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Switching Frequency Regulation in Sliding Mode

Control by a Hysteresis Band Controller
Victor Repecho, Domingo Biel, Josep M. Olm, Member, IEEE, and Enric Fossas, Member, IEEE

Abstract—Fixing the switching frequency is a key issue in
sliding mode control implementations. This paper presents a
hysteresis band controller capable of setting a constant value for
the steady state switching frequency of a sliding mode controller
in regulation and tracking tasks. The proposed architecture relies
on a piecewise linear modeling of the switching function behavior
within the hysteresis band, and consists of a discrete-time integral-
type controller that modifies the amplitude of the hysteresis
band of the comparator in accordance with the error between
the desired and the actually measured switching period. For
tracking purposes an additional feedforward action is introduced
to compensate the time variation of the switching function
derivatives at either sides of the switching hyperplane in the
steady state. Stability proofs are provided, and a design criterion
for the control parameters to guarantee closed-loop stability is
subsequently derived. Numerical simulations and experimental
results validate the proposal.

Keywords—Sliding mode control, fixed switching frequency,
hysteresis band controller.

I. INTRODUCTION

Sliding mode control (SMC) constitutes a natural control
tool for variable structure systems (VSS), which are nonlinear
systems where the control inputs are inherently discontinuous
functions of time. SMC is able to provide directly the control
signal to the system without requiring any modulation method,
as could be a Pulse Width Modulator (PWM). Due to its well
known order reduction and robustness features, SMC is a suit-
able control option for systems with uncertain dynamics and/or
vulnerable to disturbances. Besides, sliding mode controllers
provide fast transient responses, because of their ability to use
all the available system gain.

The natural way to implement a sliding mode controller is
a sign function, but the ideally infinite switching frequency
required for the sliding mode to exist restricts its use. A
realistic approximation was reported in [2], [3], where a hys-
teresis comparator replaces the sign function, thus enforcing
the control action to switch at finite frequency. Although a
finite switching frequency is obtained, it is variable and system
dependent [4], [5]. In turn, finite switching frequency control
actions entail the appearance of chattering: while a bounded
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chattering could be acceptable for a given system, it becomes
a severe drawback in variable switching frequency conditions
because its amplitude changes with the switching frequency
and the plant parameters.

Thus, switching frequency reduction is a field of active
research, and interesting results have been obtained with
predictive sliding mode in a unity power factor rectifier [7],
and with double hysteresis band schemes in active filters [8]
and voltage source inverters [9].

Special attention has to be taken when implementing sliding
mode controllers in power converters, where the need to
operate at a constant switching fixed frequency is crucial,
because these systems are composed by reactive components
and their correct sizing strongly depends on the system switch-
ing frequency. Interesting implementation issues with fixed
hysteresis band were reported in [6] for elementary power
converters.

Several methods can be found in the literature to regu-
late the SMC switching frequency to a fixed value. Some
authors propose the use of an adaptive hysteresis band for
the comparator, adjusting its value in accordance with the
system state [10]–[15]. This method provides good results, but
perfect knowledge of the plant is required. A proper adaptation
of the hysteresis band amplitude, which in fact depends on
the equivalent control values, demands the use of additional
sensors and/or observers, thus increasing costs and reducing
system reliability.

In [16], [17] the use of an external signal to force a fixed
switching frequency in SMC is presented. The proposal re-
quires new hardware on the controller and only works properly
when the switching frequency is low enough with respect to
the time constants of the system: in fact, when the switching
frequency is increased the state dynamics drifts away from the
ideal sliding mode, and a steady-state error appears.

A fixed switching frequency can be obtained by means of
the Zero Averaged Dynamics (ZAD) method. This concept
was presented in [18] and later on implemented in [19]. The
main goal of the ZAD strategy consists in computing a duty
cycle that guarantees a zero T -periodic mean value of the
switching function, with T denoting the switching period.
As a consequence, the steady-state switching period is fixed
at a desired value and the averaged overall performance is
close to the ideal sliding mode one. Complex calculations and
fast processing requirements are the main drawbacks of ZAD-
based SMC fixed frequency implementations.

The so-called PWM-SMC was proposed in [20], [21].
This method implements directly an ideal equivalent control
calculated from a desired switching surface by a PWM at
fixed frequency, while an algorithm to estimate the switching



surface parameters was recently proposed in [23]. Results were
summarized in [22], confirming an overall good performance.
However, this solution can be derived without using sliding
mode concepts, as the equivalent control is a continuous-time
function that could be extracted imposing a desired dynamics
to the system. Furthermore, some key sliding mode properties,
as the previously mentioned order reduction and robustness in
the face of disturbances, could be lost. SMC desigs with fixed
switching frequency also achieved via PWM implementation
were introduced in [25] and [26]. In the latter, the control
law is smoothed within a boundary layer to reduce chattering
effects, at the cost of a performance reduction of the SMC.

The approach presented in this paper stems from the imple-
mentation of SMC by means of a hysteresis band compara-
tor, where the switching frequency is fixed at steady state.
A similar scheme was proposed for regulation purposes in
[24], [27]–[29], where constant switching frequency operation
was reached by means of a PI control loop that adjusts
the hysteresis amplitude value. The design of the control
parameters was made such that the dynamics of the switching
frequency loop was slow enough to avoid interactions with
the voltage and current loops [24], [27], and ensures local
stability of the linearized system around the equilibrium point,
[28], [29]. However, the proposal presented here is within an
SMC framework, which allows to develop a large signal model
and to analyze the frequency control loop. Therefore, the
controller design guarantees stability and asymptotic tendency
to a constant switching frequency when the system is on the
sliding surface. Furthermore, the addition of an appropriate
feedforward term to the integral action allows the extension of
the technique to tracking tasks, where small signal modelling
can no longer be applied.

