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Abstract

In the design of switching control systems, the choice of realizations of controller transfer

matrices and the choice of initial states for controllers (at switching times) are of critical

importance, both to the stability and performance of the system.

Substantial improvements in performance can be obtained by implementing controllers

with appropriate realizations. We consider observer form realizations which arise from

weighted optimizations of signals prior to a switch. We also consider realizations which

guarantee stability for arbitrary switches between stabilizing controllers for a linear plant.

The initial value problem is of crucial importance in switching systems, since initial state

transients are introduced at each controller transition. A method is developed for determining

controller states at transitions which are optimal with respect to weighted closed-loop per-

formance. We develop a general Lyapunov theory for analyzing stability of reset switching

systems (that is, those switching systems where the states may change discontinuously at

switching times). The theory is then applied to the problem of synthesizing controller reset

relations such that stability is guaranteed under arbitrary switching. The problem is solved

via a set of linear matrix inequalities.

Methods for choosing controller realizations and initial states are combined in order to

guarantee stability and further improve performance of switching systems.

Keywords: bumpless transfer, antiwindup, coprime factorization, switching control, con-

troller conditioning, stability.
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ẋ the derivative of x with respect to time dx
dt

f : X → Y A function f mapping a set X into a set Y

ix



x NOTATION AND ABBREVIATIONS

Abbreviations

LTI linear time invariant

LMI linear matrix inequality

SISO single input single output

AWBT antiwindup bumpless transfer

IMC internal model control

CAW conventional antiwindup

CLF Common Lyapunov Function

QLF Quadratic Lyapunov Function

CQLF Common Quadratic Lyapunov Function



Chapter 1

Introduction

Switching control is one way of dealing with design problems in which the control objectives,

or system models are subject to change. It is common, for example to design linear controllers

for a number of different linearized operating points of a nonlinear plant, and then seek to

switch between the controllers in a sensible way. Switching control may also be appropriate

when the plant is subject to sudden changes in dynamic behaviour (for example gear changes

in some engine and motor control problems).

A general switching architecture is illustrated in figure 1.1. The (linear or nonlinear)

process to be controlled is P , for which N controllers have been designed. A high level

controller or switching supervisor S governs the switching process, based on measurements

of the plant input and output, and an external command signal h, which may or may not be

related to the reference r . The reset mechanism allows for the possibility that the controllers

may be reinitialized in some way at each switching transition.

hreset

u y

r

P

K1

K2

K N

S

Figure 1.1: General switching architecture
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2 Introduction

A switching architecture has certain advantages over other multi-controller approaches

such as gain scheduling. A family of controllers employed for gain scheduling must have the

same order and structure, whereas a switching family require only that the input and output

dimensions are consistent. There can also be benefits arising from the transients introduced

by a hard switch. In observer switching architectures, information is provided about the plant

mode which allows the correct controller to be applied with greater certainty.

Transient signals caused by hard switching can also be a burden on performance. If the

controller realization and initialization strategy are poorly designed for switching, substantial

transient signals caused by the switching can degrade performance and lead to instability.

The choice of controller realization is a much more important matter for switching systems

than for other control problems. In a single (non-switching) ideal control loop, the realization

of the controller ceases to be relevant once initial state transients have died down. In a

switching architecture however, the realization has an effect every time a switch takes place.

The realization is also important when other nonlinearities such as saturation are present.

For similar reasons, the initialization of controllers is important when considering a switch-

ing architecture. Should switching controllers (if same order) share state space? Should they

retain previous values? Or should they be reinitialized to zero or some other value at each

switch? These questions are vitally important to the performance of a switching system.

Stability of switching systems is not a simple matter, even when everything is linear and

ideal. It is possible to switch between two stabilizing controllers for a single linear plant in

such a way that an unstable trajectory results. In such circumstances, it is possible to ensure

stability by choice of appropriate controller realizations, or by sensible choices of controller

initializations (or both).

This dissertation is primarily concerned with realizing and initializing controllers for

switching systems in ways which ensure stability and enhance performance.

In general we will consider the idealized scenario of a single linear plant and a family of

stabilizing linear controllers. The switching signal will usually be assumed to be unknown.

We focus on the choice of realization of the controllers and the initialization (or reset) strategy

for the controllers. Our methods are generally independent of the controller design and

switching strategy design, and therefore fit very well in a four step design process.

i. Controller design

ii. Controller realization

iii. Reset strategy design

iv. Switching strategy design
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Controller transfer matrices are designed using conventional linear methods and then the

realizations and reset strategies are determined in order to guarantee stability and minimize

performance degradation due to the switching process. Switching strategy design is the last

step, allowing for the possibility of real-time or manual switching. The switching strategy

may be implemented via a switching supervisor or high level controller as illustrated in

figure 1.1. The switching strategy in some applications may be determined manually. We

examine briefly the problem of switching strategy, considering the calculation of minimum

dwell times for switching systems to ensure stability given fixed controller realizations (with

or without resets).

1.1 Bumpless transfer and conditioning

The so-called bumpless transfer problem has received considerable attention in the literature.

The term usually refers to situations where we wish to carry out smooth (in some sense)

transitions between controllers. The precise definition of a bumpless transfer is not universally

agreed.

Some authors (see [1,29] for example) refer to a bumpless transfer as one where continuous

inputs result in continuous outputs regardless of controller transitions. This definition is

not often very useful, since controller transitions can cause very large transient signals in

the outputs, even when the signals remain continuous (for example if the plant has a high

frequency roll off). The definition is also unhelpful if the system is discrete-time.

Other authors (see [13,55,56] for example) refer to bumpless transfer when the difference

between signals produced by (and driving) the on-line and off-line controllers are minimal in

some sense. Our methods introduced in chapter 4 are based on similar definitions of bumpless

transfer.

The third approach is to consider that bumpless transfer occurs if the transients introduced

by the controller transitions are minimal in some sense. This definition, or one similar to it has

been considered by Graebe and Ahlèn [18] and also by Peng, Hanus and coauthors [49,23].

The latter authors sometimes use the term conditioned transfer to distinguish between this

property and one where continuity is the aim. Our methods in chapter 5 and subsequent

stabilization methods in chapter 6 are connected with this idea.

Example 1.1.1. Consider the following plant transfer function

P = 1
s(s2 + 0.2s + 1)

. (1.1)



4 Introduction

u2

u1

u yr PK

Figure 1.2: Generalized input substitution

The controller is a suboptimal robust controller. The designed continuous controller is

K =








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











. (1.2)

We consider here the regulator problem. That is, we have reference input r = 0.

We use the above plant and controller, discretized with a sampling time T = 0.05. We

drive the plant open loop by a random noise signal (sampled with period 10) u1 and switch to

the output u2 of controller K at time k = 160. The system is set up as illustrated in figure 1.2.

No conditioning is applied to the controller prior to the switch, so the controller state remains

zero until the switching instant. Figure 1.3 shows the plant input and output for the system

as described.

We can clearly observe a substantial transient which follows the switch (particularly in the

plant input).

One measure of the “size” of the transient, is the l2[n,∞) norm of the signal
[

u

y

]

, where

n is the switching time. In this example the norm is 17.46. We will return to this example

later, showing the results of some conditioning and initialization schemes.

1.2 Controller initialization in a switching architecture

The controller initial value problem is often not an important consideration in conventional

control frameworks. When a single controller is used, the effect of the initial state of the

controller is typically limited to the initial transients of the system. Provided that the controller

is sensibly designed, a zero initial state is usually quite acceptable. Furthermore, optimal
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Figure 1.3: Unconditioned response to switch at k=160

initialization of controllers may be impossible if the initial state of the plant is not known. In

an output feedback scenario, it may be necessary to run the controller for some time before

an observer is able to capture the plant state with a reasonable error margin.

In a switching architecture however, the initial value problems can be extremely important.

If new controllers are periodically introduced into the feedback loop, then transients signals

due to the initial states of the controllers will occur at each transition. These transient signals

can substantially degrade the performance of the resulting systems. If the plant dynamics are

assumed to be remain the same, (or at least slowly time-varying) then we may have a great deal

of information about the plant states when we switch to a new controller. This information

may then be exploited in the solution of the initial value problem at each transition.

1.3 Overview

Chapter 2

Some preliminary material required in the rest of the thesis is introduced. We define some

mathematical terminology and notation, particularly associated with dynamical systems and

hybrid systems in particular.

We review Lyapunov stability theory and in particular some results concerning the exis-

tence of Lyapunov functions and also admissibility of non-smooth Lyapunov functions.
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The notion reset switching system is introduced, referring to a switching system where

the states may change discontinuously at switching boundaries. We also use the term simple

switching system to refer to switching systems where the states remain continuous across

switching boundaries.

We present a brief summary of approaches to the bumpless transfer problem in the lit-

erature, including some unified frameworks, and review connections with the anti-windup

problem.

We briefly describe the general state estimation problem and present the continuous and

discrete-time Kalman filter equations. We also note that the Kalman filter equations can be

derived in a purely deterministic context, following the work of Bertsekas and Rhodes [5].

Chapter 3

A review of results concerning the stability of simple switching systems is presented. We

introduce results concerning stability (under arbitrary switching) guaranteed by the existence

of a common Lyapunov function for the component systems(by Barmish [4] and others), and

in particular the converse result by Dayawansa and Martin [10].

We study the Multiple Lyapunov function approach to the study of stability of switching

systems introduced by Branicky [7].

We introduce the notion of minimum dwell-time as a means for ensuring stability of

switching systems as introduced by Morse [46]. Some tighter dwell-time results are presented

based on quadratic Lyapunov functions.

Two results are presented which guarantee the existence of realizations of stabilizing

controllers such that the switching system is guaranteed to be stable under arbitrary switching.

Chapter 4

We introduce a bumpless transfer approach which is based on calculation of controller states

at transitions which are compatible with input-output pairs in the graph of the controller (to

be switched on) and close in some sense to the observed signals.

The solution is presented initially as a weighted least squares optimization. We note that

the solution can be implemented as a on observer controller with an optimal Kalman observer

gain. Thus the solution can be implemented by an appropriate choice of controller realization

without requiring resets to the controller states.
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Chapter 5

We introduce an alternative approach to the bumpless transfer problem which is based on

choosing controller states which minimize explicitly the transients at each controller tran-

sition. The finite horizon problem is solved via a least squares minimization. The infinite

horizon solution is solved via Lyapunov equations. The infinite horizon solution is thus also

equivalent to minimization of Lyapunov functions with respect to the controller states. A

weighted solution can be employed to account for known average dwell times.

Chapter 6

We study the stability of reset switching systems. We introduce a necessary and sufficient

Lyapunov theorem for reset switching systems to be stable under arbitrary switching. We

study a number of important consequences of this result, including conditions which guarantee

stability for linear reset switching systems under arbitrary switching.

Sufficient LMI conditions allow for the synthesis of reset relations which guarantee sta-

bility. While such stabilizing resets do not always exist for given controller realizations, we

show that these results can be combined with known stabilizing realizations with guaranteed

stability, and a substantial improvement in performance.

Chapter 7

We summarize the conclusions of the thesis, and review the original contributions.





Chapter 2

Preliminaries

This chapter introduces some of the basic mathematical terms and definitions which are used

in this thesis, along with some fundamental results which are required for proofs in later

chapters. Where proofs are omitted, textbook references are provided.

2.1 Spaces and functions

Definitions and results relating to this section may be found in any elementary analysis text

such as [38,6,51].

Definition 2.1.1. A metric space is a pair (X, d), where X is a set and d is a function from

X × X to R+ satisfying

• d(x, y) = 0 ⇐⇒ x = y

• d(x, y) = d(y, x) for all x, y ∈ X

• d(x, z) ≤ d(x, y)+ d(y, z) for all x, y, z ∈ X

d(x, y) is referred to as the distance between x and y. d is referred to as the metric on X .

The third condition above is the triangle inequality.

Definition 2.1.2. A normed space is a pair (X, ‖.‖), where X is a vector space over R or C,

and ‖.‖ is a function from X to R+ satisfying

• ‖x‖ = 0 ⇐⇒ x = 0

• ‖λx‖ = |λ| ‖x‖ for all x ∈ X , and λ ∈ R

9
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• ‖x + y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ X

‖x‖ is referred to as the norm of vector x , and may be thought of as the ’length’ of the vector

in a generalized sense. The third condition above is the triangle inequality.

Every normed space is also a metric space with the induced metric d(x, y) = ‖x − y‖.

Definition 2.1.3. A sequence {xn} in a metric space X is Cauchy if for all ǫ ∈ R+, there

exists N ∈ Z+ such that min{i, j } > N implies d(xi , x j ) < ǫ.

Definition 2.1.4. A metric space X is complete if every Cauchy sequence in X converges to

an element of X . A complete normed space is also called a Banach space.

A complete space is essentially one which has no ’holes’ in it.

In a normed space X , the sphere of radius r about a point x0 is

Sr (x0) = {x ∈ X : ‖x − x0‖ = r}.

The (closed) ball of radius r about a point x0 is

Br(x0) = {x ∈ X : ‖x − x0‖ ≤ r}.

The open ball of radius r about a point x0 is

Dr (x0) = {x ∈ X : ‖x − x0‖ < r}.

An open ball about a point x0 is sometimes called a neighbourhood of x0.

Definition 2.1.5. A function between metric spaces f : X → Y is called continuous at a

point x , if f (xk) → f (x) whenever xk → x . Equivalently, f is continuous if for every

ǫ > 0, there exists δ > 0 such that

d(x, y) < δ =⇒ d( f (x), f (y)) < ǫ.

f is continuous on X if it is continuous at every point in X . If δ of the inequality depends

only on ǫ, and not on x , then the function is uniformly continuous.

Definition 2.1.6. A function between metric spaces f : X → Y satisfies the Lipschitz

condition on a domain � if there exists a constant k ≥ 0 such that

d( f (x), f (y)) ≤ kd(x, y) ∀x, y ∈ �.

f is globally Lipschitz if the condition is satisfied for the whole of X .
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This property is sometimes referred to as Lipschitz continuity, and it is in fact a stronger

condition than uniform continuity.

The following definitions concern scalar functions of a Banach space V : X → R or on

a Banach space and time W : X × R+ → R (W : X × Z+ → R in the discrete-time case).

Let � be a closed bounded region in X , and x be an element of X .

Definition 2.1.7. A scalar function V (x) is positive semi-definite (resp. negative semi-

definite) in � if, for all x ∈ �,

• V (x) has continuous partial derivatives with respect to x

• V (0) = 0

• V (x) ≥ 0 (resp. V (x) ≤ 0)

Definition 2.1.8. A scalar function V (x) is positive definite (resp. negative definite)in � if,

for all x ∈ �,

• V (x) has continuous partial derivatives with respect to x

• V (0) = 0

• V (x) > 0 (resp. V (x) < 0) if x 6= 0

Definition 2.1.9. A (time dependent) scalar function W (x, t) is positive semi-definite (resp.

negative semi-definite) in � if, for all x ∈ � and all t ,

• W (x, t) has continuous partial derivatives with respect to it’s arguments

• W (0, t) = 0 for all t

• W (x, t) ≥ 0 (resp. W (x, t) ≤ 0) for all t

Definition 2.1.10. A (time dependent) scalar function W (x, t) is positive definite (resp. neg-

ative definite) in � if, for all x ∈ � and all t ,

• W (x, t) has continuous partial derivatives with respect to it’s arguments

• W (0, t) = 0 for all t

• W (x, t) > 0 (resp. W (x, t) < 0) for all t

Definition 2.1.11. A scalar function W (x, t) is decrescent in � if there exists a positive

definite function V (x) such that for all x ∈ �, and all t

W (x, t) ≤ V (x).
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This property is also referred to as “W admits an infinitely small upper bound”, or “W

becomes uniformly small”. It is equivalent to saying that W can be made arbitrarily small by

choosing x sufficiently close to 0. Any time-invariant positive definite function is decrescent.

Definition 2.1.12. A scalar function V (x) is radially unbounded in � if V (x) → ∞ as

‖x‖ → ∞.

Definition 2.1.13. A (time dependent) scalar function W (x, t) is radially unbounded in� if

there exists a positive definite radially unbounded function V (x) such that

W (x, t) ≥ V (x) ∀t .

That is, W (x, t) tends to infinity uniformly in t as ‖x‖ → ∞.

2.2 Dynamical systems

Broadly speaking, a dynamical system involves the motion of some objects through a space as

a function of time. We use the notion state to represent some parameter or set of parameters

which completely capture the position and behaviour of a system at any one point in time.

To describe a dynamical system completely, we must define carefully the phase space, or

state space of the system - or the set of admissible values for the state. The phase space of a

dynamical system is typically a Banach space. We must define the time space of the system,

which is typically R
+ (continuous-time) or Z

+ (discrete-time). We then must have some way

of describing the evolution of the system from one point in time to the next. In the systems we

consider, the evolution of the state is usually described by families of differential equations

(continuous-time case) or difference equations (discrete-time case). When we consider hybrid

or switching systems, we also use reset relations in describing state evolution. We may also

introduce an input which externally influences the behaviour of the system, the input being

taken from a specified input space.

Consider systems described by continuous first-order ordinary differential equations

ẋ(t) = f (x(t), t, u(t)) x(t) ∈ X, t ∈ R
+, u(t) ∈ U, (2.1)

or by continuous first-order difference equations

x(k + 1) = f (x(k), k, u(k)) x(k) ∈ X, k ∈ Z
+, u(k) ∈ U. (2.2)

X is the phase space of the system, and U the input space.
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We may also define an output y(t) ∈ Y (resp y(k) ∈ Y ) with the output space Y a Banach

space, and y defined by the equations

y(t) = f (x(t), t, u(t)) x(t) ∈ X, t ∈ R
+, u(t) ∈ U, (2.3)

or

y(k) = f (x(k), k, u(k)) x(k) ∈ X, k ∈ Z
+, u(k) ∈ U. (2.4)

In the systems we consider, the phase (and input and output) spaces are continuous (X =
Rn), or discrete (X = Zn), or some combination (X = Rn × Zm). The time space is R+ in

the continuous-time case, or Z+ in the discrete-time case.

In the following sections, we will occasionally omit the discrete-time version of a result or

definition, where the discrete-time counterpart is completely analogous to the continuous-time

version.

If u(t) = 0 for all t , a system is referred to as unforced, or free, and may be represented

by the unforced equations

ẋ(t) = f (x(t), t) x(t) ∈ X, t ∈ R
+, (2.5)

or

x(k + 1) = f (x(k), k) x(k) ∈ X, k ∈ Z
+. (2.6)

Note that a system with a fixed known input u(t) can also be thought of as a free system

described by the equations above, with u(t) being implicit in the function f (x(t), t). Where

u(t) is explicit we refer to a forced system.

The solution of an unforced system with given initial conditions x0 and t0 is known as the

trajectory of the system, and may be denoted by φ(t, x0, t0).

Existence and uniqueness of trajectories defined in this way can be guaranteed by ensuring

that the right hand side of the differential (resp difference) equation satisfies a Lipschitz

condition (see for example [28])

‖ f (x, t), f (y, t)‖ ≤ k ‖x − y‖ .

We shall assume this condition for all vector fields considered in this thesis.

A dynamical system so described is called stationary if the functions f above do not depend

explicitly on t (resp k). An unforced stationary system is sometimes called autonomous, and

may be described by time invariant equations

ẋ(t) = f (x(t)), (2.7)

or

x(k + 1) = f (x(k)). (2.8)
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2.3 Hybrid dynamical systems

The word ‘Hybrid’ has come to characterize classes of dynamical systems which combine

continuous and discrete dynamics. In particular, the state of a hybrid system usually has both

discrete and continuous components. Typically X = Rn × Z (noting that Zm is equivalent to

Z).

We introduce some classes of Hybrid systems which include the switching controller

systems that we consider in later chapters.

The evolution of the ‘continuous-valued’ states of the system are governed by ordinary

differential equations (or difference equations), while the discrete state is governed by some

discrete valued function.

Consider the family of systems

ẋ(t) = fi (x(t)), i ∈ I, x(t) ∈ R
n. (2.9)

where I is some index set (typically discrete valued).

Now define a piecewise constant switching signal σ(t)

σ (t) = ik tk ≤ t < tk+1, ik ∈ I (2.10)

for some sequence of times {tk} and indices {ik} (k ∈ Z
+). We assume that tk < tk+1 and

ik 6= ik+1 for all k. We will call {tk} the switching times of the system. We may also use the

term switching trajectory for σ .

σ(t) is known as a non-zeno signal, if there are finitely many transitions in any finite time

interval. Signals need to be non-zeno in order that trajectories are well defined for all time.

Furthermore, we shall call σ(t) strongly non-zeno if the ratio of the number of transitions in

a finite time interval to the length of the time interval has a fixed upper bound. In general

sensible switching strategies will result in strongly non-zeno switching signals. We will

usually assume switching signals to be strongly non-zeno.

Now we may describe the following simple switching system

ẋ(t) = fσ(t)(x(t)),

σ (t) = ik, ∀ tk ≤ t < tk+1, ik ∈ I, k ∈ Z
+.

(2.11)

That is, the evolution of the continuous state of the system is described by the vector field fik

in the interval [tk, tk+1). The discrete state of the system may be thought of as the value of

the function σ(t) at any given time t .

A simple switching system with a fixed switching signal σ(t) may be thought of simply

as a time varying continuous system described by a single time-varying vector field (such as

2.5). For a more general problem, we examine classes of admissible switching signals.
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Another class of hybrid systems allows the state x to change discontinuously at switching

times. This allows us to describe for example physical systems with instantaneous collisions

(see for example [57]). In our case, we use this description for plant/controller systems with

switching controllers, where the controller state may be reset in some manner at each switch

(such as to minimize transients of a weighted output of the closed loop system).

Let us introduce a family of functions

gi, j : R
n → R

n, i, j ∈ I.

The functions gi, j describe the discontinuous change in state at the transition times tk .

Then a reset switching system may be described by the equations

ẋ(t) = fσ(t)(x(t)),

σ (t) = ik, ∀ tk ≤ t < tk+1, ik ∈ I, k ∈ Z
+,

x(t+k ) = gik,ik−1(x(t
−
k )).

(2.12)

We call the functions gi, j reset relations between the discrete states i and j . If g j,i1 = g j,i2

for each i1, i2 ∈ I (that is, the reset only depends on the new state), then we may use the

shorthand notation g j .

We may also consider hybrid systems where the state space is not necessarily the same in

each discrete state. For example in switching controller systems, it is possible that alternative

controllers for the system are different order, or that linear models of the behaviour of a

nonlinear plant are different order at various set points. In this case, we consider the family

of systems

ẋi (t) = fi (xi (t)), i ∈ I, xi (t) ∈ R
ni , (2.13)

and the multiple state-space switching system may be described as follows

ẋσ(t)(t) = fσ(t)(xσ(t)(t)), (2.14)

σ(t) = ik tk ≤ t < tk + 1, ik ∈ I, k ∈ Z
+, (2.15)

xik
(t+k ) = gik ,ik−1(xik−1(t

−
k )). (2.16)

Note that in this case, the reset relations gi, j are required, since the state cannot be continuous

across switches when the state order changes.

2.4 Stability

An equilibrium state of an unforced dynamical system, is a state xe such that f (xe, t) = 0

for all t . Thus if the initial state of the system is xe, the trajectory of the system will remain at



16 Preliminaries

xe for all time. A trajectory φ(t, xe, t0) is sometimes referred to as an equilibrium trajectory,

or equilibrium solution.

There are a large number of definitions available for the stability of a system. For unforced

systems, definitions generally refer to the stability of equilibria - specifically to the behaviour

of trajectories which start close to the equilibrium (sometimes called perturbed trajectories).

For forced systems, stability usually refers to the relationship between output input functions.

We refer here to a few of the most useful stability definitions for unforced systems, begin-

ning with those discussed by Aleksandr Mihailovich Lyapunov in his championing work on

stability theory first published in 1892 [33].

A number of texts provide good references for this material, including [60,21,28].

Consider the dynamical system

ẋ(t) = f (x(t), t) x(t) ∈ X, t ∈ R
+,

with equilibrium state xe so that f (xe, t) = 0 for all t .

Definition 2.4.1. The equilibrium state xe is called stable if for any given t0 and ǫ > 0 there

exists δ > 0 such that

‖x0 − xe‖ < δ =⇒ ‖φ(t, x0, t0)− xe‖ < ǫ

for all t > t0.

This property is also sometimes referred to as stable in the sense of Lyapunov. It essentially

means that perturbed trajectories always remain bounded.

Definition 2.4.2. The equilibrium state xe is called convergent, if for any t0 there exists δ1 > 0

such that

‖x0 − xe‖ < δ1 =⇒ lim
t→∞

φ(t, x0, t0) = xe.

