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We investigate the superconducting lifetime of long current-biased Josephson junctions, in the presence of

Gaussian and non-Gaussian noise sources. In particular, we analyze the dynamics of a Josephson junction as a

function of the noise signal intensity, for different values of the parameters of the system and external driving

currents. We find that the mean lifetime of the superconductive state is characterized by nonmonotonic behavior

as a function of noise intensity, driving frequency, and junction length. We observe that these nonmonotonic

behaviors are connected with the dynamics of the junction phase string during the switching towards the resistive

state. An important role is played by the formation and propagation of solitons, with two different dynamical

regimes characterizing the dynamics of the phase string. Our analysis allows to evidence the effects of different

bias current densities, that is a simple spatially homogeneous distribution and a more realistic inhomogeneous

distribution with high current values at the edges. Stochastic resonant activation, noise-enhanced stability, and

temporary trapping phenomena are observed in the system investigated.

DOI: 10.1103/PhysRevB.89.214510 PACS number(s): 85.25.Cp, 05.10.Gg, 72.70.+m, 74.40.−n

I. INTRODUCTION

During past decades the interest in superconductor physics

and its applications has had a remarkable development. In this

context an important role is played by improvements made in

devising and realizing Josephson junction (JJ)-based devices.

In fact, great attention has been paid to JJs as superconducting

quantum bits [1–4], nanoscale superconducting quantum

interference devices for detecting weak flux changes [5,6], and

threshold noise detectors [7–10]. Moreover, JJs are typical out-

of-equilibrium systems characterized by tilted or switching

periodic potentials [11,12].

The behavior of these systems is strongly influenced by

environmental perturbations and specifically by the presence

of a noise source responsible for decoherence phenom-

ena [2,13]. The role played by random fluctuations in the

dynamics of these devices has recently solicited a large amount

of work and investigation on the effects both of thermal

and nonthermal noise sources on the transient dynamics

of Josephson junctions [14–19]. The noise current signal

is caused by the stochastic motion of the charge carriers,

namely the Cooper pairs in a superconductor. While thermal

noise is originated by the thermal motion of the charge

carriers, nonthermal noise signals are related to their scat-

tering and transmission. Non-Gaussian noise appears when

the conductor, or the superconductor, is in a nonequilibrium

state because of the presence of a bias voltage or current. In

the past decade, theoretical progress allowed one to calculate

the entire probability distribution of the noise signal and its

cumulants, and to perform a full counting statistics of the

current fluctuations [15]. Moreover, the presence of non-

Gaussian noise signals has been found experimentally in many

systems [14,18,20–23]. As an example in a wireless ad hoc
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network with a Poisson field of co-channel users, the noise

has been well modeled by an α-stable distribution [23]. A

nonequilibrated heat reservoir can be considered a source

of non-Gaussian noises [20–22]. Specifically, the effect of

non-Gaussian noise on the average escape time from the su-

perconducting metastable state of a current-biased JJ, coupled

with nonequilibrium current fluctuations, was experimentally

investigated [14,18].

Recently, the characterization of JJs as detectors, based on

the statistics of the escape times, was proposed [7–10,24–26].

Specifically, the statistical analysis of the switching from the

metastable superconducting state to the resistive running state

of the JJ has been proposed to detect weak periodic signals

embedded in a noise environment [9,10]. Moreover, the rate of

escape from one of the metastable wells of the tilted washboard

potential of a JJ encodes information about the non-Gaussian

noise present in the input signal [7,8,24–26].

Motivated by these studies and the importance of the

problem of the transient dynamics of a JJ interacting with

a noisy environment, we try to understand how non-Gaussian

noise sources affect the switching times in long JJs. In light of

this, our work is devoted to investigate the response of a su-

perconductive device to the solicitations of both deterministic

and stochastic external perturbations, due to thermal fluctua-

tions [27–29] or connected with the variability of bias current

and magnetic field [14,18]. In particular, we analyze the system

dynamics, modeling environmental random fluctuations by

noise sources with different, Gaussian and non-Gaussian,

statistical distributions. The superconducting device is a long

Josephson junction (LJJ), which is a device in which one

dimension is much longer than the Josephson penetration depth

λJ of the junction. The JJs considered in our study are arranged

in the overlap geometrical configuration. These devices can

work in two different conditions: (i) the superconducting

regime, which corresponds to the localization of the order

parameter, that is, the phase difference across the junction,

in a metastable state of the washboard potential, and (ii) the

resistive regime with a dissipative voltage-current relation,
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FIG. 1. (Color online) (a) Washboard potential at three different times with a soliton wave (2π kink) on the highest profile, (b) soliton

[Eq. (9)] and corresponding fluxon profile [Eq. (10)], and (c) circuit diagram of a JJ noise detector: a JJ with critical current iC is biased in a

twofold way.

corresponding to an escape event of the phase difference from

the metastable state [see Fig. 1(a)]. The superconductive phase

is subject to both thermal and non-Gaussian noise, due to an

external driving force. We note that the effects of Gaussian

[27–31] and non-Gaussian [7,8,24,25,32] noise sources on

short JJs have been thoroughly studied, whereas analyses of

the phase dynamics of long JJs have been performed only in

the presence of thermal fluctuations [33–36]. Moreover, noise-

induced effects due to thermal fluctuations, such as resonant

activation (RA), or stochastic resonant activation [37,38], and

noise-enhanced stability [39,40] (NES), have been theoreti-

cally predicted in overdamped JJs [27–32] and experimentally

in underdamped JJs [41–43]. It is worthwhile to note that

experimental works on the realization of overdamped JJ with

nonhysteretic current voltage and high temperature stability

have been performed [44].

After the seminal paper of Tobiska and Nazarov [19],

Josephson junctions used as threshold detectors allow the

study of non-Gaussian features of current noise [24,25].

Specifically, when a JJ leaves the metastable zero-voltage

state it switches to a running resistive state and a voltage

appears across the junction. Therefore, it is possible to measure

directly in experiments the escape times or switching times

and to determine their probability distribution [41–43,45–47].

A typical simplified realization of a JJ noise detector is shown

in Fig. 1(c). The fluctuating current if , produced by the noise-

generating system, is added to the bias current ib and drives the

JJ, characterized by a critical current iC and a capacitance C.