The article is structured as follows. The mathematical model
of the switching frequency is derived in Section II. The
control architecture for both regulation and tracking tasks is
included in Section III, followed by the corresponding stability
analysis in Section IV. Numerical and experimental results
are presented in Sections V and VI, respectively. Finally,
conclusions are drawn in Section VII.

II. MATHEMATICAL MODEL OF THE SWITCHING

FREQUENCY BEHAVIOR

Let us consider an affine single-input single-output (SISO)
plant with dynamics given by

ẋ = f(x) + g(x)u, (1)

where x ∈ R
n denotes the state, f, g : Rn −→ R

n are smooth
vector fields, and u ∈ R is the control input.

Let also s : Rn ×R −→ R be a smooth scalar function and
consider the set

S := {x ∈ R
n; s(x, t) = 0} .

We refer to s = s(x, t) as the switching function, while S
stands for the switching surface.

Assume that the hysteretic control law

u =

{

u+ if s < −∆,
u− if s > ∆,

(2)

where ∆ is the hysteresis band width, ∆ > 0, and u± :=
{u+, u−} ∈ R denote constant control gains with u+ > u−,
is able to maintain the system within the boundary layer
|s(x, t)| ≤ ∆, from a certain finite time instant.

Finally, let ∆ be small enough and such that ∆ → 0 yields
s → 0: hence, an ideal sliding motion is enforced on S. The
equivalent control, ueq , that ideally keeps the system sliding on
S may be found imposing that S be an invariant manifold for
system (1), namely, working out s(x, t) = 0, ṡ(x, t, ueq) = 0,
with

ṡ(x, t, u) =
∂s

∂x
f(x) +

∂s

∂x
g(x)u+

∂s

∂t
. (3)

It is therefore immediate that

ueq := ueq(x, t) = −

(

∂s

∂x
g(x)

)−1 (
∂s

∂x
f(x) +

∂s

∂t

)

. (4)

However, u = ueq cannot be obtained with the realistic,
discontinuous control law (2) because of the continuity of ueq.
Thus, even though ∆ → 0 may entail s → 0, it does not
happen the same with ṡ [30]. This may be observed expressing
ṡ in terms of ueq , replacing u by u + ueq − ueq in (3) and
using (4), this yielding

ṡ(x, t, u) = (u− ueq)
∂s

∂x
g(x). (5)

In turn, the control action may be written as

u = ueq +

(

∂s

∂x
g(x)

)−1

ṡ

and, consequently, the system dynamics within the boundary
layer is given by

ẋ = f(x) + g(x)ueq + g(x)

(

∂s

∂x
g(x)

)−1

ṡ. (6)

The third term on the right hand side of (6) is the responsible
of the chattering phenomenon observed in realistic sliding
regimes [30].

A. Time-invariant hysteresis band amplitude

Assume for the switching function, s, a piecewise linear
behavior within the boundary layer, i.e. such that ṡ shows
piecewise constant values at either side of the switching surface
during a complete switching period. This hypothesis makes
sense when the switching frequency is high enough with
respect to the time constants of the system, and has been often
made in the sliding mode control literature (see, for example,
[30]).

An expression for ṡ± follows easily from (5):

ṡ± := ṡ(x, t, u±) =
(

u± − ueq(x, t)
) ∂s

∂x
g(x). (7)

Notice that the assumption of existence of ideal sliding motion
ensures ṡ± 6= 0, because it entails the fulfillment of the
transversality condition [31]

∂s

∂x
g(x) 6= 0, (8)
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Fig. 1. Switching function behavior in the vicinity of the switching surface,
within a constant amplitude boundary layer.

as well as the location of the system within the sliding domain
[31], which is the state space region defined by

u− < ueq(x, t) < u+. (9)

Even more, as (2) and (9) reveal an orientation of the switching
surface such that (8) is not only non null but positive, it follows
immediately that ṡ+ > 0 and ṡ+ < 0 (see also Figure 1).
Hence, defining

ρ± := ρ±
(

x, t, u±
)

=
1

ṡ±
, (10)

we have that

ρ+ > 0, ρ− < 0, ∀t ≥ 0. (11)

Let the system be sampled at every switching period, with
Tk := T (k), k ≥ 1, denoting the k-th switching period, tk =
∑k

i=1 Tk indicating the sampling time instants, and t0 ≥ 0
being an initial time. Figure 1 shows the behavior of s when
evolves from s = −∆ to s = ∆ and vice-versa within the
k-th switching period. The required time to reach s = ∆ from
s = −∆ is denoted with T+

k whereas T−

k is the time needed to
recover s = −∆ from s = ∆. Notice that the dead time used
to commute the power switches has been neglected. Hence, in
accordance with Figure 1 and (11), the switching period Tk is
given by

Tk = T+
k + T−

k = 2∆

(

1

ṡ+k
−

1

ṡ−k

)

(12)

and recalling from (10) that ρ+k = 1
ṡ+
k

and ρ−k = 1
ṡ−
k

, then

Tk = T+
k + T−

k = 2∆
(

ρ+k − ρ−k
)

. (13)

Notice from (13) that switching period variations observed in
generic hysteresis-based sliding mode controlled systems with
constant hysteresis band amplitude are actually due to its state
and time dependency.