That is, for any ǫ1 > 0 there exists a T > t0 such that

‖x0 − xe‖ < δ1 =⇒ ‖φ(t, x0, t0)− xe‖ < ǫ1

for all t > T .

We say that the perturbed trajectories converge to the equilibrium state. Note that conver-

gence does not imply stability nor vice-versa.

Definition 2.4.3. The equilibrium state xe is called asymptotically stable if it is both stable

and convergent.
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If this property holds for all x0 ∈ X (not just in a neighbourhood of xe), we say that

the state is globally asymptotically stable. We can also then say that the system is globally

asymptotically stable.

Definition 2.4.4. A dynamical system is called bounded, or Lagrange stable if, for any x0,

t0 there exists a bound B such that

‖φ(t, x0, t0)‖ < B

In definition 2.4.1, δ may generally depend on t0 as well as ǫ.

Definition 2.4.5. If the equilibrium state xe is stable, and the δ (of definition 2.4.1) depends

only on ǫ, then we can say that the equilibrium xe is uniformly stable.

Definition 2.4.6. If an equilibrium state is convergent, and the δ1 and T of definition 2.4.2

are independent of t0, then the state is known as uniformly convergent.

Definition 2.4.7. If an equilibrium state is bounded, and the B of definition 2.4.4 are inde-

pendent of t0, then the state is known as uniformly bounded.

Uniform boundedness and uniform stability are equivalent for linear systems.

Definition 2.4.8. If an equilibrium state is uniformly stable and uniformly convergent, then

it is uniformly asymptotically stable.

Definition 2.4.9. If an equilibrium state is uniformly stable, uniformly bounded, and globally

uniformly convergent, then it is globally uniformly asymptotically stable.

We also say that the system itself is globally uniformly asymptotically stable. Note that

uniform stability and uniform convergence are not sufficient to guarantee uniform bounded-

ness (see for example [60]).

Definition 2.4.10. An equilibrium state xe is called exponentially stable if the norm of tra-

jectories may be bounded above by a exponential function with negative exponent. That is,

for all t0, x0 there exist scalars a > 0, b > 0 such that

‖φ(t, x0, t0)− xe‖ < a ‖x0 − xe‖ e−b(t−t0)

for all t > t0.

Definition 2.4.11. If, in addition the scalars a and b may be found independently of t0 and

x0, then the state is called uniformly exponentially stable.
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Exponential stability implies asymptotic stability, but not vice-versa. For instance the

function

x(t) = x0

t + 1

converges asymptotically to the origin, but is not bounded above by a decaying exponen-

tial function. For linear systems however, exponential stability is equivalent to asymptotic

stability [60].

In general, we may transform systems with an equilibrium state xe into an equivalent system

with the equilibrium state at the origin. Thus we may discuss the stability of the origin for an

arbitrary dynamical system without loss of generality. Additionally, it is possible to transform

a system with an equilibrium trajectory (not defined here) into one with an equilibrium state

at the origin - though time invariance may not be preserved in such a transformation [30].

2.4.1 Stability of hybrid systems

When we discuss hybrid systems, it is necessary to be clear precisely in what sense stability

is meant. It is possible to discuss the stability of the continuous and the discrete states, either

separately or together.

In this thesis, we only consider hybrid systems where the switching signal is determined

by some external process. We thus do not comment on stability with respect to the discrete

state. Instead, we may investigate the stability of the continuous states of the system with

respect to a particular switching signal, or a class of switching signals.

For the simple switching systems discussed in section 2.3, and for a specific switching

signal σ(t) we may apply the stability definitions of this section largely without alteration.

When discussing stability of an equilibrium xe, we must assume that xe is an equilibrium

point for each vector field fi (if there is no such common equilibrium, the system can be at

best bounded).

Thus we may say that a switching system is stable for switching signal σ(t). Similarly,

we may discuss the stability of a reset switching system for a particular switching signal.

In this thesis, we are generally concerned with the concept of stability over large classes

of switching signals. For instance we may wish to guarantee stability of a switched system

for any signal σ ∈ S where S is a specified class of signals.

Where we refer to stability for arbitrary switching sequences, we generally mean for all

strongly non-zeno sequences. Stability is only a sensible question when switching signals

are non-zeno. The question of ensuring signals are non-zenon is one of switching strategy

design, which is not generally considered in this thesis. Where we do consider restrictions on
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switching signals by specifying minimum dwell times, switching signals are automatically

non-zeno.

2.5 Lyapunov functions for stability analysis

In 1892, Aleksandr Mihailovich Lyapunov presented a doctoral thesis at the University of

Kharkov on “The general problem of the stability of motion” [33]. The central theorems of

that thesis have formed the foundation of most stability analysis and research in the century

since. Lyapunov’s original thesis and related works have been translated into French and

English, and have been reprinted many times and in many different forms. A special issue

of the International Journal of Control celebrating the 100th anniversary of the work [36]

contains the English translation of the thesis, along with a biography and bibliography. This

issue has been published separately as [34]. An earlier book [35] contains English translations

of subsequent related work by Lyapunov and Pliss.

The main body of this work and subsequent work concerned the notion of a Lyapunov

function. Lyapunov exploited an apparently very simple idea. Suppose a dynamical system

has an invariant set (we are usually concerned with equilibrium points, but we can also discuss

periodic orbits or something more complicated). One way to prove that the set is stable is to

prove the existence of a function bounded from below which decreases along all trajectories

not in the invariant set. A Lyapunov function is, in effect a generalized form of dissipative

energy function. The utility of Lyapunov function methods is primarily in the fact that it

is not necessary for explicit knowledge of the system trajectories - the functions can often

be devised from knowledge of the differential equations. In the linear case, the method is

systematic, whereas in the nonlinear case a certain degree of artifice is often required.

We will introduce briefly here the main theorem concerning Lyapunov’s so called direct

method on the connection between Lyapunov functions and stability. We will also discuss

some work (primarily from the 1950’s and 60’s) on converse Lyapunov theorems - that is,

showing the existence of Lyapunov functions for certain types of stable systems.

The following is close to the literal text of Lyapunov’s theorem (see [36]). Notes in square

brackets are added by the author of this thesis.

Theorem 2.5.1. If the differential equations of the disturbed motion are such that it is possible

to find a [positive or negative] definite function V , of which the derivative V̇ is a function

of fixed sign opposite to that of V , or reduces identically to zero [that is, semi-definite], the

undisturbed motion [equilibrium point] is stable [in the sense of Lyapunov].

An extension which is presented by Lyapunov as a remark to the theorem, is as follows
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Remark 2.5.1. If the function V , while satisfying the conditions of the theorem, admits an

infinitely small upper limit [that is, V is decrescent], and if it’s derivative represents a definite

function, we can show that every disturbed motion, sufficiently near the undisturbed motion,

approaches it asymptotically.

Proofs of the theorem may be found in several textbooks (see for example [60,21,28]).

2.5.1 Converse theorems

A large body of work on the existence of Lyapunov functions for stable systems appeared

in the literature in the postwar period, roughly when the work of Lyapunov began to attract

widespread attention outside of the Soviet Union.

The first converse result is due to Persidskii in 1933, proving the existence of a Lyapunov

function for a (Lyapunov) stable set of differential equations in Rn (see [21] and contained

references).

It should be noted that the theorem of Lyapunov (in the case of a strictly decreasing

function) yields not just asymptotic stability, but in fact uniform asymptotic stability. It is

therefore impossible to prove a converse of the asymptotic stability theorem in it’s original

form - the result must be strengthened. It was not until the concept of uniform stability

had been clearly defined that converse theorems for asymptotically stable systems could be

found. Massera [39,40] was the first to note this link, and achieved the first converse results

for asymptotic stability. Malkin [37], Hahn [21,20], Krasovskii [30] and Kurzweil [31] have

all made substantial contributions to various versions of converse Lyapunov theorems.

The proof of the converse theorem is easiest in the case of uniform exponential stability - not

just uniform asymptotic stability (these properties are equivalent in the linear systems case),

and it will be sufficient for our purposes to consider converse theorems of exponentially stable

equilibria. In dynamical systems theory many stable equilibria of interest are exponentially

stable if they are asymptotically stable (for example any linearizable asymptotically stable

equilibrium).

We present here the main converse result of interest, based on [28, Theorem 3.12].

Theorem 2.5.2. Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f (t, x)

where f : D × [0,∞) → Rn is Lipschitz continuous, and continuously differentiable on D

some neighbourhood of the origin. Assume that the equilibrium point is uniformly exponen-

tially stable. That is, there exist positive constants k and γ such that

‖x(t)‖ ≤ ‖x(t0)‖ ke−γ (t−t0)



2.5 Lyapunov functions for stability analysis 21

for all t > t0 and x(t0) ∈ D.

Then, there exists a function V : D × [0,∞) → R+ that is positive definite, decrescent

and radially unbounded. V is continuous with continuous partial derivatives, and

V̇ = ∂V

∂ t
+ ∇V f (t, x) ≤ −c ‖x‖2

for some positive constant c (that is V is strictly decreasing on trajectories of f ).

If the origin is globally exponentially stable and D = Rn , then the function V is defined

and has the above properties on Rn . If the system is autonomous (that is f (x, t) = f (x))

then V can be chosen independent of t (V (x, t) = V (x)).

Proof. Let φ(t, x0, t0) denote the solution of the dynamical system with initial condition x0

at time t0. For x0 ∈ D, we know that φ(t, x0, t0) for all t > t0.

Define the function V (x, t) as follows

V (x, t) =
∫ ∞

t

φ∗(τ, x, t)φ(τ, x, t)dτ.

To prove that V is positive definite, decrescent and radially unbounded, we need to show

the existence of constants c1 and c2 such that

c1 ‖x‖2 ≤ V (x, t) ≤ c2 ‖x‖2

Since we have exponential bounds on the system trajectories, we have

V (x, t) =
∫ ∞

t

‖φ(τ, x, t)‖2 dτ

≤
∫ ∞

t

k2e−2γ (τ−t)dτ ‖x‖2 = k2

2γ
‖x‖2

Suppose the Lipschitz constant of f is L . Then we have

‖ẋ‖ ≤ L ‖x‖ ,

so

‖φ(τ, x, t)‖2 ≥ ‖x‖2 e−2L(τ−t),

and

V (x, t) ≥
∫ ∞

t

e−2L(τ−t)dτ ‖x‖2 = 1
2L

‖x‖2 .

So we may choose c1 = 1/2L , and c2 = k2/2γ . Thus we have shown V is positive definite,

decrescent and radially unbounded.
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Now let us consider the value of V at a point corresponding to state x at time t , and at a

point on the same trajectory at time t + T .

V (x, t)−V (φ(t + T, x, t), t + T )

=
∫ ∞

t

‖φ(τ, x, t)‖2 dτ −
∫ ∞

t+T

‖φ(τ, φ(t + T, x, t), t + T )‖2 dτ

=
∫ t+T

t

‖φ(τ, x, t)‖2 dτ

≤ T ‖x‖2

2
And by taking the limit as T → 0, we obtain

V̇ (x, t) ≤ −‖x‖2

2
.

That is, V is strictly decreasing on trajectories of f .

Suppose the system is autonomous - then φ(t, x0, t0) depends only on (t − t0). Say

φ(t, x0, t0) = ψ(x0, t − t0). Then

V (x, t) =
∫ ∞

t

ψ∗(x, τ − t)ψ(x, τ − t)dτ

=
∫ ∞

0
ψ∗(x, s)ψ(x, s)ds

which is independent of t , so V (x, t) = V (x).

The type of construction employed in this proof clearly depends on the uniform exponential

stability of the equilibrium. Unfortunately this does not allow us to form a fully necessary and

sufficient theorem, since the existence of strictly decreasing Lyapunov functions guarantees

only that the equilibrium is uniformly asymptotically stable. It is possible to prove the

converse theorem in the uniformly asymptotically stable case, but the proof is considerably

more complex. See [28,21] for the appropriate results.

2.5.2 Non-smooth Lyapunov functions

Lyapunov arguments for stability can be applied without the candidate function V being nec-

essarily continuously differentiable. Provided that the function is strictly decreasing along

trajectories of the vector field, we can relax the requirement that the V be everywhere con-

tinuously differentiable. Convexity and continuity are in fact sufficient.

This extension of Lyapunov’s approach appears in the work of Krasovskii [30] in the

context of systems containing bounded time delays. There, the vector fields have the form

ẋ(t) = f (x(t − τ))
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with τ ∈ [0, τm] for some fixed τm . The desired Lyapunov function construction involves a

supremum over τ , and hence is not necessarily smooth at every point.

The required generalization of Lyapunov’s theorem involves replacing the time derivative

V̇ = ∂V

∂ t
+ ∇V f (t, x) ≤ −c ‖x‖2

(since ∇V does not exist everywhere) by the one-sided derivative in the direction of the vector

field y = f (x)

lim
1t→0+

V (x +1t y)− V (x)

1t
.

This approach is also used by Molchanov and Pyatnitskii [43,44] in the context of differ-

ential inclusions, and is easily adapted to switching systems.

2.6 Bumpless transfer and connections to the anti-windup

problem

Much of the bumpless transfer literature has emerged from connections with the study of

systems with saturating actuators.

Consider the illustration of figure 2.1. In the anti-windup problem, the8 block represents

the saturation nonlinearity

û =
{

u |u| < 1

sgn(u) |u| ≥ 1
.

Note that an arbitrary saturation may be rewritten as a unity saturation by appropriately scaling

the rest f the system.

In the bumpless transfer problem, 8 represents a switching nonlinearity, where û = u

while the controller is switched on, and some external signal otherwise.

Both problems are characterized by a desire to keep the signal û as close as possible to u

when the nominal behaviour is not observed (that is, when the saturation is active or when

the controller under consideration is off-line).

The approaches generally involve an additional feedback term from û, the output of the

nonlinearity. Note in the anti-windup case, that this involves the controller containing an

internal model of the saturation, since typically the actual output of an actuator is not measured.

A controller which has been modified to account for saturation or switching is often referred

to as a conditioned controller (a term coined in this context by Hanus [23]). An important

property of the conditioned controller is that it retains nominal behaviour- that is, the closed
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K
û yr u

8 P

Figure 2.1: General switched or saturating system with no conditioning

loop transfer functions of the nominal system8 = I are the same when the nominal controller

is replaced by the conditioned controller.

The conditioned controller can usually be expressed as

K̂ :
[

e

û

]

→ u where e = r − y.

Below we describe several established techniques for dealing with controller switching and

actuator saturation. Equations where given are discrete-time, but the extensions to continuous-

time are usually trivial.

2.6.1 Conventional antiwindup

Conventional antiwindup is a scheme which grew out of the “anti-reset windup” approach

to the anti-windup problem. An additional feedback term X is introduced, feeding from the

error û − u to the controller input. In the saturation problem, this means the term X is only

active when the actuator is saturated, and acts (when correctly designed) to keep u and û as

close as possible. In the switching problem, X is only active when the controller is off-line,

and acts to keep the output of the off-line controller u as close as possible to the output of the

online controller û.

K
û yr

+−

−

X

u

8 P

Figure 2.2: Conventional antiwindup
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From figure 2.2 in the discrete-time case, we have the modified controller equations as

follows

xk+1 = Axk + B(rk − yk + X (ûk − uk)), (2.17)

uk = Cxk + D(rk − yk + X (ûk − uk)). (2.18)

(2.19)

Provided (I + DX) is nonsingular, we may write

uk = (I + DX)−1Cxk + (I + DX)−1 D(rk − yk)+ (I + DX)−1 DXûk.

Now substituting (2.6.1) into (2.17) we obtain

xk+1 = (A − B X (I + DX)−1C)xk + (B − B X (I + DX)−1 D)(rk − yk)

+ (B X − B X (I + DX)−1 DX)ûk

= (A − B X (I + DX)−1C)xk + B(I + X D)−1(rk − yk)+ B X (I + DX)−1ûk .

Thus we can write the conventional antiwindup controller in the following state space

form

K̂ =
[

A − B X (I + DX)−1C B(I + X D)−1 B X (I + DX)−1

(I + DX)−1C (I + DX)−1 D (I + DX)−1 DX

]

. (2.20)

The Conventional antiwindup conditioning scheme when applied to a switching control

system, may be interpreted as a tracking control design problem. When the controller in

question is off-line, the feedback gain X acts as a tracking controller for the “plant” K . The

“reference” input is û with output u, and a disturbance input of r − y at the “plant” input.

This interpretation is illustrated in figure 2.3.

K
û

r − y

−
X

u

Figure 2.3: Conventional antiwindup as a tracking problem

This is the approach taken by Graebe and Ahlén [19], also including an additional pre-

compensator FL applied to the signal û. The presence of a non-identity pre-compensator

however requires that the conditioning scheme be switched off when the controller is switched

in. This requires a precise knowledge of the switching times, and may not be appropriate in

some applications.
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2.6.2 Hanus conditioned controller

This conditioning technique was developed by Hanus et al. [23,22]. The interpretation of

the problem is a lack of consistency between the controller state and the plant input during

saturation, or prior to a controller switch.

Consistency is restored by applying modified signals to the controller such that the con-

troller output is identical to the plant input.

For the unconditioned controller we have:

xk+1 = Axk + B(rk − yk), (2.21)

uk = Cxk + D(rk − yk), (2.22)

ûk = 8(uk). (2.23)

Hanus introduces a hypothetical “realizable reference”. That is, a signal rr which if applied

to the reference input would result in a plant input u = û. So

xk+1 = Axk + B(rr
k − yk), (2.24)

ûk = Cxk + D(rr
k − yk). (2.25)

Combining the above, we obtain

ûk − uk = D(rr
k − rk),

and assuming D is nonsingular

rr = r + D−1(ûk − uk). (2.26)

Now combining equations (2.22), (2.24), (2.25) and (2.26) we obtain the following con-

ditioned controller equations

xk+1 = (A − B D−1C)xk + B D−1ûk, (2.27)

uk = Cxk + D(rk − yk), (2.28)

ûk = 8(u). (2.29)

Note that for a controller

K =
[

A B

C D

]

with D nonsingular, we can represent K −1 as follows [62]

K −1 =
[

A − B D−1C −B D−1

D−1C D−1

]

.
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D

DK −1 − I

û yr

−−

u

8 P

Figure 2.4: Hanus conditioned controller

Thus the Hanus conditioned controller may be implemented as shown in figure 2.4.

The conditioned controller may be expressed in the following state space form

K̂ =
[

A − B D−1C 0 B D−1

C D 0

]

. (2.30)

Note that the Hanus conditioned controller is restricted to controllers with nonsingular D

matrix and stable zeros. Also, the design is inflexible in that there are no tuning parameters

to allow the conditioning to be varied to suit the performance requirements.

2.6.3 Internal Model Control

The internal model control (IMC) structure [45], though not designed specifically with anti-

windup in mind has been shown to have properties conducive to antiwindup [9,29,12], in the

case where the plant is open loop stable.

The structure is shown in figure 2.5, where PM is the known plant model, and KM is the

modified controller, taking feedback from the plant error rather than the plant output.

KM = K (I + PM K )−1

where K is the linear controller designed for the linear system 8 = I .

2.6.4 Observer based schemes

An alternative approach to restoring the consistency of controller states and plant input,

as suggested by Åström and Rundqwist [2] is to introduce an observer into the controller,

observing from the plant input and output. The resulting system attempts to maintain the

controller in states consistent with the observed plant signals.
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PM

KM

û yr

−

−

u

8 P

Figure 2.5: Internal Model Control Structure

The observer form for the controller, with observer gain H is defined as follows

xk+1 = Axk + B(rk − yk)+ H(ûk − Cxk − D(rk − yk)), (2.31)

uk = Cxk + D(rk − yk), (2.32)

ûk = 8(uk), (2.33)

so we can write

K̂ =
[

A − HC B − H D H

C D 0

]

. (2.34)

When ûk = uk we simply have the linear controller

K =
[

A B

C D

]

.

When ûk 6= uk , the controller state is updated according to the observed plant input û.

The observer controller structure is shown in figure 2.6.

D

B − H D

A − HC

Cdelay

H

û yr

−

u

8 P

Figure 2.6: Observer based scheme
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The observer form for an antiwindup bumpless transfer controller admits a coprime fac-

torization form as shown in figure 2.7, where K = V −1U is a coprime factorization of the

controller. We may write K̂ for the observer controller as

K̂ =
[

U I − V

]

, (2.35)

where

V =
[

A − HC −H

C I

]

, and (2.36)

U =
[

A − HC B − H D

C D

]

. (2.37)

U

V − I

û yr

−−

u

8 P

Figure 2.7: Coprime factorization form

2.6.5 Unifying standard techniques

Åström [2,3], Campo [9], Walgama and Sternby [58] have exploited the observer property

inherent in a number of the standard schemes in order to generalize them. The Hanus condi-

tioned controller (2.30) for example is an observer controller with H = B D−1.

A number of other bumpless transfer schemes (mostly variations on the schemes already

examined) can also be represented in this observer form, including the Internal Model Control

structure [9,29].

To include a greater number of antiwindup schemes, Campo [9] included an extra parameter

I − H2, feeding from û directly to u.

Campo’s scheme represents antiwindup controllers in the form

K̂ =
[

U I − V

]

,
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where

V =
[

A − H1C −H1

H2C H2

]

, and

U =
[

A − H1C B − H1 D

H2C H2 D

]

.

This allows the inclusion of the conventional antiwindup scheme, with parameters H1 =
B X (I + DX)−1, and H2 = (I + DX)−1. Note however, that we can only guarantee that V

and U are coprime when H2 = I . Note that when H2 6= I , an algebraic loop is introduced

around the nonlinearity which may cause computational difficulties.

2.6.6 Coprime factorization approach

Miyamoto and Vinnicombe [42,41] characterize antiwindup controllers by the coprime fac-

torization form shown in figure 2.9.

K = V −1
0 U0 is some coprime factorization of the controller, and all coprime factors are

parameterized as

V = QV0 and (2.38)

U = QU0, (2.39)

where Q and Q−1 are stable (Q(s), Q−1(s) ∈ H∞ in continuous time case). The antiwindup

problem is then formulated as design of the parameter Q.

We choose U0 and V0 such that

V0 M0 + U0 N0 = I, (2.40)

where P = N0M−1
0 is the normalized coprime factorization of the plant. With this choice,

Q for some of the schemes discussed so far is as shown in table 2.1 [41].

Note that some of these representations are only truly coprime in somewhat restricted

circumstances. The unconditioned controller must be open loop stable for U and V to be

coprime when implemented directly (Q = V −1
0 ). The Hanus controller must have invertible

D matrix and stable zeros (as noted earlier). The IMC controller must have an open loop

stable plant model. These restrictions however tend to correspond to the circumstances under

which antiwindup properties are reasonable.

Note that when the nonlinearity8 is a unit saturation, then by rewriting the saturation as a

deadzone plus unity we obtain the equivalent picture shown in figure 2.8. 1 is the deadzone
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Table 2.1: Q for selected antiwindup schemes

scheme Q

unconditioned V −1
0

CAW (V0 + U0 X)−1

Hanus DU−1
0

IMC M

nonlinearity

1 : d =
{

0 : |u| < 1

sgn(u)(|u| − 1) : otherwise

Since the deadzone always has gain less than one, it is possible to apply the small gain

theorem [62]. That is, if the gain Gud from d to u is less than one and the nominal system

(1 = 0) is stable, then the perturbed system is also stable.

U

V − I

û y

d

r

−−

u

1

P

Figure 2.8: Equivalent figure

From figure 2.8, and applying the bezout identity we find that

Gud = (−U P − V + I )(U P + V )−1

= −I + M0 Q−1.

The magnitude of the transfer functions G ûd and G yd from d to û and y provides some

indication of the effect of the saturation on system performance. We can write these transfer

functions as

G ûd = P(I + Gud)

= N0 Q−1,

G yd = I + Gud

= M0 Q−1.
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In Miyamoto and Vinnicombe then, the design approach is to make the gains G ûd and G yd

small (in terms of a weighted H∞ norm), while ensuring that the H∞ norm of Gud remains

less than 1. We will see in section 3.4.2 that this approach also results in guaranteed stability

and performance in a system with switching controllers and saturating actuators.

It should be noted that each of the schemes examined so far (including the generalized

schemes above), when applied to the bumpless transfer problem are equivalent to choosing

an appropriate controller state xK at each controller transition. This is clear, as each of

the schemes listed behaves according to the linear controller design immediately when the

controller in question is switched on.

QU0

QV0 − I

û yr

w1 w2

−−

u

8 P

Figure 2.9: Coprime factorization based scheme

2.7 Filtering and estimation

Estimation problems in control usually require estimating the state of a dynamical system from

noisy measurements of input and output data. The filtering estimation problem specifically

requires calculation of an estimate of the ’current’ state using data up to and including the

current time.

The Kalman filter [27] is an example of an optimal filter. That is, the estimate x̂ of the

current state x is optimal with respect to the cost function J = E((x − x̂)T (x − x̂)), the

expectation of the squared error.

