to collect coins and to avoid obstacles

with a moving car on the screen in front of them. The car was con-

stantly driving with a fixed speed toward the top edge of the screen.

One single trial included a sequence of coins and barriers which

appeared at the top of the screen, always six coins in a row with

six barriers on the opposite side of the street. The interval between
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coin/barrier and next coin/barrier was 0.5 s. These objects could

be reached by the car exactly 4 s after they appeared. The joystick

signal was being deteriorated over time in a way that it reached the

maximum weakness at 30 trials, out of 40 trials per run; the sub-

jects were not supposed to be able to collect anything during the

final trials, because switching to BCI mode was not yet possible.

2.4.3. JS + BCI

The final part of the experiment combined manual with BCI con-

trol. Six runs with 40 trials each were carried out. Before starting

to record the online runs, subjects were asked to perform a few

trials in BCI mode to let the supervisors adjust the bias and the

scale of the classifiers, if necessary.

The setup was the same as before with two differences. First,

the participants could control the car with the joystick or with the

BCI by performing the previously trained MI tasks. Second, the JS

weakness reached its maximum already at 10 trials.

An overview of the setup is demonstrated in Figure 2. The

runs always started with active JS control. The JS signal deterio-

rated continuously in order to simulate weakness and to force a

switch to BCI. A switch was only permitted to happen when the

active quality was below 20% and the other one above 50%. Addi-

tionally, switches were never triggered within active trials, instead,

the system waited for a break to switch to the other mode. The

length of this break was automatically increased by 5 s to allow

accommodation to the other control mode.

To facilitate switching back after some time, the inactive signal’s

quality could recover by 1(%/s) per criterion. Subjects were asked

to avoid switching as long as possible, i.e., to avert quality reduc-

ing factors. The measures that affected the quality were called long

term measures.

Additionally, so-called short term measures were used to inhibit

control during times of severe noise impairment by forcing the car

to the middle of the street and giving a visual alert (swiveling of

the car). In BCI mode this could have happened during a detection

of noise; in JS mode the inhibition was caused by a detection of

strong shaking. The long term quality measures were not influ-

enced by this inhibition: the noise/shaking measure and eventual

other measures could still decrease the QR of the current control

mode. Figure 1 shows an excerpt from the ongoing feedback dur-

ing an online run. Here, the subject was currently collecting coins

but the system decided to switch from JS to BCI mode since the JS

quality had fallen below the threshold of 20%.

2.5. EVALUATION

After all the runs were conducted, the recorded data was evaluated

with following methods.

2.5.1. Score, collection rate, performance measure

We analyzed how well the subjects performed in terms of col-

lected points with “JS only” compared to “JS + BCI” control. This

outcome was rated in three different ways:

(i) online scoring was based on adding or subtracting points.

Subjects could increase the score +1 by collecting a coin and

decrease it with −1 in case of a collision with a barrier. To

avoid frustration, the score could never fall below zero. The

maximum score in one run was 240 (6 × 40 coins);

(ii) offline, the rate of positive: negative collection was analyzed.

Only the relation between collected coins and barriers was

of interest, not the percentage of collected objects out of the

maximum possible number. Left out objects on the street

were not taken into account (e.g., a missed coin or barrier);

(iii) also offline, a performance measure was introduced, depend-

ing on collected coins, barriers, and left out objects. This trial-

based performance measure ranged between 0 and 100%.

One hundred percent indicated that all possible coins within

a single trial were picked up, 50% that either no object at

all or the same number of coins and barriers were collected,

and 0% were achieved when only barriers were hit. This spe-

cific performance measure could be directly compared to the

mode-specific QR over time. Later mentioned performance

refers to this kind of performance measure. Equation 2 shows

how the performance measure per trial (PMtrial) was calcu-

lated. The Scoretrial could range between −6 and 6 points, the

max (Scoretrial) was 6 points.