B. Time-varying hysteresis band amplitude

Let us now assume that the hysteresis band amplitude can
be modified at the beginning of each switching interval, and
that it remains constant up to the next switching interval.

Assuming again piecewise linearity for the scalar function
s = s(x, t, u) within the boundary layer, and keeping the
notation introduced in Subsection II-A, the behavior of s may
be now depicted as in Figure 2. Hence, the k-th switching
period is now given by:

Tk = T+
k + T−

k = ρ+k (∆k +∆k−1)− 2ρ−k ∆k =

= ρ̂k∆k + (ρ̃k − ρ̂k)∆k−1, (14)

with

ρ̂ := ρ+ − 2ρ−, (15)

ρ̃ := 2
(

ρ+ − ρ−
)

. (16)

Let now T ∗ be a certain switching period reference value, and
let us define the switching period error as e := T ∗−T . Hence,
using (14) one easily finds out that

ek − ek−1 =ρ̂k (∆k−1 −∆k) + ρ+k−1 (∆k−2 −∆k−1)+

+ (ρ̃k−1 − ρ̃k)∆k−1. (17)

Expression (17) suggests that an appropriately designed control
sequence for the hysteresis band amplitude, ∆k, might yield
ek → 0. Next section is devoted to this purpose.

III. CONTROL ARCHITECTURE FOR SWITCHING

FREQUENCY REGULATION

The method proposed below is intended to regulate the
switching frequency of the sliding mode controller in the
steady state to a reference, constant value T ∗ using the hys-
teresis band amplitude of the comparator as the control signal.
The appropriate hysteresis value is delivered by a switching
frequency controller (SFC), which uses as an input the error
between the desired and the actual switching period. The
overall controller architecture, including both the switching
frequency regulation control loop and the sliding mode control
loop, is depicted in Figure 3. The desired steady state ideal
sliding dynamics is denoted as x(t) = x∗(t) ∈ S, ∀t ≥ 0.
Hence, x∗ := x∗(t) is assumed to be an (asymptotically)
stable, positive limit set of (6) with ṡ = 0, i.e. of

ẋ = f(x) + g(x)ueq.

∆k−1

−∆k−1

∆k

−∆k

Tk

T+
k T−

k

ṡ
+
k

ṡ
−
k

s = 0

Fig. 2. Switching function behavior in the vicinity of the switching surface,
within a time-varying amplitude boundary layer.
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Fig. 3. Overall controller architecture.
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T ∗ Tk

Tk−1

∆k

q−1

SFC eq (14)

Fig. 4. Detail of the switching frequency regulation control loop.

Figure 4 details the switching frequency control loop. The
control scheme operates in asynchronous discrete events given
by the switching periods, in accordance with the model devel-
oped in Section II. Essentially, the duration of every switching
period is measured and compared with the reference value,
and this information is used by the SFC to compute a value
for the hysteresis band amplitude using an algorithm inspired
in (17). Such a control law differs for regulation and tracking
tasks, i.e for x∗ constant or time-varying, and is specified in
next subsections. Finally, the block that provides the hysteresis
amplitude as a function of the switching period, modelled by
(14), completes the loop. A unit delay, q−1, is included in
the feedback path due to the time required to measure the
switching period.

Remark 1: Arbitrarily high hysteresis band amplitudes may
take the system far away from an ideal sliding regime. Hence,
a specific range I∆ := [∆min,∆max] such that ∆k ∈ I∆,
∀k ≥ 0, has to be defined so as to preserve the existence
of sliding motion. In order to establish the suitable hysteresis
range for a given system, the following design criterion is
proposed: ∆min may be obtained from the maximum al-
lowable switching frequency, while the maximum acceptable
ripple for the state variables would be used to set ∆max and,
consequently, the minimum switching frequency. In turn, the
switching frequency reference should be accordingly selected
within these extremal values.

A. The regulation case

In regulation tasks the state vector reference, x∗, also
assumed to be the steady state of the ideal sliding dynamics,
is constant. However, in the realistic sliding motion induced
by the hysteretic control (2) the state vector chatters within
the boundary layer around the state reference. Recalling that,
in accordance with Remark 1, the utilized hysteresis band
amplitude values keep the state vector ripple low enough, the

approximation x = x∗ in the steady state is taken as a fact.
As the switching hyperplane is now time-invariant, and the
corresponding equivalent control (4) is constant in the steady
state, the switching function derivatives (7) and its inverses
(10) in the steady state are constant as well. Consequently,
from a certain discrete-time instant k0 it results that

ρ±k = ρ
(

x∗, u±
)

:= ρ±∗ , ρ̂k := ρ̂∗, ρ̃k := ρ̃∗, ∀k ≥ k0,
(18)

with ρ+∗ , ρ̂
∗, ρ̃∗ ∈ R

+, ρ−∗ ∈ R
− . Hence, the switching period

error equation (17) boils down to

ek − ek−1 = ρ̂∗ (∆k−1 −∆k) + ρ+∗ (∆k−2 −∆k−1) . (19)

The control law proposed for the hysteresis band amplitude
in the regulation case is of integral type and answers to the
following difference equation:

∆k = ∆k−1 + γek−1, (20)

with γ ∈ R
+ denoting the integral constant.