We will present here the Kalman filter equations for discrete and continuous-time time-

varying state-space systems, with inputs and outputs corrupted by zero-mean Gaussian noise.

The initial state estimate is also assumed to be taken from a Gaussian distribution with known

mean and variance.
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vw

uy

P

Figure 2.10: Plant subject to input and output noise

2.7.1 Discrete-time equations

xk+1 = Ak xk + Bk (uk +wk) ,

yk = Ck xk + Dk (uk +wk)+ vk.
(2.41)

Consider the discrete time system with input and output noise illustrated in figure 2.10,

and represented by equations (2.41). Note that more generally we may consider different B

matrices for noise input wk , and control input uk , however for our purposes it is sufficient to

consider noise injected at the input.

We shall assume that the input uk , and output yk are known without error. Ak , Bk, Ck and

Dk are known for all k. The expected value and covariance of the initial state are known:

E (x0) = x̂0 = µ0, (2.42)

E
[

(x0 − µ0) (x0 − µ0)
T
]

= P0 = 9. (2.43)

The input and output noise are assumed to be uncorrelated, and have known statistics.

E (wk) = E (vk) = 0, (2.44)

E
(

vkv
T
j

)

= Rkδ(k − j ), (2.45)

E
(

wkw
T
j

)

= Qkδ(k − j ), (2.46)

E
(

vkxT
j

)

= E
(

wk xT
j

)

= 0 ∀ j, k. (2.47)

δ(k − j ) is the Dirac delta function (δ(k − j ) = 1 when j = k, 0 otherwise). We shall

assume that Qk , and Rk are positive definite. In addition, we shall assume that Ak has full

rank, Bk has full column rank, and that Ck has full row rank.

We wish to produce an estimate x̂k of the state at time tk such that the expectation value

E((x − x̂)T (x − x̂)) is minimized. We can rewrite this as the trace of the covariance estimate

matrix Pk .

Pk := E
(

(

x − x̂
) (

x − x̂
)T
)

,

E
(

(

x − x̂
)T (

x − x̂
)

)

= Trace Pk .
(2.48)
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Given the state estimate at the previous time step x̂k−1, a natural initial estimate for x̂k is:

x̂
′
k = Ak−1 x̂k−1 + Bk−1uk−1. (2.49)

Note that we have not yet used the output measured at time tk . We can then apply a

correction to the state estimate based on the error between the actual output and predicted

output. So a sensible estimate is:

x̂k = x̂
′
k + Kk

[

yk − Ck x̂
′
k − Dkuk

]

= (Ak−1 − KkCk Ak−1) x̂k−1 + (Bk−1 − KkCk Bk−1) uk−1 + Kk yk − Kk Dkuk,

(2.50)

where the gain Kk is to be determined.

Theorem 2.7.1. Consider the linear discrete time system (2.41), and the linear state es-

timator (2.50). The optimal gain Kk , which minimizes the least squares estimation error

E
[

(xk − x̂k)(xk − x̂k)
]T = Trace Pk is:

Kk = PkCT
k

(

Dk Qk DT
k + Rk

)−1
(2.51)

where

Pk =
(

Ak−1 Pk−1 AT
k−1 + Bk−1Qk−1 BT

k−1

)−1 + CT
k

(

Dk Qk DT
k + Rk

)−1
Ck (2.52)

Proof. The proof of the theorem in this particular form appears in [47], adapted from proofs

in Sorenson [52], and Stengel [54].

Hence, the Kalman filter can be implemented in recursive form with the three equations

x̂k = (Ak−1 − KkCk Ak−1) x̂k−1 + (Bk−1 − KkCk Bk−1) uk−1 + Kk yk − Kk Dkuk, (2.53)

Kk = PkCT
k

(

Dk Qk DT
k + Rk

)−1
, (2.54)

Pk =
(

Ak−1 Pk−1 AT
k−1 + Bk−1Qk−1 BT

k−1

)−1 + CT
k

(

Dk Qk DT
k + Rk

)−1
Ck, (2.55)

along with the boundary conditions P0 = 9 and x̂0 = µ0.

The equations may be simplified further if the system observed, and the noise statistics

are time-invariant. In that case the equations reduce to

x̂k = (A − K C A) x̂k−1 + (B − K C B) uk−1 + K yk − K Duk, (2.56)

K = PCT
(

DQ DT + R
)−1

, (2.57)

P =
(

AP AT + B Q BT
)−1 + CT

(

DQ DT + R
)−1

C. (2.58)

Since the matrices K and P are now constant, they may be precomputed allowing for very

simple and computationally efficient observer form implementation of the filter.
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2.7.2 Continuous-time equations

Now consider the estimation problem for a continuous-time plant. The signals of figure 2.10,

and the state-space equations are now continuous-time.

ẋ(t) = A(t)x(t)+ B(t) (u(t)+ w(t)) ,

y(t) = C(t)x(t)+ D(t) (u(t)+ w(t))+ v(t).
(2.59)

Once again, the expected value µ0 and covariance 9 of the initial state are known, as are

the statistics of the input and output noise.

E (w(t)) = E (v(t)) = 0, (2.60)

E
(

v(t)vT (s)
)

= R(t)δ(t − s), (2.61)

E
(

w(t)wT (s)
)

= Q(t)δ(t − s), (2.62)

E
(

v(t)xT (s)
)

= E
(

w(t)xT (s)
)

= 0 ∀ t, s. (2.63)

Under these assumptions, we can again compute the equations for the optimal (with respect

to the expectation of the squared state error) Kalman filter.

The resulting equations (not derived here) are:

˙̂x(t) = (A(t)− K (t)C(t)) x̂(t)+ (B(t)− K (t)D(t)) u(t)+ K (t)y(t), (2.64)

K (t) = P(t)CT (t)
(

D(t)Q(t)DT (t)+ R(t)
)−1

, (2.65)

Ṗ(t) = P(t)AT (t)+ A(t)P(t)+ B(t)Q(t)BT (t)

− P(t)CT (t)
(

D(t)Q(t)D(t)T + R(t)
)−1

C(t)P(t),
(2.66)

along with the boundary conditions P(0) = 9 and x̂(0) = µ0.

In the time-invariant case, the equations are:

˙̂x(t) = (A − K C) x̂(t)+ (B − K D) u(t)+ K y(t), (2.67)

K = PCT
(

DQ DT + R
)−1

, (2.68)

0 = P AT + AP + B Q BT − PCT
(

DQ DT + R
)−1

C P. (2.69)

2.8 The deterministic filtering problem

We now consider an alternative perspective to the standard form of the state estimation.

Rather than making stochastic assumptions about the noise signals w and v, we simply find
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the state-estimate which corresponds to minimization of a quadratic cost function of the

noise signals and the initial state. We show that with appropriate identifications, the result

of this deterministic filtering problem is identical to the optimal Kalman filter estimate with

stochastic assumptions.

This approach was first used by Bertsekas and Rhodes in [5], estimating the state of a

dynamical system with no control input.

2.8.1 Continuous-time equations

Consider the arrangement of figure 2.10, described by equations (2.59).

In the deterministic filtering problem, we wish to find the estimate x̂(t) of the state x(t),

which corresponds with initial state x(t0), and noise signals w(t) and v(t) which minimize

the quadratic cost function

J (t) = (x(t0)− µ0)
T9(x(t0)− µ0)+

∫ t

t0

(

wT (s)Q(s)w(s)+ vT (s)R(s)v(s)
)

ds (2.70)

Theorem 2.8.1. Assume that the signals u and y are known and defined over the interval

[t0, t]. Then, the optimal estimate x̂(t) of the state of system (2.59) at time t with respect to

the cost function (2.70) may be obtained by solving the differential system

˙̂x(t) = (A(t)− K (t)C(t)) x̂(t)+ (B(t)− K (t)D(t)) u(t)+ K (t)y(t), (2.71)

K (t) = P(t)CT (t)
(

D(t)Q(t)DT (t)+ R(t)
)−1

, (2.72)

Ṗ(t) = P(t)AT (t)+ A(t)P(t)+ B(t)Q(t)BT (t)

− P(t)CT (t)
(

D(t)Q(t)D(t)T + R(t)
)−1

C(t)P(t),
(2.73)

with the boundary conditions P(0) = 9 and x̂(0) = µ0.

This result (and the discrete time version) is obtained directly from Bertsekas and Rhodes

main result in [5]. The approach is to treat the problem as an optimal tracking problem

in reverse time. The noise signal w(t) is treated as the ‘control’ input, and the boundary

condition is on the initial state rather than the final error. A direct dynamic programming

solution is also contained in [14].

2.8.2 Discrete-time equations

The discrete-time solution is obtained in similar fashion to the continuous case. We solve an

optimization problem with respect to the cost function

Jk = (x0 − µ0)
T9(x0 − µ0)+

k
∑

i=0

(

wT
i Qiwi + vT

i Rivi

)

(2.74)
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Theorem 2.8.2. Assume that the signals u and y are known and defined over the interval

[0, k]. Then, the optimal estimate x̂k of the state of system (2.41) at time k with respect to the

cost function (2.74) may be obtained by solving the difference equations

x̂k = (Ak−1 − KkCk Ak−1) x̂k−1 + (Bk−1 − KkCk Bk−1) uk−1 + Kk yk − Kk Dkuk, (2.75)

Kk = PkCT
k

(

Dk Qk DT
k + Rk

)−1
, (2.76)

Pk =
(

Ak−1 Pk−1 AT
k−1 + Bk−1Qk−1 BT

k−1

)−1 + CT
k

(

Dk Qk DT
k + Rk

)−1
Ck, (2.77)

with the boundary conditions P0 = 9 and x̂0 = µ0.

These results allow us to use the simplicity of Kalman filter implementations to solve

problems which can be described in terms of two-norm noise minimization. We apply the

results to the problem of optimal initial state selection for switching controllers in chapter 4.





Chapter 3

Stability of simple switching systems

Stability is a key issue when we consider switching systems. The hybrid nature of switching

systems means that we must consider the interaction between discrete and continuous dy-

namics. It is not enough to merely ensure that all of the component continuous-time systems

are stable. Stability problems generally fall into two broad categories.

In this chapter, we consider stability issues relating to simple switching systems. That is,

systems where the state remains continuous across switching boundaries.

The strongest results find conditions which guarantee that the system remains stable under

arbitrary switching. Such conditions allow the switching supervisor to be designed indepen-

dently of the systems (or controllers) themselves.

If it is not possible to guarantee stability for all switching signals, then we would like to

determine some class of signals for which the system remains stable or at the very least find

a particular switching signal for which the system is stable.

In this chapter, our main interest is in stability under arbitrary switching. It is by no means

a trivial problem. It does not suffice to ensure that each of the component systems is stable

(or, in a control context that all of the alternative controllers are stabilizing), though it is

obviously necessary. It is not difficult to construct examples of unstable trajectories achieved

by switching between stable systems (or conversely of stable trajectories by switching between

unstable systems).

Consider the following example (similar to examples in [26,32]).

Example 3.0.1. Consider two stable continuous-time component systems as follows:

ẋ = A1x ẋ = A2x (3.1)

A1 =
[

−0.1 1

−2 −0.1

]

A2 =
[

−0.1 2

−1 −0.1

]

(3.2)

39
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(a) f1 trajectory
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(b) f2 trajectory

Figure 3.1:

f1 = A1x , and f2 = A2x are both stable dynamical systems. Figure 3.1 shows trajectories

for f1 and f2 respectively, with the initial condition x = [0.1 0.1]∗.

Suppose we switch between these systems according to regions in the state space. Let

x =
[

x1

x2

]

. Then let us switch at the boundaries x1 = 0 and x2 = 0 such that f1 = A1x is

active in quadrants 2 and 4 (x1x2 < 0) of the state space, and f2 = A2x active in quadrants

1 and 3 (x1x2 ≥ 0). Figure 3.2 shows the resulting unstable trajectory.

We can construct a similar example in a plant and controller context as follows.

Example 3.0.2. Consider the feedback arrangement depicted in figure 3.3. Plant P (with zero

through term), and controllers K1 and K2 are given by a particular state space representations

G =
[

A B

C 0

]

K1 =
[

A1 B1

C1 D1

]

K2 =
[

A2 B2

C2 D2

]

Plant G has state xG , and controller Ki has state xKi (i = {1, 2}).
Then, we have a switching system between the closed loop systems

[

ẋG

˙xKi

]

=
[

A + B Di C BCi

Bi C Ai

][

xG

xKi

]

i = 1, 2. (3.3)

Now if we choose

G =
[

0.5 1

1 0

]

K1 =
[

−0.1 −1

2 −0.6

]

K2 =
[

−0.6 −1.5

1.5 −0.1

]

,
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Figure 3.3: Feedback arrangement for example 3.0.2
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(b) f2 trajectory

Figure 3.4:

we obtain the closed loop equations
[

˙xG

˙xK 1

]

=
[

−0.1 2

−1 −0.1

][

xG

xK 1

]

, and (3.4)

[

˙xG

˙xK 2

]

=
[

0.4 1.5

−1.5 −0.6

][

xG

xK 2

]

. (3.5)

Thus the closed loop dynamics are stable foci about the origin, with the same direction of

flow, and orientation 45◦ apart. Figure 3.4 shows the respective closed loops applied without

switching, and with initial states
[

xG xKi

]∗
=
[

0.1 0.1
]∗

.

Suppose we employ an autonomous switching scheme such that controller K1 is employed

when the plant state satisfies the constraint |x | ≤ 0.1, and K2 otherwise. Then trajectories

beginning from initial states close to the origin will converge, however for large enough

initial conditions, the trajectory will converge to a limit cycle. Figure 3.5 shows the switching

trajectory beginning with initial state
[

xG xKi

]∗
=
[

0.1 0.1
]∗

(i = 2).

In this chapter we will consider stability issues for simple switching systems By that we

mean switching systems in which the state is continuous across switching times.

3.1 Common Lyapunov functions for switching systems

It is a relatively straightforward observation that, given a family of vector fields

ẋ(t) = fi (x(t)), i ∈ I, x(t) ∈ R
n (3.6)
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Figure 3.5: switching trajectory

and a family of switching signals σ(t) ∈ S, that the switching system

ẋ(t) = fσ(t)(x(t))

σ (t) = ik, for tk ≤ t < tk+1, ik ∈ I, k ∈ Z
+.

(3.7)

will be stable if there exists a common Lyapunov function (CLF) V which is positive and

non-increasing on trajectories of any of the component systems fi .

This observation has been made by Barmish [4] and others, often in a somewhat wider

context, such as for uncertain systems where the system may vary arbitrarily among a family

of vector fields, or for differential inclusions [44]. The sufficient condition is essentially a

direct consequence of Lyapunov’s theorem for nonlinear systems.

The converse problem is substantially more complex, but it has been proved that the

existence of a common Lyapunov function is a necessary condition for exponential stability

of a simple switching system.

In the linear context, when the vector fields have the form

ẋ(t) = Ai x(t), i ∈ I, x(t) ∈ R
n,

and the switching system is exponentially stable for all switching signals. Molchanov and

Pyatnitskii [44] have shown the existence of a quasi-quadratic Lyapunov function

V (x) = x∗L(x)x

where L(x) = L∗(x) = L(τ x) for all x ∈ Rn and τ ∈ R+. This function is not necessarily

continuously differentiable, but is Lipschitz continuous and strictly convex.
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Dayawansa and Martin [10] have proved a similar necessity theorem, but have additionally

shown that a continuously differentiable Lyapunov function V may be obtained by smoothing

a similarly obtained quasi-quadratic function.

Theorem 3.1.1 ( [10]). The linear simple switching system is uniformly exponentially stable

if and only if there exists a continuously differentiable function V : Rm → R such that

V̇ (x) = ∇V (x)Ai x is negative definite for all i ∈ I .

It is important to note that it is not in general possible to construct common quadratic Lya-

punov functions. Dayawansa gives an example of a uniformly exponentially stable switching

system (with two linear component systems) which does not admit a common quadratic

Lyapunov function.

If the index set I is finite, and a common quadratic Lyapunov function exists, it can be

found by solving for P > 0 and Q > 0 the system of inequalities A∗
i P + P Ai < −Q for all

i ∈ I .

Dayawansa and Martin also extend the result to nonlinear systems which are globally

asymptotically stable and locally uniformly exponentially stable.

3.2 Multiple Lyapunov functions

Peleties and DeCarlo [48], and Michael Branicky in [7] introduce a somewhat different

approach for analysing stability of a switching system. The basic idea is to find Lyapunov-

like functions Vi for each of the component vector fields, which are positive definite and

decreasing whenever the i ’th loop is active. We then ensure stability for a family of switching

signals S by ensuring that Vi is non-increasing on an appropriate sequence of switching times.

The multiple Lyapunov function stability condition is, in a sense weaker than the common

Lyapunov function approach when applied to the problem of stability for all switching signals.

The multiple function approach can however be more tractable in some cases, especially when

considering restricted classes of switching signals when stability cannot be guaranteed for

arbitrary switching.

In considering the multiple Lyapunov function approach, we shall modify the definition

of switching signals to include the system initial conditions. This allows for the study of

stability for systems where the set of possible switching signals at any point is dependent

upon the state of the system at that point. For example, we may consider piecewise affine

hybrid system under this framework (see for example [26]).

Definition 3.2.1. An anchored switching signal is a pair (x0, σ ) where x0 ∈ Rn is an initial

state, and σ : R+ → I is a (non-zeno) piecewise constant switching signal.
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We shall let the class of anchored switching signals under consideration be S, and assume

the family of vector fields is finite (let I = {1, 2, . . . , N }). Fix a particular signal (x0, σ ) ∈ S,

with associated switching times {tk} and indices {ik} (σ(t) = ik when tk ≤ t < tk+1).

Consider the family of vector fields 3.6, or the equivalent discrete-time family

x(k + 1) = fi (x(k)), i ∈ I

Given a particular switching sequence σ , let σ |n be the sequence of endpoints of the

intervals for which the n’th system is active. That is:

σ |n = {tk : ik = n, or ik−1 = n}

The interval completion of a time sequence T = t0, t1, t2, ... is the set

I(T ) =
∞
⋃

k=0

(t2k, t2k+1)

Thus, I(σ |n) is the set of times for which the n’th system is active.

Let E(T ) = {t0, t2, t4, . . .} denote the even sequence of T. Then, E(σ |n) is the set of times

at which the n’th system is engaged.

Definition 3.2.2. Given a strictly increasing set of times T in R, a function V is said to be

Lyapunov-like for a hybrid trajectory φσ (.) over a time sequence T if it satisfies the following:

• V is a continuous, positive definite, and radially unbounded function with continuous

partial derivatives

• V (0) = 0

• V̇ (x(t)) ≤ 0 for all t ∈ I(T )

• V is monotonically non-increasing on E(T )

The following is a version of Branicky’s theorem. We will not prove the result here, since

an extension of the theorem is proved in chapter 6.

Theorem 3.2.1 ( [7]). Consider a set of vector fields (3.6). Let S be the set of anchored

switching sequences associated with the system.

If there exist functions Vi such that over all anchored switching sequences (x0, σ ) ∈ S, Vi

is Lyapunov-like for the hybrid trajectory over σ |i , then the switching system (3.7) is stable

in the sense of Lyapunov.
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Figure 3.6: Multiple Lyapunov functions for N = 2

Additionally, the system is asymptotically stable if for some ǫi and δi

V̇i (x(t)) < −ǫi ‖x(t)‖2

for t in I(σ |i ), and Vi are strictly decreasing on E(σ |i ):

Vi (x(tk))− Vi (x(t j )) < −δi

∥

∥x(t j )
∥

∥

2
, (3.8)

where t j < tk , and i j = ik = i .

We will refer to (3.8) as the sequence decreasing condition. This is not precisely the same

as the asymptotic stability conditions presented by Branicky [7] and Pelleties [48], but it is

perhaps the most useful expression for our purposes.

Figure 3.6 illustrates a possible sequence of multiple Lyapunov functions for a 2-switched

system which satisfies the (respectively Lyapunov stability and asymptotic stability) condi-

tions for theorem 3.2.1. The black lines denote V1, and the red lines denote V2. The solid

lines show the active Lyapunov function.

The multiple Lyapunov function approach may be used in order to restrict the set of

admissible switching signals in order to ensure stability.

3.3 Dwell time switching

3.3.1 If we are switching between stable vector fields, it is fairly obvious that stability of

a simple switching system can be guaranteed if we switch sufficiently slowly. That is, we

find can find a τ such that if we dwell at each vector field for at least time τ then stability is

guaranteed. This approach to stabilizing switching systems is known as dwell time switching,

and was introduced by Morse in [46]. The selected τ is known as the system dwell time.

The approach there is as follows. Each component vector field is stable, so there exist

functions Vi for each i ∈ I which satisfy the inequalities

ai ‖x‖2 ≤ Vi (x) ≤ bi ‖x‖2
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and

∇Vi (x) fi (x) ≤ −ci ‖x‖2

for some constants ai , bi and ci . Therefore we can write

∇Vi (x) fi (x) ≤ −λi Vi (x)

where λi = ci/bi . This gives the exponential upper bound on Vi of

Vi (x(t0 + τ) ≤ e−λiτVi (x(t0)),

provided that σ(t) = i for t ∈ [t0, t0 + τ)

Now consider beginning with the ik’th loop active at some time tk , and switching to the

ik+1’th loop at time tk+1. This results in the set of inequalities

aik

bik+1

Vik+1(x(tk+1)) ≤ aik
‖x(tk+1)‖2 ≤ Vik

(x(tk+1)) ≤ e−λik
(tk+1−tk)Vik

(x(tk)).

Hence, if the time gap (tk+1 − tk) satisfies

tk+1 − tk >
−1
λik

ln
(

aik

bik+1

)

then the sequence non-increasing condition

Vik+1(x(tk+1)) < Vik
(x(tk))

is satisfied for that switch. Thus if we choose the dwell time τ to be

τ ≥ sup
i, j

(−1
λi

ln
(

ai

b j

))

,

then the sequence non-increasing condition can be satisfied for all possible switches.

This approach is obviously potentially conservative, both because of the ’spherical’ bounds

used in the calculations, and because the choice of Lyapunov function is arbitrary. In the fol-

lowing section, we examine a refinement of the technique for the case of quadratic Lyapunov

functions.

3.3.1 Dwell times for linear simple switching systems

Here we consider an approach to dwell time switching which makes use of the elliptical

bounds on trajectories which are provided when we have quadratic Lyapunov functions.
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Let us illustrate the principal idea for N = 2. Suppose we have Lyapunov functions

V1 = x∗ P1x , and V2 = x∗P2x , where P1 > 0 and P2 > 0 are solutions to Lyapunov

equations

A∗
1 P1 + P1 A1 = −Q1

A∗
2 P2 + P2 A2 = −Q2

for some positive definite Q1 and Q2.

Let the initial conditions be x0 at time t0, with σ(t0) = 1. Now we know that the trajectory

is bounded by the level set x∗P1x = x0 P1x0 while vector field 1 is active. Suppose we switch

from loop 1 to loop 2 at time t1, and then back to loop 1 at time t2. If A1 is stable, then we

know that

x(t1)
∗ P1x(t1) < x∗

0 P1x0

From the matrix Q1, it is possible to derive an exponential upper bound on the decay of

V1 after some time τ .

Lemma 3.3.1. Suppose V (x(t)) = x(t)∗ Px(t) where P > 0 is the solution to the Lyapunov

equation

A∗ P + P A = −Q

for some A and Q > 0. Then the value of the function at time t0 + τ satisfies the bound

V (x(t0 + τ)) ≤ e−λτV (x(t0))

where λ is the minimum eigenvalue of the matrix P−1 Q.

Proof. The bound is calculated, by calculating the maximum value of the derivative V̇ on a

particular level curve of V .

Consider the level curve x∗ Px = a. The maximum value of V̇ on this curve, is

− min
x
(x∗Qx) such that x∗Px = a.

Geometrically, this corresponds to finding the number b such that the level curve x∗Qx = b

fits exactly inside the level curve x∗ Px = a (see figure 3.7).

Consider a transformation z = T x such that the level curve x∗ Px = a is transformed into

the circle z∗z = a. This is obtained by the Cholesky factorization P = T ∗T , and it exists

precisely when P is positive definite.

So now we wish to find

min
z

(

z(T ∗)−1 QT −1z
)

such that z∗z = a.
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level curve x∗Qx = b

level curve x∗ Px = a

minx(x
∗Qx) s.t x∗Qx = b

Figure 3.7: Geometrical illustration

This is simply a times the minimum eigenvalue of the matrix (T ∗)−1 QT −1 (or equivalently,

the minimum eigenvalue of P−1 Q). Thus we now have the bound

V̇ ≤ −λV

where λ is the minimum eigenvalue of the matrix P−1Q (since eigenvalues are transpose-

invariant). Hence

V (x(t0 + τ) ≤ e−λτV (x(t0))

Note that this calculation, based on elliptical bounds is strictly less conservative than the

spherical bounds considered in the previous section.

