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Abstract

Switching VARMA Term Structure Models

Extended Version

The purpose of the paper is to propose a global discrete-time modeling of the term structure of interest rates
able to capture simultaneously the following important features : (i) an historical dynamics of the factor driving
term structure shapes involving several lagged values, and switching regimes; (ii) a specification of the stochastic
discount factor (SDF) with time-varying and regime-dependent risk-premia; (iii) explicit or quasi explicit formulas
for zero-coupon bond and interest rate derivative prices; (iv) the positivity of the yields at each maturity. The first
family of models we develop is given by the Switching Autoregressive Normal (SARN) and the Switching Vector
Autoregressive Normal (SVARN) Factor-Based Term Structure Models of order p. The second family of models we
study is given by the Switching Autoregressive Gamma (SARG) and the Switching Vector Autoregressive Gamma
(SVARG) Factor-Based Term Structure Models of order p. Regime shifts are described by a Markov chain with
(historical) non-homogeneous transition probabilities.

Keywords : Affine Term Structure Models, Stochastic Discount Factor, Car processes, Switching Regimes, VARMA
processes, Lags, Positivity, Derivative Pricing.

Résumé

Switching VARMA Term Structure Models

Extended Version

Le but de ce papier est de proposer une modélisation globale en temps discret de la courbe de taux d’intérêt capable de
capturer simultanément les aspect suivants : (i) une dynamique historique du facteur déterminant la courbe de taux
caractérisée par des retards et des changements de régimes; (ii) une spécification du facteur d’escompte stochastique
avec des coefficients d’ajustement pour le risque stochastiques et dépendant de régimes; (iii) des formules de prix
de zero-coupons et de dérivés sur taux sous une forme explicite ou quasi explicite; (iv) des taux positifs pour
toute maturité. La première famille de modèles est constituée des Switching Autoregressive Normal (SARN) et
des Switching Vector Autoregressive Normal (SVARN) modèles à facteurs pour la structure par terme des taux
d’intérêt. La deuxième famille de modèles contient les Switching Autoregressive Gamma (SARG) et les Switching
Vector Autoregressive Gamma (SVARG) modèles à facteurs pour la structure par terme des taux d’intérêt. Les
changements de régimes sont décrits par une châıne de Markov non-homogène.
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1 Introduction

In this paper we propose a global discrete-time modeling of the term structure of interest rates,
which captures simultaneously the following important features :

- an historical dynamics of the factor driving term structure shapes involving several lagged
values, and switching regimes;

- a specification of the stochastic discount factor (SDF) with time-varying and regime-dependent
risk-premia;

- explicit or quasi explicit formulas for zero-coupon bond and interest rate derivative prices;

- the positivity of the yields at each maturity.

It is well known in the literature that interest rates show an historical dynamics involving lagged
values and switching regimes [see, among the others, Hamilton (1988), Cai (1994), Driffill and Sola
(1994), Garcia and Perron (1996), Gray (1996), Boudoukh, Richardson, Smith, and Whitelaw
(1999), Ang and Bekaert (2002a, 2002b), Christiansen (2004), Christiansen and Lund (2005),
Cochrane and Piazzesi (2005)]; indeed, changes in the business cycle conditions or monetary policy
may affect real rates and expected inflation and cause interest rates to behave quite differently in
different time periods, both in terms of level and volatility. In addition, there is a large empirical
literature on bond yields, based in general on the class of Affine Term Structure Models (ATSMs)3,
suggesting that regime switching models describe the term structure of interest rates better than
single-regime models [see, for example, Bansal and Zhou (2002), Driffill, Kenc and Sola (2003),
Evans (2003), Ang and Bekaert (2005), Dai Singleton and Yang (2006)].

These results lead us to propose dynamic term structure models (DTSMs) where the yield
curve is driven by a univariate or multivariate factor (xt) which depends on its p most recent
lagged values [Xt, say] and for which all the coefficients depend on the present and past values of
a latent J-state non homogeneous Markov Chain (zt) [Zt, say] describing different regimes in the
economy. Consequently, the joint dynamics of (xt, zt) is not a Compound Autoregressive (Car)
process4 under the historical probability, and thus allows for nonlinearities already documented by
the literature [see Ait-Sahalia (1996), Stanton (1997), Ang and Bekaert (2002b)]. The factor (xt)
is considered as a latent variable or an observable variable: in the second case the factor is a vector
of several yields.

We consider an exponential-affine SDF with time-varying and regime-dependent risk correction
coefficients which are defined as functions of the present and past values of the factor (xt) and of
the regime indicator function (zt). In our models, both factor risk and regime-shift risk are priced,
and this is done by taking into account not just the information at date t, that is (xt, zt), but a
larger information given by (Xt, Zt). This specification leads to stochastic and regime-dependent

3The Affine family of dynamic term structure models (DTSMs) is characterized by the fact that the zero-coupon
bond yields are affine functions of Markovian state variables, and it gives closed-form expressions for zero-coupon
bond prices which greatly facilitates pricing and econometric implementation [see Vasicek (1977), Duffie and Kan
(1996), Dai and Singleton (2000, 2003) and Piazzesi (2003)]. The Affine Term Structure family is much larger that
it has been considered in the literature : indeed, it has been observed recently that the family of Quadratic Term
Structure Models (QTSMs) [see Beaglehole and Tenney (1991), Ahn, Dittmar and Gallant (2002), and Leippold
and Wu (2002)] is a special case of the Affine class obtained by stacking the factor values and their squares [see
Gourieroux and Sufana (2003), Cheng and Scaillet (2005)].