Notice that taking (20) to (19) results in the following linear,
homogeneous difference equation with constant coefficients:

ek = (1− γρ̂∗) ek−1 − γρ+∗ ek−2. (21)

Stability of the zero solution of (21), which means Tk → T ∗,
is studied in next section.

B. The tracking case

Differently from the regulation case, when the system is
to track a time-varying reference x∗ = x∗(t) the switching
function derivatives are not constant even in the steady state
regime. As a consequence, the last term of the switching period
error equation (17) no longer vanishes, and the sole use of
the integral controller (20) yields a linear, non-homogeneous
difference equation for the switching period error that does not
have ek = 0 as a solution.

Hence, the proposal is to complement the integral action
with a feedforward component aiming at compensating the
undesirable effect of the previously mentioned term of (17).
The SFC structure, shown in Figure 5, consists of setting

∆k = Ψk +Ωk, (22)

where Ψk is given by an integral control defined as

Ψk = Ψk−1 + γek−1, (23)

while the feedforward term Ωk answers to:

Ωk =
ρ̂k−1 − ρ+k

ρ̂k
Ωk−1+

ρ+k−1

ρ̂k
Ωk−2+

ρ̃k−1 − ρ̃k
ρ̂k

Ψk−1. (24)

Now the switching period error equation matches that of the
regulation case, i.e. (21), but with time-varying coefficients:

ek = (1− γρ̂k) ek−1 − γρ+k−1ek−2.

Moreover, following Subsection III-A, in the steady-state
x = x∗(t) one has that

ρ±k = ρk (x
∗(t), u±) := ρ±

∗k,
ρ̂k = ρ̂k (x

∗(t)) := ρ̂∗k,
ρ̃k = ρ̃k (x

∗(t)) := ρ̃∗k,
(25)



T ∗ Tk

Tk−1

∆k

q−1

SFC

eq (14)
Ψk

Ωk

eq (23)

Fig. 5. Switching frequency regulation control loop with feedforward action.

∀k ≥ k0, and the preceding error equation becomes

ek = (1− γρ̂∗k) ek−1 − γρ+
∗k−1ek−2. (26)

A stability analysis of the zero solution of (26) is also
conducted in next section.

IV. STABILITY ANALYSIS AND DESIGN CRITERIA

The results obtained in this Section rely upon the hypotheses
established in the above analysis. These can be summarized as
follows:

Assumption A: The control law (2) induces system (1) to
evolve within a boundary layer defined by |s (x, x∗(t))| < ∆.
Moreover, sliding motion exists on the switching hyperplane
s (x, x∗(t)) = 0 for ∆ → 0, with x∗(t) ∈ R

n being the
steady state of the ideal sliding dynamics. Finally, s (x, x∗(t))
shows constant time derivatives at either sides of the switching
hyperplane during a complete switching period within the
boundary layer.

A. The regulation case

Theorem 1: [1] Let Assumption A be fulfilled, with x∗

being a constant regulation point, and let the hysteresis band
amplitude, ∆, be updated according to (20). If the integral gain
γ is selected as

0 < γ < min
{

ρ+∗
−1

,
∣

∣ρ−∗
∣

∣

−1
}

, (27)

with ρ±∗ defined in (18), then the switching period, Tk,
converges asymptotically to its reference value, T ∗, in the
steady state.

Proof: It follows applying Jury stability criterion to the
characteristic polynomial associated to the difference equation
(17), see [1] for details.

Remark 2: Notice from (20) that as the switching period
converges to the desired one, i.e. ek → 0, then ∆k → ∆k−1,
indicating that the hysteresis band amplitude converges to a
constant value in the steady state. This fact suggests that the
steady state value of the hysteresis band could be obtained
from (13); however, this procedure requires knowledge of the
switching function derivatives, which are complex to measure
due to their high dependence on the system variables and
parameters. Instead, the proposed integral control law just
demands switching period measures, thus entailing a much
simpler implementation procedure.

B. The tracking case

Theorem 2: Let Assumption A be fulfilled, with x∗(t) being
a bounded, time-varying tracking reference such that, in the
steady state, the absolute value of the switching function
derivative inverses, |ρ (x∗(t), u±)|, evolve in closed intervals
contained in R

+. Let also the real constants γm, γM defined
as

γm :=max















ρ̂∗(t)−

√

1
2

(

ρ̂∗2(t)− ρ+
2

∗ (t)
)

ρ̂∗2(t) + ρ+
2

∗ (t)
, ∀t ≥ 0















,

γM :=min















ρ̂∗(t) +

√

1
2

(

ρ̂∗2(t)− ρ+
2

∗ (t)
)

ρ̂∗2(t) + ρ+
2

∗ (t)
, ∀t ≥ 0















,

with ρ+∗ (t), ρ̂
∗(t) denoting continuous-time functions with

sampled counterparts defined in (25), be such that γM > γm.
Finally, let the hysteresis band amplitude, ∆, be updated
according to (22). If and the integral gain γ is selected as
γ ∈ (γm, γM ), then the switching period, Tk, converges
asymptotically to its reference value, T ∗, in the steady state.

Proof: Using the change of variables y1k = ek−1, y2k =
ek, and defining y = (y1, y2)

⊤
, the second-order difference

equation (26) can be equivalently written as the first order
system

yk+1 = Akyk, (28)

with

Ak =

(

0 1
−γρ+

∗k 1− γρ̂∗k+1

)

:=

(

0 1
αk βk+1

)

. (29)

Hence, the problem boils down to the stability analysis of the
trivial solution y = 0 of (28).