Thus at the time t1, we have the bound

x(t1)
∗ P1x(t1) ≤ e−λ1(t1−t0)x∗

0 P1x0

where λ1 is calculated using lemma 3.3.1. We can also now calculate the maximum value of

the Lyapunov function V2 on the level curve

x∗ P1x = e−λ1(t1−t0)x∗
0 P1x0,

using a similar technique to that employed in lemma 3.3.1. That is,

max
x
(x∗ P2x) such that x∗ P1x = e−λ1(t1−t0)x∗

0 P1x0

= k12e−λ1(t1−t0)x∗
0 P1x0,
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where k12 is the maximum eigenvalue of P−1
1 P2.

Thus we now have the bound

V2(x(t1)) ≤ k12e−λ1(t1−t0)V1(x(t0)).

We continue in the same fashion through the decay of V2 to t2, and at the switch back to loop

1, resulting in the bound

V1(x(t2)) ≤ k12k21e−λ1(t1−t0)e−λ2(t2−t1)V1(x(t0)),

where ki j is the maximum eigenvalue of P−1
i Pj , and λi is the minimum eigenvalue of P−1

i Qi .

Thus we can guarantee the sequence decreasing condition if the dwell time τ is chosen such

that

k12k21e−(λ1+λ2)τ < 1.

That is, we use

τ >
1

λ1 + λ2
ln (k12k21) .

In the general N loop case, the required dwell time is a supremum of such a form, but over

arbitrary sequences of switches.

Let us define L [N ] to be the set of all cycles of elements of {1, 2, . . . , N }. That is,

l ∈ L [N ] is a finite sequence beginning and ending with the same element, with no repeated

element (except for the first/last). Note that L [N ] can be thought of as the set of all cycles

of KN , the complete graph with N vertices (see [17] for example). If we can ensure that each

Vi is decreasing on all such cycles, then stability may be guaranteed via theorem 3.2.1.

We shall use the notation i ∈ l to mean ‘the element i appears in the cycle l’.

As a slight abuse of notation, we shall use i j ∈ l to mean the sequence {i, j } appears in

l in that particular order. When l is a cycle of switching sequence indices, this means that a

switch from state i to state j occurs in the switching sequence.

Consider a finite family of stable linear vector fields

ẋ = Ai x,

with corresponding Lyapunov functions Vi = x∗ Pi x for i ∈ {1, 2, . . . , N }. The Pi > 0

satisfy the Lyapunov equations

A∗
i Pi + Pi Ai = −Qi

for Qi > 0.
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Theorem 3.3.2. Let ki j be the maximum eigenvalue of P−1
i Pj , andλi the minimum eigenvalue

of P−1
i Qi .

If we choose τ such that

τ > sup
l∈L [N]





1
∑

i∈l λi

ln





∏

i j∈l

ki j







 , (3.9)

then the simple switching system

ẋ = Aσ(t)x,

σ (t) = ik, ∀ tk ≤ t < tk+1, ik ∈ {1, 2, . . . , N }, k ∈ Z
+,

(3.10)

is guaranteed to be stable for all switching sequences with a minimum dwell time of τ .

Proof. Consider a particular switching sequence

σ(t) = ik, for tk ≤ t < tk+1,

where the sequence of switching times satisfies tk+1 − tk > τ for all k. Suppose the switching

sequence contains a loop (possibly with repeated elements) l, beginning with the m’th vector

field. Then, the ‘gain’ of Vm from the beginning to the end of the loop is bounded above by




∏

i j∈l

ki j



 e
−
(

∑

i∈l

λi

)

τ

.

This is clear, since we have already shown that ki j represents the maximum gain from one

Lyapunov function to another at a switch, and e−λiτ represents the minimum decay in the

value of Vi while in the i ’th state.

Furthermore, for any arbitrary loop (which may contain repeated elements), this expression

can be factored into similar expressions for non-repeating loops. For example

k12k23k32k21e−(λ1+λ2+λ3+λ2)τ =
(

k12k21e−(λ1+λ2)τ
) (

k23k32e−(λ2+λ3)τ
)

.

Hence, if τ is chosen such that

τ >





1
∑

i∈l λi

ln





∏

i j∈l

ki j









for each non-repeating loop l, then




∏

i j∈l

ki j



 e
−
(

∑

i∈l

λi

)

τ

< 1

for each non-repeating loop, and hence also for repeating loops. Thus the decreasing con-

dition from theorem 3.2.1 for asymptotic stability is satisfied, and the switching system is

asymptotically stable.
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There is clearly still some conservatism in this result, arising from the fact that it is

dependent on particular choices of Pi .

An upper bound on this minimum dwell-time (but a less complex calculation) is the choice

τ > sup
i∈l

(

1
λi

)

sup
i j∈l

(

ln
(

ki j

))

. (3.11)

This will in fact ensure the inequality

Vik+1(x(tk+1)) < Vik
(x(tk))

is satisfied for all k. This is a stronger condition than our decreasing condition in theorem 3.2.1,

but is the same as the condition for asymptotic stability used in [7].

3.4 Choice of controller realizations

Switching between stabilizing controllers for a given plant does not in general ensure stabil-

ity of the resulting trajectory. It is possible, however to choose realizations for stabilizing

controllers such that stability can be guaranteed.

3.4.1 IMC approach

Recent work by Hespanha and Morse [25] uses an Internal Model Control framework in

order to choose realizations for given controller such that stability of the switching system is

guaranteed.

The result is based on the following lemma, and the Youla parameterization of stabilizing

controllers [62].

Lemma 3.4.1. Given any finite family of asymptotically stable transfer matrices P = {Pi :
i ∈ I } with McMillan degree no larger than n, and any n × n symmetric positive definite

matrix Q, there exist stabilizable and detectable realizations {Ai, Bi ,Ci , Di } for each Pi ∈ P

such that

Q Ai + A∗
i Q < 0

for all i ∈ I .

Proof. Suppose { Āi , B̄i , C̄i , D̄i } is any realization for Pi . Then, we can find matrices Qi

satisfying

Qi Ai + A∗
i Qi = −Xi (3.12)
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for each i , with Xi positive definite. In fact, we can choose Qi such that Q− 1
2 Q

1
2
i is full rank

for each i . Given positive definite matrices Q and Qi , we can write Q = (Q
1
2 )∗Q

1
2 and

Qi = (Q
1
2
i )

∗Q
1
2
i . Define

Ai = Q− 1
2 Q

1
2
i Āi Q

− 1
2

i Q
1
2 , Bi = Q− 1

2 Q
1
2
i B̄i , Ci = C̄i Q

− 1
2

i Q
1
2 , Di = D̄i

Now we can rewrite equation (3.12) as

(Q− 1
2 Q

1
2
i )

∗(Q Ai + A∗
i Q)(Q− 1

2 Q
1
2
i ) = −I,

and hence

Q Ai + A∗
i Q = −(Q− 1

2
i Q

1
2 )∗Q− 1

2 Q
1
2 < 0.

This result means that for any family of stable linear dynamical systems, we can construct

realizations such that a simple switched system will be stable for any switching signal σ .

Obviously, in a plant/controller framework, it is only possible to choose the realization of the

controller and not the plant. Hespanha overcomes this difficulty by using an Internal Model

Control framework [45], constructing a controller which contains an internal realization of

a particular closed loop transfer function, and a model of the plant. The realization of the

model of the closed loop transfer function can then be chosen according to lemma 3.4.1, and

stability will be guaranteed provided that all the models are exact.

3.4.2 Choice of coprime factorizations

We can consider another approach to the design of stabilizing switching control systems.

This approach is based on the ideas in Miyamoto and Vinnicombe [42] in the context of the

anti-windup problem.

Suppose we have a plant G, and a set of stabilizing controllers Ki . We may choose a

right coprime factorization of the plant G = N M−1, and left coprime factorizations of the

controllers Ki = V −1
i Ui , such that for each i the bezout identity

Vi M + Ui N = I

is satisfied [62, section 5.4]. Furthermore given any Q such that Q, Q−1 ∈ RH∞, the

factorizations G = Ñ M̃−1, and Ki = Ṽ −1
i Ũi also satisfy the bezout identities

Ṽi M̃ + Ũi Ñ = I,

where Ñ = N Q, M̃ = M Q, Ũi = Q−1Ui , and Ṽi = Q−1Vi .
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Ũi
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ûi

ûn
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-

Figure 3.8: Switching arrangement

A particular choice of Q for a controller factorization can also be thought of as a particular

choice for the plant factorization (via Q), or vice versa. In the switching controller case, this

is true provided that all of the controllers have the same choice of Q.

Now consider the coprime factor switching arrangement in figure 3.8. The switching con-

nection is such that u(t) = ûσ(t), where σ(t) is the switching signal governing the controller

selection. The signals u, v, and w are common to the loops. We can think of this system as

a plant P in a feedback loop with the augmented controller K̂σ .

Note that for each loop i , we have

ûi = (I − Ṽi )u − Ũi Pu − Ũi Pw + Ũiv

= (I − Ṽi − Ũi Ñ M̃−1)u − Ũi Pw + Ũiv

= (M − Ṽi M − Ũi Ñ)M̃−1u − Ũi Pw + Ũiv

= (I − M̃−1)u − Ũi Pw + Ũiv.

Since u = ûσ , we can write

u = (I − M̃−1)u − Ũσ Pw + Ũσ v

= −M̃Ũσ Pw + M̃Ũσ v

= −M̃(Ũσ Ñ )M̃−1w + M̃Ũσv

= −M̃(I − Ṽσ M̃)M̃−1w + M̃Ũσ v

= −(I − M̃ Ṽσ )w + M̃Ũσ v,
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Ũ1
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Figure 3.9: Alternative view

and

y = P(u + w)

= Ñ M̃−1((−(I − M̃ Ṽσ )w + M̃Ũσ v)+ w)

= Ñ Ṽσw + ÑŨσ v.

We assume that the signals w and v are bounded with bounded two norm, and we know

all of the coprime factors are stable. Then the signals Ṽσw, Ṽσv, Ũσw, and Ũσ v will all be

bounded with bounded two norm. Hence u and y are bounded with bounded two norm, and

the switching system is stable for all admissible switching sequences.

We can write these closed-loop relationships in the compact form

[

u

y

]

=
[

−(I − M̃ Ṽσ ) M̃Ũσ

Ñ Ṽσ ÑŨσ

][

w

v

]

.

The arrangement can be illustrated as shown in figure 3.9. The stability of this switching

system is guaranteed since M̃ , Ñ , and each Ũi and Ṽi are stable. Note that the states of the

controllers evolve identically irrespective of which controller is active.

The implementation of this arrangement requires all of the controllers (in coprime factor

form) to be running even when not active. This corresponds closely with the coprime factor
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based schemes discussed in section 2.6 for both the antiwindup and bumpless transfer prob-

lems. The total state-space required has order equal to the sum of the orders of the coprime

factor controllers plus the order of the plant.

In fact, we will see later (section 6.4) that adding a reset structure to such controllers can

remove the need to run all of the off-line controllers, and also improve the performance of

the system.

In Miyamoto and Vinnicombe [42] and later work by Crawshaw and Vinnicombe [],

optimal anti-windup conditioning schemes are derived as a function of a chosen coprime

factorization of the plant, and implemented as a controller factorization. The result is that

the Youla parameter Q depends only on the plant, and so can be applied to any given LTI

controller.

3.5 Concluding remarks

We have discussed a number of important issues relating to the stability of simple switching

systems.

We have noted that a necessary and sufficient condition for stability of switching systems

under arbitrary switching is the existence of common Lyapunov functions.

Related work by Branicky shows that stability of a switching system over a given family of

switching signals may be proved via multiple Lyapunov functions. This leads us to a means

of computing an upper bound on the minimum dwell time required to ensure stability of

switching systems (with fixed realizations).

We have observed that it is possible to ensure stability of a switching controller system by

choosing appropriate realizations for the controllers. Both of the methods discussed require

non-minimal implementations of the controllers in general. The IMC approach of Hespanha

generally requires controllers to be order 2nG +nKi , where nG and nKi are the minimal orders

of the plant and controllers respectively. The coprime factor approach requires controllers

which are order max{nG, nKi }, however it also requires all controllers to be running when

off-line (increasing the effective order by a factor of N , the number of controllers). We will

see in chapter 6 however, that we can remove the need to run all controllers by choosing an

appropriate initial state when controllers are switched on, while still retaining the stability

property (and further improving performance).



Chapter 4

Controller conditioning for switching

In this chapter we consider a performance problem with respect to a single controller switch.

The problem is solved via an optimization, which involves finding the controller state at a

switching time which most closely corresponds in some sense with the plant inputs and outputs

observed prior to the switch. We solve finite and infinite horizon optimizations in order to

obtain appropriate controller initializations in the switching context. We also show that the

solutions to these optimizations may, for certain weighting structures, be implemented via a

Kalman filter observer of the controller using the deterministic filtering results of chapter 2.

4.1 Controller state selection via a noise minimization prob-

lem

u2

u1

u yr GK

Figure 4.1: Generalized input substitution

Consider the general input substitution for the system illustrated in figure 4.1. We assume

that the plant is driven initially by the signal u1, and switches at some fixed time to the closed

57
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loop control signal u2 generated by the known controller K in feedback with the plant P . The

signal u1 might come from manual control (a pilot), or an alternative automatic controller.

Initially, we will consider the regulator problem with r = 0. Later we will show how our

results fit into a reference tracking framework.

How do we determine a controller state at the switching time which will result in a smooth

transfer from the input u1 to the controller input u2? One way of interpreting transient signals

caused by controller switching, is that they are due in some sense to the mismatch between

the controller state at the switch, and the actual plant signals prior to the switch. If the signals

lie in the graph of the controller, and the controller is initialized correctly, there would be no

transient due to the switch at all.

A method of controller state selection therefore, is to measure the plant signals in the time

leading up to the switch, and find signals compatible with the off-line controller (in the graph

of the controller), which are close in some sense to the observed signals. The controller state

corresponding to the “nearest” signals is then selected when the controller is switched on.

In other words, recast the setup of figure 4.2(a) into that of figure 4.2(b) (where u and y

represent identical signals). We then find the hypothetical signals û and ŷ prior to the switch

such that

∥

∥

∥

∥

∥

ŵ

v̂

∥

∥

∥

∥

∥

2

is minimized (or some similar weighted norm).

uy yP

(a) System prior to switch

uy ŷ û

ŵ v̂

K

(b) Alternative view

Figure 4.2:

4.2 Discrete-time explicit solution

Consider now the discrete-time case, and assume that we switch from the external control

signal to the known feedback controller K at time k = n. We can now write the equations
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for the hypothetical controller in the loop prior to k = n as follows:

xk+1 = Axk + B ŷk,

ûk = Cxk + Dŷk,
(4.1)

with xk ∈ R
s , {uk, ûk, vk} ∈ R

p, and {yk, ŷk, wk} ∈ R
q . Iterating these equations, we can

write xn−k and yn−k , with k ≥ 0 in terms of the state at the switching instant xn .

xn−1 = A−1xn − A−1 B ŷn−1,

xn−r = A−r xn −
[

A−r B A−r+1 B . . . A−1 B

]













ŷn−1

ŷn−2
...

ŷn−r













,

ûn−r = Cxn−r + Dŷn−r

= C A−r xn −
[

C A−r B C A−r+1 B . . . C A−1 B − D

]













ŷn−1

ŷn−2
...

ŷn−r













.

Let us denote by Ur , Yr , Ûr and Ŷr the r step truncations of signals u, y, û and ŷ prior to

the switching time n expressed in stacked form

Ur =













un−1

un−2
...

un−r













Yr =













yn−1

yn−2
...

yn−r













Ûr =













ûn−1

ûn−2
...

ûn−r













Ŷr =













ŷn−1

ŷn−2
...

ŷn−r ,













and we can now write the (hypothetical) controller output Ûr in terms of the state at time

k = n and the (hypothetical) controller input Ŷr

Ûr = Ŵr xn − Tr Ŷr . (4.2)

Ŵr is the r ’th step truncation of the reverse time impulse response, and T is the r by r
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Toeplitz matrix defined below

Ŵr =













C A−1

C A−2

...

C A−r













,

Tr =













C A−1 B − D 0 . . . 0

C A−2 B C A−1 B − D 0
...

. . .
...

C A−r B C A−r+1 B . . . C A−2 B C A−1 B − D













.

Now we may define a weighted quadratic cost function

Jr =
∥

∥

∥

∥

∥

W

[

Ur − Ûr

Yr − Ŷr

]
∥

∥

∥

∥

∥

2

=
[

Ur − Ûr

Yr − Ŷr

]∗

W ∗W

[

Ur − Ûr

Yr − Ŷr

]

, (4.3)

and find the values of Ûr , Ŷr , and xn which achieve the minimum. r defines the ‘horizon’ of

the optimization, and may be selected appropriately.

W is an arbitrary weighting matrix of appropriate dimension, which may be used to scale

signals in an appropriate way. It may also be used for example to include a ‘forgetting factor’,

which gives a higher priority to recently observed signals.

We may for instance, wish to optimize with respect to

Jr = α1
(

un−1 − ûn−1
)2 + α2

(

un−2 − ûn−2
)2 + . . .+ αr

(

un−r − ûn−r

)2

+ β1
(

yn−1 − ŷn−1
)2 + . . .+ βr

(

yn−r − ŷn−r

)2 ≥ 0,

where

α1 ≥ α2 ≥ . . . αr > 0, and

β1 ≥ β2 ≥ . . . βr > 0.

This weight may be represented using the cost function (4.3), with

W =
[

W1 0

0 W2

]

> 0,

where

W1 = diag
(√
α1,

√
α2, . . . ,

√
αr

)

,

W2 = diag
(

√

β1,
√

β2, . . . ,
√

βr

)

.
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Theorem 4.2.1. For the discrete time dynamical system defined in (4.1) and given finite

signals Ur and Yr , then the controller state xn which solves the minimum noise optimization

with respect to the cost function (4.3) and corresponding Ŷr are given by:

[

Ŷr

xn

]

=
(

W

[

−Tr Ŵr

I 0

])†

W

[

Ur

Yr

]

. (4.4)

Proof.

Jr =
∥

∥

∥

∥

∥

W

[

Ur − Ûr

Yr − Ŷr

]∥

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥

W

[

Ur + Tr Yr − Ŵxn

Yr − Ŷr

]
∥

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥

W

[

Ur

Yr

]

− W

[

−Tr Ŵr

I 0

][

Ŷr

xn

]
∥

∥

∥

∥

∥

2

,

so by standard least squares optimization (see appendix A)

argmin
[

Ŷr

xn

]

J =
(

W

[

−Tr Ŵr

I 0

])†

W

[

Ur

Yr

]

, (4.5)

and

min
[

Ŷr

xn

]

J =
[

Ur

Yr

]∗

W ∗



I − W

[

−Tr Ŵ

I 0

](

W

[

−Tr Ŵ

I 0

])†


W

[

Ur

Yr

]

. (4.6)

4.2.1 Scheme applied to basic example

Consider again the example of section 1.1.1. Using the least squares optimization procedure

illustrated above, we can select the controller initial state. The results are shown in figure 4.3.

The solid lines show the actual plant input and output for the simulation. The dotted lines

show the hypothetical controller input and output which lie closest to the observed signals in

the sense of the unweighted cost function (4.3). We can clearly see an improvement in the

transient response of the plant following the switch.

The norm of the signal following the switch is 12.92, compared to 17.46 for the uncon-

ditioned case. The improvement is evident to different degrees in examples with different

plants, and different prior signals.
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Figure 4.3: Example

4.3 Kalman filter implementation

Suppose we wish to use a block diagonal weighting matrix

W = diag
[

Nn−1 Nn−2 . . . Nn−r Vn−1 . . . Vn−r

]

, (4.7)

where each Ni ∈ Rp×p and V j ∈ Rq×q is symmetric and positive definite.

In this case, the cost function (4.3) becomes

J =
n−1
∑

i=n−r−1

(

w∗
i W 2

i wi + v∗
i V 2

i vi

)

.

By making the identifications x0 := xn−r−1, Rk = (V 2
k )

−1, Qk = (N 2
k )

−1 and 9−1 = 0,

we can form the identical cost function of the Deterministic Kalman Filter described in

section 2.8. As a result, we may directly apply a Kalman filter in order to obtain the controller

state at the switch which minimizes the hypothetical noise signals w and v.

Theorem 4.3.1. The solution (4.4) to the weighted optimization with weighting matrix (4.7)

is equivalent to the solution x̂n given by a Kalman filter (initialized at time n−r −1 observing

the (hypothetical) noisy controller of figure 4.2(b) with “input” Ur and “output” Yr . The

filter has the parameters Rk = (V 2
k )

−1, Qk = (N 2
k )

−1 and 9−1 = 0.

In this Kalman filter interpretation there is a free choice over the initial state of the filter,

which is the state at the beginning of the optimization horizon xn−r−1.
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4.4 Implementation issues

We now have two distinct ways of implementing this solution to the bumpless transfer problem.

One is via the controller reset defined by theorem 4.2.1, the other via the Kalman filter

implementation defined by theorem 4.3.1. We describe here briefly some of the differences

in the two approaches.

Clearly, the reset method requires direct access to the controller states, and ability to

manipulate these states. If we require an analogue implementation of the controller, then the

Kalman filter observer form implementation would be required.

If the reset method is used with a fixed optimization horizon length, the matrix

(

W

[

−Tr Ŵr

I 0

])†

W

may be precomputed, so that the only on-line computation is a matrix multiplication with

matrices of the order of twice the optimization horizon. If the optimization horizon is a sig-

nificant length however, there may be significant computational advantages to implementing

the Kalman filter, since the order of the computations would be much lower.

There is a subtle distinction between the optimization horizons of the two methods. The

reset method has a fixed (and moving) horizon, always optimizing over a fixed time prior to

the switch. In the (finite horizon) Kalman filter case, the optimization will extend back to the

point at which the filter is switched on.

4.5 Time invariant equations

Suppose the controller to be switched on is time-invariant. Then, we may let Ak = A, Bk = B,

Ck = C , and Dk = D. Assume also that the optimization weighting is time-invariant.

Then, the solutions which are optimal in the infinite horizon may be obtained via the time-

invariant Kalman filter equations described in section 2.7. Though the switching performance

may be somewhat inferior for an infinite horizon optimization, the implementation of the

time invariant Kalman filter is very straightforward. The time invariant Kalman filter is

easily implemented in analogue hardware, allowing a wide array of applications for which

it may be more difficult to implement a time varying filter. The implementation of the time

invariant Kalman filter for conditioning of the controller state, is equivalent to the observer

controller implementation of figure 4.4, with constant observer gain H = AK . Let also

L = (DQ D∗ + R). 8 is the switching nonlinearity.
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L− 1
2 D

B − H D

A − HC

L− 1
2 Cdelay

H

û yr

−

u

8 P

Figure 4.4: Kalman filter observer controller

Figure 4.5 shows the results of the time invariant Kalman filter implemented for example

1. The norm of the input/output signals after the switch is 12.97, compared to 12.87 for

the optimization scheme with horizon 90 (and time varying Kalman filter), and compared to

17.46 for the unconditioned case.

0 50 100 150 200 250 300 350 400 450 500
−1.5

−1

−0.5

0

0.5

1

1.5

2

time

p
la

n
t 
in

p
u
t

0 50 100 150 200 250 300 350 400 450 500
−1

0

1

2

3

4

time

p
la

n
t 
in

p
u
t

Figure 4.5: Time invariant Kalman filter scheme

Convergence of the optimization scheme to the time invariant Kalman filter state selection

is illustrated in figure 4.6. The plot shows the norm of the difference between the controller

state xn selected by the Kalman filter, with the state selected by the optimization scheme (time

varying filter) for different horizon lengths.
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Figure 4.6: Convergence of optimization scheme to time invariant Kalman filter

4.6 Coprime factor representation

The time-invariant Kalman filter observer form also may be represented as a left coprime

factorization of the controller K = V −1U , where

[U V ] =
[

A − HC B − H D −H

L− 1
2 C L− 1

2 D L− 1
2

]

The switch between controllers occurs in the I − V feedback loop as shown in figure 4.7.

This method of switching corresponds closely with the coprime factorization based anti-

windup methods (see section 2.6), with the nonlinearity (saturation or switch) placed in the

I − V feedback loop. This is an intuitively sensible arrangement, since the stability of the

coprime factors means that they will be stable if left to run open loop.

U

V − I

w1 w2

u

uext

y

r

−

û
P

Figure 4.7: Coprime factorization form
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4.6.1 Special case weighting

Consider a time varying Kalman filter applied to a discrete-time LTI controller

K =
[

A B

C D

]

in the infinite horizon, with D = 0.

