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Switching criteria for hybrid rarefied gas
flow solvers

BY DUNCAN A. LOCKERBY
1,*, JASON M. REESE

2

AND HENNING STRUCHTRUP
3

1School of Engineering, University of Warwick, Coventry CV4 7AL, UK
2Department of Mechanical Engineering, University of Strathclyde,

Glasgow G1 1XJ, UK
3Department of Mechanical Engineering, University of Victoria, Victoria,

British Columbia, Canada V8W 3P6

Switching criteria for hybrid hydrodynamic/molecular gas flow solvers are developed,
and are demonstrated to be more appropriate than conventional criteria for identifying
thermodynamic non-equilibrium. For switching from a molecular/kinetic solver to a
hydrodynamic (continuum-fluid) solver, the criterion is based on the difference between
the hydrodynamic near-equilibrium fluxes (i.e. the Navier–Stokes stress and Fourier heat
flux) and the actual values of stress and heat flux as computed from the molecular solver.
For switching from hydrodynamics to molecular/kinetic, a similar criterion is used but
the values of stress and heat flux are approximated through higher order constitutive
relations; in this case, we use the R13 equations. The efficacy of our proposed switching
criteria is tested within an illustrative hybrid kinetic/Navier–Stokes solver. For the test
cases investigated, the results from the hybrid procedure compare very well with the full
kinetic solution, and are obtained at a fraction of the computational cost.

Keywords: local Knudsen number; switching criteria; breakdown parameter;
hybrid code; rarefied gas flows
*A

Rec
Acc
1. Introduction

In a gas flow, the Knudsen number—the ratio between the mean free path l of
a gas molecule and a meaningful characteristic length of the process—is a
dimensionless parameter that represents the degree of rarefaction. More
specifically, it describes the extent to which the gas flow departs from local
thermodynamic equilibrium. The classical hydrodynamic constitutive equations,
i.e. the laws of Navier–Stokes and Fourier, follow from the Boltzmann kinetic
equation in the limit of small Knudsen number by means of the Chapman–
Enskog method (Chapman & Cowling 1970). That the Knudsen number can
be used to characterize different rarefied regimes is therefore implicit in this
method, and the modelling methods appropriate for these regimes follow from
the analysis. Gas processes with small Knudsen number can be described
with the equations of classical hydrodynamics, while processes with larger
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Knudsen number must be described by more elaborate means, e.g. the
Boltzmann equation itself, or higher order continuum models (Reese et al.
2003; Struchtrup 2005).

The Knudsen number, in its global form, depends on a somewhat arbitrary
choice of the macroscopic length scale. In a two-dimensional channel flow, for
example, it is not clear whether this length should be half the channel height
or the full channel height—this choice affects the Knudsen number by a factor
of 2. More complicated flow processes will contain a multitude of relevant
length scales, and assessment of the Knudsen number becomes correspondingly
more difficult.

Additionally, some parts of a flow domain might be in the hydrodynamic
regime, while others are in the Boltzmann kinetic regime. Since hydrodynamic
codes are far faster than molecular/kinetic solvers, the computational effort can
be minimized by using hybrid codes, which apply the appropriate solvers in the
respective flow regions (Wang & Boyd 2003). However, these codes require
switching criteria, also called ‘breakdown parameters’ (Kolobov et al. 2007), to
identify these regions and for switching from hydrodynamic (continuum-fluid)
to molecular/kinetic solvers and vice versa.

An often-used switching criterion is a local Knudsen number, where the length
scale is a formulation based on the local spatial gradients of hydrodynamic
variables, viz.

KnL Z
l

f

df

dx

����
����; ð1:1Þ

where l is the molecular mean free path and f is a significant flow quantity,
typically density, temperature or pressure (Wang & Boyd 2003).

There are a number of ways to define the local Knudsen number, and each can
give significantly different values. So the choice of what to use as a switching
criterion has proven a problem in itself (Wang & Boyd 2003). This is especially
apparent when considering microflows. For example, based on the definition
given in equation (1.1), a low-speed micro gas flow will have a uniformly
negligible local Knudsen number because the gradients of the flow variables are
negligibly small. Nevertheless, non-equilibrium effects are far from negligible in
these cases (Lockerby et al. 2005a). For hypersonic aerodynamic flows it has been
suggested (Macrossan 2006) that Ma$KnL, where Ma is the local Mach number,
is a more appropriate breakdown parameter; however, this parameter would be
inappropriate for low-speed gas flows, which have a very small Mach number but
can still be quite rarefied.

These issues prompt the question: is there a local Knudsen number definition,
and hence a switching criterion, which is appropriate both for hypersonic and for
micro gas flows?