PMtrial = Scoretrial +
50%

max (Scoretrial)
+ 50% (2)

2.5.2. Correlation of time and performance

We evaluated the correlation of BCI performance with time in BCI

mode. Because the quality monitoring was purely based on char-

acteristics of the inputs and not on the online performance itself,

it was not guaranteed that these two values would show a corre-

lation. However, it would be a good sign of a working switching

approach if it was found to be true.

2.6. SUBJECTS

Ten healthy subjects took part in the study, all of them had expe-

rience in BCI to permit a short training session of just two runs.

Based on results from previous experiments we selected BCI per-

formers with two class accuracies above 60%. They were aged

between 21 and 30 years (25.4 ± 3.1 years), half of them were

female, and all of them right handed.

3. RESULTS

3.1. BCI TRAINING

The first two runs of BCI training provided good classifiers for

all the subjects. Table 2 shows the mean accuracies in the time

period 1–5 s after the cue when applying the classifier that was

generated after the best point in time was found by the search

with the 10 × 10 cross-validation. Additionally, the accuracies at

the best points in time are shown for each subject. Furthermore,

the best points in time found via inner cross-validation were used

to create classifiers that were applied on validation data sets within

a 10 × 5 outer cross-validation to check for overfitting. The results,

after averaging the achieved accuracies, are also listed in Table 2.

Therefore, overfitting was shown to not be a large problem. This

was done by comparing accuracies achieved by only using the

best points in time, without a nested cross-validation, to accura-

cies that were found with the best points in time, found via inner

cross-validation, and tested with a validation set in each loop of the

outer cross-validation. The averaged outer cross-validation accu-

racies were only 2.9% lower than the accuracies achieved without

nested cross-validation.
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3.2. ONLINE CAR GAME

Figure 3 shows the point collection rates, averaged over all sub-

jects, and all conducted runs. The collected points for both parts

are compared: “JS only” on the left and “JS + BCI” on the right.

For both types the first increase in points is caused by the JS

control which is beginning to stagnate as soon as the artificially

appended weakness has reached its maximum at trial number 10

in the combined “JS + BCI” runs, and at 30 trials for “JS only.”

The important noticeable difference is that the score starts to

increase after the quality of the joystick signal decreased enough

to trigger the first switch to BCI in the combined paradigm. In “JS

only” mode there was no way to further increase the score. After

the time of the first switch, subjects remained in BCI mode for

different amounts of time but also had the possibility to go back

to JS in case of a bad EEG input. This is also indicated with the

increasing SD in the plot. The maximum number of points per

run was 240 (40 trials, each with six coins).

Figure 4 illustrates how the monitoring system worked online

with the example of the current performance, the signal qualities,

Table 2 | Offline classification rates after applying the classifier for

online use on all time steps between 1 and 5 s after the cue,

accuracies at the best points in time, and test results after using

validation sets in an outer cross-validation (oCV) routine.

Accuracy [%] Accuracy [%]

S 1–5 s tbest oCV S 1–5 s tbest oCV

1 80.1 92.4 90.0 6 74.9 84.7 85.2

2 62.2 79.6 79.3 7 79.4 86.7 81.6

3 79.1 87.8 81.2 8 82.8 95.7 95.5

4 70.9 87.8 87.5 9 74.4 84.2 83.3

5 73.9 91.3 83.3 10 56.1 71.4 66.4

Average 73.4 ± 8 86.2 ± 7 83.3 ± 8

For each subject, one to four features were chosen individually. These were

band-powers in frequency bands recorded on the three bipolar channels.

the actual control modes, and the occurrence of switches from BCI

to JS. Only BCI → JS switches are highlighted to maintain clarity

of the figures. To demonstrate the quality evaluation effects two

subjects were chosen to represent a good (BCI performance of

77 ± 29%, subject number 1) and a bad (subject number 6 with

57 ± 25%) BCI performer. The subjects were picked according to

the values shown in Table 3, taking into account the BCI perfor-

mance and the time in BCI mode. For each of them the left plot

shows the course of actions over the whole time (data from all 6

runs), whereas the right one shows one exemplary run to show

performance and BCI quality in more detail. The figures consist

of five features: (i) the performance, as mentioned in 2.5, visual-

izing the general performance which is relying on collected coins,

barriers, and left out objects; (ii) the QRs of BCI and JS mode, as

obtained online by the four specific long term quality measures.