The basic recursion equations are as follows

P−1
k =

(

APk−1 A∗ + Qk−1
)−1 + C∗ (Rk)

−1 C, (4.8)

Kk = PkC∗ (Rk)
−1 . (4.9)

Suppose we choose a particular set of weighting matrices

Qk−1 = Q̂

fk

, Rk = R̂

fk

,

with Q̂, and R̂ some constant matrices, and fk a scalar function of k. Such a weighting

function may be described in the block diagonal form of equation (4.7).

Then we can write the state covariance matrix Pk as follows

P−1
k =

(

APk−1 A∗ + Q̂

fk

)−1

+ C∗
(

R̂

fk

)−1

C

= fk

(

A fk Pk−1 A∗ + Q̂
)−1

+ fkC∗
(

R̂
)−1

C,

( fk Pk)
−1 =

(

A( fk Pk−1)A
∗ + Q̂

)−1
+ C∗ R̂−1C.

Now suppose we choose the fk such that

fk

fk+1
= λ,

with λ a constant. Now define

P̂k = fk Pk .

Then we have

P̂−1
k =

(

A(
fk

fk−1
P̂k−1)A

∗ + Q̂

)−1

+ C∗ R̂−1C

=
(

A(λP̂k−1)A
∗ + Q̂

)−1
+ C∗ R̂−1C,
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and

Kk = PkC∗(Rk)
−1

= P̂k

fk

C∗(
R

fk

)−1

= P̂kC∗ R̂−1.

So we have an equivalent Kalman filtering problem with recursion equations

P̂−1
k =

(

Â P̂k−1 Â∗ + Q̂
)−1

+ C∗ R̂−1C, (4.10)

Kk = P̂kC∗ R̂−1. (4.11)

where Â =
√
λA.

Now since Â, Q̂ and R̂ are constant then provided
[

Â B

C 0

]

is detectable, the Kalman filter equations (4.10) and (4.11) will converge to the time invariant

equations

P̂−1 =
(

Â P̂ Â∗ + Q̂
)−1

+ C∗ R̂−1C, (4.12)

K = P̂C∗ R̂−1. (4.13)

Thus, we can in fact implement an exponentially weighted infinite horizon optimization

problem with a time invariant Kalman filter with modified A matrix Â =
√
λA, and modified

noise covariances Q̂ and R̂.

4.6.2 The reference problem

Let us now consider the general reference tracking problem (r 6= 0).

The methods of this chapter are based on the idea of keeping the state of the off-line

controllers compatible with signals which are close to the actual plant input and output. From

this perspective, it does not actually matter in determining the appropriate controller state

whether the current controller is operating with reference or not. The difficulty arises when

we wish to apply a reference to a new controller after a switch- we may observe potentially

large transient signals simply due to the reference itself.

The solution is to gently apply a new reference by filtering smoothly from an appropriately

chosen previous reference. We do not use the ’true’ reference, since, even if it were available
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Figure 4.8: reference framework

it may not be an appropriate choice. Instead, we can calculate a hypothetical reference r

which is compatible with the new controller and the prior plant input and output.

Suppose we rewrite the system prior to the switch in the form shown in figure 4.8, instead of

4.2(b). We have introduced the hypothetical reference signal in between the coprime factors

of the controller. Then we may define the following problem:

Given signals u and y, find a signal r compatible with such signals in terms of figure 4.8.

From the figure, we can easily see that

r = V u − U y

satisfies this condition.

Now comparing this expression with figure 4.7 prior to the switch, we can see that u − û =
V u −U y, which is precisely the hypothetical r required. That is, if a reference input r̃ is to be

applied after the switch, then the closed loop behaviour of the switched system with controller

implemented as shown in figure 4.7 will be identical to what would have been observed if the

new controller was in operation for all time with the reference

r =







V u − U y prior to switch

r̃ after switch
. (4.14)

Note that if we implement a new reference arbitrarily, we will get a discontinuity of signals

due to the effective discontinuity of the reference. We can correct for this discontinuity by

using a reference filter to provide a smooth transition from the hypothetical reference r prior

to the switch, to the new desired reference r̃ .

This reference filtering approach was applied successfully to achieve smooth transitions

for engine control problems by R. G. Ford as reported in [15], and [16].
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4.7 Concluding remarks

The approach to the switching problem in this chapter is to find controller states which

correspond to signals which are close to those observed.

We find the optimal choice of controller state via a weighted least squares optimization.

We find that for a block diagonal weighting structure, the solution can also be obtained via a

Kalman filter observer of the controller. This leads to a more compact and efficient solution.

In the time-invariant and infinite horizon (with constant or exponential weighting) case we

obtain a time-invariant Kalman filter, which may be implemented as a controller in coprime

factor form.

In the tracking problem, we can apply a reference filter to reduce transients due to the

introduction of new references at switching times.

Note that this method does not require knowledge of the plant model or of plant states,

since the method is based on observing the controller model. This makes it particularly

suitable for applications where the plant is highly uncertain, or where accurate plant state

estimates are difficult to obtain.





Chapter 5

Controller initialization: optimal transfer

If the future behaviour of a system is predictable in a meaningful way, it makes sense for us to

consider choosing the controller state at a switch such that the transient behaviour of the plant

input and output are minimized in some sense. We may define a generalized (and possibly

weighted) output, and minimize the energy of this output (or it’s transients) after the switch

with respect to the initial state of the controller.

We begin by considering a single switch between two linear controllers. The plant is linear

with known dynamics, and we consider initially a zero reference (regulator) problem.

After a switch to a controller K , we have the situation illustrated in figure 5.1.

r

u

yGK

Figure 5.1: System after switch

We will solve this as an initial value problem on the state of K , minimizing an energy

function of the ’outputs’ u and y.

5.1 Discrete time

Let k ∈ Z+ be the discrete time variable. Then the plant input and output are u(k) ∈ Rp and

y(k) ∈ Rq .

71
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Suppose G and K have the following discrete-time state-space representations:

G =
[

AG BG

CG DG

]

K =
[

AK BK

CK DK

]

. (5.1)

Let G have state xG(t) ∈ RnG and K state xK (t) ∈ RnK . Let n = nG + nK .

To ensure the absence of an algebraic loop, we shall assume that

DG DK = DK DG = 0. (5.2)

Define the following quadratic cost function

V (k) =
∞
∑

i=k

(

u(i)∗u(i)+ y(i)∗y(i)
)

(5.3)

V (k) represents the ’energy’ in the signals u and y from the time k onwards. If k is a switching

time, then we wish to find the controller state xK (k) such that this function is minimized.

Let us define x(k) =
[

xG(k)

xK (k)

]

, and ỹ(k) =
[

u(k)

y(k)

]

. Then by the results of section A.3.2

in appendix A, we can write the closed loop equations

x(k + 1) = Ax(k)+ Br(k), (5.4)

ỹ(k) = Cx(k)+ Dr(k). (5.5)

where

A =
[

AG + BG DK CG BGCK

−BK CG AK + BK DGCK

]

, (5.6)

B =
[

BG DK

BK

]

, (5.7)

C =
[

DK CG CK

CG −DGCK

]

, (5.8)

D =
[

DK

0

]

. (5.9)
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Now define the partitions A = [A1 A2], and C = [C1 C2], where

A1 =
[

AG + BG DK CG

−BK CG

]

, (5.10)

A2 =
[

BGCK

AK + BK DGCK

]

, (5.11)

C1 =
[

DK CG

CG

]

, (5.12)

C2 =
[

CK

−DGCK

]

. (5.13)

Iterating the closed loop equations, we can write ỹ(k + i) in terms of x(k) as follows:

ỹ(k + i) = C Ai x(k)+ Dr(k + i)+ C Br(k + i − 1)+ . . .+ C Ai−1 Br(k) (5.14)

so we can write:

Ỹ = Ŵx(k)+ T R = Ŵ1xG(k)+ Ŵ2xK (k)+ T R, (5.15)

where

Ŵ =
[

Ŵ1 Ŵ2

]

=

















C1 C2

C A1 C A2

C AA1 C AA2
...

C AN−1 A1 C AN−1 A2

















, Ỹ =













ỹ(k)

ỹ(k + 1)
...

ỹ(k + N )













,

R =













r(k)

r(k + 1)
...

r(k + N )













, T =













D 0 . . . 0

C B D
...

. . .
...

C AN−1 B . . . C B D













.

5.1.1 Finite horizon solution

Now consider specifically the regulator problem with r = 0. Also consider initially the

weighted ’finite horizon’ cost function

V (k) =
k+N
∑

i=k

(

vi u(i)
∗u(i)+ wi y(i)∗y(i)

)

. (5.16)

We can also write this function as

V (k) =
∥

∥

∥
WỸ

∥

∥

∥

2
(5.17)
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where W = diag(
√
vk,

√
wk,

√
vk+1,

√
wk+1, . . . ,

√
vk+N ,

√
wk+N ).

Minimizing this V (k) with respect to the controller state xK (k) is now a straightforward

least squares optimization.

Theorem 5.1.1. Consider the system illustrated in figure 5.1, and represented by equa-

tions (5.1). Assume r(i) = 0 ∀i . The optimal controller state xK (k) with respect to the cost

function (5.17) is given by:

xK (k) = − (WŴ2)
† WŴ1xG(k). (5.18)

Proof. from equation (5.15) we obtain the following:

WỸ = WŴ1xG(k)+ WŴ2xK (k),

so

V (k) = ‖WŴ1xG(k)+ WŴ2xK (k)‖2 ,

and by a straightforward least squares optimization (see appendix A), we obtain

argmin
xK (k)

J = − (WŴ2)
† WŴ1xG(k).

with

min
xK (k)

J =
∥

∥

(

I − WŴ1 (WŴ2)
†)WŴ1xG(k)

∥

∥

2
.

(† denotes matrix left pseudo-inverse)

5.1.2 Infinite horizon solution

Now consider the unweighted optimization in the infinite horizon as N → ∞. That is, we

wish to minimize

V (k) =
∞
∑

i=k

(

u(i)∗u(i)+ y(i)∗y(i)
)

(5.19)

or

V (k) =
∥

∥

∥
Ỹ

∥

∥

∥

2
(5.20)

where Ỹ = [ỹ(k), ỹ(k + 1), . . .]∗

Theorem 5.1.2. Consider the system illustrated in figure 5.1, and represented by equa-

tions (5.1). Assume that the controller K stabilizes the plant G, and r(i) = 0 ∀i . Then the

optimal controller state xK (k) with respect to the cost function (5.19) is given by:

xK (k) =
(

C∗
2 C2 + A∗

2 P A2
)−1

.
(

C∗
2 C1 + A∗

2 P A1
)

xG(k), (5.21)

where P is the solution to the discrete time Lyapunov equation

A∗ P A − P = −C∗C (5.22)
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Proof. Essentially, we must show that the expression for the optimal xK (k) in the finite

horizon case:

xK (k) = − (Ŵ2)
† Ŵ1xG(k), (5.23)

converges to the equation (5.21) in the limit as N → ∞.

lim
N→∞

Ŵ
†
2Ŵ1xG(k) = lim

N→∞

(

Ŵ∗
2Ŵ2

)−1
Ŵ∗

2Ŵ1xG(k)

=
(

C∗
2 C2 + A∗

2

( ∞
∑

n=0

(

A∗)n C∗C An

)

A2

)−1

.

(

C∗
2 C1 + A∗

2

( ∞
∑

n=0

(

A∗)n C∗C An

)

A1

)

.

Let P be defined as follows:

P :=
∞
∑

n=0

((

A∗)n C∗C An
)

. (5.24)

Pre-multiplying by A∗, and post-multiplying by A we obtain

A∗P A =
∞
∑

n=1

((

A∗)n C∗C An
)

= P − C∗C, (5.25)

and P exists precisely when the discrete time Lyapunov equation 5.22 has a solution. That

is, when A is stable (see for example [62]) or equivalently, when K stabilizes G.

5.1.3 Lyapunov function interpretation

We can interpret the solution of the zero reference infinite horizon problem as the minimization

(with respect to controller state) of a Lyapunov function for the closed loop corresponding to

the switched on controller.

From equation 5.15, we can rewrite the cost function 5.20 as

V (k) = x∗(k)Ŵ∗Ŵx(k) (5.26)

= x∗(k)

( ∞
∑

n=0

(

A∗)n C∗C An

)

x(k) (5.27)

= x∗(k)Px(k) (5.28)

where P is the solution to the Lyapunov equation 5.22. Thus V is in fact a positive definite

function of the state x(k), and is strictly decreasing since

V (x(k + 1))− V (x(k)) = x∗(k)
(

A∗ P A − P
)

x(k),

and

A∗ P A − P < 0.

Our transfer scheme now has the sensible interpretation of choosing the controller state at

the switch xK (k) such that the ’energy’ of the state is minimized.
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5.1.4 Weighted solution

Consider now the infinite horizon problem with the specific weighted cost function

V (k) =
∞
∑

i=k

(

(aφi u(i))∗(aφi u(i))+ (bφi y(i))∗(bφi y(i))
)

.

where a, b and φ are positive constants, with φ ≤ 1. a and b can be used to normalize the

signals u and y against each other, and φ can be used in order to weight the optimization

more heavily in the moments immediately after the switch.

We can rewrite this cost function as

V (k) =
∥

∥

∥
WỸ

∥

∥

∥

2
, where (5.29)

W = diag(λ, φλ, φ2λ, φ3λ, . . .), with (5.30)

λ =
[

aI 0

0 bI

]

, where a, b ∈ R
+. (5.31)

Theorem 5.1.3. Consider the system illustrated in figure 5.1, and represented by equa-

tions (5.1). Assume that the controller K stabilizes the plant G, and r(i) = 0 ∀i . Then

the optimal controller state xK (k) with respect to the weighted cost function (5.29) (with W

given by (5.30) and (5.31)) is given by:

xK (k) =
(

C∗
2 C2 + A∗

2 P A2
)−1

.
(

C∗
2 C1 + A∗

2 P A1
)

xG(k), (5.32)

where P is the solution to the discrete time Lyapunov equation

(φA)∗ P(φA)− P = −C∗λ2C (5.33)

Proof. The proof is essentially the same as for theorem 5.1.2.

We must show that the expression for the (weighted) optimal xK (k) in the finite horizon

case:

xK (k) = − (WŴ2)
† WŴ1xG(k), (5.34)

converges to the equation (5.32) in the limit as N → ∞.

lim
N→∞

(WŴ2)
† WŴ1xG(k) = lim

N→∞

(

Ŵ∗
2 W 2Ŵ2

)−1
Ŵ∗

2 W 2Ŵ1xG(k)

=
(

C∗
2λ

2C2 + A∗
2

( ∞
∑

i=0

(

A∗)i C∗λ2φ2i C Ai

)

A2

)−1

.

(

C∗
2λ

2C1 + A∗
2

( ∞
∑

i=0

(

A∗)i C∗λ2φ2i C Ai

)

A1

)

.
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Let P be defined as follows:

P :=
∞
∑

i=0

(

(

φA∗)i C∗λ2C (φA)i
)

. (5.35)

Pre-multiplying by φA∗, and post-multiplying by φA we obtain

φA∗ PφA =
∞
∑

i=1

(

(

φA∗)i C∗λ2C (φA)i
)

= P − C∗λ2C, (5.36)

and P exists precisely when the discrete time Lyapunov equation 5.33 has a solution. That

is, when φA is stable- which is certainly true when K stabilizes G and φ ≤ 1

The weighted solution is of importance when we consider switching systems where the

behaviour of the switching supervisor is time-independent (at least as far as the controller is

concerned). That is, the a-priori probability of a switch occurring between times k0 and k1

given that it occurs after k0, depends only on the size of the interval1k = k1 − k0.

This property is exhibited by the geometric probability distribution

P(k) = (1 − φ)φk,

where φ is the failure probability at any given step. Then, the probability

P(k0 ≤ k < k1|k0 ≤ k) = φk0 − φk1

φk0

= 1 − φk1−k0

as required.

We can use such a-priori information about the switching behaviour,by optimizing over the

outputs of the current controller weighted by the probability that the controller has not switched

already. In this case, the appropriate weighting function is W (k) = φk (the probability that

the switch occurs at time step k or later), which fits precisely with the weighted problem

solved above.

5.2 Continuous time

Suppose G and K have the following continuous-time state-space representations:

G =
[

AG BG

CG DG

]

K =
[

AK BK

CK DK

]

. (5.37)
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Let G have state xG(t) ∈ RnG and K state xK (t) ∈ RnK . Let n = nG + nK . Also assume

again that

DG DK = DK DG = 0. (5.38)

Given signals u(t) ∈ Rp and y(t) ∈ Rq , let us define a quadratic cost function as follows

V (t) =
∫ ∞

t

(

u(τ )∗u(τ )+ y(τ )∗y(τ )
)

dτ. (5.39)

V (t) represents the ’energy’ in the signals u and y from the time t onwards. If t is a switching

time, then we wish to find the controller state xK (t) such that this function is minimized.

Define x(t) =
[

xG(t)

xK (t)

]

, and ỹ(t) =
[

u(t)

y(t)

]

. Applying again the results of section A.3.2

in appendix A, the closed loop state space equations can be written

A =
[

AG + BG DK CG BGCK

−BK CG AK + BK DGCK

]

, (5.40)

B =
[

BG DK

BK

]

, (5.41)

C =
[

DK CG CK

CG −DGCK

]

, (5.42)

D =
[

DK

0

]

. (5.43)

Now define the partitions A = [A1 A2], and C = [C1 C2], where

A1 =
[

AG + BG DK CG

−BK CG

]

, (5.44)

A2 =
[

BGCK

AK + BK DGCK

]

, (5.45)

C1 =
[

DK CG

CG

]

, (5.46)

C2 =
[

CK

−DGCK

]

. (5.47)

Theorem 5.2.1. Consider the system illustrated in figure 5.1, and represented by equa-

tions (5.37). Assume that the controller K stabilizes the plant G, and r(i) = 0 ∀i . Then the

optimal controller state xK (t) with respect to the cost function (5.39) is given by:

xK (t) = −P(2, 2)−1 P(2, 1)xG(t), (5.48)
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where

P =
[

P(1, 1) P(1, 2)

P(2, 1) P(2, 2)

]

(5.49)

is the solution to the continuous-time Lyapunov equation

A∗ P + P A = −C∗C (5.50)

Proof. The cost function (5.39) can be written in terms of ỹ(t)

V (t) =
∫ ∞

t

ỹ(τ )∗ ỹ(τ )dτ,

and when r = 0 we may write ỹ(t + t̂) in terms of the state x(t) at time t .

ỹ(t + t̂) = CeA(t+t̂)x(0)

= CeAt̂ x(t).

So

V (t) =
∫ ∞

t

ỹ(τ )∗ ỹ(τ )dτ

= lim
t̂→∞

∫ t+t̂

t

ỹ(τ )∗ ỹ(τ )dτ

= lim
t̂→∞

x∗(t)

(

∫ t+t̂

t

eA∗(τ−t)C∗CeA(τ−t)dτ

)

x(t)

= x∗(t)

(∫ ∞

0
eA∗τC∗CeAτdτ

)

x(t).

It is well known that

P =
∫ ∞

0
eA∗τC∗CeAτdτ

is the solution to the continuous-time Lyapunov equation (5.50) (see appendix A). Partitioning

P according to (5.49), we can now write the cost function

V (t) =
[

xG(t)

xK (t)

]∗ [
P(1, 1) P(1, 2)

P(2, 1) P(2, 2)

][

xG(t)

xK (t)

]

,

and the minimum is P(1, 1)− P(1, 2)P(2, 2)−1 P(2, 1), achieved when

xK (t) = −P(2, 2)−1 P(2, 1)xG(t) (see appendix A).

Once again, it is clear that the solution is equivalent to the minimization of a quadratic

Lyapunov function (for the closed loop corresponding to the controller switched on) with

respect to the controller state xK .
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We may again apply a weighting function to ỹ in order to normalize u against y, and to

place a higher emphasis on the signals close to the switching time.

Suppose

V (t) =
∫ ∞

t

(

(

ae−φτu(τ )
)∗ (

ae−φτu(τ )
)

+
(

be−φτ y(τ )
)∗ (

be−φτ y(τ )
)

)

dτ (5.51)

=
∫ ∞

t

(W (τ )ỹ(τ ))∗ (W (τ )ỹ(τ )) dτ (5.52)

where

W (t) = e−φtλ, and λ =
[

aI 0

0 bI

]

.

Theorem 5.2.2. Consider the system illustrated in figure 5.1, and represented by equa-

tions (5.37). Assume that the controller K stabilizes the plant G, and r(i) = 0 ∀i . Then the

optimal controller state xK (t) with respect to the cost function (5.52) is given by:

xK (t) = −P(2, 2)−1 P(2, 1)xG(t), (5.53)

where

P =
[

P(1, 1) P(1, 2)

P(2, 1) P(2, 2)

]

(5.54)

is the solution to the continuous-time Lyapunov equation

(A − φ I )∗ P + P(A − φ I ) = −C∗λ2C (5.55)

Proof. When r = 0, we may write ỹ(t + t̂) as before

ỹ(t + t̂) = CeA(t+t̂)x(0)

= CeAt̂ x(t).

So

V (t) =
∫ ∞

t

(W (τ )ỹ(τ ))∗ (W (τ )ỹ(τ )) dτ

= lim
t̂→∞

∫ t+t̂

t

(

e−φτλỹ(τ )
)∗ (

e−φτλỹ(τ )
)

dτ

= lim
t̂→∞

x∗(t)

(

∫ t+t̂

t

e(A−φ I )∗(τ−t)C∗λ2Ce(A−φ I )(τ−t)dτ

)

x(t)

= x∗(t)

(∫ ∞

0
e(A−φ I )∗τC∗λ2Ce(A−φ I )τdτ

)

x(t),
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and since A − φ I will always be stable when A is stable, it is established that

P =
∫ ∞

0
e(A−φ I )∗τC∗λ2Ce(A−φ I )τdτ

is the solution to the continuous-time Lyapunov equation (5.55) (see appendix A). Parti-

tioning P according to (5.54), we proceed as for the previous proof to show that the min-

imum of the cost function is P(1, 1) − P(1, 2)P(2, 2)−1 P(2, 1), achieved when xK (t) =
−P(2, 2)−1 P(1, 2)xG(t).

In the continuous-time case, the weighting function can again be used to represent the

probability that a switch has not occurred prior to time t . The exponential probability dis-

tribution, with probability density function f (t) = φe−φt has the required property, that the

probability P(t0 ≤ t < t1|t0 ≤ t) depends only on 1t = t1 − t0.

P(t0 ≤ t < t1|t0 ≤ t) =
∫ t1

t0

(

φe−φt
)

dt
∫∞

t0

(

φe−φt
)

dt

= e−φt0 − e−φt1

e−φt0

= 1 − e−φ(t1−t0)

The appropriate weighting function then, is

W (τ ) = P(τ ≤ t) = e−φτ

which again fits into the weighted form considered above.

5.3 Plant state estimation

In practice it will often not be possible to measure the plant state directly. In such cases it

will be necessary to estimate the plant state via an observer and to implement the controller

reset appropriate to the estimated state. In such cases, we effectively minimize the weighted

cost function

V =
∥

∥

∥
E
(

WỸ
)
∥

∥

∥

2
, (5.56)

where E(.) is the statistical expectation.

In the finite horizon case (r = 0) we use equation (5.15), and the cost function becomes

V =
∥

∥

∥
E
(

WỸ
)
∥

∥

∥

2

= ‖E (W (Ŵ1xG(k)+ Ŵ2xK (k)))‖
= ‖WŴ1 E(xG(k))+ WŴ2xK (k)‖ ,
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and hence the form is similar to the previous results, with the actual plant state xG replaced

by the expectation of the plant state E(xG). Hence the solutions can be obtained by replacing

xG by an optimal estimate x̂G , computed under appropriate statistical assumptions.

5.4 Problems with non-zero reference

The method which we have discussed so far acts by minimizing the energy in the transient

component of the generalized output, which results from the ‘initial state’ of the system at

the switch. The method applies equally well when we consider general reference tracking

problems, since the ‘initial state’ component of the output is independent of the component

due to the reference. That is, we can write the generalized output at some time t + T in terms

of the state at time t , and the reference r as

ỹ(t + T ) = CeAT x(t)+ Dr(t + T )+
∫ T

0
CeA(T−τ)Br(τ )dτ,

or equivalently for discrete-time

ỹ(k + n) = C Anx(k)+ Dr(k + n)+
n
∑

i=1

C Ai−1 Br(k + n − i).

The CeAT x(t) (resp C Anx(k)) component above is the initial state transient component of

the signal ỹ.

Therefore the numerical problem solved when minimizing the initial state transient for a

reference problem is the same as that solved for the regulator problem.