In this paper, we address this question by introducing new local Knudsen
number definitions as switching criteria measuring the departure from
hydrodynamic behaviour. For switching from a molecular/kinetic solver to a
hydrodynamic (continuum-fluid) solver, the switching criterion is based on the
difference between the hydrodynamic near-equilibrium fluxes, i.e. the Navier–
Stokes stress and Fourier heat flux, and the actual values of stress and heat flux
as computed from the molecular solver. For switching from a hydrodynamic to a
molecular solver, a similar criterion is used but the values of stress and heat flux
Proc. R. Soc. A
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are approximated through higher order constitutive relations. For the latter, we
adopt the regularized 13 moment equations, which are an extension of
hydrodynamics to third-order accuracy in the Knudsen number (i.e. super
Burnett order) (Struchtrup & Torrilhon 2003; Struchtrup 2004, 2005).
2. Departure from hydrodynamics

Our arguments are based on the philosophy of the Chapman–Enskog method,
and we recall some basic elements of kinetic theory and the Chapman–Enskog
expansion before we proceed (Chapman & Cowling 1970; Struchtrup 2005). In
this paper, we consider monatomic ideal gases exclusively.

The central quantity in kinetic theory is the velocity distribution function
f(x, t, c), where f dc dx is the number of molecules with microscopic velocities in
the interval (c, cCdc) in the space element (x, xCdx) at time t. To find the
distribution function we need to solve the Boltzmann equation.

The hydrodynamic quantities are velocity moments of the distribution
function, with the following definitions for mass density r, velocity vi ,
temperature T, pressure deviator (or stress) sij and heat flux qi:

rZm

ð
fdc; rvi Zm

ð
ci fdc;

3

2
rRT Z

m

2

ð
C 2fdc;

sij Zm

ð
ChiCjifdc; qi Z

m

2

ð
C 2fdc:

Here, R denotes the gas constant; m is the molecular mass of the gas; and
CiZciKvi is the peculiar velocity; indices in angular brackets denote trace-free
symmetric tensors. The pressure deviator is related to the stress tensor tij
normally used in hydrodynamics by sijZK(tijCpdij), where pZrRT is the ideal
gas pressure.

The Chapman–Enskog method aims to find an approximate velocity
distribution function from the Boltzmann equation. To this end, the distribution
function is formally expanded in the Knudsen number,

f Z fE CKnf ðNSFÞCKn2f ð2ÞCKn3f ð3ÞC/; ð2:1Þ
where fE denotes the Maxwellian equilibrium distribution and the additional
terms obey the compatibility conditions

0Zm

ð
ð fK fEÞdcZm

ð
cið fK fEÞdcZ

m

2

ð
C2ð fK fEÞdc: ð2:2Þ

These imply that the Knudsen order corrections do not affect the basic
hydrodynamic fields, r, vi , T, but only higher moments, in particular stress sij
and heat flux qi.

The stress and heat flux have no contribution from the equilibrium
distribution fE. The first-order correction, f (NSF), yields the laws of Navier–
Stokes and Fourier,

s
ðNSÞ
ij ZK2m

vvhi
vxji

; q
ðFÞ
i ZKk

vT

vxi
; ð2:3Þ
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with viscosity m and heat conductivity k. Deviation from conventional
hydrodynamic behaviour is therefore described by the higher order terms f (2),
f (3), . . Accordingly, we can write the stress and heat flux as

sij Zs
ðNSÞ
ij Cs

ðNHÞ
ij ; qi Z q

ðFÞ
i Cq

ðNHÞ
i ; ð2:4Þ

where s
ðNHÞ
ij and q

ðNHÞ
i are the non-hydrodynamic contributions to stress and heat

flux that result from f (2), f (3), . . From the Chapman–Enskog theory, we
conclude that these are of second order or higher in the Knudsen number.

To be useful as a switching criterion, a local Knudsen number should indicate
the degree of departure from equilibrium at a given point in the flow field. More
precisely, if it is to be used to establish when the Navier–Stokes–Fourier
equations can or cannot be employed, it should indicate the degree of departure
from near-local equilibrium (i.e. the thermodynamic state that must exist for the
Navier–Stokes–Fourier equations to be valid). Furthermore, it is not departure
from near equilibrium in an absolute sense that we are interested in here; for
example, low-speed flows of different flow magnitude will have the same
rarefaction characteristics but depart from near equilibrium at different absolute
levels—however, we would require the same modelling for each. So it is departure
relative to the level of near equilibrium that we are interested in, i.e. relative to
Navier–Stokes–Fourier hydrodynamics.

This therefore suggests, as measures for relative deviation from hydrodynamic
behaviour, the following local Knudsen numbers:

Kns Z
ksijKs

ðNSÞ
ij k

ksðNSÞij k
Z

ksðNHÞ
ij k

ksðNSÞij k
; Knq Z

kqiKq
ðFÞ
i k

kqðFÞi k
Z

kqðNHÞ
i k

kqðFÞi k
; ð2:5Þ

where k$k denotes suitable norms to be discussed below. Since the hydrodynamic
expressions s

ðNSÞ
ij and q

ðFÞ
i are of first order in the Knudsen number, and the non-

hydrodynamic corrections s
ðNHÞ
ij and q

ðNHÞ
i are at least of second order in the

Knudsen number, their ratio should be of first order (or higher) in the Knudsen
number. In general,mechanical and thermal effectsmay occur on different scales, so
an overall local Knudsen number could be the maximum of the above values, i.e.