The switching times of the junction can be directly measured

using the time-domain technique [41–43,48,49]. For each

switching event the bias current is ramped up to a value ib,

which is very close to the critical current iC and it is maintained

constant for a period of waiting time. To record the switching

time, the voltage across the junction is sent to a timer counter,

which is triggered by the sudden jump from zero-voltage state

to finite-voltage state. The bias current is then decreased to

zero, the junction returns to the zero-voltage state, and a new

cycle starts again. For JJs working in an overdamped regime,

the superconducting state is restored automatically, without

the necessity to decrease the bias current to zero. The process

is repeated enough times to obtain a statistically significant

ensemble of switching times (STs). The typical frequency

range of a detector of non-Gaussian noise, based on a long

JJ working in an overdamped regime, as in our investigation,

is from 10 to 600 GHz. Of course, higher frequencies can

be obtained with a long JJ in overlap geometry, but the

experimental setup should be more complicated and would be

very expensive. Concerning the physical range of feasibility of

the other main parameters of the junction, typical values are JJ

length L from 0.1λJ to 20λJ , with the Josephson penetration

depth λJ in the range [10, 20] μm, and range of the critical

current [5, 15] mA.

In this paper we investigate how the simultaneous action of

an external oscillating driving force and a fluctuating signal

affects the permanence time inside the metastable state of a

LJJ. In particular, we concentrate on the escape time, that is,

214510-2
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the time the junction takes to switch from the superconducting

state to the resistive regime, calculating the mean switching

time (MST) obtained by averaging over a sufficiently large

number of numerical realizations. The analysis is performed

varying also the frequency of the driving current, the length of

the junction, and the amplitude of the noise signal modeled

by using different α-stable (or Lévy) distributions. These

statistics allow to describe real situations [50] in which the

evolution shows abrupt jumps and very rapid variations of

parameters, called Lévy flights. Lévy-type statistics is observed

in various scientific areas, where scale-invariance phenomena

take place [51–54]. For a recent short review on Lévy flights

see the work by Dubkov et al. [55] and references therein.

Applications and other research fields in which observed

evolutions are well reproduced using Lévy statistics are quite

numerous, ranging from biology [56], zoology [57–59], social

systems [60], and financial markets [61] to geological [62] and

atmospheric data [63].

The dynamics of the phase difference of the LJJ, analyzed

within the sine-Gordon (SG) formalism [34,35,64,65], is

characterized by the formation and propagation of particular

wave packets called solitons [66,67]. Their presence is strongly

connected with the penetration of the magnetic flux quanta,

i.e., fluxons [68,69] (the magnetic soliton), traveling through

the junction during the switching towards the resistive state

[see Fig. 1(b)]. Here we recall that several systems governed

by the SG equation show evidence of soliton motion, including

not only JJs [70–76] but also the relativistic field theory,

mechanical transmission lines, and atomic, particle, and

condensed matter physics. A peculiar dynamics is also present

in the superconducting device analyzed in this work.

Finally, it is worth nothing that for low phase values,

sin(ϕ) ≈ ϕ, the SG equation approaches the Klein-Gordon

one [77]. Nevertheless, the exact solutions are known only

for the simplest unperturbed SG differential equation, in the

absence of damping, driving, and fluctuating terms [64].

The paper is organized as follows. In the next section the

sine-Gordon model is presented. In Sec. III we briefly review

the statistical properties of the Lévy noise, showing some

peculiarities of different α-stable distributions. Section IV

gives computational details. In Sec. V the theoretical results

for the behaviors of the MST as a function of the junction

length, frequency of the external driving current, and noise

intensity with homogeneous and inhomogeneous bias current

are shown and analyzed. This analysis was carried out at

very low temperatures of the system, around the crossover

temperature.

Below this temperature, the phase difference over the

junction behaves quantum mechanically, the escape events

occur primarily by quantum tunneling through the barrier,

and the thermal fluctuations can be neglected. Therefore,

only the effects of non-Gaussian noise were analyzed. The

transient dynamics of a long JJ subject to thermal fluctuations

and non-Gaussian, Lévy-type, noise sources is investigated in

Sec. VI. Finally, in Sec. VII we draw conclusions.

II. THE SG MODEL

The electrodynamics of a normal JJ is described by a

nonlinear partial differential equation for the order parameter

ϕ, that is, the sine-Gordon equation [64,65]. Here ϕ is the

phase difference between the wave functions describing the

superconducting condensate in the two electrodes. Our anal-

ysis includes a quasiparticle tunneling term and an additional

stochastic contribution, if (x,t), representing the noise effects.

However, the surface resistance of the superconductors is

neglected. The resulting perturbed SG equation reads

β
SG

ϕt t (x,t) + ϕt (x,t) − ϕxx(x,t)

= ib(x,t) − sin(ϕ(x,t)) + if (x,t), (1)

where a simplified notation has been used, with the subscript

indicating the partial derivative of ϕ in that variable. This

notation is used throughout the paper. In Eq. (1), the fluctuating

current density if (x,t) is the sum of two contributions, a

Gaussian thermal noise iT (x,t) and an external non-Gaussian

noise source inG(x,t):

if (x,t) = iT (x,t) + inG(x,t). (2)

The SG equation is written in terms of the dimensionless

x and t variables, which are the space and time coordinates

normalized respectively to the Josephson penetration depth

λJ and to the inverse of the characteristic frequency ωJ of

the junction. Moreover, β
SG

= ωJ RC, where R and C are the

effective normal resistance and capacitance of the junction.

The terms ib(x,t) and sin(ϕ) of Eq. (1) are respectively the

bias current and supercurrent, both normalized to the JJ critical

current iC . Equation (1) is solved by imposing the following

boundary conditions:

ϕx(0,t) = ϕx(L,t) = Ŵ, (3)

where Ŵ is the normalized external magnetic field. Hereinafter

we impose Ŵ = 0.

The two-dimensional time-dependent tilted potential,

called the washboard potential, is given by

U (ϕ,x,t) = 1 − cos(ϕ(x,t)) − ib(x,t) ϕ(x,t), (4)

and shown in Fig. 1(a). In the same figure is shown a phase

string in the potential profile (4), along which it moves during

the switching dynamics. Specifically, the washboard potential

is composed of a periodical sequence of peaks and valleys,

with minima and maxima satisfying the following conditions:

ϕmin = arcsin(i(x,t)) + 2nπ,
(5)

ϕmax = (π − arcsin(i(x,t))) + 2nπ,

with n = 0, ± 1, ± 2, . . ..

The bias current is given by

ib(x,t) = ib(x) + A sin(ωt), (6)

where A and ω are amplitude and frequency (normalized to ωJ )

of the dimensionless driving current. This time dependence is

normalized to the inverse of the JJ characteristic frequency ωJ .

The ib(x) term is a dimensionless current that, in the phase

string picture, represents the initial slope of the potential

profile. Different regimes of spatial dependence can be

considered, obtaining in particular the two following current

distributions [78]:

ib(x) =
{

i0, homogeneous
i0 L

π
√

x (L−x)
, inhomogeneous.

(7)
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FIG. 2. (Color online) Inhomogeneous bias current density [see

Eq. (7)] along JJs, for i0 = 0.9 and different values of junction length.