Following [32], let us consider the Lyapunov function can-
didate

Vk = y⊤k Qkyk, with Qk =

(

2α2
k +

δ
2 0

0 1

)

, (30)

δ > 0 being a real constant.

On the one hand, as
{

ρ+
∗k

}

belongs to a closed interval in

R
+ by hypothesis, for any γ ∈ R there exist η1, η2 ∈ R

+ such
that, ∀k ≥ 0,

η1I2 ≤ Qk ≤ η2I2, (31)

with I2 standing for the 2 × 2 identity matrix. On the other
hand, the Lyapunov equation

A⊤

k Qk+1Ak −Qk ≤ −ηI2, with η > 0, ∀k ≥ 0,

becomes
(

α2
k +

δ
2 − η −αkβk+1

−αkβk+1 1− 2α2
k+1 − β2

k+1 −
δ
2 − η

)

≥ 0.



A Schur complement-based sufficient condition for the preced-
ing matrix to be positive semidefinite is:

α2
k +

δ

2
− η > 0 (32)

(

α2
k +

δ

2
− η

)(

1− 2α2
k+1 − β2

k+1 −
δ

2
− η

)

≥ α2
kβ

2
k+1.

(33)

Recalling again the hypothesis on the evolution of ρ+
∗k, the

fulfillment of (32) follows selecting δ > 2η. In turn, it is
sufficient for (33) to be satisfied that

α2
k +

δ

2
− η ≥ α2

k, (34)

1− 2α2
k+1 − β2

k+1 −
δ

2
− η ≥ β2

k+1. (35)

Notice that δ > 2η also guarantees (34), while for small
enough values of δ, η inequality (35) is guaranteed by the
demand

1− 2
(

α2
k+1 + β2

k+1

)

> 0

or, equivalently,

1

2
> γ2ρ+

2

∗k+1 +
(

1− γρ̂∗k+1

)2
.

Therefore, γ is to be selected within the interval with bounds
given by the roots of the corresponding second-order equation,
namely

ρ̂∗k+1 ±

√

1
2

(

ρ̂∗
2

k+1 − ρ+
2

∗k+1

)

ρ̂∗
2

k+1 + ρ+
2

∗k+1

, ∀k ≥ k0. (36)

Finally, it follows from Figure 2 and Assumption A that ρ±
∗k

can be computed at the same time instant, namely at t =
tk−1 +T+

k . It is then immediate that the selection of γ within
(γm, γM ), which exists by hypothesis, guarantees its belonging
to the interval arising from (36), ∀k ≥ k0.

Remark 3: The definition of ρ̂ (see (15)) ensures that
γm, γM are positive real numbers. Its computation can be done
off-line using a numerical routine.

Remark 4: The SFC with feedforward action ensures con-
vergence of the switching period error to zero. Therefore, it
follows from (23) that the integral part, Ψk, converges to a
constant value in the steady state. However, as Ωk is time-
varying, the hysteresis band amplitude ∆k is time-varying as
well.

Remark 5: It is worth pointing out that the use of feed-
forward action in regulation tasks, besides requiring a much
complex implementation, has no significant impact on the final
result. This can be easily deducted from the fact that, in this
case, when taking into account (18), the forced term of (24) is
canceled and the corresponding characteristic polynomial has

roots in −1 and −ρ+∗ (ρ̂∗)−1
, which means that Ωk converges

to the initial condition Ω0. Therefore,

∆k −∆k−1 → Ψk −Ψk−1 = γek−1,

this being the integral control (20) previously used for regula-
tion purposes.

C. Design procedure

The value of γ has to be designed in order to guarantee
a stable performance of the switching frequency control loop
in all working ranges. The first step requires knowledge of
ρ+ and ρ− for x = x∗(t), which can be obtained using (10)
and (7). The second step consists of obtaining the stability
interval for γ, which are given by Theorem 1 in the regulation
case and Theorem 2 in the tracking case. As a final step, γ
is selected within the corresponding interval and using the
following criteria:

i) For the regulation case, one obtains the characteristic
polynomial of (21) and chooses a value for γ using pole
placement arguments. It is also worth pointing out that
when a system is able to operate at different set point
values, i.e. x∗ can be selected within a certain set X∗ ∈
R

n, the integral gain constant γ should be designed for
the worst case. Namely, (27) is to be replaced by

0 < γ < min

{

1

ρ (x∗, u+)
,

1

|ρ (x∗, u−)|
, ∀x∗ ∈ X∗

}

,

in order to guarantee stability at any possible operating
point.

ii) For the tracking case it turns out that (26) is time-
varying, and pole placement cannot be used. Hence, the
suggestion is to choose a conservative value for γ, that
is, around the mean value of the stability interval.