If future references are known a-priori, they may be accounted for explicitly. That is, we

can minimize the difference between the signal ỹ, and the steady state value ỹs.s. We use the

cost function

J =
∥

∥

∥
W
(

Ỹ − Ỹs.s

)
∥

∥

∥
, (5.57)

where Ỹs.s = [ỹ∗
s.s . . . ỹ∗

s.s]∗

This is reasonably straightforward in the step reference case. Take the discrete-time

problem, and suppose a fixed step reference of r applies after the switch. Then we can easily

calculate the steady state value of ỹ.

The closed loop equations after the switch are:

x(k + 1) = Ax(k)+ Br,

ỹ(k) = Cx(k)+ Dr.
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and we can write

ỹ(k + N ) = Cx(k + N )+ Dr

= C AN x(k)+
(

C

(

N−1
∑

i=0

Ai

)

B + D

)

r.

Hence in the steady state, as N → ∞ we have

ỹs.s = lim
N→∞

ỹ(n + N )

= lim
N→∞

C AN +
(

C

( ∞
∑

i=0

Ai

)

B + D

)

r.

Assuming a stabilizing controller, this means

lim
N→∞

AN = 0,

and ∞
∑

i=0

Ai = (I − A)−1,

so

ỹs.s =
(

C(I − A)−1 B + D
)

r.

From equation (5.15) we have

Ỹ = Ŵ1xG(k)+ Ŵ2xK (k)+ Lr,

where

L =



















0

C B

C(I + A)B
...

C
(

∑N−1
i=0 Ai

)

B



















.

The cost function (5.57) is now

J =
∥

∥

∥
WŴ1xK (k)+ W

(

Ŵ2xG(k)+ Lr − Ỹs.s

)∥

∥

∥
,

and the optimal choice of xK (k) with respect to (5.15) is

xK (k) = −(WŴ1)
†
(

Ŵ2xG(k)+ Lr − Ỹs.s

)

,

following the proof of theorem 5.1.1 almost exactly.
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5.5 Examples

5.5.1 Initialization scheme applied to example 1

Returning again to example 1.1.1, we can perform an optimal reset of the controller state at

the switch with respect to the cost function 5.29.

First consider the unweighted (infinite horizon) case.
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Figure 5.2: Optimal bumpless transfer, finite horizon

The result is a clearly smaller transient, with a signal norm of 12.90 after the switch.

Note that there is a discontinuity immediately following the switch, decaying very rapidly.

If we require a smoother transition at the expense of longer decay time, it is possible to

manipulate the weighting matrix to achieve the desired results. Figure 5.3 shows the same

example, but with a diagonal exponentially weighted cost, from 1 immediately following the

switch, to 10−4 at the end of the simulation. The result is a reduced discontinuity at the time

of the switch, but slightly greater settling time and more oscillatory response.

5.6 Concluding remarks

We have considered here a method of choosing controller states which directly minimizes

future transient signals. The problem is solved via weighted least squares in the finite horizon
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Figure 5.3: Weighted case

case, or via Lyapunov equations in the infinite horizon. The solutions can also be interpreted

in terms of minimizing Lyapunov functions for the appropriate closed loop systems.

Although the solutions initially require knowledge of plant states, we may solve similar

problems in terms of expected errors to obtain solutions in terms of estimated plant states.

The method requires accurate plant models, since the method is based on the solution

of closed loop initial value problems. This is in contrast with the methods of the previous

chapter, where no knowledge of the plant model is required.





Chapter 6

Stability of reset switching systems

Controller initialization plays an important role in the stability of switching systems. It is

a natural hypothesis to suppose that a sensibly chosen controller reset or bumpless transfer

scheme may enhance the stability of switching systems in some sense. Conversely, a poorly

chosen controller reset can destabilize an otherwise stable switching system.

In this chapter, we consider the ‘reset switching’ type of hybrid system. In particular,

we are interested in systems in which the state is composed of controller and plant state,

of which the plant state is continuous across a switch, and the controller state may change

discontinuously according to a reset relation. We investigate a number of stability questions

for this type of switching system.

There is firstly an analysis question- given a switching system with specified controller

realizations and resets, can stability be guaranteed for all admissible switching signals? If it

is not possible to guarantee stability for all switching signals, then we would like to find a

class of signals for which stability may be guaranteed.

Secondly, we can consider a synthesis question- given a family of controllers in given

realizations, can we devise a system of controller resets such that the switching system is

stable for all admissible switching signals? If it is not possible to find such resets for all

switching signals, then we can again restrict the set of admissible switching signals so that

stabilizing resets may be found.

We consider these questions in this chapter, presenting a necessary and sufficient Lyapunov

function result for switching systems with reset. This result gives both a tool for analysing

switching systems with given resets, and also for devising stabilizing reset schemes. We also

consider an extension of the dwell-time stability results presented in chapter 3 to systems

with resets.

Furthermore, we can combine the design of sensible controller resets with realization

87



88 Stability of reset switching systems

schemes discussed in chapter 3 in order to guarantee stability for (almost) arbitrary switching

signals and improve performance.

6.1 A Lyapunov theorem for reset switching systems

Consider the family of linear vector fields

ẋ(t) = Ai x(t), i ∈ I, x ∈ R
n, (6.1)

and the linear reset relations

gi, j = Gi, j x, (6.2)

We shall choose an index set I such that the family of matrices Ai forms a compact set.

Let S be the set of all admissible switching signals σ . S is the set of all non-zeno piecewise

constant functions taking values from I . Note that the set S is time invariant in the following

sense: for every signal σ ∈ S and constant τ , there exists another signal σ̃ ∈ S such that

σ̃ (t) = σ(τ + t) for all t ∈ R+.

Theorem 6.1.1. The reset switching system

ẋ(t) = Aσ(t)x(t),

σ (t) = ik, for tk ≤ t < tk+1, ik ∈ I, k ∈ Z
+,

x(t+k ) = Gik ,ik−1 x(t−k ),

(6.3)

is uniformly asymptotically stable for all admissible switching signals σ ∈ S if and only if

there exist a family of functions Vi : Rn → R with the following properties:

• Vi are positive definite, decrescent and radially unbounded.

• Vi are continuous and convex.

• There exist constants ci such that for all x,

lim
1t→0+

(

Vi (e
Ai t x)− V (x)

1t

)

≤ −ci ‖x‖2 .

• V j (G j,i x) ≤ Vi (x) for all x ∈ Rn , and i, j ∈ I .

Proof. (if)

Choose an admissible switching signal σ ∈ S. Then, the switching system with resets

for this particular signal can be considered to be a linear time varying system with at most

finitely many state discontinuities in any finite interval (by the restrictions on S).
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If functions Vi exist, satisfying the theorem conditions, then we can construct a time-

varying function

Vσ(t)(x(t)) = Vi (x(t)) when σ(t) = i.

Since the functions Vi are decrescent and radially unbounded, we can find ai and bi such

that

ai ‖x‖2 < Vi (x) < bi ‖x‖2 .

By the third condition on Vi , we know that the Vi are strictly decreasing on trajectories of

Ai , and we have the bound

lim
1t→0+

(

Vi (e
Ai1t x)− V (x)

1t

)

≤ −ci ‖x‖2 .

Furthermore, since V j (G j,i x) ≤ Vi (x), we know that the function Vσ(t)(x(t)) is non-

increasing at the (non-zeno) switching times.

Let a = infi ai , b = supi bi , and c = infi ci . By the compactness of the family Ai , a, b

and c must be positive and finite. Hence we can write bounds on the function Vσ(t)(x(t))

a ‖x(t)‖2 < Vσ(t)(x(t)) < b ‖x(t)‖2 ,

and

lim
1t→0+

(

Vσ(t)(e
Ai1t x(t))− V (x(t))

1t

)

≤ −c ‖x(t)‖2 .

Now if we let the initial state be x0 at time t = 0, we have the bound

Vσ(t)(x(t)) < bx2
0e−λt ,

where λ = c/a, and hence

‖x‖2 <
bx2

0

a
e−λt .

Therefore, the point x = 0 is a uniformly asymptotically stable equilibrium of the switching

system with resets.

(only if)

The point x = 0 is a uniformly asymptotically stable equilibrium of the switching system

with resets. Let φσ(t)(t, x0, t0) denote the state of the switching system at time t given initial

conditions x0 at time t0 and a particular switching signal σ . Since the set S is time invariant,

we may assume without loss of generality that t0 = 0. Since both the vector fields and reset

relations are linear, we can write the trajectory for a given initial condition as follows:

φσ(t)(t, x0, 0) = 8σ(t)(t)x0,
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where 8σ(t)(t) is a ‘composite’ state transition matrix defined by

8σ(t)(t) = eAik
(t−tk)Gik ,ik−1 . . . e

Ai1(t2−t1)Gi1,i0eAi0 t1

when tk < t < tk+1.

Now let us define the functions Vi as follows

Vi (x) = sup
σ∈S:σ(0)=i

∫ ∞

0

∥

∥φσ(t)(t, x, 0)
∥

∥

2
dt

= sup
σ∈S:σ(0)=i

x∗
(
∫ ∞

0
8∗
σ(t)(t)8σ(t)(t)dt

)

x

That is, Vi (x) is the supremum of the two-norm of trajectories beginning at state x with

dynamics i . The integrals exist and are bounded since the equilibrium is asymptotically

stable (and hence exponentially stable).

For any σ , let

Q(σ ) =
∫ ∞

0
8∗
σ(t)(t)8σ(t)(t)dt,

and let the set of all such Q(σ ) with σ(0) = i be

Qi = {Q(σ ) : σ ∈ S with σ(0) = i}.

Now denote the closure of Qi by Q̄i . Qi is bounded by the exponential stability of the system,

so Q̄i is compact. Therefore, we can write

Vi (x) = max
Q

{x∗Qx : Q ∈ Q̄i }.

Each function x∗Qx is a continuous map from Q̄i × R
n to R, so the maximum must be

continuous (however, it is not necessarily differentiable).

We can show that the functions Vi are convex as follows. Let

xµ = µx1 + (1 − µ)x0

for µ ∈ [0, 1]. Since positive definite quadratic forms are convex, we have for Q ∈ Q̄i ,

x∗
µQxµ ≤ µx∗

1 Qx1 + (1 − µ)x∗
0 Qx0.

Taking the maximum over Q̄i , we have

Vi (xµ) ≤ µVi (x1)+ (1 − µ)Vi (x0),

hence the functions Vi are convex. Since they are continuous and convex, the Vi are also

Lipschitz continuous.
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Now we show that the functions Vi must be strictly decreasing on trajectories of the i ’th

vector field. We can see this as follows:

Vi (x) = sup
σ(0)=i

x∗
(∫ ∞

0
8∗
σ(t)(t)8σ(t)(t)dt

)

x .

The supremum must include all switching signals which have σ(t) = i for 0 < t < τ , so we

have

Vi (x) ≤
∫ τ

0

∥

∥eAi t x
∥

∥

2
dt + sup

σ(τ)=i

(eAi t x)∗
(
∫ ∞

τ

8∗
σ(t)(t)8σ(t)(t)dt

)

eAi t x

=
∫ τ

0

∥

∥eAi t x
∥

∥

2
dt + V (eAi t x).

By taking τ small, we have

lim
τ→0

Vi (x)− V (eAi t x)

τ
≤ ‖x‖2

2
.

So Vi is strictly decreasing on the i ’th vector field. Note that since Vi is in general a

quasi-quadratic function, it is not necessarily continuously differentiable.

From the definition of Vi it is clear that

V j (G j,i x) ≤ Vi (x),

since the supremum

sup
σ(0)=i

∫ ∞

0

∥

∥φσ(t)(t, x, 0)
∥

∥

2
dt

clearly includes all those switching trajectories which begin with an almost immediate switch

from i to j .

The theorem effectively states that stability of the reset switching system depends upon

the existence of a family of Lyapunov functions for the separate vector fields such that at any

switch on the switching system, it is guaranteed that the value of the ‘new’ Lyapunov function

after the switch will be no larger than the value of the ‘old’ function prior to the switch.

Note that the standard result on common Lyapunov functions for simple switching systems

is a special case of our theorem when the reset matrices Gi, j are identity.

In some special cases, it is possible to extend the theorem to the existence of smooth

Lyapunov functions. For example, when the reset matrices Gi, j are commuting matrices, it

is possible to approximate the functions generated by the theorem by smooth functions by



92 Stability of reset switching systems

applying a smoothing operation in the spherical direction (note that the functions are already

smooth in the radial direction).

The existence of Lyapunov fields for the component vector fields clearly implies that

the component vector fields must be stable. Indeed this is obvious when you consider the

switching signals σ(t) = i for all t - that is, the switching signals with no switches are

included in the class of switching signals being considered.

The sufficiency part of the theorem is perhaps obvious, since we merely postulate the

existence of a time varying piecewise continuous (with respect to t) Lyapunov function

Vσ(t)(x). The necessity part of the theorem however is possibly somewhat surprising.

As was the case when we considered common Lyapunov functions for simple switching

systems, we cannot guarantee that the functions Vi are quadratic. The constructive part of

the proof only shows existence of quasi-quadratic functions of the form

Vi (x) = x∗ P(x)x .

It still however makes sense to first consider quadratic functions in attempting to prove

stability of a switching system. We can write the quadratic version of the theorem as the

following sufficient condition.

Corollary 6.1.2. The reset switching system 6.3 is uniformly asymptotically stable for all

admissible switching signals σ ∈ S if there exist a family of matrices Pi > 0 with the

following properties:

• A∗
i Pi + Pi Ai < 0

• G∗
j,i Pj G j,i − Pi ≤ 0 for all i, j ∈ I .

Proof. The sufficiency part of theorem 6.1.1 is clearly satisfied if quadratic functions Vi exist

which satisfy the conditions. That is, let

Vi (x) = x∗ Pi x .

Then, Vi is positive definite, decrescent and radially unbounded when Pi > 0. Vi is strictly

decreasing on trajectories of the i ’th vector field when A∗
i Pi + Pi Ai < 0, and the condition

V j (G j,i x) ≤ Vi (x)

is satisfied for all x ∈ R
n if and only if

G∗
j,i Pj G j,i − Pi ≤ 0.
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This corollary gives us a criterion which can be easily tested for quadratic Lyapunov

functions via a family of linear matrix inequalities. Some care must be taken when dealing

with the non-strict inequalities. If the solutions Pi exist within the interior of the non-strict

inequalities G∗
j,i Pj G j,i − Pi ≤ 0, then they may be found by testing the strict inequalities

G∗
j,i Pj G j,i − Pi < 0.

If the solutions exist on the boundary of some or all of the non-strict inequalities, then we

can test them by introducing slack variables δ j,i . For instance, we test the strict inequalities

G∗
j,i Pj G j,i − Pi − δ j,i I < 0,

and if it is found that the inequalities hold for an arbitrarily small positive δ j,i , then the non-

strict inequality holds. Of course in practice we can only test a small finite δ j,i , so we cannot

guarantee arbitrary accuracy.

Remark 6.1.1. Another obvious corollary to theorem 6.1.1, is that the fourth condition must

be satisfied in the special case where we switch from state i to j and immediately back to i .

That is, a necessary condition for the satisfaction of the theorem is that

Vi (Gi, j G j,i x) ≤ Vi (x).

This condition will be useful when we consider plant/controller structures in the following

sections.

6.2 Controller initialization

Now we consider a class of resets with a particular structure. We are primarily interested

in systems where the component vector fields are made up of plant/controller closed loops.

The reset relations we consider then are such that the plant state remains constant across

switching boundaries, and the controller state is initialized in some manner. The resets could,

for instance be designed according to the performance criteria examined in chapter 5.

Specifically, we consider the N controller switching arrangement illustrated in figure 6.1.

Let r = 0, and let the closed loop equations when the i ’th controller is in the loop be

ẋ(t) = Ai x(t) where x =
[

xG

xK

]
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Figure 6.1: Switching system

in the continuous-time case, or

x(k + 1) = Ai x(k) where x =
[

xG

xK

]

in the discrete-time case.

If G and K have the following (continuous or discrete-time) state-space representations

G =
[

AG BG

CG DG

]

Ki =
[

AKi BKi

CKi DKi

]

, (6.4)

then the closed loop matrices Ai can be written

Ai =
[

Ai (1, 1) Ai (1, 2)

Ai (2, 1) Ai (2, 2)

]

=
[

AG + BG DK iCG BGCK i

−BK iCG AK i + BK i DGCK i

]

(6.5)

as outlined in appendix A.

The controller switching occurs according to some piecewise constant switching signal

σ : R+ → I . Where I = {1, 2, . . . N }.

σ(t) = ik for tk < t ≤ tk+1.

The plant state is xG with dimension nG , and the controllers Ki have states xKi with

dimensions nK . For simplicity we restrict consideration to controllers of the same dimension,

however the results do in fact hold in general for controllers of different dimensions with

relatively straightforward modifications.
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We define the current controller state to be

xK (t) = xKi (t) when σ(t) = i,

and the state of the closed loop system is

x =
[

xG

xK

]

.

We now consider resets of the form

Gi, j =
[

I 0

Xi, j 0

]

, (6.6)

where Xi, j ∈ RnK ×nG .

The restriction of plant states to be continuous is natural in the switching controller context.

The restriction of controller resets to be a function of plant state is considered for several

reasons.

• We found in chapter 5 that optimal resets with respect to future performance are a

function of plant state. We wish to investigate the stability properties of this form of

reset.

• We also know that if a controller reset depending on previous plant and controller state

satisfies the decreasing condition at switching times (with respect to some appropriate

Lyapunov functions), then the minimum with respect to the controller state will also

satisfy the condition. While such a function would be independent of previous controller

state, it is only guaranteed to be linear when the respective Lyapunov functions are

quadratic. Nevertheless, this argument suggests that when stabilizing resets exist, it is

likely that stabilizing resets which are a function of plant state only can be achieved.

• Finally, the reset structure 6.6 admits the synthesis techniques developed later in this

chapter. The reset synthesis question is much more complicated with a more general

structure.

In fact, any such reset structures must minimize some Lyapunov functions in order to

guarantee stability under arbitrary switching

Remark 6.2.1. Consider the reset switching system (2.12), with reset matrices with structure

given in (6.6). If theorem 6.1.1 is satisfied, then the Lyapunov functions Vi must satisfy the

condition

argmin
xK

Vi

([

xG

xK

])

= X j,i xG .
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To see why this must be true, note that for matrices of structure (6.6), that G j,i Gi, j = G j,i .

Then a necessary condition for asymptotic stability is that

Vi

([

xG

X j,i xG

])

≤ Vi

([

xG

xK

])

.

Since the inequality must hold for all xK , it must hold for the minimum over all xK . So

Vi

([

xG

X j,i xG

])

= min
xK

Vi

([

xG

xK

])

and

X j,i xG = argmin
xK

Vi

([

xG

xK

])

.

Note that this result links up nicely with the work of chapter 5, where the solutions of

single switch performance problems turn out to be (in many cases) minimizations of Lyapunov

functions. Here we find that, in order to guarantee stability over arbitrary switching sequences,

linear resets are also required to be minimizations of Lyapunov functions.

Similar results can be derived for other reset structures where all points in a subspace

of the state-space are mapped to a unique point in that subspace. In those cases again the

resets must take the form of minimization over the subspace of some Lyapunov function. The

controller/plant structure we consider above is the main structure of concern in this thesis.

Simple switching systems are trivial cases where the subspaces are single points.

A further consequence of this observation is that if Gi, j are stabilizing resets of the

form (6.6) and the arguments

argmin
xK

Vi

([

xG

xK

])

are unique, then the matrices Xi, j and hence the Gi, j can only depend on the index of the new

dynamics j . We will write X j,i = X j , and G j,i = G j subsequently when this is the case.

Note also that the Lyapunov functions which are minimized to obtain stabilizing resets

must also be functions which prove stability in theorem 6.1.1.

Now we shall consider the potentially stabilizing resets Gi of the form

Gi =
[

I 0

Xi 0

]

, (6.7)

where Xi xG = argmin
xK

Vi

([

xG

xK

])

.

Let us define the set of plant states xG such that the minimum value of Vi with respect to

xK is less than some fixed number k.
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Definition 6.2.1. Let �i (k) be the set defined as follows:

�i (k) =
{

xG : Vi

([

xG

xK

])

≤ k for some xK

}

The boundary of �i , ∂�i (k) is then

∂�i(k) =
{

xG : Vi

([

xG

xK

])

= k for some xK

}

With the specific resets Xi under consideration, this means that�i (k) can also be thought

of as the set of xG such that

Vi

([

xG

Xi xG

])

≤ k.

Theorem 6.2.1. Consider the reset switching system (6.3), with reset matrices with structure

given in (6.7). The system is asymptotically stable for all switching signals σ ∈ S if and only

if there exists a family of functions Vi : Rn → R with the following properties:

• Vi are positive definite, decrescent and radially unbounded

• Vi are continuous and convex.

• There exist constants ci such that for all x,

lim
1t→0+

(

Vi (e
Ai t x)− V (x)

1t

)

≤ −ci ‖x‖2 .

• Vi are such that

Xi xG = argmin
xK

Vi

([

xG

xK

])

for all xG ∈ RnG

•

V j

([

xG

X j xG

])

= Vi

([

xG

Xi xG

])

for all xG ∈ RnG and i, j ∈ I

for all xG ∈ RnG and i, j ∈ I

Proof. (if)
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Since Xi xG minimizes Vi with respect to xK , we can guarantee that

V j

([

xG

X j xG

])

≤ Vi

([

xG

xK

])

when xK is permitted to vary.

(only if)

Consider the case when the loop i is operating, the plant state xG is in the set ∂�i (k), and

the controller state is such that xK = Xi xG (the minimum of Vi is achieved at xK ). That is,

Vi

([

xG

xK

])

= k.

Now let the loop switch from i to j . From the results of theorem 6.1.1, we know that the

switching system can only be asymptotically stable if

V j

([

xG

X j xG

])

≤ Vi (x)

for all x ∈ Rn, and i, j ∈ I . Thus, it must be true for the specific case when xK = Xi xG . So

we require

V j

([

xG

X j xG

])

≤ Vi

([

xG

Xi xG

])

.

The converse is also true, so we must have

V j

([

xG

X j xG

])

= Vi

([

xG

Xi xG

])

for all xG .

This theorem effectively says that for reset switching system (of the form (6.7)) to be

asymptotically stable for all switching signals, there must exist Lyapunov functions Vi , such

that the level curves have the same ‘silhouettes’ when projected on to the plant component of

the state-space, or equivalently

� j (k) = �i (k)

for all k > 0, and for all i, j ∈ I .

We now have quite strict conditions which must be met if a reset switching system is to be

stable for all admissible signals σ . It is a relatively straightforward matter to test the condition

for all quadratic Lyapunov functions.
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6.2.1 Quadratic Lyapunov functions

An immediate consequence of this theorem is that if the plant is first order, and the family

of resets Xi are equivalent to the minimization of quadratic Lyapunov functions for the i ’th

loop, then stability is automatically guaranteed.

Corollary 6.2.2. Suppose nG = 1, and the reset relations

xK = Xi xG

are chosen such that Xi minimizes a quadratic Lyapunov function V̂i for the i ’th loop. Then

the switching system (6.3) is asymptotically stable for all switching signals.

Proof. Since nG = 1, and V̂i is quadratic, with V̂i (0) = 0, then �̂i (1) is a closed interval

[−ai , ai ] for some ai > 0. We can now define a new Lyapunov function for the i ’th loop

Vi (x) = a2
i V̂i (x).

Now the set �i (1) is the closed interval [−1, 1], and �i (k) is [−k2, k2]. If we carry out

this procedure for each i , we now have a family of Lyapunov functions Vi such that

V j

([

xG

X j xG

])

= Vi

([

xG

Xi xG

])

,

and hence the switching system is asymptotically stable for all switching signals.

Example 6.2.1. Revisiting example 3.0.1, we may add a reset relation at the switching

boundaries such that the function

Vi = x∗ Pi x

is minimized where Pi is the solution to the Lyapunov equation

A∗
i Pi + Pi Ai = −I.

and i is the index of the controller being switched on. This results in the stable trajectory

pictured in figure 6.2.

For plants of more than first order, theorem 6.2.1 is a difficult result to satisfy. It gives

an indication of how difficult it can be to guarantee stability of switching systems with

arbitrary switching signals. It suggests that it may sometimes be necessary to design the

resets specifically for stability rather than simply verify stability for given resets.

To satisfy theorem 6.2.1 via quadratic Lyapunov functions, it is required that the matrices

Xi have the form

Xi = −Pi (2, 2)−1 Pi (2, 1),
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Figure 6.2: switching trajectory with reset relation

where

Pi =
[

Pi (1, 1) Pi (1, 2)

Pi (2, 1) Pi (2, 2)

]

is a positive definite matrix satisfying the Lyapunov inequality

A∗
i Pi + Pi Ai < 0

This is a clear consequence of theorem 6.2.1, and lemma A.1.1 in appendix A.