KnL ZmaxðKns;KnqÞ:
To complete our definition of the local Knudsen number,1 equation (2.5),

it remains to choose suitable norms. For the definition of Knq, we propose using
the length of the vectors, and for the definition of Kns, we propose the square root
of the second invariant of the (trace-free and symmetric) tensors, which gives
a similar measure, i.e.

kqikZ
ffiffiffiffiffiffiffiffi
qiqi

p
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q21 Cq22 Cq23

q
;

ksijkZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
jsiisjjKsijsij j

s
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
jsijsij j

s

Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
js211Cs11s22Cs222Cs212 Cs213Cs223j

q
:

9>>>>>>>=
>>>>>>>;

ð2:6Þ
1 It may be helpful to refer to this as a local transport Knudsen number in order to distinguish it
from the classical local Knudsen number; in this paper, though, in the interest of brevity, we simply
use ‘local Knudsen number’.
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Both norms are invariant under linear transformations and thus independent of
the choice of reference frame.

To test the performance of these local Knudsen number definitions as
switching criteria, switching in both directions must be considered: molecular-
to-continuum; and continuum-to-molecular. In some respects, determining
appropriate switching from a molecular to a continuum solution is hypothetical,
since the more accurate solution (the molecular one) has already been obtained.
However, this may not be so clear cut in time-dependent simulations.
3. Local Knudsen numbers based on the R13 equations

In molecular-to-continuum switching, the actual values of stress, sij , and heat
flux, qi , can be computed from the molecular/kinetic solution (the velocity
distribution f ) so the calculation of the local Knudsen numbers, equation (2.5),
is straightforward. We may use the molecular/kinetic results for the velocity

and temperature fields to estimate s
ðNSÞ
ij and q

ðFÞ
i as

s
ðNSÞ
ij ZK2m

vv
ðkineticÞ
hi
vxji

; q
ðFÞ
i ZKk

vT ðkineticÞ

vxi
: ð3:1Þ

On the other hand, when switching from a hydrodynamic solver to a
molecular-based simulation, the actual values of stress and heat flux
are unknown: hydrodynamic solvers only produce the first-order contributions
s
ðNSÞ
ij , q

ðFÞ
i , see equation (2.3).

However, higher order constitutive relations can be used to estimate the higher
order contributions s

ðNHÞ
ij and q

ðNHÞ
i from the hydrodynamic result. For this,

we require a higher order theory that performs well in both low-speed and high-
speed problems.

There are many competing high-order equation sets in the literature; space
precludes a detailed discussion here, instead see Reese et al. (2003), Struchtrup &
Torrilhon (2003), Lockerby et al. (2005b), Struchtrup (2005) and Lockerby &
Reese (2008). Best known, perhaps, are the Burnett equations (Burnett 1936;
Chapman & Cowling 1970; Struchtrup 2005), variants of which have been shown
to accurately reproduce the viscous structure of one-dimensional shock waves
(Reese et al. 1995). Lockerby & Reese (2008) tested a number of different high-
order continuum-type equations against a simple low-speed benchmark case with
no bounding surfaces. They concluded that the regularized 13 moment (R13)
equations, proposed by Torrilhon and Struchtrup (Struchtrup & Torrilhon 2003;
Struchtrup 2004, 2005) as a development of Grad’s original 13 moment
technique, provided the best model among the several tested. The R13 equations
have also shown good predictive capabilities in high-speed flows (Torrilhon &
Struchtrup 2004). Only recently, a set of boundary conditions for the R13
equations has been provided (Struchtrup & Torrilhon 2007; Torrilhon &
Struchtrup 2008), and it was shown that the equations can also predict Knudsen
layer dominated problems to some extent (Struchtrup & Torrilhon 2008; Taheri
et al. 2009).
Proc. R. Soc. A
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We therefore propose the following local Knudsen number definitions based on
the R13 equations:

Kns Z
ksðR13Þij Ks

ðNSÞ
ij k

ksðNSÞij k
; Knq Z

kqðR13Þi Kq
ðFÞ
i k

kqðFÞi k
: ð3:2Þ

If the R13 equations are being solved within the hydrodynamic solver, then these

Knudsen numbers are straightforward to calculate: s
ðR13Þ
ij and q

ðR13Þ
i form part

of the result, while s
ðNSÞ
ij and q

ðFÞ
i can be calculated from the R13 results for

velocity and temperature, i.e. s
ðNSÞ
ij ZK2mðvvðR13Þhi =vxjiÞ, q

ðFÞ
i ZKkðvT ðR13Þ=vxiÞ

in the same way as described above for the molecular solver.
However, the local Knudsen numbers may also be estimated cheaply within a

conventional Navier–Stokes–Fourier hydrodynamic solver, as

Kns Z
k�sðR13Þij Ks

ðNSÞ
ij k

ksðNSÞij k
; Knq Z

k�qðR13Þi Kq
ðFÞ
i k

kqðFÞi k
; ð3:3Þ

where �s
ðR13Þ
ij and �q

ðR13Þ
i are calculated from the R13 constitutive relations, but

using the hydrodynamic variables ðr; vi;T ;s
ðNSÞ
ij ; q

ðFÞ
i ÞðNSFÞ provided from the

solver. The error this introduces is acceptable for switching purposes, as an
estimate of the local Knudsen number is sufficient. The full R13 equations are
given in appendix A, where we also state which terms will be computed from the
hydrodynamic fields.

The idea of using the R13 equations with data from hydrodynamics recalls the
testing method for higher order models proposed in Zheng et al. (2006), where
results from a microscopic solver were inserted into the higher order models.
4. Examples

We consider several benchmark flow examples to explore the usefulness of our
definitions for the local Knudsen number.

(a ) Example I. Shock structure using the Burnett equations

As an illustrative introduction to our new approach, we first examine the
classical shock structure problem and draw conclusions about the local Knudsen
number derived using the classical Burnett equations. Normal shock waves are
essentially one-dimensional structures. The (trace-free) stress tensor is diagonal,
with s22Zs33ZKð1=2Þs11 and the Navier–Stokes normal stress is

s
ðNSÞ
11 ZK

4

3
m
dv

dx
;

where x is the direction longitudinally through the shock and v is the
x -component of velocity. The dominant nonlinear term featuring in the Burnett
expression for the stress is (Chapman & Cowling 1970)

s
ðBÞ
11 Z

Am2

p

dv

dx

� �2

; ð4:1Þ
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where A is a dimensionless constant for the particular gas. If this Burnett
expression is used to estimate the non-equilibrium stress s

ðNHÞ
11 , we find from

equation (2.5) that the local Knudsen number is

KnðshockÞ
s Z

ffiffiffi
3

4

r
s
ðBÞ
11ffiffiffi

3

4

r
s
ðNSFÞ
11

Z

Am2

p

dv

dx

� �2

4

3
m

dv

dx

� �
���������

���������
Z

����� 34 A

p
m
dv

dx

�����ZaMa
l

r

����� drdx
�����: ð4:2Þ

Here, we have used the mass balance d(rv)/dxZ0, the mean free path
lZm

ffiffiffiffiffiffiffiffi
RT

p
=p (for convenience, without the factor

ffiffiffiffiffiffiffiffi
p=2

p
x1:25, which is often

found in literature) and the local Mach number MaZv=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5RT=3

p
. The

coefficient a is a number of order unity.
The form given in equation (4.2) is equivalent to the usual local Knudsen

number, equation (1.1), multiplied by the Mach number. This is the same local
breakdown parameter identified by Bird (1970) for high-speed expanding flows,
and closely related to Tsien’s (1946) parameter, which was also identified by
Macrossan (2006) as a better indicator for high-speed flows than the local
Knudsen number, equation (1.1), alone.

So our present proposal can be related directly to accepted approaches for
nonlinear high-speed flows, but has the additional advantage that it should also be
relevant for low-speed micro flows, as will become clear in the following sections.

(b ) Example II. Nonlinear shear flow with second-order hydrodynamics

For nonlinear shear flow between two parallel plates, both the Burnett and
R13 equations (to second order in Kn) yield (Struchtrup 2005; Struchtrup &
Thatcher 2007),

s12 ZKm
dv

dy
; s11 Z

8

5

s12s12

p
; s22 ZK

6

5

s12s12

p
;

q1 Z
7

2

s12q2
p

; q2 ZK
15

4
mR

dT

dy
;

9>>>>=
>>>>;

ð4:3Þ

where y is the direction normal to the plates. Note that q1 is a heat flux
perpendicular to the temperature gradient. In classical hydrodynamics, s12 and
q2 have the values given above, while s11Zs22Zq1Z0. From equation (2.5) the
local Knudsen numbers are

KnðshearÞ
s Z

ffiffiffiffiffiffi
52

25

r
s12

p

����
����Z âMa

l

v

dv

dy

����
����;

KnðshearÞ
q Z

7

2

s12

p

����
����Z �aMa

l

v

dv

dy

����
����;

9>>>=
>>>;

ð4:4Þ

which are in essence agreeing with equation (4.2). The major difference lies not in
the numerical factors ða; â; �aÞ but in the fact that for shear flow, the velocity
gradient cannot be expressed through the density gradient.