The JS quality is only shown in the examples with the single run;

(iii) the occurrence of actual system-induced switches from BCI to

JS; (iv–v) indication of the current control mode, either BCI or JS.

The correlation between BCI performance and time in BCI

mode is addressed in more detail in Table 3 and Figure 5. The

table lists the collection rates and performances in BCI mode and

the according times actually spent in this mode. The figure demon-

strates the relation between these two values. The plot shows two

linear fits, one of them using all subjects and one with subject S8

removed as an outlier. The correlation coefficients were r = 0.34

(p = 0.33) and r = 0.6 (p = 0.09), respectively. Apparently, S8’s BCI

quality was not recognized as a poor one. The measure weighting

the bias was not strong enough to decrease it sufficiently to cause a

switch but the bias was strong enough to cause a bad performance.

Also, the other measures were not triggered very often in order to

have an effect on the QR.

The maximum time in BCI mode (100%) was only reachable if

there was no switch back to joystick mode at all. That said, 100%

means the whole period of all runs minus the first time of joystick

mode which was always initiated at the start of a run.

Another important outcome to evaluate was whether the mon-

itoring system actually made sense for the users. Did switches

occur more frequently during bad performance? How good was

FIGURE 3 | Online scoring during ‘JS only’ and ‘JS + BCI’ mode. (A)

shows the score during ‘JS only’ mode. As soon as the maximum weakness

was reached after 30 trials, indicated with the black vertical line, collecting

coins was only possible with forced overshooting. (B) shows the averaged

collection of points during 6 averaged runs from 10 subjects over all 40 trials.

The first points were always collected with the joystick which was weakened

within the first 10 trials up to a point when no more collection was possible.

After this stagnation, the monitoring system initiated the first switch to BCI

and would continue to monitor both input qualities and decide which control

method was best at the moment.
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FIGURE 4 | Performance and BCI quality during progress of the

whole experiment (A,C) and for one exemplary single run (B,D)

for subject S1 who represents a good BCI performer compared to

subject S6 as a bad example. The bad performer triggers BCI → JS

switches more frequently. Performance depends on currently picked

up coins and barriers, whereas the quality decreases and increases

due to active quality measures and recovery rates, respectively. The

start of a new run is indicated with blue vertical lines. A new run

always started in JS mode, no matter in which mode the foregoing

run concluded.

Table 3 |Time in BCI mode in relation to BCI performance and object

collection rate (pos:neg).

S pos:neg [%] BCI perf. [%] BCI time [%]

1 80:20 77 ± 29 69

2 60:40 59 ± 37 49

3 82:18 78 ± 24 77

4 84:16 81 ± 24 93

5 66:34 65 ± 30 80

6 59:41 57 ± 25 45

7 78:22 74 ± 23 66

8 55:45 54 ± 35 93

9 72:28 69 ± 26 92

10 51:49 50 ± 32 66

Average 69:31 ± 12 66 ± 11 73 ± 17

The performance measures are slightly lower than the collection rates due to the

inclusion of missed objects into the calculation. Subjects with a BCI performance

above 70% are highlighted in bold black, whereas a performance below 60% is

indicated with bold gray.

the performance directly at the time of switching or some time

before? These questions are partly answered with the information

in Table 4. The good BCI performers are highlighted in bold black,

FIGURE 5 | Correlation between time in BCI mode and BCI

performance on the basis of all subjects and all the subjects minus

one outlier (highlighted star).

whereas subjects with a performance below 60% are grayed out.

Apparently, good performance led to a relatively low number of
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Table 4 | Number of BCI → JS switches and performances at

respective points in time.