Consider the condition

V j

([

xG

X j xG

])

= Vi

([

xG

Xi xG

])

for all xG

for quadratic functions Vi . That is,
[

xG

X j xG

]∗

Pj

[

xG

X j xG

]

=
[

xG

Xi xG

]∗

Pi

[

xG

Xi xG

]

=⇒

x∗
G

(

Pj (1, 1)+ Pj (1, 2)Pj (2, 2)−1 Pj (2, 1)
)

xG = x∗
G

(

Pi (1, 1)+ Pi (1, 2)Pi (2, 2)−1 Pi (2, 1)
)

xG

for all xG , or equivalently

Pi (1, 1)+ Pi (1, 2)Pi (2, 2)−1 Pi (2, 1) = Pj (1, 1)+ Pj (1, 2)Pj (2, 2)−1 Pj (2, 1) (6.8)

for each i 6= j . So to guarantee stability of the switching system using only quadratic

Lyapunov functions, the condition 6.8 must be satisfied for each i 6= j .
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6.3 Reset synthesis for stability

In the light of the results of theorems 6.1.1 and 6.2.1, a natural question is what to do if

designed reset relation do not guarantee stability for all switching sequences. For a particular

set of given controllers, we may ask the question of whether a family of reset relations exist

which guarantee asymptotic stability for all switching signals.

We shall call such a family of resets a stabilizing family of reset relations.

It is a relatively straightforward matter to perform computations on the existence of linear

resets which guarantee stability via quadratic Lyapunov functions.

The aim is to find a set of positive definite matrices

Pi =
[

Pi (1, 1) Pi (1, 2)

Pi (2, 1) Pi (2, 2)

]

such that

Pi (1, 1)− Pi (1, 2)Pi (2, 2)−1 Pi (2, 1) = Pj (1, 1)− Pj (1, 2)Pj (2, 2)−1 Pj (2, 1)

for all j 6= i , and that the Lyapunov inequalities

A∗
i Pi + Pi Ai < 0 (continuous-time)

or A∗
i Pi Ai − Pi < 0 (discrete-time)

are satisfied for all i .

Lemma 6.3.1. For a partitioned matrix

P =
[

P(1, 1) P(1, 2)

P(2, 1) P(2, 2)

]

let 1 denote the Schur complement of P(1, 1) in P. That is,

1 = P(1, 1)− P(1, 2)P(2, 2)−1 P(2, 1).

Then we can write the inverse of P as follows:

P−1 =
[

1−1 −1−1 P(1, 2)P(2, 2)−1

−P(2, 2)−1 P(2, 1)1−1 P(2, 2)+ P(2, 2)−1 P(2, 1)1−1 P(1, 2)P(2, 2)−1

]

Proof. See for example [62].
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Using lemma 6.3.1, we can now form an equivalent problem in terms of matrices Qi where

Qi = P−1
i .

Define

1 = Pi (1, 1)− Pi (1, 2)Pi (2, 2)−1 Pi (2, 1).

1 can be thought of as the inverse of the (1, 1) block of the inverse of Pi , so the equivalent

problem is to find positive definite matrices

Qi =
[

1−1 Qi (1, 2)

Qi (1, 2)∗ Qi (2, 2)

]

satisfying

Qi A∗
i + Ai Qi < 0 (continuous-time)

or Ai Qi A∗
i − Qi < 0 (discrete-time).

Then the required reset relations are

xK = −Pi (2, 2)−1 Pi (2, 1)xG ,

where Pi = Q−1
i .

Theorem 6.3.2. Consider the continuous-time linear plant G, and N controllers Ki defined

according to (6.4), and let the closed loop matrices

Ai =
[

Ai (1, 1) Ai (1, 2)

Ai (2, 1) Ai (2, 2)

]

be defined according to equation (6.5).

There exists a stabilizing family of reset relations when there exist matrices 1,

Qi (1, 2) ∈ R
nG×nK and Qi (2, 2) ∈ R

nK i×nK for each i = {1, . . . , N } such that the following

system of LMIs is satisfied:
[

8i (1, 1) 8i (1, 2)

8i (2, 1) 8i (2, 2)

]

< 0 (6.9)

where

8i (1, 1) = 1−1 Ai (1, 1)∗ + Qi (1, 2)Ai (1, 2)∗ + Ai (1, 1)1−1 + Ai (1, 2)Qi (1, 2)∗,

S8i (1, 2) = 1−1 Ai (2, 1)∗ + Qi (1, 2)Ai (2, 2)∗ + Ai (1, 1)Qi (1, 2)+ Ai (1, 2)Qi (2, 2),

8i (2, 1) = Qi (1, 2)∗ Ai (1, 1)∗ + Qi (2, 2)Ai (1, 2)∗ + Ai (2, 1)1−1 + Ai (2, 2)Qi (1, 2)∗,

8i (2, 2) = Qi (1, 2)∗ Ai (2, 1)∗ + Qi (2, 2)Ai (2, 2)∗ + Ai (2, 1)Qi (1, 2)+ Ai (2, 2)Qi (2, 2).
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The reset relations guaranteeing stability are

xK = −Pi (2, 2)−1 Pi (2, 1),

where

Pi =
[

Pi (1, 1) Pi (1, 2)

Pi (2, 1) Pi (2, 2)

]

=
[

1−1 Qi (1, 2)

Qi (1, 2)∗ Qi (2, 2)

]−1

.

Proof. We prove the theorem by attempting to find quadratic functions Vi (x) = x∗Pi x ,

and the corresponding resets Xi = −Pi (2, 2)−1 Pi (2, 1) which satisfy theorem 6.2.1. Since

we consider only quadratic functions, the necessary and sufficient condition becomes only

sufficient.

The LMI conditions (6.9) are simply an expanded version of the Lyapunov inequalities

Qi A∗
i + Ai Qi < 0

where

Qi =
[

1−1 Qi (1, 2)

Qi (1, 2)∗ Qi (2, 2)

]

,

and

Ai =
[

Ai (1, 1) Ai (1, 2)

Ai (2, 1) Ai (2, 2)

]

.

Define Pi = Q−1
i . Then the matrices Pi satisfy the Lyapunov inequalities

A∗
i Pi + Pi Ai < 0,

and also,

Pi (1, 1)− Pi (1, 2)Pi (2, 2)−1 Pi (2, 1) = 1

for each i . Hence the Lyapunov functions

Vi (x) = x∗ Pi x

satisfy theorem 6.2.1, and asymptotic stability of the reset switching system is proved with

the corresponding resets

Xi = −Pi (2, 2)−1 Pi (2, 1).

For the discrete-time case, we require the following lemma.
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Lemma 6.3.3. Let P ∈ Rn×n be a positive definite matrix, and A ∈ Rn×n any real valued

matrix. Then the inequality

A∗ P A − P < 0

holds if and only if the inequality

AP−1 A∗ − P−1 < 0

also holds.

Proof. Consider the following matrix, decomposed in two alternative ways:

[

P−1 A

A∗ P

]

=
[

I 0

A∗ P I

][

P−1 0

0 P − A∗ P A

][

I P A

0 I

]

=
[

I AP−1

0 I

][

P−1 − AP−1 A∗ 0

0 P

][

I 0

P−1 A∗ I

]

Since both P and P−1 are positive definite, then

P − A∗ P A > 0 ⇐⇒ P−1 − AP−1 A∗ > 0

Theorem 6.3.4. Consider the discrete-time linear plant G, and N controllers Ki defined

according to (6.4), and let the closed loop matrices

Ai =
[

Ai (1, 1) Ai (1, 2)

Ai (2, 1) Ai (2, 2)

]

be defined according to equation (6.5).

There exists a reset relation for which the switching system is stable for any switching

sequence when there exist matrices1, Qi (1, 2) ∈ RnG×nK and Qi (2, 2) ∈ RnK ×nK for each

i = {1, . . . , N } such that the following system of LMIs is satisfied:

[

8i (1, 1) 8i (1, 2)

8i (2, 1) 8i (2, 2)

]

< 0 (6.10)



6.3 Reset synthesis for stability 105

where

81 = Ai (1, 1)∗1−1 Ai (1, 1)+ Ai (2, 1)∗Qi (1, 2)∗ Ai (1, 1)

+ Ai (1, 1)∗Qi (1, 2)Ai (2, 1)+ Ai (2, 1)∗Qi (2, 2)Ai (2, 1)−1−1

82 = Ai (1, 1)∗1−1 Ai (1, 2)+ Ai (2, 1)∗Qi (1, 2)∗ Ai (1, 2)

+ Ai (1, 1)∗Qi (1, 2)Ai (2, 2)+ Ai (2, 1)∗Qi (2, 2)Ai (2, 2)− Qi (1, 2)

83 = Ai (1, 2)∗1−1 Ai (1, 1)+ Ai (2, 2)∗Qi (1, 2)∗ Ai (1, 1)

+ Ai (1, 2)∗Qi (1, 2)Ai (2, 1)+ Ai (2, 2)∗Qi (2, 2)Ai (2, 1)− Qi (1, 2)∗

84 = Ai (1, 2)∗1−1 Ai (1, 2)+ Ai (2, 2)∗Qi (1, 2)∗ Ai (1, 2)

+ Ai (1, 2)∗Qi (1, 2)Ai (2, 2)+ Ai (2, 2)∗Qi (2, 2)Ai (2, 2)− Qi (2, 2)

The reset relations guaranteeing stability are

xK = −Pi (2, 2)−1 Pi (2, 1),

where

Pi =
[

Pi (1, 1) Pi (1, 2)

Pi (2, 1) Pi (2, 2)

]

=
[

1−1 Qi (1, 2)

Qi (1, 2)∗ Qi (2, 2)

]−1

.

Proof. The LMI conditions (6.10) are simply an expanded version of the Lyapunov inequal-

ities

Ai Qi A∗
i − Qi < 0

where

Qi =
[

1−1 Qi (1, 2)

Qi (1, 2)∗ Qi (2, 2)

]

,

and

Ai =
[

Ai (1, 1) Ai (1, 2)

Ai (2, 1) Ai (2, 2)

]

.

Define Pi = Q−1
i . Then from lemma 6.3.3, the matrices Pi satisfy the Lyapunov inequal-

ities

A∗
i Pi Ai − Pi < 0,

and also

Pi (1, 1)− Pi (1, 2)Pi (2, 2)−1 Pi (2, 1) = 1

for each i . Hence the Lyapunov functions

Vi (x) = x∗ Pi x
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satisfy theorem 6.2.1, and asymptotic stability of the reset switching system is proved with

the corresponding resets

Xi = −Pi (2, 2)−1 Pi (2, 1).

Sometimes theorems 6.9 and 6.10 will not yield a solution for a given set of controllers in

specific realizations. In such situations, we can consider alternative realizations of the same

controllers in order to ensure stability.

Given a plant P and a set of stabilizing controllers Ki , we can find realizations of the

controllers Ki such that a simple switch between the controller is guaranteed to be asymptot-

ically stable, as shown in chapter 3. We can then apply a reset switching scheme in order to

improve the performance of the resulting system.

If the Ki are computed using the Hespanha scheme of section 3.4.1, then there will be

a common quadratic Lyapunov function for each of the closed loops. Hence there will

be quadratic Lyapunov functions with common plant-space projections, and the LMIs of

theorems 6.9 and 6.10 are guaranteed to have solutions.

We can also consider implementing the controllers according to the stabilizing coprime

factor scheme of section 3.4.2. In that case, we can show that if the closed-loop augmented

state spaces (figure 3.8) have CQLF’s, then it is always possible to find common plant-space

projections of the unaugmented closed-loops (still in coprime factor form).

6.4 Reset switching of coprime factor controllers

If realizations are computed according to the coprime factor scheme of section 3.4.2, then we

can think of the controller implementations as being the augmented controllers of figure 3.8.

The closed loop state space corresponding to each controller will have a specific structure.

The states of the plant and active controller will depend only on themselves- independent of

the inactive controllers. The states of the inactive controllers will depend on themselves, as

well as on the states of the plant and the current active controller. This can be illustrated in

the two controller case by the closed loop representations 6.13, and 6.14 (in theorem 6.4.2),

where the plant state is x1, and the controller states are x2 and x3.

Theorem 6.4.2 shows that if the augmented closed loops 6.13, and 6.14 have a CQLF, then

the unaugmented loops 6.15, and 6.16 have common projections in plant space, meaning we

can apply the reset switching scheme of 6.9 (the discrete-time result follows similarly).
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Lemma 6.4.1. Consider a stable block-triangular dynamical system







ẋ1

ẋ2

ẋ3






=







A11 A12 0

A21 A22 0

A31 A32 A33













x1

x2

x3






, (6.11)

where x1 ∈ Rn1 , x2 ∈ Rn2 , and x3 ∈ Rn3 and a quadratic Lyapunov function

V













x1

x2

x3












=







x1

x2

x3







∗





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33













x1

x2

x3






.

Then, the function

V̂

([

x1

x2

])

=
[

x1

x2

]∗ [
2Q11 − Q13 Q−1

33 Q31 Q21

Q12 Q22

][

x1

x2

]

is a Lyapunov function for the dynamical system

[

ẋ1

ẋ2

]

=
[

A11 A12

A21 A22

][

x1

x2

]

. (6.12)

Proof. Let

x =







x1

x2

x3






.

Since V is a Lyapunov function for (6.11), V (x) is strictly positive and V̇ (x) strictly

negative for all points x 6= 0. Define the functions

V1

([

x1

x2

])

= V













x1

x2

0













and

V2

([

x1

x2

])

= V













x1

0

−Q−1
33 Q31x1












.

Clearly V1 is strictly positive and strictly decreasing for all
[

x1

x2

]

6= 0 and V2 is strictly

positive and strictly decreasing for all x1 6= 0. Hence V2 is positive and decreasing (but not

strictly) for all
[

x1

x2

]

6= 0
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Now define the function

V̂

([

x1

x2

])

=
[

x1

x2

]∗ [
2Q11 − Q13 Q−1

33 Q31 Q12

Q21 Q22

][

x1

x2

]

= V1

([

x1

x2

])

+ V2

([

x1

x2

])

and clearly V̂ is strictly positive, and ˙̂
V is strictly negative on trajectories of (6.11) for all

points
[

x1

x2

]

6= 0. Since the states x1 and x2 are independent of of x3 in the dynamics of (6.11),

then V̂ is also strictly positive and strictly decreasing on trajectories of (6.12). Hence the

function V̂ is a Lyapunov function for the dynamical system (6.12).

Theorem 6.4.2. Consider the dynamical systems







ẋ1

ẋ2

ẋ3






=







A11 A12 0

A21 A22 0

A31 A32 A33













x1

x2

x3






, (6.13)

and






ẋ1

ẋ2

ẋ3






=







Ã11 0 Ã13

Ã21 Ã22 Ã23

Ã31 0 Ã33













x1

x2

x3






, (6.14)

Suppose there exists a common quadratic Lyapunov function for the dynamic systems (6.13)

and (6.14). Then there exist quadratic Lyapunov functions

V1

([

x1

x2

])

, and V2

([

x1

x3

])

for the systems
[

ẋ1

ẋ2

]

=
[

A11 A12

A21 A22

][

x1

x2

]

, (6.15)

and
[

ẋ1

ẋ3

]

=
[

Ã11 Ã13

Ã31 Ã33

][

x1

x3

]

(6.16)

respectively, such that

min
x2

(

V1

([

x1

x2

]))

= min
x3

(

V2

([

x1

x3

]))

.

for all x1 ∈ Rn1 .
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Proof. Let

V













x1

x2

x3












=







x1

x2

x3







∗





Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33













x1

x2

x3







be the common Lyapunov function for systems (6.13) and (6.14).

Define the functions

V1

([

x1

x2

])

=
[

x1

x2

]∗ [
2Q11 − Q13 Q−1

33 Q31 Q31

Q12 Q22

][

x1

x2

]

and

V2

([

x1

x3

])

=
[

x1

x3

]∗ [
2Q11 − Q12 Q−1

22 Q21 Q31

Q13 Q33

][

x1

x3

]

By lemma 6.4.1 the function V1 is a Lyapunov function for (6.15), and function V2 is a

Lyapunov function for (6.16) (by a simple reordering of rows).

By lemma A.2.1 in appendix A,

min
x2

(

V1

([

x1

x2

]))

= x∗
1 (2Q11 − Q12 Q−1

22 Q21 − Q13 Q−1
33 Q31)x1

and

min
x3

(

V2

([

x1

x3

]))

= x∗
1 (2Q11 − Q12 Q−1

22 Q21 − Q13 Q−1
33 Q31)x1

Applying reset switching to the coprime factor scheme gives two main advantages. Firstly,

the need to run the inactive controllers all the time is eliminated. If there are a large number

of controllers in the switching scheme, this may result in a substantial computational benefit.

Secondly, the minimization carried out by such a reset scheme carries substantial performance

benefits as outlined in chapter 5. The performance benefit is illustrated in example 6.5.1.

6.5 Plant state estimation

In this chapter, we have assumed that we have full state information. The reset rules we have

derived have so far assumed that the plant state xG is known precisely. Obviously we would

like to be able to apply the results on controller initialization even when the plant state is

merely estimated.

The obvious way to implement a reset switching scheme when the plant is not known

precisely is to construct an observer of the plant structure, and to reset according to the
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observed state x̂G instead of the actual state xG . In fact, this leads us to trajectories which are

guaranteed to be stable as long as the nominal trajectory is stable, and the state estimation error

xG − x̂G converges to zero exponentially. In fact, we can always construct an exponentially

stable observer if the plant is observable.

Suppose

ẋ(t) = Ai x(t), i ∈ I, x ∈ R
n (6.17)

represent the closed loop equations corresponding to each switching controller, augmented

by an exponentially stable plant observer. The state

x(t) =







xG(t)

xK (t)

xob(t)






,

where xG is the plant state, xK the controller state, and xob(t) the observer state.

Let Gi be a family of nominal reset matrices with structure

Gi =







I 0 0

Xi 0 0

0 0 I






.

That is, the controller is reset according to the plant state at switching times, while the plant

state and observer states remain continuous. Then the reset switching system

ẋ(t) = Aσ(t)x(t),

σ (t) = ik, for tk ≤ t < tk+1, ik ∈ I, k ∈ Z
+,

x(t+k ) = Gik
x(t−k )

(6.18)

will be referred to as the nominal reset switching system, producing the nominal trajectories

x(t).

Let G̃i be a family of observer based reset matrices with structure

G̃i =







I 0 0

0 0 Xi

0 0 I






.

That is, the controller is reset according to the observer state at switching times, while the

plant state and observer states remain continuous. Then the reset switching system

˙̃x(t) = Aσ(t)x̃(t),

σ (t) = ik, for tk ≤ t < tk+1, ik ∈ I, k ∈ Z
+,

x̃(t+k ) = G̃ik
x̃(t−k )

(6.19)
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will be referred to as the observer based reset switching system, producing the trajectories

x̃(t).

In the following theorem, we will use the following notation to denote products of matrices

(from the right).

Definition 6.5.1.
N
∏

k=1

Ak = AN AN−1 . . . A2 A1.

We also use a straightforward lemma to simplify later working.

Lemma 6.5.1. Given matrices Ai and Bi for i = {1, . . . , N } with compatible dimensions,

we can write the following expansion

N
∏

i=1

Bi =
N
∏

i=1

Ai + (BN − AN )

(

N−1
∏

i=1

Ai

)

+
N−1
∑

j=2





N
∏

i= j+1

Bi (B j − A j )

j−1
∏

i=1

Ai



+
(

N
∏

i=2

Bi

)

(B1 − A1)

Theorem 6.5.2. If the nominal reset switching system (6.18) is stable for all admissible

(strongly non-zeno) switching sequences σ(t), and the observer error

ε(t) = xG(t)− xob(t)

is exponentially stable, then the observer based reset switching system (6.19) is asymptotically

stable for all such σ(t).

Proof. Fix a strongly non-zeno σ(t), and initial state x(t0) = x0. We may assume the two

switching systems (6.18) and (6.19) have the same initial state, so x̃(t0) = x0. We shall also

let 1tk = tk − tk−1 for all k ∈ Z+

At any finite time τ , occurring after N controller switches, we can write the state of the

nominal system

x(τ ) = eAiN
(t−tN )

N
∏

k=1

(

Gik
e

Aik−1 (1tk)
)

x0.

Similarly, we can write the state of the observer based system

x̃(τ ) = eAiN
(t−tN )

N
∏

k=1

(

G̃ik
e

Aik−1 (1tk)
)

x0
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By lemma 6.5.1, we can expand this as follows

x̃(τ ) = x(τ )+ eAiN
(t−tN )

N
∏

k=2

(

Gik
e

Aik−1 (1tk)
)((

G̃i1 − Gi1

)

eAi0 (1t1)
)

x0

+
N−1
∑

j=2





N
∏

k= j+1

(

Gik
e

Aik−1 (1tk)
) (

G̃i j
− Gi j

)

e
Ai j−1(1t j )

j−1
∏

k=1

(

G̃ik
e

Aik−1 (1tk)
)



 x0

+ eAiN
(t−tN )

(

G̃i1 − Gi1

)

e
AiN−1(1tN )

N−1
∏

k=1

(

G̃ik
e

Aik−1 (1tk)
)

x0.

Note that each

e
Ai j−1(1t j )

j−1
∏

k=1

(

G̃ik
e

Aik−1 (1tk)
)

x0

is simply x̃(t j ), and hence

(

G̃i j
− Gi j

)

e
Ai j−1(1t j )

j−1
∏

k=1

(

G̃ik
e

Aik−1 (1tk)
)

x0

is Xi j
(x̃ob(t j ) − x̃G(t j )). Since the plant observer is the same in the nominal and observer

based cases, this is simply Xi j
ε(t j ).

We can now express x̃(τ ) in terms of x(τ ), and the observer error at each switching time

t j .

x̃(τ ) = x(τ )+ eAiN
(t−tN )

N
∏

k=2

(

Gik
e

Aik−1 (1tk)
)

Xi1ε(t1)

+
N−1
∑

j=2





N
∏

k= j+1

(

Gik
e

Aik−1 (1tk)
)

ε(t j )



+ eAiN
(t−tN )ε(tN )

(6.20)

Since the nominal system is exponentially stable, there exists λ > 0 such that

‖x(t)‖ ≤ e−λ(t−t0) ‖x(t0)‖

for any t0, and corresponding initial state x(t0). Also, since the observer is stable, there exists

φ > 0 such that

‖ε(t)‖ ≤ e−φ(t−t0)εx(t0)

for any t0, and corresponding initial error ε(t0).

Since the signal σ(t) is strongly non-zeno, the ratio of the number of transitions N in a

time interval [0, t) to the length of the interval has a fixed upper bound κ .
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From equation (6.20), we can now write the inequality

‖x̃(t)‖ ≤ e−λt ‖x0‖ +
N
∑

j=1

(

e−λ(t−t j )e−φt j

)

ε(t0)

letting ψ = min{φ, λ} then

‖x̃(t)‖ ≤ e−λt ‖x0‖ + Ne−ψ(t−t0)ε(t0),

and hence

lim
t→∞

‖x̃(t)‖ ≤ lim
t→∞

e−λt ‖x0‖ + lim
t→∞

κt
(

e−λ(t−t j )e−φt j

)

ε(t0)

= 0.

Therefore, the observer based reset switching system (6.19) is asymptotically stable.

In fact asymptotic stability here is equivalent to exponential stability. The reset switching

system for a fixedσ(t)may be thought of as a linear-time varying system, for which asymptotic

stability implies exponential stability [60].

Example 6.5.1. Take a second order lightly damped plant

P(s) = 1
s2 + 0.2s + 1

implemented in controller canonical form

[

ẋ1

ẋ2

]

=
[

−0.2 −1

1 0

][

x1

x2

]

+
[

1

0

]

u

y =
[

1 0
]

[

x1

x2

]

,

and two static stabilizing feedback gains k1 = 2, and k2 = 4. The closed loop equations

formed by setting u = k1(r − y), and u = k2(r − y) (where r is some reference) are

respectively

[

ẋ1

ẋ2

]

=
[

−0.2 −3

1 0

][

x1

x2

]

+
[

1

0

]

r

y =
[

1 0
]

[

x1

x2

]

,
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(a) Unstable trajectory
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(b) Hespanha realizations (no reset)
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(c) Hespanha realizations (reset to origin)
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(d) Coprime factor realization
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(e) Coprime factor realizations (Lyapunov

based reset full state knowledge)

0 5 10 15 20 25 30 35 40 45 50
−3

−2

−1

0

1

2

3

4

switching points

x1
x2

t

(f) Coprime factor realizations (Lyapunov based

reset, state observer)

Figure 6.3:
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and
[

ẋ1

ẋ2

]

=
[

−0.2 −5

1 0

][

x1

x2

]

+
[

1

0

]

r

y =
[

1 0
]

[

x1

x2

]

.