(c ) Example III. Linear Poiseuille flow with the R13 equations

We now show that the local Knudsen number, equation (2.5), gives
meaningful results also for linear flows.
Proc. R. Soc. A
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In Struchtrup & Torrilhon (2007), linear force-driven Poiseuille flow was
considered using the R13 equations with jump and slip boundary conditions. In
dimensionless form, the analytical result reads

s12ZFy;

vZF
1

2Kn

1

4
Ky2

 !
C

1

2

ffiffiffiffi
p

2

s
C

5

6
KnC

3

25
ð1C5KnÞ 1

2
K

cosh
ffiffiffiffiffiffiffiffi
5=9

p
ðy=KnÞ

h i
cosh½

ffiffiffi
5

p
=6Kn�

0
@

1
A

1C
12

5
ffiffiffi
5

p tanh

ffiffiffi
5

p

6Kn

" #
2
6666664

3
7777775
;

q1ZK
3

2
FKnC

3

10
F

ð1C5KnÞ

1C
12

5
ffiffiffi
5

p tanh

ffiffiffi
5

p

6Kn

" #
cosh

ffiffiffi
5

9

s
y

Kn

2
4

3
5

cosh

ffiffiffi
5

p

6Kn

" # ;

ð4:5Þ

where F is the dimensionless driving force and KnZm
ffiffiffiffiffiffiffiffi
RT

p
=pH is the global

Knudsen number based on the channel height H. All other non-equilibrium
quantities vanish in the linear regime, and the temperature is constant; the
Fourier heat flux vanishes, making Knq irrelevant.

The Navier–Stokes stress computed using the R13 result for velocity reads

s
ðNSFÞ
12 ZKKn

vv

vy
ZFyCF

1

5
ffiffiffi
5

p ð1C5KnÞ

1C
12

5
ffiffiffi
5

p tanh

ffiffiffi
5

p

6Kn

� �
sinh

ffiffiffi
5

9

r
y

Kn

" #

cosh

ffiffiffi
5

p

6Kn

� � ; ð4:6Þ

where s
ðNSFÞ
12 and s12 differ only due to Knudsen layer effects. The local Knudsen

number, equation (2.5), then becomes

Kns Z 1C

1C
12

5
ffiffiffi
5

p tanh

ffiffiffi
5

p

6Kn

� �
1

5
ffiffiffi
5

p ð1C5KnÞ

y cosh

ffiffiffi
5

p

6Kn

� �

sinh

ffiffiffi
5

9

r
y

Kn

" #
0
BBBB@

1
CCCCA

K1

; ð4:7Þ

and figure 1 shows this function of the dimensionless space coordinate and the
global Knudsen number for global Knudsen numbers between 0.01 and 1. Note
that while the R13 equations are accurate only for Knudsen numbers below 0.5
(Struchtrup & Torrilhon 2008), they give a valid qualitative description of flows
with larger Knudsen numbers. So equation (4.7) gives a useful estimate for the
local Knudsen number.

For very small global Knudsen number, KnZ0.01, the local Knudsen number
Kns is zero in the bulk but is one order of magnitude larger than Kn close to the
walls, i.e. in the Knudsen layers. This indicates that hydrodynamics is a sufficient
model of the bulk flow, but a more sophisticated approach is needed near the
Proc. R. Soc. A
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Figure 1. The local Knudsen number Kns for linear Poiseuille flow of example III, calculated using
the R13 equations, for various global Knudsen numbers Kn.
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walls. Owing to the relatively small extent of the Knudsen layer in this case, it
might not be necessary to resolve the Knudsen layer, and proper higher order slip
boundary conditions might be sufficient (Cercignani 1990; Lockerby et al. 2004;
Struchtrup & Torrilhon 2008).

As the global Knudsen number grows to KnZ0.05, the Knudsen layer extends
further into the gas, with the local Knudsen number below KnsZ0.1 at the walls
and zero towards the middle of the channel. For higher global Knudsen numbers,
the local Knudsen numbers Kns are larger as well and become almost constant
across the channel. For this particular problem, the values of Kns lie below those
of Kn and converge towards 0.25.
(d ) Example IV. Linear Poiseuille flow with a BGK kinetic solver

We now consider a numerical solution of the Bhatnagar–Gross–Krook (BGK)
kinetic model equation for the case of low-speed Poiseuille flow. The global
Knudsen number, based on the full channel height, is KnZ0.08.