The more realistic inhomogeneous condition provides strong

current contributions at the edges of the junction. This is shown

in Fig. 2, for i0 = 0.9 and L ranging between 1 and 20. In these

conditions, the phase of the cells in the edges of the junction

can flow along the potential without resistance, so that the

soliton formation occurs mostly in these parts of the junction.

The unperturbed SG equation, in the absence of damping,

bias, and noise, is given by

ϕxx(x,t) − ϕt t (x,t) = sin(ϕ(x,t)). (8)

This equation admits solutions in the traveling wave form

f = ϕ(x − ut) [64]:

ϕ(x − ut) = 4 arctan

{

exp

[

±
(x − ut)
√

1 − u2

]}

, (9)

where u is the wave propagation velocity normalized to the

speed of light and is called the Swihart velocity. Equation (9)

represents a single kink, or soliton, that is a 2π variation in

the phase values. The signs + and − indicate the two opposite

directions of propagation, corresponding to 2π kink (soliton)

and 2π antikink (antisoliton), respectively. In this framework,

ϕ gives a normalized measure of the magnetic flux through

the junction, so that Eq. (8) can also represent the motion of

a single fluxon (or antifluxon). In fact, starting from simple

electrodynamic considerations [64], it is possible to obtain a

simple relation between the magnetic field H (y) and the spatial

derivative of the phase difference,

ϕx =
2e

�c
dH (y), (10)

where d = λL + λR + t is the magnetic penetration, λL and λR

are the London depths in the left and right superconductors, and

t is the interlayer thickness. In our LJJ model, if the junction is

extended along x and short along z, the magnetic field points

along y, so that H (y) ≡ H . Integrating Eq. (10) over the entire

JJ length, the following relation is obtained:

ϕ(L) − ϕ(0) =
2e

�c
	H = 2π

	H

	0

, (11)

where 	H is the magnetic flux through the junction and 	0 =
hc/2e is the fluxon. If the phase string has a portion lying in

the first valley and a portion inside the nth valley, from Eq. (5),

the phase difference is equal to 2πn. Therefore, the magnetic

flux will be equal to

2πn = 2π
	H

	0

, 	H = n	0. (12)

If the phase evolution shows a single 2π kink, a single fluxon

will propagate along the junction, as shown in Fig. 1(b).

Here the washboard potential is represented at three different

times t = 0, π
2ω

, 3π
2ω

, corresponding to zero initial slope, and

maximum and minimum slope, respectively. The line on the

highest potential profile represents a soliton between two

adjacent valleys. Figure 1(b) shows a soliton and the shape of

the correspondent fluxon, that is, the values of the x derivative

of ϕ, along the junction length in a generic time t ′.

III. THE LÉVY STATISTICS

In order to motivate the use of α-stable (or Lévy) distri-

butions we recall some cases [79] in which non-Gaussian

stable statistics is used to model experimental data with

asymmetric and heavy-tailed distributions, closely linked

with the generalized central limit theorem [80–86]. Here we

briefly review the concept of stable distribution. A random

nondegenerate variable is stable if

∀n ∈ N, ∃(an,bn) ∈ R
+ × R :

X + bn = an

n
∑

j=1

Xj , (13)

where the Xj terms are independent copies of X. Moreover,

X is strictly stable if and only if bn = 0, ∀n. The well-known

Gaussian distribution stays in this class. This definition does

not provide a parametric handling form of the stable distribu-

tions. The characteristic function, however, allows for dealing

with them. The general definition of a characteristic function

for a random variable X with an associated distribution

function F (x) is

φ(u) = 〈eiuX〉 =
∫ +∞

−∞
eiuXdF (x). (14)

Following this statement, a random variable X is said to be

stable if and only if

∃(α,σ,β,μ) ∈ ]0,2] × R
+ × [−1,1] × R :

X
d= σZ + μ, (15)

where Z is a random number. Accordingly one obtains

φ(u) =

{

exp
{

− |u|α
[

1 − iβ tan πα
2

(signu)
]}

, α �= 1

exp
{

− |u|
[

1 + iβ 2
π

(signu) log |u|
]}

, α = 1,

(16)

in which

signu =
{±1, u ≷ 0

0, u = 0,
(17)

represents the sign function.
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TABLE I. Closed form of the stable distributions and character-

istic values of parameters.

Distribution Abbreviation P (x) Sα(σ,β,μ)

Gaussian (G) 1√
2πσ

e
− (x−μ)2

2σ2 x ∈ R S2(σ,0,μ)

Cauchy-Lorentz (CL)
σ/π

σ 2+(x−μ)2 x ∈ R S1(σ,0,μ)

Lévy-Smirnov (LS)
√

σ

2π

e
− σ

2(x−μ)

(x−μ)3/2 x � μ S 1
2
(σ,1,μ)

This definition of X requires four parameters: a stability

index (or characteristic exponent) α ∈]0,2], an asymmetry

parameter β with |β| � 1, and two real numbers σ > 0 and

μ that determine the outward shape of the distribution and are

called, for this reason, shape parameters. The names of these

two parameters indicate their physical meaning. Specifically

β = 0 (β �= 0) gives a symmetric (asymmetric) distribution,

while α determines how the tails of the distribution go to zero.

For α < 2 the asymptotic behavior is characterized by a power

law, while α = 2 and β = 0 give a Gaussian distribution. The

stable distribution, obtained by setting σ = 1 and μ = 0, is

called standard. We denote every α-stable distribution with

the symbol Sα(σ,β,μ). Only a few Lévy distributions have

a probability density function known in explicit form, as

shown in Table I. Here the abbreviations for some peculiar

distributions, used in the rest of this work, are also listed. The

G (Gaussian) and CL (Cauchy-Lorentz) distributions (both

with β = 0) are symmetrical with respect to x = 0, while the

LS (Lévy-Smirnov) distributions (normal and reflected) are

skewed to the right (β = +1) or left (β = −1) side. The three

distributions of Table I are plotted in Fig. 3. The reflected

(with respect to the vertical axis) LS distribution, obtained by

setting β = −1, is not shown. The asymmetrical structure of

the LS distribution is evident, with a heavy tail and a narrow

peak located at a positive value of x. The CL distribution, in

comparison with the Gaussian one, presents tails much higher

and a central part of the distribution more concentrated around

the mean value. For short times, the values extracted from a

FIG. 3. (Color online) Probability density functions for Gaussian

(solid line), Cauchy-Lorentz (dashed line), and Lévy-Smirnov (dash-

dotted line) distributions.