V. NUMERICAL SIMULATIONS

Let us introduce the single-input single-output linear system

ẋ1 = −x1 + x2, (37)

ẋ2 = −x1 +Mu, (38)

M ∈ R
+, which is forced to slide over the switching surface

s(x, t) := x2 − x∗

2(t) = 0, (39)

where
x∗

2(t) := A+B sinωt, (40)

A,B ∈ R, by the control law (2), with u+ = 1 and u− = −1.
Indeed, identifying (37),(38) with (1) one gets that

f(x) = (−x1 + x2,−x1)
⊤
, g(x) = (0,M)

⊤
;

hence, the equivalent control and the switching function deriva-
tive follow immediately from (4) and (5), respectively:

ueq =
1

M
(x1 + ẋ∗

2) , (41)

ṡ = Mu− (x1 + ẋ∗

2) . (42)

In accordance with (9), sliding motion exists when

M > |x1 + ẋ∗

2| ,

with the ideal sliding dynamics given by

x2 = x∗

2(t), (43)

ẋ1 = −x1 + x∗

2(t). (44)



Notice that the steady state solution of (44), which answers to

x∗

1(t) = A+
B

1 + ω2
(sinωt− ω cosωt) , (45)

is asymptotically stable. Once the ideal steady state sliding

regime x∗ = (x∗
1, x

∗
2)

⊤
has been reached, the switching

function derivative inverses at either sides of the switching
hyperplane, computed using (42), (45) and (40), are

ρ±∗ (t) =

(

±M −A−
B

1 + ω2

(

sinωt− ω3 cosωt
)

)−1

.

(46)
for the tracking case, and

ρ±∗ =
1

±M −A
(47)

for the regulation case.
Simulation results for system (37),(38) in both regulation

and tracking situations are reported next. They have been per-
formed with Matlab-Simulink using the following parameters:
M = 3, A = 1, and ω = 2π · 0.02, while the switching period
reference has been set to T ∗ = 0.1s.

A. The regulation case

In this case B = 0 and, consequently, x∗ = (1, 1)
⊤

. In turn,
it stems from (47) that ρ+∗ = 0.5 and ρ−∗ = −0.25. Hence,
following Theorem 1 and inequality (27), under the SFC with
control law given in (20) the closed-loop system is stable for
0 < γ < 2.

Figure 6 shows the response of the SFC for different values
of γ and T ∗.

The evolution of the switching function, s, is depicted at
the bottom part of the figures. The mid part contains the
switching period of the system (37),(38), i.e. Tk, as well as
the switching period arising from the solution of the system
of difference equations (20),(21), which is labeled as Tm

k .
The plot illustrates how ∆k is updated until Tk attains the
reference value T ∗, with shorter transients for higher values
of γ. In turn, during the start-up, where the steady state sliding
motion is still not reached, Tm

k does not match Tk due to the
fact that ρ± 6= ρ±∗ . Once the system attains the sliding mode
steady state, i.e. ρ± = ρ±∗ , both responses match perfectly,
even under a switching period reference variation occurring at
t = 12s; this provides additional evidence of the validity of
the mathematical model of the switching frequency behavior
presented in Sections II and the assumptions made in Section
III-A. Finally, it is worth emphasizing that the hysteresis band
amplitude attains a constant value in the steady state, as pointed
out in Remark 2. The asymptotic tendency of the state variables
to the reference is illustrated in the upper part of the figure
through the behavior of x1.

B. The tracking case

The selected amplitude of the reference signal is now B =
0.5. With these settings it is immediate from (46) that ρ±∗ (t)
are bounded; therefore, the functions ρ∗+(t) and ρ̂∗(t), used
to obtain an interval for the control gain where stability is
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Fig. 7. Tracking: evolution of Tk and s with fixed hysteresis for t < 150s
and SFC for t ≥ 150s.

guaranteed, are bounded as well. Hence, following Theorem
2, under the SFC with the control law given in (22) uniform
exponential stability of the closed-loop system is ensured for
0.314 < γ < 1.0315.

It is worth remarking that numerical simulations show
that stability is indeed guaranteed for 0 < γ < 1.6. The
conservativeness of the interval steming from the theoretical
analysis is due to the sufficiency of the obtained condition.

Figure 7 compares the performance of the system without
and with SFC action. The SMC operates with fixed hysteresis
band for the first t = 150s, an then the SFC with γ = 0.4 is
enabled: notice that it is not until the activation of the SFC
(22) that Tk is able to attain the reference value T ∗ = 0.1s.
Figure 8 shows that the SFC is also able to cope with a change
of T ∗. Finally, Figure 9 presents the dynamics of x2, Tk and
s for changes in frequency and amplitude of the reference
signal x∗

2(t): good behavior of the state and proper regulation
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of the switching period validate the proposal. Similar results
are obtained for changes in the offset of x∗

2, again omitted for
the sake of brevity. Finally, the time variation of ∆k required
to keep a constant switching period in tracking tasks pointed
out in Remark 4 can be observed in Figures 7-9.

Figures 7-9 also incorporate the switching period Tm
k , now

obtained solving (22)-(26). As happened in the regulation case
the differences with Tk arise only in sliding mode transients,
which again confirms the validity of models and assumptions
of Sections II and III-B.

VI. EXPERIMENTAL RESULTS

The proposed control laws have been tested in the step-down
switching power converter shown in Figure 10. Its dynamics

are governed by:

C
dvC
dt

= −
vC
R

+ iL, (48)

L
diL
dt

= −vC + Eu, (49)

where iL is the inductor current, vC is the output voltage, R is
the resistive load, L is the inductance, C is the capacitor and
E is the input voltage. In turn, the output voltage reference is
selected as

v∗C(t) = vC0 + vC1 sinωt. (50)

Table I shows the specific values of the converter parameters
used in the experimentation. The control signal u drives the
power switches states -MOSFETs PSMN013R100BS from
NXP in this case- and takes discrete values, namely, u ∈
{0, 1}. The employed MOSFETs driver is LM5106 from Texas
Instruments. It is also remarked that the dead time is of 0.1
µs.