In figure 2, a hydrodynamic solution with second-order slip boundary
conditions (Cercignani 1990; Struchtrup & Torrilhon 2008) is plotted with a
solution to the BGK kinetic equation (see Chapman & Cowling 1970) obtained
using a discrete velocity method. The reader is referred to Valougeorgis (1988)
and Valougeorgis & Naris (2003) for a detailed description of the mathematical
and numerical formulation of this method (and which also deal with the
application of more sophisticated model equations than the BGK approximation
used here). In both simulations, 500 grid points are used. The new local Knudsen
number, from equation (2.5), is also plotted, where

Kns Z
js12Cm vv

vy j
jKm vv

vy j
; ð4:8Þ

with s12 the shear stress and v the flow velocity, both computed from the
BGK solver.
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Figure 2. Normalized velocity profile using Navier–Stokes hydrodynamics with slip (dashed line)
and a BGK simulation (solid line) of the Poiseuille flow in example IV; local Knudsen number,
equation (2.5), calculated from BGK data (dot-dashed line).
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As in the previous example, the local Knudsen number Kns is identifying the
non-equilibrium in the Knudsen layers close to the confining surfaces clearly and
distinctly from the near-equilibrium bulk flow (where switching to a continuum
solution could occur without significant error). Conventional local Knudsen
number definitions based on equation (1.1) could not provide this information
since their values are negligibly small throughout the channel.
(e ) Example V. Switching from a linear NSF solver to a molecular solver

For a simple linear shear flow with, again, a dimensionless driving force F,
classical hydrodynamics gives

s
ðNSÞ
12 ZKKn

dv

dy
ð4:9Þ

in dimensionless variables, while the linearized R13 equations reduce to

ds
ðR13Þ
12

dy
ZF ; s

ðR13Þ
12 ZKKn

dv

dy
C

52

15
Kn2 d

2s12

dy2
C

9

5
Kn3 d

3v

dy3
K

48

25
Kn4 d

4s12

dy4
:

ð4:10Þ
To apply the definition of the local Knudsen number in equation (3.3), we use the
solution of the Navier–Stokes equations, equation (4.9), in the right-hand side of
the expression for s

ðR13Þ
12 in equation (4.10), giving

�s
ðR13Þ
12 ZKKn

dv

dy
K

5

3
Kn3 d

3v

dy3
C

48

25
Kn5 d

5v

dy5
; ð4:11Þ

or, more instructively,

�s
ðR13Þ
12 Zs

ðNSÞ
12 C

5

3
Kn2 dF

dy
K

48

25
Kn4 d

3F

dy 3
: ð4:12Þ
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Clearly, when the force is constant in the y direction, as would be the case for the
force-driven channel flow of the previous example, we have �s

ðR13Þ
12 Zs

ðNSÞ
12 , and the

computation of the local Knudsen number according to equation (3.3) simply
yields KnsZ0. As was seen in example III, in the linear regime, the difference
between the two hydrodynamic models is only due to Knudsen layers: in the
linear regime, our local Knudsen numbers can identify when to switch from a
higher order theory or molecular/kinetic solver to classical hydrodynamics, but
not when to switch in the other direction.

While our proposed local Knudsen numbers cannot identify the inability of the
Navier–Stokes–Fourier model to reproduce Knudsen layers, the next example
will show that the method can identify rarefaction in the bulk when, for example,
the force is a function of space.
(f ) Example VI. A hybrid flow calculation

Following the discussion in §4e, we finally investigate the steady-state channel
flow response to the non-constant body force,

Fx Z a1Kny exp½Ka2y
2�;

where x is in the flow direction (and perpendicular to y), a1Z
ffiffiffiffiffiffiffiffi
2=p

p
105, a 2Z103,

and KnZm
ffiffiffiffiffiffiffiffi
RT

p
=pH is the global Knudsen number based on the full channel

height H. The variation of this normalized body force through the channel is
shown in figure 3 for the global Knudsen number KnZ0.04. This simple forcing
function, while somewhat artificial, has been chosen because it generates a shear
flow, shown in figure 4, that exhibits both near-equilibrium and strong non-
equilibrium behaviour in the bulk flow (away from the walls). This flow is
reminiscent, in some respects, of the velocity variation through a stationary
monopole vortex.

From equation (4.11), the local Knudsen number, equation (3.3), becomes

Kns Z
K

5

3
Kn3 d

3v

dy3
C

48

25
Kn5 d

5v

dy5

����
����

KKn
dv

dy

����
����

ZKn2

5

3

d3v

dy3
K

48

25
Kn2 d

5v

dy5

����
����

dv

dy

����
����

: ð4:13Þ

For this geometry, our definition of the local Knudsen number gives a
quadratic relationship between the local Knudsen number Kns and the global
Knudsen number Kn, since there are no second-order contributions in the

equation for s
ðR13Þ
ij .

To test the performance of equation (4.13) as a switching parameter, we
construct a simple hybrid solution procedure. First, the Navier–Stokes equations
are solved, shown by the dotted line in figures 5 and 6 for global KnZ0.02 and
0.08, respectively. The local Knudsen number is then calculated from equation
(4.13) and, based on a local Knudsen number threshold of 0.2, the high-Kns
portion of the domain is handled by the BGK kinetic solver (at the same spatial
resolution). As before, the solver of Valougeorgis (1988) and Valougeorgis &
Naris (2003) is used with the standard BGK approximation to the collision
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Figure 4. Non-dimensional velocity response to the body force in example VI; BGK kinetic solution
(solid line) and Navier–Stokes solution with slip (dashed line).
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Figure 3. Normalized body forcing through the channel of example VI.