CL distribution determine trajectories characterized by limited

space displacement: this can be explained by noting that the CL

statistics is characterized, around the mean, by a narrower form

with respect to the Gaussian one. For longer times, however,

heavy tails cause the occurrence of events with large values of

x, whose probability densities are non-neglectable. The use of

CL and LS statistics allows the consideration of rare events,

corresponding to large values of x, because of the fat tails

of these distributions. These events correspond to the Lévy

flights previously discussed. The algorithm used in this work

to simulate Lévy noise sources is that proposed by Weron [87]

for the implementation of the Chambers method [88].

IV. COMPUTATIONAL DETAILS

We study the JJ dynamics in the SG overdamped regime,

setting β
SG

= 0.01. The time and spatial steps are fixed at

�t = 0.05 and �x = 0.05. In order to obtain the mean values

we perform a suitable number (N = 5000) of numerical real-

izations. Throughout the whole paper we use the words string,

referring to the entire junction, and cell, indicating each of the

elements with dimension �x, which compose the junction.

The washboard potential valley labeled with n = 0 [Eq. (5)]

is chosen as an initial condition for solving Eq. (1); i.e.,

ϕ0 = arcsin(ib(x,0)) = arcsin(ib(x)). In our model there are no

barriers, either absorbing or reflecting, surrounding the initial

metastable state, and the value of MST calculated is the nonlin-

ear relaxation time (NLRT) [89]. After a first exit, other tem-

porary trapping events are permitted: during the time evolution

each cell can return to the initial potential well, contributing

again to the final value of MST, indicated as τ . This agrees

with the definition, proposed by Malakhov [90], for the mean

permanence time of the phase ϕ inside the interval [−π,π ]:

τ =
∫ ∞

0

tw(t)dt =
∫ ∞

0

P (t)dt, (18)

where P (t) is the probability that ϕ ∈ [−π,π ] and

w(t) = ∂P (t)/∂t . For each cell and for each realization

the numerical calculation of P (t) is performed by considering

Pij (t) =

{

1 ⇐⇒ ϕ ∈ [−π,π ]

0 ⇐⇒ ϕ /∈ [−π,π ],
(19)

where Pij is the probability that in the ith realization for

the j th cell ϕ ∈ [−π,π ]. Summing Pij (t) over the total

number Ncells of string elements, and averaging first over

the total number of cells, then over the total number N of

realizations, we find the probability that the entire string is in

the superconducting state at time t :

P (t) =
1

N Ncells

N
∑

i=1

Ncells
∑

j=1

Pij (t) (20)

The maximum time value used to perform the integral of

Eq. (18) has to be set large enough so that temporary trapping

events, in the metastable state, can occur. Therefore, we

replace the upper limit of the integral, ∞, with a maximum

time tmax = 100, obtaining the mean switching time

τ =
∫ tmax

0

P (t)dt. (21)
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The whole procedure is repeated for the three noise statistics

analyzed in the previous section, obtaining the behavior of

the MST τ in the presence of different sources of Lévy noise.

V. EFFECTS OF NON-GAUSSIAN NOISE

The analysis is carried out looking at the MST variations

as a function of the junction length L, noise intensity γ , and

frequency ω of the driving signal. The i0 values chosen are

0.5 and 0.9, so that we can work with potentials less or more

inclined, and the ib(x) distributions used are homogeneous or

inhomogeneous [Eq. (7)]. The washboard slope is connected to

the heights of the potential barriers seen by the phase elements.

Reducing the i0 value, the barrier’s intensity is enhanced and

the MST values tend to increase. We search for evidence of

nonmonotonic behavior by varying first the values of L, γ , and

ω, then the statistics of the noise sources. Moreover, we try

to find connections between the MST behaviors and JJ soliton

dynamics. The amplitude of the oscillating driving signal is set

to A = 0.7, to obtain at certain times [see Eq. (6)] ib(x,t) > 1

(absence of metastable states) and, at least with one of the i0

values used, ib(x,t) < 0 (positive slope). In this section we

neglect the thermal fluctuations of the current density iT (x,t)

with respect to the non-Gaussian (Lévy) noise source inG(x,t)

in Eqs. (1) and (2), because we consider very low temperatures,

around the crossover temperature.

A. MST versus JJ length L

We begin to study the MST values varying the JJ length L in

the range [0,20]. The results are shown in Fig. 4, emphasizing

the three different noise sources used: G [Figs. 4(a) and 4(d)],

CL [Figs. 4(b) and 4(e)], and LS [Figs. 4(c) and 4(f)].

Figures 4(a)–4(c) contain the results for homogeneous bias

current density, while Figs. 4(d)–4(f) contain the results for

inhomogeneous bias current density. In each panel, we note

that the MST values for i0 = 0.5 are greater than those for

i0 = 0.9. This is due to the reduced height of the right potential

barrier due to the increased slope, i.e., the i0 value, of the

washboard. Specifically the expression for the left (or right)

potential barrier height �U+(or �U−) is

�U±(x,t) = 2

√

1 − i2
b (x,t)

+ ib(x,t)[2 arcsin(ib(x,t)) ± π ]. (22)

We start analyzing the results obtained in the presence of a

Gaussian noise source with i0 = 0.5 and ib(x) homogeneous

[open symbols in Fig. 4(a)]. In this panel of Fig. 4 the presence

of two different dynamical regimes in each of these curves is

evident. An initial monotonic increasing behavior is followed

by a constant MST plateau. This underlines the presence of

two different mechanisms, governing the time evolution of the

phase, which clearly appear in the soliton dynamics shown

in Fig. 5. This figure displays four different phase dynamics

during the passage towards the resistive state, i.e., when the

phase ϕ approximately changes by 2π . The cells can escape

from a potential well altogether [Fig. 5(a)] or by the formation

of a single kink, or a single antikink, or a kink-antikink (K-A)

pair [Fig. 5(c)]. If the string is too short, the connection among

cells is so strong that the soliton formation is forbidden, and the

string can move from, or remain inside, a potential minimum

as a whole. This is evident in Fig. 5(a). In this length regime, an

increase in the number of cells makes more difficult the motion

(a) (b)

(f)(d) (e)

(c)

FIG. 4. (Color online) MST τ vs L for different current distributions along the junction: homogeneous ib(x) and noise sources

with (a) Gaussian, (b) Cauchy-Lorentz, and (c) Lévy-Smirnov statistics; inhomogenous ib(x) and noise sources with (d) Gaussian,

(e) Cauchy-Lorentz, and (f) Lévy-Smirnov statistics. In all graphs the other parameters are i0 = {0.5 (open symbols),0.9 (solid symbols)},
ω = {0.4 (circles),0.7 (triangles),0.9 (squares)}, and γ = 0.2. The legend in (c) refers to all figures.
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FIG. 5. (Color online) String dynamics during the switching towards the resistive state, for a JJ of length L = 2, with (a) homogeneous bias

current distribution and G noise source, and (b) inhomogeneous bias current distribution and CL noise source, and for a JJ of length L = 15,

with (c) homogeneous bias current distribution and CL noise source, and (d) inhomogeneous bias current distribution and G noise source. All

graphs were obtained for ω = 0.9 and γ = 0.2. The curves in panels (b) and (c) show the characteristic Lévy flights of the CL statistic.