S Switch # Preceding trials

1 [%] 2 [%] 3 [%] 4 [%] Mean(1–4) [%]

1 5 47 85 68 73 68

2 6 44 67 81 65 64

3 3 64 86 58 94 76

4 4 77 92 77 90 84

5 4 71 75 63 73 70

6 9 52 57 49 66 56

7 4 65 90 81 67 76

8 3 50 67 42 31 47

9 1 83 100 58 83 81

10 6 42 58 69 42 53

Average 59 ± 14 78 ± 14 65 ± 13 68 ± 19 68 ± 12

The table shows how many switches there were for each subject and how good

their performance was at that time.The averaged performances, including one to

four foregoing trials, are shown over all subjects.

switches (from BCI to JS), as opposed to higher numbers for bad

performers with the exception of subject S8. Additionally, the value

of the current BCI performance preceding a BCI → JS switch was

low: 59% on average for immediately preceding trials and 68%,

averaging the performance of the four preceding trials.

The impact of the short term measures on the online car game

can be seen in Table 5. The number of possible collections was

reduced in case of detected short term measures. The resulting

missed objects were considered as left out objects for the evalu-

ation methods. On average, the short term measures were active

0.4 ± 0.5% of the time in BCI mode and 1.7 ± 0.5% of the time in

JS mode. The maximum possible score for BCI mode was reduced

by 4.2 ± 5 points and for JS mode 17.6 ± 8 on average.

4. DISCUSSION AND CONCLUSION

We developed a monitoring system which allowed the combina-

tion of two different control signal. The system is based on quality

measures that monitor signals and generate quality ratings. The

evaluation of the experiment included basically two main points.

First, we analyzed how well subjects were able to control the car

game in general. Second, the functionality of the switching system

was evaluated.

As expected after selecting average and good BCI performer,

the scores during the car game, especially when in BCI mode, had

a large variance. Also, the BCI accuracy during the online car game

was worse due to the fact that subjects had to maintain MI and

a good LDA classifier output for a longer time, as opposed to the

offline runs where we selected classifier based on the best time of

separability. Since we were also interested in how the switching

would work for a mediocre BCI signal, this was not disappointing.

In fact, the outcomes allowed us to better examine the functional-

ity of the switching system. The system was expected to always use

the best control strategy at the moment, in terms of quality rating.

We hypothesized that the signal with the best quality would also

be the one to achieve the best performance.

After evaluating the relationship between time in BCI mode and

BCI performance of the subjects, we found positive correlation

coefficients. However, only the calculation with the one outlier S8

removed showed a statistical trend with r = 0.6 (p = 0.09). How-

ever, with the low number of samples (nine subjects), statistical

significance was not expected. Analyzing all 10 subjects reduced

the correlation coefficient from 0.6 to 0.34 with p = 0.33. The out-

lier can be explained by the relatively low weighting of the classifier

bias and that other measures were not affecting the quality rating

heavily enough to induce earlier switches. The bias could affect

the performance more negatively than it was accounted for in the

beginning. Also, subject 8 had difficulties maintaining the classifier

output for the time needed to collect all the coins. This outcome

points out that measures have to be individually adjusted to each

patient and to the used application before it can be used in real

life situations. However, we only wanted to show a relatively large

number of measures, all combined in one setup. This combination

should serve as a basis for further experiments where we can use

the findings from this switching system and alter the way mea-

sures are used and add or remove individual measures and rules

for combination.

The functionality of the system can be best observed in Figure 4.

The most significant detail is the relation between time in JS and

BCI mode. JS mode was active longer for subjects with a low BCI

performance, because BCI quality dropped faster and switches

from BCI → JS were triggered more frequently. As a result there

were not only more BCI → JS switches but also switches back from

JS → BCI, because the quality of the JS signal did not have enough

time to recover. The reason why switches did not occur exactly

at the alleged 20% was that switching was only allowed between

trials; therefore, the quality often had time to change for the worse

or the better for a few seconds before the switching was actually

carried out.