D. A. Lockerby et al.12

 on 25 February 2009rspa.royalsocietypublishing.orgDownloaded from 
integral. In this simple case, the near-equilibrium (Navier–Stokes) distribution is
(Chapman & Cowling 1970, §6.6)

fNS Z fEK cy
m

p

dv

dy

dfE
dv

Z fEK cyðcxKvÞ m

pRT

dv

dy
fE; ð4:14Þ

where cx and cy are components of molecular velocity in the streamwise and cross-
stream directions, respectively. Enforcing a flow gradient in the BGK solver as a
boundary only requires the odd part of the distribution (with respect to cx and cy)
to be prescribed. So, if the Navier–Stokes velocity gradient is [dv/dy]NS at the
switching points, in the BGK solver this velocity gradient (and therefore near
equilibrium) can be enforced using
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Figure 6. Non-dimensional velocity response to the body forcing within the channel of example VI,
global KnZ0.08; hybrid BGK/Navier–Stokes solution (solid line); BGK kinetic solution (dashed
line); Navier–Stokes solution with slip (dotted line). The kinetic portion of the hybrid solution
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Figure 5. Non-dimensional velocity response to the body forcing within the channel of example VI,
global KnZ0.02; hybrid BGK/Navier–Stokes solution (solid line) and BGK kinetic solution
(dashed line); Navier–Stokes solution with slip (dotted line). The kinetic portion of the hybrid
solution occurs between xZ0.4 and 0.6.
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f ðcyÞZ f ðKcyÞK cxcy
m

pRT

dv

dy

� �
NS

fE for cyO0; ð4:15Þ

where f(cy) and f(Kcy) are the distributions of molecules entering and exiting the
domain, respectively. The velocity profile, v, calculated by the BGK solver is then
uniformly scaled (by a few per cent), so that the velocities at the switching points

occurs between xZ0.214 and 0.786.
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match the velocities of the Navier–Stokes solution at the same points. The
solutions are then combined across the domain.

Figures 5 and 6 show the solutions from this illustrative hybrid method,
compared with pure Navier–Stokes and BGK kinetic solutions, for global
KnZ0.02 and 0.08. The hybrid simulation at KnZ0.02 is of comparable
accuracy to the complete BGK kinetic solution, but has been obtained with a
kinetic domain size that is five times smaller. The relative proportions of
the deconstructed domain are 20%/80% (kinetic/Navier–Stokes) for KnZ0.02;
34%/66% for KnZ0.04; and 57%/43% for KnZ0.08. In all cases, the discrepancy
between the complete BGK solution and the hybrid method could be reduced by
adopting a lower switching threshold on the local Knudsen number, i.e. by
solving a greater proportion of the domain using the BGK solver.

Note that had we solved the R13 equations fully, a smaller kinetic domain
would have been required (and a higher local Knudsen number threshold would
be permissible). This may offset, partially at least, the additional computational
expense of their solution.
5. Modified switching parameters

There are certain situations in which a modified version of the local Knudsen
number discussed in §2 might be warranted—for example, for flow configurations
that have wide-ranging degrees of non-equilibrium (say, in stress). In the same
simulation, there could exist regions of high local Knudsen number (calculated
from equation (2.5)) at relatively low stress, and other regions with much greater
stress but a negligible local Knudsen number. In such a case, it would not be
efficient for a hybrid solver to switch to a molecular model to calculate stress in
the regions of high local Knudsen number because values for the stress, although
highly non-equilibrial, would be negligible in magnitude compared with those in
other regions of the flowfield. In such circumstances, a refined set of switching
criteria are

Kns Z
ksðNHÞij k

ksðNSÞij kmax

; Knq Z
kqðNHÞ

i k
kqðFÞi kmax

; ð5:1Þ

where the subscript ‘max’ denotes a maximum across the spatial domain
(although quantities other than the maximum could reasonably be used).
Figure 7 shows this modified local Knudsen number calculated for linear
Poiseuille flow using BGK kinetic data (for a global KnZ0.08); these results are
directly comparable to those shown earlier in figure 2. The Knudsen layers are
again clearly identified, although a lower threshold would be required for
switching with this definition. The illustrative hybrid simulations shown in
figures 5 and 6 can be reproduced identically using our modified local Knudsen
number of equation (5.1), but with a threshold of 0.01, rather than 0.2.