We shall refer to the respective state-space matrices as A1, A2, B and C . It is reasonably

straightforward to show that while both A1 and A2 have eigenvalues in the left half plane,

they do not share a common quadratic Lyapunov function.

The switching system defined by

ẋ = Aσ(t)x + Bu

y = Cx

is therefore not guaranteed to be stable for all switching signalsσ(t). Indeed, we can construct

a destabilizing signal by switching from k1 to k2 when x2
2 is a maximum (for that loop), and

from k2 to k1 when x2
1 is a maximum. This produces the unstable state trajectories shown in

figure 6.3(a) from an initial state of x1 = x2 = 1, and zero reference.

Since the controller is static, we obviously cannot improve stability by resetting controller

states! We can, however implement the controllers in a non-minimal form, for which stability

may be guaranteed using the results of chapter 3. For this example, we use both the coprime

factor approach, and the Hespanha approach.

Hespanha’s scheme is implemented by expressing the controller as a model of the desired

closed loop (with state transformation to ensure stability) in feedback with a model of the

plant. We apply Hespanha’s recommended resets (no reset, and total zero reset), and the

results is seen in figures 6.3(b), and 6.3(c). Note that stability is obtained, but performance

is still poor.

Since the plant is stable, P = N M−1 where N = P , and M = I is a coprime factorization

of the plant. Since the respective closed loops are stable, then the factorizations k1 = V −1
1 U1

and k2 = V −1
2 U2 where

U1(s) = k1

1 + k1 P(s)
V1(s) = 1

1 + k1 P(s)

U2(s) = k2

1 + k2 P(s)
V2(s) = 1

1 + k2 P(s)
,

are also coprime, and furthermore the bezout identities U1 N +V1M = 1 and U1 N +V1M = 1

are satisfied (importantly both with the same factorization of the plant).

When we implement these controllers in the arrangement of figure 3.8 using the same

initial condition and switching criterion as before (the non-minimal are initialized to zero),
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we obtain the stable trajectory shown in figure 3.8. In this case, while the non-minimal

controller states do not affect the closed loop transfer functions, they do introduce transient

signals at the switching times which ensure the stability of the system. Note however, that

the performance is poor and the states take over 50 seconds to converge.

We now apply the results of theorem 6.9 to the loops formed by these non-minimal con-

trollers. We find that there exist as expected, Lyapunov functions of the respective closed

loops with common projection into plant-space. Hence we can find a stabilizing controller

reset. This results in the stable trajectory shown in figure 6.3(e). Note the performance

improvement obtained by using the extra freedom in the controller states at the switching

times.

Since the reset scheme as applied for figure 6.3(e) requires full state knowledge, it is not

quite a fair comparison with the (non-reset) coprime factor and Hespanha schemes. Therefore,

we also implement the results using a plant state observer. The results, shown in figure 6.3(f)

show that while performance is slightly worse than the full-state knowledge case, it is still

substantially better than any of the other schemes.

6.6 Multiple Lyapunov functions for reset systems

Branicky’s multiple Lyapunov function approach can be modified to admit systems in which

the state may change discontinuously at switching times.

Theorem 6.6.1. Consider a set of vector fields ẋ = fi (x) with fi (0) = 0 for all i ∈ I .

Let S be the set of anchored switching sequences associated with the system. Let gi, j be

reset relations satisfying Lipschitz conditions
∥

∥gi, j (x)− gi, j (y)
∥

∥ ≤ li, j ‖x − y‖ for some

constants li, j .

If there exist functions Vi such that over all switching sequences S ∈ S, Vi is Lyapunov-like

for xS(.) over S|i , then the system is stable in the sense of Lyapunov.

Additionally, the system is asymptotically stable if for some ǫi and δi

V̇i (x(t)) < −ǫi ‖x(t)‖2 (6.21)

for t in I(σ |i ), and Vi are strictly decreasing on E(σ |i ):

Vi (x(tk))− Vi (x(t j )) < −δi

∥

∥x(t j )
∥

∥

2
, (6.22)

where t j < tk , and i j = ik = i .
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Proof. We begin by proving the case N = 2

Let ǫ > 0 be arbitrary. Let mi (α) denote the minimum value of Vi on ∂B(α). Choose

ri < R such that in B(ri) we have Vi < mi (R). Let r = mini (ri ). Thus starting in B(r),

trajectories of either vector field will remain in B(R).

Let

l = max
i, j
(l j,i + g j,i (0)),

where l j,i is the Lipschitz constant for the reset relation g j,i .

Now choose ρi < r/ l such that in B(ρi ), Vi < mi (r/ l). Let δ = mini (ρi ). Now when

we begin in B(δ), we are guaranteed that trajectories will not leave B(ǫ) after a single switch,

and further by the non-increasing condition on Lyapunov-like functions Vi that trajectories

will not leave B(ǫ) in arbitrarily many switches.

To prove for general N , we consider a set of 2N + 2 concentric circles, constructed

similarly such that a trajectory beginning in the central region cannot escape the outer region

by switching (N − 1) times through all the alternative vector fields, and hence cannot escape

in arbitrary switches via the non-increasing conditions on Vi .

To prove asymptotic stability, choose a particular element i ∈ I . Consider some t ∈ I(σ |i ).
Let t̄ denote the largest element in E(σ |i ) with t̄ < t (that is, t̄ is the last time that the i ’th

loop was engaged). Let t denote the smallest element in E(σ |i ) (that is, t is the first time that

the i ’th loop was engaged). Also let nt denote the number of elements in E(σ |i ) smaller than

t .

Since Vi is positive definite, and radially unbounded, there exist positive constants ai and

bi such that

ai ‖x(t)‖2 < Vi (x(t)) < bi ‖x(t)‖2 ,

and from (6.21) we have

V̇i (x(t)) ≤ −ǫiai Vi (x(t)),

so Vi (x(t)) has the bound

Vi (x(t)) < e−(t−t̄)ǫi ai V (x(t̄)).

Now from (6.22), we have the inequality

Vi (x(tk)) < Vi (x(t j ))− δi

∥

∥x(t j )
∥

∥

2

< (1 − δi

bi

)Vi (x(t j ))

when t j < tk and i j = ik = i . Without loss of generality, we can choose δi such that δi < bi .

Hence we can construct iteratively, the bound

Vi (x(t̄)) < (1 − δi

bi

)nt Vi (x(t))



118 Stability of reset switching systems

δ

ǫ

r

r
l

Figure 6.4: Multiple Lyapunov function illustration

and hence we have

Vi (x(t)) < e−(t−t̄)ǫi ai (1 − δi

bi

)nt Vi (x(t)

< bi e
−(t−t̄)ǫi ai (1 − δi

bi

)nt
∥

∥x(t)
∥

∥

2
,

and

‖x(t)‖2 <
bi

ai

e−(t−t̄)ǫi ai (1 − δi

bi

)nt (6.23)

In considering asymptotic stability, we need only consider those states i such that t ∈ I(σ |i )
has no upper bound. Hence for t in such states, as t → ∞, either (t − t̄) → ∞, nt → ∞, or

both. Since the inequality (6.23) holds for each i ∈ I , then

lim
t→∞

‖x(t)‖2 → 0

6.7 Dwell times and reset switching systems

If we wish to employ particular realizations for reset switching controllers for which stability

is not guaranteed, it may be necessary to introduce a minimum dwell time. We can use the

dwell times of section 3.3.1 in order to ensure stability of the switching system. However,

we can additionally make use of the form of the reset in order to obtain a less conservative

bound on the minimum dwell-time required in order to guarantee stability.

The idea is similar, in that we ensure that over any closed switching sequence beginning

(and ending) with the i ’th loop, the value of the i ’th Lyapunov function decreases strictly.
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Equivalently, we ensure that the level curve of the function at the end of the sequence fits

strictly inside the level curve at the start.

Suppose we employ resets which minimize Lyapunov functions for the respective closed

loops. In this case, we can exploit the minimization of the functions in order to obtain a better

bound on the minimum dwell time.

Let

x =
[

xG

xK

]

,

where xG is the plant state, and xK the controller state.

Given a family of closed loop equations

ẋ = Ai x,

we have the Lyapunov functions Vi = x∗ Pi x for each loop i ∈ {1, 2, . . . , N }, where Pi > 0

is the solution to the Lyapunov equation

A∗
i Pi + Pi Ai = −Qi

for some positive definite Qi .

Furthermore, the controller state resets at each switch (to state i ) such that

xK = min
xK

Vi

([

xG

xK

])

= −Pi (2, 2)−1 Pi (2, 1)xG

where each

Pi =
[

Pi (1, 1) Pi (1, 2)

Pi (2, 1) Pi (2, 2)

]

partitioned appropriately. Let1i denote the Schur complements of Pi (1, 1) in each Pi . That

is,

1i = Pi (1, 1)− Pi (1, 2)P−1
i (2, 2)Pi (2, 1).

Now, from lemma 3.3.1 we know that while the i ’th loop is active, we have the bound

Vi (x(t0 + τ)) ≤ e−λi τV (x(t0))

where λi is the minimum eigenvalue of the matrix P−1
i Qi .
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We can compute the maximum gain ki j from Vi to V j caused by a single switch from loop

i to loop j . That is,

ki j = max
x

(

min
xK

(

V j

([

xG

xK

])))

such that Vi (x) = 1

= max
xG

(x∗
G1 j xG) such that Vi (x) = 1

= max
xG

(x∗
G1 j xG) such that x∗

G1i xG ≤ 1

Since the constraint and cost are both quadratic and positive, the maximum must occur on

the boundary of the constraint. That is,

max
xG

(x∗
G1 j xG) such that x∗

G1i xG = 1,

which is simply the maximum eigenvalue of 1−1
i 1 j .

Theorem 6.7.1. Let ki j be the maximum eigenvalue of1−1
i 1 j , andλi the minimum eigenvalue

of P−1
i Qi .

If we choose τ such that

τ > sup
l∈L [N]





1
∑

i∈l λi

ln





∏

i j∈l

ki j







 , (6.24)

then the reset switching system

ẋ = Aσ(t)x,

σ (t) = ik, ∀ tk ≤ t < tk+1, ik ∈ {1, 2, . . . , N }, k ∈ Z
+,

x(t+k ) = −P−1
ik
(2, 2)Pik

(2, 1)(x(t−k ))

(6.25)

is guaranteed to be stable for all switching sequences with a minimum dwell time of τ .

Proof. The proof is identical to that of theorem 3.3.2, using the straightforward extension of

Branicky’s theorem to reset switching systems 6.6.1.

6.8 Concluding remarks

In this chapter we have investigated the relationship between state resets in a switching system,

and stability under arbitrary switching.

Theorem 6.1.1 is an important result, as it provides a useful and intuitive extension of

Lyapunov theory to reset switching systems, and allows us to analyse stability over arbitrary

switching sequences for such systems.
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We have made a number of interesting observations about the relationship between stabi-

lizing resets and Lyapunov functions. The most important of these, is that stabilizing resets of

the form 6.6 must minimize Lyapunov functions. This observation leads directly to techniques

for synthesizing stabilizing resets.

The sufficient LMI conditions in theorems 6.3.2 and 6.3.4 allow us to synthesize linear

resets which guarantee stability under arbitrary switching.

Resets which are synthesized in this way are not directly designed for performance, how-

ever we have observed that they often give very good performance results. The structure of

such resets is the same as those designed for performance over a single switch in chapter 5.

When the LMI method has a stabilizing solution, there will generally be many solutions.

Therefore there is scope for further improving the performance of these methods by choosing

among stabilizing resets, one which maximizes performance in some sense.

Reset synthesis methods may be combined with realization methods in order to guarantee

stability, and improve performance as illustrated by example 6.5.1.





Chapter 7

Conclusions

In this thesis we have studied the stability and performance of systems with switching linear

controllers.

Our general approach fits into the second and thirds stages of a four stage design proce-

dure for switching systems. That is, we are concerned with the appropriate realization and

implementation of controllers, and with the design of appropriate reset relations.

We assume that the transfer matrices of the controllers have been designed without taking

into account the switching behaviour of the system. We also generally assume that the design

of switching trajectories occurs in a separate stage. Thus we generally design such that the

system is guaranteed to be stable under an arbitrary choice of switching signal.

Our consideration of the switching strategy is limited to some small extensions to existing

techniques for calculating minimum dwell times for guaranteed stability. Note that minimum

dwell times are not necessary if controllers have been realized for stability. Minimum dwell

times are only necessary for stability if controller realizations are fixed according to other

criteria.

We have observed that given a family of stabilizing controllers, stability may be guaranteed

by choosing appropriate controller realizations. This may be achieved by IMC methods

introduced by Hespanha, or by coprime factor methods based on the ideas of Miyamoto and

Vinnicombe.

The choice of controller realization also has an impact on system performance. In chapter 4,

we solve an optimization problem with respect to a single transition which leads to a means

of realizing controllers for performance.

Reset design is an important problem in switching system design. We note that the choice

of reset relations for switching controllers can have profound effects on both stability and

123
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performance. In chapter 5, we designed a reset strategy which is optimal with respect to

future performance over a single switch.

In chapter 6, we introduced some new Lyapunov methods for analysing reset switching

systems. These methods were then applied to develop an LMI method for synthesizing

stabilizing reset relations.

7.1 Summary of main contributions

Chapter 2

We introduce the notion of reset switching systems to denote switching systems where the

state of the system can change discontinuously at transition times.

Chapter 3

We introduce a new method for calculating minimum dwell times for switching systems,

which is less conservative than previous results.

We apply the ideas of Miyamoto and Vinnicombe (from the anti-windup problem) to show

that stability under arbitrary switching can be achieved by realizing controllers in appropriate

coprime factor form. We note that this result can also provide joint stability under switching

and saturation, if the Youla parameter is chosen according to anti-windup results.

Chapter 4

We solve an optimization problem with for a single controller transition. We select the

controller state which corresponds to signals which match observed signals most closely with

respect to a weighted norm.

We show that this optimal solution is equivalent (with appropriately chosen weights) to

a time-varying Kalman filter observing the state of the controller being switched on. The

infinite horizon solution is equivalent to a time-invariant filter, and can be implemented in

coprime factor form.

We show by example that these results can give a substantial improvement in the perfor-

mance of a system under switching.
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Chapter 5

We solve an alternative optimization problem explicitly over weighted future performance.

The solution is equivalent to minimization of a Lyapunov function for the new closed loop.

The method is demonstrated by example.

Chapter 6

We introduce a new Lyapunov theorem for the stability under arbitrary switching of reset

switching systems. A number of consequences of the theorem are noted, including a simple

quadratic Lyapunov function extension, and a necessary condition for the theorem.

We also show how the theorem applies when the reset is restricted to a particular structure

(continuous plant state, controller reset according to plant). This gives a necessary and

sufficient condition for the existence of stabilizing resets of such structure. These results lead

to LMI methods for constructing stabilizing resets in continuous or discrete time. The results

are shown to hold even when exact plant state information is not available, provided that a

stable plant estimator is used.

We show how such methods can be combined with the results of chapter 3 to reduce

computational requirements and improve performance, and demonstrate with an interesting

illustrative example.

We prove a trivial extension of Branicky’s multiple Lyapunov function work to reset

switching systems, and use the result to prove an extension of our earlier minimum dwell-

time result to reset switching systems.

7.2 Opportunities for further investigation

Chapter 3

When using the coprime factor approach to realizing controllers for stability under arbitrary

switching (without saturation), there is freedom available in the choice of Youla parameter

Q. Further investigation is needed to find ways in which this freedom may be exploited to

further improve performance.

The minimum dwell-time results are dependent on the choice of Lyapunov function (as are

existing results), and hence potentially very conservative. Further investigation could lead to

methods for choosing Lyapunov functions such that the resulting minimum dwell-times are

minimized.
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Chapter 6

The main Lyapunov theorem is proved in the restricted scenario of linear systems and linear

resets. Further investigation may lead to a more general result for nonlinear systems with

nonlinear resets.

When restricting consideration to plant/controller scenarios, the admissible reset is re-

stricted so that the controller is reset as a function of plant state. While this choice is justifi-

able in general terms, it would be interesting to discover whether the related results hold in

the more general scenario where the controller is reset according to both plant and controller

states.

In the main LMI results, there are potentially many solutions which yield stabilizing resets.

Further work is required to show whether we can use the available freedom to further improve

the performance of the resulting scheme.

7.2.1 General

We have taken some idealized viewpoints of the switching problem in order to obtain problems

that are solvable. The scenario of a single linear plant controlled by a number of alternative

controllers will seldom be the case in practice.

It should be noted however, that many of the results of this thesis trivially extend to cases

where the plant switches between linear models of a similar structure (with state continuity),

and the controller transitions are synchronized with the plant transitions. In particular, the

results of chapters 5, and 6 where the results are based on closed loop dynamics extend in

this way.

It is hoped that the results will be useful in a more general scenario, however care must

clearly be taken in applying such results outside the scope of the theoretical guarantees.

There is much scope for further investigation of these results, particularly in relation to the

robustness of such results under model uncertainty and noisy measurements. We would for

example like to be able to make solid guarantees in the case where we have a nonlinear plant

which is covered by a family of uncertain linear plants, and a family of controllers which each

robustly control one of the uncertain linear plants.



Appendix A

Some basic results

A.1 Matrix inversion lemma

Let A be a square matrix partitioned as follows

A :=
[

A11 A12

A21 A22

]

.

Lemma A.1.1. Suppose A11 and A22 are nonsingular. Then the following identity holds,

when A11 − A12 A−1
22 A21 is invertible.

(

A11 − A12 A−1
22 A21

)−1
= A−1

11 + A−1
11 A12

(

A22 − A21 A−1
11 A12

)−1
A21 A−1

11 . (A.1)

For a derivation, see [62].

A.2 Least squares optimisation

Lemma A.2.1. Define the cost function

V =
[

z

x

]∗ [
P11 P12

P21 P22

][

z

x

]

,

where

P =
[

P11 P12

P21 P22

]

> 0,

Then the minimum of V with respect to x is

min
x

V = z∗
(

P11 − P12 P−1
22 P21

)

z,
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achieved when

x = −P−1
22 P21z

Proof. Completing the square on V, we obtain:

V =
[

z

x

]∗ [
P11 P12

P21 P22

][

z

x

]

= z∗P11z + x∗ P22x + z∗P12x + x∗ P21z

=
(

x + P−1
22 P21z

)∗
P22

(

x + P−1
22 P21z

)

+ z∗
(

P11 − P12 P−1
22 P21

)

z,

and so the minimum is clearly z∗(P11 − P12 P−1
22 P21)z, achieved when x = −P−1

22 P21z.

Lemma A.2.2. Define the cost function

V = ‖z − H x‖2 .

Then, the minimum of V with respect to x is

min
x

V =
∥

∥(I − H H†)z
∥

∥

2
.

achieved when

x = H†z,

where H† is the left pseudo inverse of H.

Proof. By completing the square on V :

V = (z − H x)∗(z − H x)

= z∗z + x∗H∗H x − x∗H∗z − z∗H x

=
[

z

x

]∗ [
I −H

−H∗ H∗H

][

z

x

]

=
[

x −
(

H∗H
)−1

H∗z
]∗
(

H∗H
)

[

x −
(

H∗H
)−1

H∗z
]

+ z∗
(

I − H
(

H∗ H
)−1

H∗
)

z.

So the minimum with respect to x is achieved when

x =
(

H∗H
)−1

H∗z = H†z,

and the corresponding minimum of V is

min
x

V =
∥

∥(I − H H†)z
∥

∥

2
.
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A.3 Closed loop equations

A.3.1 Continuous-time

Consider the feedback arrangement in figure A.1.

r

u

yGK

Figure A.1: System after switch

Let the plant state be xG(t) ∈ RnG , and the controller state xK (t) ∈ RnK .

Suppose G and K have the following continuous-time state-space representations:

G =
[

AG BG

CG DG

]

K =
[

AK BK

CK DK

]

. (A.2)

Then we can write the following equations
[

ẋG

˙xK

]

=
[

AG 0

0 AK

][

xG

xK

]

+
[

BG 0

0 −BK

][

u

y

]

+
[

0

BK

]

r,

[

u

y

]

=
[

0 CK

CG 0

][

xG

xK

]

+
[

0 DK

−DG 0

][

u

y

]

+
[

DK

0

]

r

=
[

I −DK

DG I

]−1 [
0 CK

CG 0

][

xG

xK

]

+
[

I −DK

DG I

]−1 [
DK

0

]

r.

Now we can write the closed loop state-space equations

[

ẋG

˙xK

]

=





[

AG 0

0 AK

]

+
[

BG 0

0 −BK

][

I −DK

DG I

]−1 [
0 CK

CG 0

]





[

xG

xK

]

+





[

0

BK

]

+
[

I −DK

DG I

]−1 [
DK

0

]



 r

, (A.3)

[

u

y

]

=
[

I −DK

DG I

]−1 [
0 CK

CG 0

][

xG

xK

]

+
[

BG 0

0 −BK

][

I −DK

DG I

]−1 [
DK

0

]

r.

(A.4)
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Define the following matrices:

A =
[

AG 0

0 AK

]

+
[

BG 0

0 −BK

][

I −DK

DG I

]−1 [
0 CK

CG 0

]

, (A.5)

B =
[

0

BK

]

+
[

BG 0

0 −BK

][

I −DK

DG I

]−1 [
DK

0

]

, (A.6)

C =
[

I −DK

DG I

]−1 [
0 CK

CG 0

]

, (A.7)

D =
[

I −DK

DG I

]−1 [
DK

0

]

. (A.8)

Then the closed loop equations can be written
[

ẋG

˙xK

]

= A

[

xG

xK

]

+ Br, (A.9)

[

u

y

]

= C

[

xG

xK

]

+ Dr. (A.10)

To guarantee the absence of algebraic loops, it will often be assumed that I + DK DG =
I + DG DK = I (usually DG or DK zero). When this is the case

[

I −DK

DG I

]−1

=
[

I DK

−DG I

]

,

and the closed loop state-space matrices can be written

A =
[

AG + BG DK CG BGCK

−BK CG AK + BK DGCK

]

, (A.11)

B =
[

BG DK

BK

]

, (A.12)

C =
[

DK CG CK

CG −DGCK

]

, (A.13)

D =
[

DK

0

]

. (A.14)

A.3.2 Discrete-time

Let k ∈ Z+ be the the discrete-time variable. Let the plant state be xG(k) ∈ RnG , and the

controller state xK (k) ∈ RnK .
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Suppose G and K have the following discrete-time state-space representations:

G =
[

AG BG

CG DG

]

K =
[

AK BK

CK DK

]

. (A.15)

Then in similar fashion to the continuous-time case, we can write the closed loop equations
[

xG(k + 1)

xK (k + 1)

]

= A

[

xG(k)

xK (k)

]

+ Br(k), (A.16)

[

u(k)

y(k)

]

= C

[

xG(k)

xK (k)

]

+ Dr(k). (A.17)

where

A =
[

AG 0

0 AK

]

+
[

BG 0

0 −BK

][

I −DK

DG I

]−1 [
0 CK

CG 0

]

, (A.18)

B =
[

0

BK

]

+
[

BG 0

0 −BK

][

I −DK

DG I

]−1 [
DK

0

]

, (A.19)

C =
[

I −DK

DG I

]−1 [
0 CK

CG 0

]

, (A.20)

D =
[

I −DK

DG I

]−1 [
DK

0

]

. (A.21)

When I + DK DG = I + DG DK = I , these simplify to

A =
[

AG + BG DK CG BGCK

−BK CG AK + BK DGCK

]

, (A.22)

B =
[

BG DK

BK

]

, (A.23)

C =
[

DK CG CK

CG −DGCK

]

, (A.24)

D =
[

DK

0

]

. (A.25)

A.4 Continuous-time Lyapunov equation

Theorem A.4.1. Given a stable matrix A, and Q > 0, the solution P to the continuous-time

Lyapunov equation

A∗ P + P A = −Q (A.26)
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is given by

P =
∫ ∞

0
eA∗τ QeAτdτ, (A.27)

Proof. Define the trajectory x(t) as

ẋ(t) = Ax(t),

and let

V (t) = x∗(t)Px(t).

Then

V̇ (t) = x∗(t)(A∗ P + P A)x(t)

= −x∗(t)Qx(t).

Now we can write
∫ t

0
V̇ (x(τ ))dτ = V (x(t))− V (x(0))

=⇒ −x∗(0)
(
∫ t

0
eA∗τ QeAτdτ

)

x(0) = x∗(0)eA∗t PeAt x(0)− x∗(0)Px(0).

Since A is stable, we know that

lim
t→∞

eAt = 0,

so when we take the above integrals to ∞, we obtain

P =
∫ ∞

0
eA∗τ QeAτdτ
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