The positive effect of the switching capability is demonstrated

in Figure 3. Increasing the score was possible, even after JS control

was no longer working. The weakness was deteriorating faster for

the combination of JS and BCI, 10 trials compared to 30 for “JS

only.” The period of score stagnation which ranged approximately

from 100 to 200 s was purely depending on the choice of weight-

ing for the JS quality measures. Weights of the measures which

monitored the small range of motion could be increased to force

a faster quality drop in case of weakness and therefore induce an

earlier switch to BCI mode.

On top of the individual long term quality measures to deter-

mine quality ratings, the short term measures also had a positive

effect. These two measures were strictly speaking a byproduct of

detected quality measures for BCI EMG noise and JS shaking.

When these two measures were detected, the car was forced to the

middle of the street, thereby prohibiting possible false but also

correct collections, which were in any case not reliable. For BCI

there was a higher chance that fewer or no short term measures

at all were triggered. On average, the reduction of the maximum

possible score and the activated time in BCI mode was lower than

in JS mode: 4.2 ± 5 versus 17.6 ± 8 points and 0.4 ± 0.5 versus

1.7 ± 0.5%, respectively. This was based on the fact that subjects

had the chance to produce noise-free EEG but could not avoid

the artificially induced tremor artifacts in JS mode. For possible
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Table 5 | Activation of short term measures and their consequences.

S BCI time [%] JS time [%] BCI max JS max −∆BCI −∆JS

1 1.4 2.2 594 → 584 846 → 817 10 29

2 0.0 1.0 420 → 420 1020 → 1013 0 7

3 0.0 1.9 666 → 666 774 → 752 0 22

4 0.0 2.3 810 → 810 630 → 609 0 21

5 0.6 1.9 696 → 690 744 → 726 6 18

6 0.9 1.6 384 → 379 1056 → 1041 5 15

7 0.0 1.7 570 → 570 870 → 850 0 20

8 0.0 0.7 810 → 810 630 → 620 0 10

9 0.7 1.2 798 → 783 642 → 636 15 6

10 0.3 2.0 570 → 564 870 → 842 6 28

Average 0.4 ± 0.5 1.7 ± 0.5 4.2 ± 5 17.6 ± 8

Columns 2 and 3 demonstrate the percentage of time when activated short term measures inhibited the control of the car in both modes. The resulting reduction of

possible collections is shown in columns 4–7.

applications with real patients, these short term measures can work

as a kind of safety mechanism that can be applied for assistive

devices to permit control only with noise-free input signals.

The main concern found in this study was the difficulty to

adjust measures, as many parameters have to be adapted to the

users’ needs in detail. Measures and weights have to be very flexi-

ble. Caregivers should be able to add and/or remove measures and

to change the weights according to different factors which are very

specific. Nevertheless, with some beforehand knowledge, techni-

cians can set up a basic selection of measures and weight ranges to

facilitate adjustment for individual usage.

Another problem of the simulation was, in fact, that it was

just a simulation. We could only assume how the control would

be affected by factors like spasms, tremors, and fatigue. Therefore,

the study should also be tested with actual patients who really have

to deal with assistive devices that might become unusable over the

time of usage as a result of real influences. Here, combining more

than one control signal should be really useful for daily activities.

To sum up, the switching approach proved to be promising for

future use in experiments with real patients. For these professional

users, fatigue and other deteriorating factors concerning assistive

devices are highly anticipated and the possibility to additionally

use BCI can improve the functionality significantly. The setup also

lends itself to be expanded. First, more signals could be combined

instead of just two. For example, sensors could be used to give more

information about the current state; EMG signals could serve as an

additional control mode. A second possible enhancement would

be to combine quality measures with a kind of fusion described in

(Leeb et al., 2011). Here, we could let the quality ratings determine

how much importance each of the used signals gets when they

are fused instead of using a discrete switches. Third, the weighting

rules can be improved to permit more feasible solutions for users.

Finally, the study should also encourage researchers to find mea-

sures based on other factors that can also serve online to detect a

bad performance, e.g., the loss of controllability (LoC; Jatzev et al.,

2008).
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