of the whole string during the transition process, causing the

MST to raise for short lengths. This happens as long as no

soliton formation occurs. There is, in fact, a specific junction

length above which the dynamics is governed by the formation

of phase kinks. This length is connected with the soliton

nucleation, that is, the formation of a K-A pair. Following

the work of Büttiker [67], in the soliton nucleation a critical

nucleus, which is the minimum separation between kink and

antikink, exists. For junction lengths greater than this critical

value, a saturation effect is evident. The MST reaches an almost

constant value and the switching events are guided by the

solitons, which indicates that the dynamics of these events

is independent of the JJ length. To explain this behavior we

consider that inside the string a subdomain structure exists.

Each subdomain is composed by an amount of cells of total

size approximately equal to the critical nucleus. The entire

string can be thought of as the sum of these subdomains and

the overall escape event results in the superimposition of the

escape events of each single subdomain, so that the total MST

is equal to the individual subdomain time evolution. The size

of this subdomain approximately corresponds to the length

value for which the initial monotonic behavior is interrupted.

The dimension of the critical nucleus is proportional to

Lc ∝ − log(i0). Increasing the i0 value, the critical nucleus

decreases and the soliton dynamics can start in correspondence

of shorter junction lengths, as one can see in Fig. 4(a), where

results obtained for i0 = 0.5 (open symbols) and i0 = 0.9

(solid symbols) are shown. In particular, we have Lc ∼ 5 for

i0 = 0.5, and Lc ∼ 2 for i0 = 0.9. The curves obtained for

i0 = 0.9 are characterized by a small maximum, which reveals
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the presence of a weak nonmonotonic behavior. Between

the initial increasing behavior and the saturation, a portion

with negative slope and corresponding reduction of the MST

is evident. Increasing the slope of the potential, the critical

nucleus becomes shorter so that the nucleation is allowed also

in the regime of strong connections among the cells. These

two conditions, i.e., anticipated nucleation and intense “bind”

among cells, determine cooperating effects, which lead to MST

reduction before the saturation regime is reached.

Figures 4(b) and 4(c) show MST curves obtained in the

presence of CL and LS noise sources. These behaviors appear

quite different with respect to those obtained using Gaussian

noise sources. MST curves are strongly affected by Lévy

flights that favor jumps between different potential valleys, and

soliton formation [see Fig. 5(c), containing rapid and sudden

phase variations]. Specifically, for CL noise the saturation

effect gives rise to a value of MST lower than that observed

with the Gaussian thermal fluctuations. This is due to the pecu-

liarity of the fat tails of the probability density function for CL

noise. Therefore, for homogeneous density current [Fig. 4(b)],

after the initial transient with an increasing behavior due to

the increasing length of the junction and therefore of the

string, nucleation and intense “bind” among cells speed up

the escape process and τ decreases towards the saturation

value. For inhomogeneous density current [Fig. 4(e)], the weak

nonmonotonic behavior, found for the homogeneous case [see

Fig. 4(b)], disappears. This is because the edge portions of the

phase string are subject to high values of bias current [ib(x) >

1; see Fig. 2 and Eq. (7)]. As a consequence, all the string

is dragged out of the potential well, speeding up the escape

process. The MST values obtained in the presence of LS noise

sources are in general smaller than those obtained using noise

sources with CL distribution. These differences are related to

the intensity of the jumps in these two statistics. The saturation

effect is also present, but the corresponding value of τ is very

low. This is due to the LS Lévy flights, which push the string

very quickly out of the superconductive state, giving rise to a

monotonic decreasing behavior of τ versus L. In other words,

LS noise drives the phase string out of the potential well very

quickly, due to the greater diffusive power of this noise source.

It is worth noting that, for i0 = 0.9, the values obtained using

the Cauchy-Lorentz statistics are slightly greater than those

obtained in the presence of Gaussian thermal fluctuations. This

is connected with the limited space displacement, which rules

the CL statistics for short time scales [32].

In Figs. 4(d)–4(f), we show results obtained in the presence

of an inhomogeneous bias current. According to Eq. (7),

ib(x) diverges at the string ends, x = 0 and x = L, having a

minimum equal to ib(L/2) = (2/π )i0 in the string center, x =
L/2. In a considerable edge portion of the string (around 5%

and 18% of the total length for i0 = 0.5 and 0.9, respectively)

ib(x) > 1, allowing the phase elements to roll down along the

tilted potential without encountering any resistance. We can

consider these edge elements as generators of solitons. This

corresponds to the physical situation in which the supercurrent

flows between the junction ends and the fluxon formation

occurs in these regions of the JJ. This kind of dynamics is

shown in Fig. 5(d), in which the kink starts from the cells

located in the junction edges. The role of these cells becomes

particularly important as the length L increases, but it is irrele-

vant for short junctions, in which the connection between cells

is still too strong, and the dynamics is not guided by solitons.

This situation is clear in Fig. 5(b), although the presence of

CL statistics causes the appearance of flights. The G curves

in Fig. 4(d) show an increasing behavior similar to those

obtained with homogeneous bias current distribution, even if

the values reached are a little bit higher. Independently of the

value of L, about 77% of the cells composing the junction

have ib(x) < i0. Therefore, this percentage of cells should

overcome potential barriers higher than those corresponding to

the case of homogeneous bias current ib(x). This determines,

in the absence of soliton formation, an increase of the escape

time. Moreover, a nonmonotonic behavior is observed. After

reaching the maximum, the MST curves decrease due to the

action of the junction edges, which behave as generators of

solitons. This effect accelerates the escape process, becoming

more important as the value of L increases (see Fig. 2). For

i0 = 0.9, the time average of the barrier height is lower than

in the case with i0 = 0.5 and the switching process is faster.

The CL and LS results presented in Figs. 4(e) and 4(f)

do not show remarkable differences with respect to those

obtained with homogeneous current distribution, except for an

enhancement in the MST for very short junction. The physical

reason for this behavior is the same as that discussed for the

Gaussian case.

The curves in Figs. 5(b) and 5(c), obtained using a CL

noise source, show peaks associated with the generations

of the Lévy flights. As previously discussed, these noise-

induced fluctuations influence the switching events and the

soliton formation. These graphs also clearly display the

creation of another “structure” known as a breather [see

Fig. 5(b) for tω0 = {18.5,19} and x/λj ≈ 1.5, and Fig. 5(c)].