In circumstances where the spatial maximum does not reflect the range of non-
equilibrium in a solution, and/or situations where the range of non-equilibrium is
not reflective of the grid resolution required by the user, then an alternative
modification to equation (5.1) is required.
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Figure 7. Navier–Stokes solution with slip (dashed line) and BGK/kinetic simulation (solid line) of
Poiseuille flow. Modified local Knudsen number (dot-dashed line), equation (5.1), calculated from
the BGK data.
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Another situation where the use of equation (2.5) alone might be problematic

is when ksðNHÞij k and ksðNSÞij k, or kqðNHÞ
i k and kqðFÞi k, are zero in different spatial

locations. In these situations, our definition of the local Knudsen number tends to
infinity.However, this canbehandled relatively easily byusing themodifiedKnudsen
number in equation (5.1) instead, or by the following purely local modification:

Kns Z
ksðNHÞij k

max ksðNSÞij k; ksðNHÞij k
n o ; Knq Z

kqðNHÞi k
max kqðFÞi k; kqðNHÞ

i k
n o : ð5:2Þ

Effectively, this definition limits the local Knudsen number to values less than or
equal to one. For switching purposes, we are interested in threshold values
significantly lower than one, so this modification seems reasonable.
6. Conclusions

A set of local Knudsen numbers has been defined, which have been demonstrated
to be more appropriate than the conventional ones for identifying micro and
hypersonic gas flow non-equilibrium. The problem of choosing appropriate
molecular/hydrodynamic switching criteria has been addressed by adopting a
local Knudsen number definition based on higher order constitutive relations;
here the regularized 13 moment (R13) equations were chosen.

Several benchmark tests showed that our proposed local Knudsen number
gives meaningful results. For strongly nonlinear flows, the definition agrees with
the usual definitions in the literature.
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We also described a procedure to estimate efficiently the R13 local Knudsen
number within a Navier–Stokes solver, and the efficacy of this as a switching
criterion has been tested within an illustrative hybrid BGK/Navier–Stokes
solver. For the test case investigated, the results from the hybrid solver compare
very well with the full BGK solution, and are obtained at a fraction (that
depends on the global Kn) of the computational cost.

Since the local Knudsen number measures the relative deviation from classical
hydrodynamics, it can be considered as the error associated with the use of
classical hydrodynamics (more precisely, the error in the determination of the
local stress and heat flux). It depends on the flow application how much error the
user considers to be acceptable, and so at what value of the local Knudsen
number switching should occur.
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Appendix A. The R13 equations

For convenience, we present the complete R13 equations in this appendix; see
Struchtrup & Torrilhon (2003) and Struchtrup (2004, 2005) for the detailed
derivation and deeper discussion.

The basic equations are the conservation laws for mass, momentum and
energy, which can be written as

Dr

Dt
Cr

vvk
vxk

Z 0;

r
Dvi
Dt

Cq
vr

vxi
Cr

vq

vxi
C

vsik

vxk
Z rFi;

3

2
r
Dq

Dt
C

vqk
vxk

ZKrq
vvk
vxk

KsijSij ;

9>>>>>>>>>=
>>>>>>>>>;

ðA 1Þ

where qZRT is the temperature in energy units; D=DtZv=vtCvkv=vxk is the
convective time derivative; Fi is the external body force; and

Sij Z
vvhi
vxji

Z
1

2

vvi
vxj

C
1

2

vvj
vxi

K
1

3

vvk
vxk

dij :

The balance equations for stress and heat flux can be written as

�sij ZK
m

p

Dsij

Dt
Csij

vvk
vxk

C
4

5

vqhi
vxji

C2p
vvhi
vxji

C2skhi
vvji
vxk

C
vmijk

vxk

" #
; ðA 2Þ

�qi ZK
3

2

m

p

Dqi
Dt

C
5

2
p
vq

vxi
C

5

2
sik

vq

vxk
Cq

vsik

vxk
Kqsik

v ln r

vxk
C

7

5
qk

vvi
vxk

�

C
2

5
qk

vvk
vxi

C
7

5
qi
vvk
vxk

C
1

2

vRik

vxk
C

1

6

vD

vxi
Cmijk

vvj
vxk

K
sij

r

vsjk

vxk

�
; ðA 3Þ
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with the additional constitutive equations

DZK
sijsij

r
K12

m

p
q
vqk
vxk

C
5

2
qk

vq

vxk
Kqkq

v ln r

vxk
Cqskl

vvk
vxl

" #
;

Rij ZK
4

7

1

r
skhisjikK
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p
q
vqhi
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Cqhi
vq
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Kqqhi

v ln r
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mijk ZK2
m

p
q
vshij
vxki

Kshijq
v ln r
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C

4

5
qhi
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" #
:

When the R13 equations themselves are to be solved, �sij and �qi on the left-
hand sides of (A 2) and (A 3) are just the stress and heat flux, i.e. �sijZsij
and �qiZqi.

However, when the R13 equations are used to estimate the deviation
from hydrodynamics for use in equation (3.3), then the values on the right-
hand side of the above equations must be replaced by the hydrodynamic values,
sijZs

ðNSÞ
ij and qiZq

ðFÞ
i .
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