Since the relative degree of the output voltage with respect
to the control is two, the following first order, linear switching
surface is used to tame the output voltage [2], [5] :

s (vC , v̇C) = λ1 (vC − v∗C)+λ2C (v̇C − v̇∗C) = 0, λ1,2 > 0.
(51)

As λ2E > 0, the control law (2) with u+ = 1 and u− = 0
forces sliding motion over s = 0. Identifying (48),(49) with
(1), the equivalent control and the switching function derivative
can be easily obtained from (4) and (5), respectively:

ueq =
1

E

(

−
αλ1

λ2
iL +

(

1 +
αλ1

Rλ2

)

vC

)

+
L

E
h(t), (52)

ṡ =
Eλ2

L
(u− ueq) . (53)

with

α :=
L

C

(

1−
λ2

Rλ1

)

and h(t) :=
λ1

λ2
v̇∗C + Cv̈∗C .

As Eλ2 > 0, the control law (2) with u+ = 1 and u− = 0
forces sliding motion over s = 0. The corresponding ideal
sliding behavior when ∆ → 0 is given by the linear, time-

+
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+

-
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iL

L

u = 1

u = 0

M1
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C
vC

R

Fig. 10. Step-down switching power converter.



TABLE I. POWER CONVERTER PARAMETERS.

E 48V
L / C 22µH / 50µF

Output load (R) 2Ω − 4Ω − 8Ω
Output voltage offset (vC0) 12V − 24V

Output voltage amplitude (vC1) 0V − 12V
Output voltage frequency (f ) 100Hz − 800Hz

Output current 0A − 6A
Switching period reference (T∗) 10µs

MOSFETS (M1,M2) PSMN013100BS
MOSFET Driver LM5106

Dead Time 0.1µs

varying system:

C
dvC
dt

= −
λ1

λ2
vC +

λ1

λ2
v∗C + Cv̇∗C ,

L
diL
dt

=
αλ1

Rλ2
vC −

αλ1

λ2
iL + Lh(t),

It is then immediate that the steady-state solution is asymp-
totically stable if and only if

0 <
λ2

λ1
< R. (54)

The switching function derivative inverses at either sides of
the boundary layer when the ideal steady state sliding regime
is reached answer to:

ρ±∗ (t) = λ−1
2

(

Eu±

L
−

v∗C
L

−
v̇∗C
R

− Cv̈∗C

)−1

=

= λ−1
2

(

Eu± − v∗C0

L
−D sin (ωt+ φ)

)−1

, (55)

with

D := vC1

√

(ω

R

)2

+

(

1

L
− Cω2

)2

,

φ := arctan
Lω

R (1− LCω2)
.

The implementation of the switching surface and the hys-
teresis comparator has been carried out with analog electronics,
whereas the switching period measure and the tuning of the
values of the hysteresis band amplitude have been performed
with the digital processor STM32F047, which is a micro-
controller with two digital-to-analog converters used to adapt
the hysteresis values. The switching surface parameters have
been set to λ1 = 0.2, λ2 = 0.38, which provides sliding mode
transient response of the desired output voltage with a time
constant of 95 µs.

It is also important for a good performance of the SFC
that the computing delay, i.e. the time, tc, taken by the micro
controller to calculate the next value of ∆, is lower than T+, as
depicted in Figure 12. When this condition is not fulfilled, the
switching period model (14) is no longer valid. In our case we
have that tc = 1.4µs, while the highest value of T+ is 2.5µs.

A. DC output voltage regulation

In this case vC1 = 0 and, consequently, v∗C = vC0. The
inverse of the switching function derivatives in the steady state,
obtained from (55), are given by ρ+∗ = λ2L

−1 (E − v∗C) and
ρ−∗ = −λ2L

−1v∗C . According to Table I we now have two
voltage references, namely v∗C = 12V and v∗C = 24V . Hence,
following Theorem 1 and Subsection IV-C the admissible
values of the integral gain γ of the SFC (20) to ensure closed-
loop stability have to be selected as γ ∈ (0, 207272), as the
worst case arises with v∗C = 12V ; this parameter is initially
set to γ = 20000. It has to be pointed out that the control
implementation is simple, since it just requires measuring the
switching period and performing the difference equation (20).

The following oscilloscope captures illustrate the behavior
of the output voltage (blue waveform), the switching function
(green waveform), the upper hysteresis of the comparator (ma-
genta waveform), and the switching period (red waveform); the
latter appears converted to voltage with a rate of 3.5V/10µs.
As the comparator MC6567 is supplied between 0 and 5V , the
offset value of the switching function is set at 2.5V in order
allow a symmetrical use of the full input range.

Figures 13 and 14 present the start-up of the converter when
the output voltage is regulated to 12V for different initial
conditions of the hysteresis band amplitude ∆0, namely, lower
and higher than the steady state value, respectively. Notice that
both vC and Tk attain their references with a good transient
response, while the hysteresis band is adapting till Tk reaches
T ∗. Notice that Tk can be easily measured looking at the
switching function in the zoomed window. As observed in
Remark 2, once Tk stabilizes the hysteresis band ∆k remains
constant. The output load value selected in this case is R = 2Ω,
with which (54) is fulfilled.