This is a well-known localized solution of the SG equation

consisting of a soliton-antisoliton pair and oscillating with

an internal “breathing” frequency. The curves obtained by

using non-Gaussian noise sources exhibit this kind of nonlinear

“structure” [Figs. 5(b) and 5(c)].

B. MST versus driving frequency ω

In this section we analyze the MST behavior, setting the

bias current at i0 = 0.9 and varying both the frequency ω of

the driving signal (within the interval [0.01,10]) and the noise

intensity γ . The values of MST obtained are shown in Fig. 6.

Specifically, results obtained in the presence of G, CL, and LS

noise sources are shown in the top panels ([Figs. 6(a), 6(c),

and 6(e)], for homogeneous bias current distribution, and in the

lower panels [Figs. 6(b), 6(d), and 6(f)], for inhomogeneous

bias current distribution. Each panel contains five curves,

obtained for the values of γ displayed in the legend. This

analysis was performed working with a junction of length

L = 10, which is a string with a suitable length, which

allows the onset of the phenomenon of soliton formation. All

graphs show clearly the presence of RA [37,38,89,91–97], or

stochastic resonance activation, a noise-induced phenomenon,

whose signature is the appearance of a minimum in the curve

of MST vs ω. This minimum tends to vanish for CL and

LS distributions when the noise intensities are greater than

the time average of the potential barrier [�U i0=0.9 ≃ 0.4; see

Eq. (22)]. It is worthwhile to note that the nonmonotonic
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(f)(b) (d)

(e)(c)(a)

FIG. 6. (Color online) Log-log plots of MST τ vs ω obtained using homogeneous ib(x) and noise sources (a) G, (c) CL, and (e) LS, and

inhomogeneous ib(x) and noise sources (b) G, (d) CL, and (f) LS. In all graphs the values of the other parameters are i0 = 0.9, L = 10, and

γ = {0.025,0.1,0.2,0.45,0.9}. The legend in (d) refers to all panels.

behavior of τ versus the CL noise intensity around the mini-

mum, observed in Figs. 6(c) and 6(d), is related to that shown

in Figs. 7(c) and 7(d). The RA is a phenomenon robust enough

to be observed also in the presence of Lévy noise sources [32].

Particle escape from a potential well is driven when the

potential barrier oscillates on a time-scale characteristic of the

particle escape itself. Since the resonant frequency is close to

the inverse of the average escape time at the minimum, which

is the mean escape time over the potential barrier in the lower

configuration, stochastic resonant activation occurs [10,43],

which is a phenomenon different from the dynamic resonant

activation. This effect, in fact, appears when the driving

FIG. 7. Log-log plots of MST τ vs γ obtained using homogeneous ib(x) and noise sources (a) G, (c) CL, and (e) LS, and inhomogeneous

ib(x) and noise sources (b) G, (d) CL, and (f) LS. In all graphs the values of other parameters are i0 = {0.5,0.9}, ω = 0.9, and L = {1,10}. The

legend in (c) refers to all panels.
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frequency matches the natural frequency of the system, that

is, the plasma frequency [45,46,98]. Finally, we note that the

contemporaneous presence of RA and NES phenomena in

the behavior of τ as a function of the driving frequency, in

underdamped JJ, has been observed, and it was found that the

MST can be enhanced or lowered by using different initial

conditions [42].

The G data in Figs. 6(a) and 6(b) present this minimum

for a frequency value (ωRA ∼ 0.6), which varies little with

the noise intensity γ . The only evident effect, switching to an

inhomogeneous bias current, is a general reduction of the MST.

The curves with CL noise present a clear minimum, shifted

towards higher values of ω, with respect to that of the Gaussian

case. This minimum tends to disappear, increasing the noise

intensity. This is due to the influence of Lévy flights which, for

strong noise intensities, drive the escape processes. As found in

the presence of Gaussian noise, also in the case of CL statistics,

using inhomogeneous ib(x) causes a general lowering in the

MST values. We can note that, for a weak noise signal, the

Cauchy-Lorentz distributions are higher than the Gaussian

ones: for low values of γ the jumps are not relevant, and

the limited space displacement gives short phase fluctuations,

making it more difficult to escape from the potential wells.

The MST calculated using LS sources is also governed only

by the noise and presents quite small values. Therefore, the

RA effect is found only in the curve obtained for a very weak

noise intensity.

By increasing the driving frequency, at low noise intensities,

a trapping phenomenon occurs. A threshold frequency ωthr

exists such that for ω > ωthr the phase string is trapped within a

region between two successive minima of the potential profile.

In other words, the string cannot move from the potential

well to the next valley during one period T0 of the driving

current A sin(ωt). As a consequence, the MST diverges in the

limit γ → 0. The value of the threshold frequency increases

with increasing bias current and/or maximal current across the

junction [28,40,89]. We have estimated the threshold values for

the following parameter values: i0 = 0.9 and A = 0.7. Specif-

ically, for Gaussian thermal fluctuations ωthr � 1.8, for the CL

noise source ωthr � 2.1, and for the LS noise source ωthr � 3.

C. MST versus noise intensity γ

Here we analyze the MST curves calculated by varying

the noise amplitude in the range [0.0005,200]. The results are

shown in Fig. 7. Specifically the results in Figs. 7(a), 7(c),

and 7(e) were obtained using a homogeneous ib(x) and G,

CL, and LS noise sources, respectively, while those shown in

Figs. 7(b), 7(d), and 7(f) were obtained using an inhomoge-

neous ib(x) and G, CL, and LS noise sources, respectively.

This analysis is performed using ω = 0.9 and two different

values of L and i0, i.e., L = {1,10} and i0 = {0.5,0.9}. Fixing

the values of the system parameters, for γ → 0 the curves for

the three noise sources (G, CL, and LS) converge to the same

values, i.e., the deterministic lifetime in the superconducting

state, which depend strongly on the bias current. When γ → 0

and the potential is not too tilted, trapping phenomena occur,

and the MST tends to tmax. Increasing the noise intensity,

the MST curves exhibit an effect of NES [39,40,89,99–110],

a noise-induced phenomenon consisting of a nonmonotonic

behavior with the appearance of a maximum. The stability of

metastable states can be enhanced and the average lifetime of

the metastable state increases nonmonotonically with the noise

intensity. The observed nonmonotonic resonancelike behavior

proves to be different from the monotonic one of the Kramers

theory and its extensions [111–113]. This enhancement of

stability, first noted by Hirsch et al. [114], has been observed

in different physical and biological systems and belongs to a

highly topical interdisciplinary research field, ranging from

condensed matter physics to molecular biology to cancer

growth dynamics [103,115].