Figure 15 shows again good performance for a voltage
regulation from 12 to 24V and vice-versa, with R = 4Ω.
In this case the jumps of v∗C and, consequently, the change
of switching function drops the hysteresis amplitude value
and recovers it again in less than one switching period, this
entailing a brief, smooth transient of Tk.
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Fig. 11. Implementation details: the SMC with a variable hysteresis compara-
tor is implemented using analogue circuitry, while the SFC is implemented
using a DSP STM32F407.
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Fig. 12. Effect of the computing delay related to DSP microcontroller.
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Fig. 13. Regulation: start-up for v∗
C

= 12V with R = 2Ω and ∆0 lower
than the steady state value. vC : blue; s: green; |∆k|: magenta; Tk: red.
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Fig. 14. Regulation: start-up for v∗
C

= 12V with R = 2Ω and ∆0 higher
than the steady state value. vC : blue; s: green; |∆k|: magenta; Tk: red.

Finally, in Figure 16 the integral gain is set to γ = 200000,
while R is kept at 4Ω and T ∗ is varied from 12.5µs to 14µs.

Tk

s v∗

C

vC

Fig. 15. Regulation: v∗
C

variation from 12V to 24V and vice-versa, with
R = 4Ω. vC : blue; s: green; v∗

C
: magenta; Tk: red.

Tk

s

∆k vC

Fig. 16. Regulation: underdamped responses for γ = 200000 with R = 4Ω
and a T ∗ variation from 12.5µs 14µs. vC : blue; s: green; |∆k|: magenta;
Tk : red.

As γ is now closer to the upper stability limit, both Tk and
∆k exhibit underdamped transient responses with very low
damping ratio, thus confirming the theoretical prediction.

B. AC output voltage tracking

As indicated in Table I, the offset and amplitude of the
output voltage profile are vC0 = 24V and vC1 = 12V ,
respectively, while R = 8Ω. Thus, it follows from (55) that
ρ±∗ (t) are bounded, and so is ρ̂∗(t). Hence, it stems from
Theorem 2 that the SFC with control law given in (22)
yields a uniformly exponentially stable closed-loop system for
43383 < γ < 143170. Nevertheless, as it happened with
the numerical example, the closed-loop system is still stable
for positive values lower than 42142. Taking into account the
stability range the integral gain has been set to γ = 75000.

It has to be remarked that the SFC implementation for the
tracking case is not as simple as it was for the regulation case.
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Fig. 17. Tracking: system perfomance without and with SFC. vC : blue; s:
green; |∆k|: magenta; Tk: red.
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Fig. 18. Tracking: T ∗ variation from 9µs to 14µs. vC : blue; s: green; |∆k|:
magenta; Tk: red.

This is because the SFC control (22) includes the feedforward
term Ωk introduced in (24), which requires knowledge of the
current switching function derivatives, i.e. at period k. Of
course the hysteresis band amplitude ∆k should be calculated
at the beginning of the period, when the available information
is that of the k − 1 switching period. Therefore, the imple-
mented value of Ωk is approximated by Ωk−1, and the values
of the switching function derivatives are calculated as

ρ+k−1 =
T+
k−1

∆k−1 +∆k−2
, ρ−k−1 =

T−

k−1

2∆k−1
,

in accordance with Figure 2.

In the first test the system operates with fixed hysteresis
amplitude until the SFC is enabled. Figure 17 shows the
switching period rapidly reaching the reference value T ∗ =
10µs after the activation of the SFC, together with an overall
good performance of the system.

The second test gives evidence of the performance of SFC

Tk

s

∆k

vC

Fig. 19. Tracking: system response when the frequency of the sinusoidal
output voltage reference is set to 800Hz. vC : blue; s: green; |∆k|: magenta;
Tk : red.

under changes of the switching period reference, specifically
from T ∗ = 9µs to T ∗ = 14µs. As illustrated in Figure 18, the
switching period presents an overdamped response and only
three or four switching periods are required for the hysteresis
values to properly adapt and force the switching frequency to
attain the new reference. Notice that a time-varying hysteresis
amplitude is required to keep a constant steady state switching
period, as indicated in Remark 4 and already observed in
Figure 17.

In the last test the frequency of the voltage reference v∗C is
set to 800Hz. The corresponding range of the integral gain
of the SFC ensuring uniform exponential stability becomes
43251 < γ < 143020. It can be seen in Figure 19 that now
the switching frequency is not perfectly regulated, and a very
small variation around T ∗ arises. This is because, on the one
hand, the error associated to the compromise solution adopted
to solve the above indicated computational issue with the
feedforward signal Ωk is significant for high frequency voltage
references; and, on the other hand, these high frequencies also
invalidate the assumption of piecewise linear behavior of the
switching function within one switching period, thus entailing
inaccuracy of the mathematical model. Nevertheless, although
a perfect regulation is not achieved the result is still good
enough for most applications.

VII. CONCLUSIONS

An SFC was proposed for SMC applications that use a
hysteresis band comparator. By modifying the amplitude of
the hysteresis band, the controller provides fixed steady state
switching frequency under standard assumptions. For regu-
lation purposes the proposed SFC is of integral type, while
the inclusion of an additional feedforward term allows its
use also for tracking tasks. A mathematical model of the
switching frequency behavior for time-varying hysteresis band
amplitudes was crucial to devise the controllers and to carry
out subsequent stability analyses. Simulation and experimental
results showed an excellent performance of the controllers,



as well as their robustness to changes in the switching fre-
quency reference and system parameters. The method can be
extended to other advanced sliding mode controllers and even
to hysteretic controllers when the aforementioned hypotheses
are fulfilled.

The entire work lies on the assumption of piecewise linear
behavior of s(x, t) inside the boundary layer. Further research
should investigate the possibility of relaxing this hypothesis
to work not with constant values but just with bounds of ṡ±

within one switching period.
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