From Fig. 7, we note that in the curve obtained using

a Gaussian noise source, homogeneous current distribution,

and high washboard inclination, i0 = 0.9, two maxima are

present in correspondence of γ
L=1

max

∼= {0.06,10} for L = 1 and

γ
L=10

max

∼= {0.07,100} for L = 10. In view of understanding the

physical motivations of these NES effects, we calculate the

time evolution of the probability P (t), as defined in Eq. (20),

during the switching dynamics of the junction. We remember

that 0 � P (t) � 1, where the two extreme values indicate

the resistive state [P (t) = 0] and the superconducting state

[P (t) = 1].

The time evolution of P (t) was calculated for i0 = 0.9 and

ω = 0.9. The results, shown in Fig. 8, were obtained in the

following conditions: (i) G noise with L = 1 [Fig. 8(a)] and

L = 10 [Fig. 8(b)]; (ii) CL noise with L = 10 [Fig. 8(c)]. All

panels of Fig. 8 contain curves of P (t) calculated by setting the

noise intensity at values for which a maximum or minimum

appears in the MST vs γ behavior (see insets). Looking at the

curves displayed in Fig. 8(a), we note that the dotted curve

(γ = 0.0005) represents a deterministic switching event. The

string after a quick escape does not return inside the first

washboard valley. Conversely, the dashed line, obtained for

γ = 0.06, describes a temporary trapping phenomenon. The

contemporaneous presence of the fluctuating potential and

noise source inhibits the phase switching and therefore the

passage of the junction to the resistive regime. Moreover, the

exit from the first well is not sharp, as in the deterministic case,

and P (t) assumes an oscillatory behavior, almost in resonance

with the periodical motion of the washboard potential. This

oscillating behavior of P (t), which is related to the temporary

trapping of the phase string, tends to disappear as the noise

intensity increases. For γ = 10 [solid line in Fig. 8(a)], another

peak (NES effect) in the MST behavior is observed, but no

oscillations in P (t) are present. At this value of γ , the JJ

dynamics is totally driven by the noise and the NES effect

is due to the possibility that the phase string returns into the

first valley after a first escape event, as indicated by the fat

tail of P (t). This behavior is strictly connected to that found

for the MST, whose calculation is based on the definition of

NLRT. Further increases of γ reduce for the phase string the

possibility not only of returning into the initial well but also

of staying for a long time inside it. The results for G noise

source and L = 10, displayed in Fig. 8(b), are similar to those

obtained for L = 1. The first hump, corresponding to γ = 0.07

[see inset of Fig. 8(b)] is a little bit smaller than that for L = 1

and γ = 0.06 [see inset of Fig. 8(a)], and this is consistent

with the previous MST vs L analysis. Moreover, a NES effect
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(b) (c)(a)

× × ×

FIG. 8. (Color online) Time evolution of the probability P (t) in the following conditions: G noise with (a) L = 1 and (b) L = 10; (c) CL

noise with L = 10. The system parameters are i0 = 0.9 and ω = 0.9. Each graph contains curves of P (t) obtained using values of γ for which

a minimum or maximum appears in the τ vs γ behavior. The insets reproduce the corresponding curves of Figs. 7(a) and 7(c).

for γ = 100 is present [see inset of Fig. 8(b)]. We note the

difference of one order of magnitude in the noise intensity

(γ = 100 for L = 10) with respect to the NES phenomenon

observed for L = 1 at γ = 10. This difference is due to the

greater difficulty for random fluctuations of carrying a string,

ten times longer, again in the initial potential well. Figure 7(c)

shows the curves of MST vs γ in the presence of a CL noise

source. Here we note the absence of the second peak, observed

in the previous analysis at higher values of γ . This discrepancy

can be explained by noting that, for low noise intensity, the

effect of the CL flights on the overall JJ dynamics is negligible,

and the time evolution should appear quite similar to those

observed with Gaussian noise. Conversely, due to the limited

space displacement, to obtain the same effect (i.e., escape

from the first potential well), junctions subject to CL noise

should be exposed to noise intensity larger with respect to

identical junctions subject to G noise. The peak (maximum of

MST) should be therefore shifted towards higher values of γ .

Increasing the noise intensity, the influence of Lévy flights on

the total JJ dynamics becomes higher, and the probability that

a second peak appears, similar to that observed in the presence

of G noise, tends to vanish. This analysis is confirmed by the

graph shown in Fig. 8(c). Conversely, LS flights are too intense

to allow the formation of NES peaks [see Fig. 7(e)]. Finally,

we note that the curves obtained with inhomogeneous ib(x)

do not present any differences, except those for i0 = 0.9 and

L = 1 (solid circles), which show very high values of MST

with respect to the case of homogenous current distribution.

This indicates again a trapping phenomenon that occurs when a

short junction undergoes very weak noise intensities (γ → 0).

In this case, the parts of the junction generating solitons do not

affect the string dynamics. In fact, since ib(x) < i0 for 77%

of the total length, a large percentage of the string remains

confined in a potential well deeper than that of the analogous

homogeneous case, thus determining the trapping effect.

Moreover, all the curves of MST vs γ for CL and LS noise

sources coalesce together at high noise intensities. The MST

has a power-law dependence on the noise intensity according

to the expression

τ ≃
C(α)

γ μ(α)
, (23)

where the prefactor C and the exponent μ depend on the Lévy

index α [55]. From Fig. 7 we have μ(α) ∼ 0.9 for CL noise and

μ(α) ∼ 1.2 for LS noise, which are in agreement with the ex-

ponent μ(α) ≈ 1 for 0 < α < 2, calculated for barrier crossing

in bistable and metastable potential profiles [116,117].

VI. SIMULTANEOUS PRESENCE OF LÉVY NOISE AND

THERMAL FLUCTUATIONS

In this section we analyze the presence of both thermal

and Lévy noise sources. Therefore, in Eqs. (1) and (2)

both contributions of Gaussian thermal fluctuating current

density iT (x,t) and non-Gaussian Lévy noise current density

inG(x,t) are considered. The Lévy contribution is restricted

to a Cauchy-Lorentz term. The noise intensities are indicated

by γG (Gaussian), ranging within the interval [10−7,1], and

γCL (Cauchy-Lorentz). Noise-induced phenomena previously

observed when the CL noise source only is present show now

some differences. The values of the system parameters are

chosen in such a way to highlight these changes. Figure 9

contains a collection of MST curves obtained by varying the

junction length L [Figs. 9(a) and 9(b)], CL noise intensity

γCL [Figs. 9(c) and 9(d)], and frequency of the oscillating

bias current ω [Figs. 9(e) and 9(f)]. Top and bottom panels

show data calculated using i0 = 0.5 and i0 = 0.9, respectively.

An overall reduction of the MST values is observed by

increasing the intensity of thermal fluctuations, by speeding

up the switching process between the superconductive and

the resistive state. The simultaneous presence of thermal

fluctuations and a Lévy noise source produces an increase

of the overall intensity “felt” by the string phase. In all panels

clear modifications of the nonmonotonic behavior are present,

becoming more pronounced as the Gaussian thermal noise

intensity increases, especially for γG > 10−1.

The analysis of MST vs L suggests that the soliton

dynamics is modified only when the intensities of the thermal

fluctuations are greater than those of the CL noise, that is, γG >

γCL; conversely the curves for γG < γCL overlap altogether

(γG � 10−1). The curves of Figs. 9(a) and 9(b) maintain the

structure already shown in Fig. 4(b) (see Sec. V A), which is

a nonmonotonic behavior with a maximum and a saturation

plateau. The saturation value of τ decreases, of course, with

the increase of the intensity of thermal fluctuations.
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(f)(b) (d)

(e)(c)(a)

FIG. 9. (Color online) MST τ as a function of L, γCL, and ω. All curves were obtained considering the simultaneous presence of CL and

thermal noise sources, using two different values, i.e., (a, c, e) i0 = 0.5 and (b, d, f) i0 = 0.9, of the homogenous bias current, and varying the

Gaussian noise intensity, γG. The legend in (d) refers to all panels.

Looking at the graphs of MST vs γCL [Fig. 9(c)], trapping

phenomena are observed when γCL → 0 and γG → 0. For

γG � 1, that is, when the Gaussian thermal noise intensity

is comparable with the time average of the potential barrier

height [�U i0=0.5 ≃ 1; see Eq. (22)], trapping events disappear

and thermally activated processes drive the switching events.

For i0 = 0.9 [Fig. 9(d)] all the curves show a nonmonotonic

behavior, which is the signature of the NES effect. Low thermal

noise intensities do not affect the behavior of the NES curve,

with respect to the case of absence of thermal noise, until their

value is lower than γG ≃ 0.2. This is the value of the CL noise

intensity corresponding to the maximum of τ vs γCL, γ max
CL ≃

0.2 [see Fig. 7(c)]. In other words, thermal fluctuations affect

the behavior of the NES curve for γG � γ max
CL . The maximum

of the curve decreases and it is shifted towards higher CL

noise intensities because of the larger spatial region of the

potential profile spanned by the phase string before reaching

the boundaries [−π,π ].

For CL noise intensities γCL � 1, all the curves of MST vs

γCL [see Figs. 9(c) and 9(d)] coalesce together with a power-

law behavior given by Eq. (23), with μ(α) ∼ 0.9. When the

structure of the potential profile becomes irrelevant for the

dynamics of the phase string, that is, when the noise intensity

γCL is greater than the time average of the potential barrier

heights (�U i0=0.5 ≃ 1 and �U i0=0.9 ≃ 0.4), the MST has a

power-law dependence on the noise intensity.

The curves of MST as a function of ω in Figs. 9(e)

and 9(f) reproduce the typical RA behavior [see Figs. 6(c)

and 6(d)]. Again, all the curves of MST are lowered for

increasing thermal fluctuation intensities. Specifically, for

i0 = 0.5 [Fig. 9(e)], the minimum of the curve decreases and

it is shifted towards higher values of the driving frequency.

The resonant rate escape, that is, the resonant frequency

at the minimum, increases by increasing the overall noise

intensity, where the height of the average potential barrier is

fixed (�U i0=0.5 ≃ 1). For i0 = 0.9 [Fig. 9(f)], there is not any

potential barrier for about half a period of the external driving

force, and therefore the switching process is accelerated, and

the position of the minimum is slightly affected by thermal

fluctuations.

VII. CONCLUSIONS

We have investigated the influence of both thermal fluctua-

tions and external non-Gaussian noise sources on the temporal

characteristics of long-overlap JJs. We studied how random

fluctuations with different α-stable (or Lévy) distributions

affect the superconducting lifetime of long current-biased

Josephson junctions. The study was performed within the

framework of the sine-Gordon equation. Specifically we

analyzed the MST of the phase difference across the junction,

from a minimum of the tilted washboard potential, as a function

of different parameters of the system and external random

and periodical driving signals. We found nonmonotonic

behaviors of the superconducting lifetime τ as a function

of noise intensity γ , driving frequency ω, and junction

length L.

In particular, in the behavior of the MST, we observed noise-

induced phenomena such as stochastic resonant activation and

noise-enhanced stability, with different characteristics depend-

ing on both the bias current distribution along the junction and

the length of the superconducting device. Moreover, temporary

trapping of the phase string in the metastable state with

Gaussian thermal and CL noises gives rise to an oscillating

behavior of the time evolution of the probability P (t). The

analysis of the MST as a function of the junction length

revealed that the soliton dynamics plays a crucial role in the

switching dynamics from the superconducting to the resistive
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state. In more detail, we studied the relationship between

creation and propagation of solitons and different features of

the mean switching time. This analysis has demonstrated the

existence of two different dynamical regimes. One, occurring

for short junctions, is characterized by the movement of the

phase string as a whole. The other one occurs for junctions

whose size exceeds a critical length, in which the kink (or

antikink) creation is allowed.

Moreover, for high values of the bias current, there is a

length in which the two regimes take place simultaneously. Fi-

nally we found that, choosing an inhomogeneous distribution

of the bias current along the junction, the cells located at the

junction edges behave as generators of solitons. In these con-

ditions the escape from the metastable superconducting state

is strongly affected by the soliton dynamics. The analysis of

the contemporaneous presence of Cauchy-Lorentz and thermal

noise sources gives rise to modifications in the soliton dynam-

ics and noise-induced effects observed in the transient dynam-

ics of JJs in the presence of non-Gaussian, Lévy-type noise

sources. Moreover, oscillating pairs of soliton-antisoliton

(breathers) induced by the noise have been observed.

Our findings, which are important to understand the physics

of fluctuations in long-overlap Josephson junctions to improve

the performance of these devices, could help to shed new

light on the general context of the nonequilibrium statistical

mechanics. In fact, JJs are good candidates for probing relevant

physics issues in metastable systems [42]. Moreover, the

mean switching time from one of the metastable states of

the potential profile encodes information on the non-Gaussian

background noise. Therefore, the statistical analysis of the

switching times of JJs can be used to analyze weak signals in

the presence of an unknown non-Gaussian background noise.
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066602 (2012).

[76] D. R. Gulevich, M. B. Gaifullin, and F. V. Kusmartsev, Eur.

Phys. J. B 85, 24 (2012).

[77] G. C. Wick, Rev. Mod. Phys. 27, 339 (1955).

[78] M. R. Samuelsen and S. A. Vasenko, J. Appl. Phys. 57, 110

(1985).
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