4A Car (discrete-time affine) process is a Markovian process with an exponential-affine conditional Laplace trans-
form [see Darolles, Gourieroux, Jasiak (2006) for details].
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risk premia and is coherent with recent empirical literature suggesting to define risk correction
coefficients as functions of both factors and their volatilities. Such a specification is helpful in
order to replicate correctly the observed temporal variation of one-period expected excess returns
on zero-coupon bonds [see Ahn, Dittmar and Gallant (2002), Dai and Singleton (2002), Duffee
(2002), Duarte (2004), Cheridito, Filipovic and Kimmel (2005), Dai, Singleton and Yang (2006)].

At the same time, we want to exploit the tractability of Car models, and obtain explicit or
quasi explicit formula for zero-coupon bond and interest rate derivative prices. This result is
achieved by matching the historical distribution and the SDF in order to get a Car risk-neutral
joint dynamics for (xt, zt), and by using the property of the Car family of being able to incorporate
lags and switching regimes. It is now well known [see Gourieroux, Monfort and Polimenis (2006),
and Darolles, Gourieroux, Jasiak (2006)] that the class of discrete-time affine (Car) models is much
larger than the discrete-time counterparts of the continuous-time affine processes [see Duffie and
Kan (1996), Dai and Singleton (2000), and Duffie, Filipovic and Schachermayer (2003)].

We develop the Switching Autoregressive Normal (SARN) and the Switching Vector Autore-
gressive Normal (SVARN) Factor-Based Term Structure Models of order p. Ang and Bekaert
(2005) also propose a discrete time regime-switching Gaussian term structure model (to identify
the real and expected inflation components of nominal interest rates). In their model, the historical
dynamics of the tridimensional factor (xt) driving term structure shapes is described by a regime-
switching VAR(1) process with a constant autoregressive matrix. The regime indicator function
(zt) is driven, under the historical probability, by a homogeneous Markov chain and regime-shift
risk is not priced. Bansal and Zhou (2002) propose a bivariate (approximate) discrete-time Cox-
Ingersoll-Ross term structure model with regime shifts. In their modeling, (zt) is a homogeneous
Markov chain under the historical probability; the associated risk correction coefficient is assumed
equal to zero, and the provided term structure formula is based on a log-linear approximation
applied on the fundamental asset pricing equation. Our SVARN(p) Factor-Based Term Structure
Model relax all these assumptions.

Dai, Singleton and Yang (2006) propose a Gaussian discrete time model where the histori-
cal dynamics of the latent factor (xt) is described by a trivariate SVARN(1) process with non-
homogeneous regime-switching. They price regime-shift risk, and their factor risk correction coeffi-
cient generalizes to the case of multiple regimes the essentially affine specification of Duffee (2002).
In our approach, the historical dynamics of (xt) depends on several lagged values and on several
past non-homogeneous regime-indicators (zt) [the SVARN(p) process], we price regime-shift risk
and our specification of the factor risk correction coefficient extends to the case of multiple lags
that of Dai, Singleton and Yang (2006). Moreover, in the empirical analysis of SVARN(p) Factor-
Based Term Structure Models, we overcome their identification problems given that the factor (xt)
will be observable (yields at different maturities). In this general setting, we are able to derive
formulas, as well as for the yield curve and for the price of derivatives, with simple analytical or
quasi explicit representations.

The second famity of models we study in the paper, based on the (scalar and vector) Switch-
ing Autoregressive Gamma process5 of order p, implies the positivity of the yields for each time
to maturity, and regardless the latent or observable nature of the factor (xt). The Switching
Autoregressive Gamma (SARG) and the the Switching Vector Autoregressive Gamma (SVARG)
Factor-Based Term Structure Models of order p give the possibility to replicate complex nonlin-
ear (historical and risk-neutral) factor dynamics and provide explicit or tractable formulas for
zero-coupon bond and derivative prices. In a related study, Bansal and Zhou (2002) propose an

5The Autoregressive Gamma (ARG) process is a Car process, and the ARG(1) specification is the discrete-time
counterpart of the Cox-Ingersoll-Ross process [see Gourieroux and Jasiak (2006), Cox, Ingersoll, and Ross (1985)].
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(approximate, scalar and bivariate) discrete-time Cox-Ingersoll-Ross term structure model with
regime shifts. We extend the Bansal and Zhou (2002) framework in several directions; we use
the exact discrete-time equivalent of the CIR process (with switching regimes) generalized to an
autoregressive order p larger than one; we allow for a non-homogeneous historical transition matrix
for (zt); we price the regime-shift risk, and we provide an exact yield-to-maturity formula [in Bansal
and Zhou (2002), (zt) is an homogeneous Markov chain, the associated risk correction coefficient
is assumed equal to zero, and the term structure formula they provide is based on a log-linear
approximation applied on the fundamental asset pricing equation].

In a recent paper Dai, Le and Singleton (2006) propose a (discrete-time multivariate) condition-
ally Gaussian term structure model with stochastic volatility. Under the risk-neutral probability,
the (multivariate) stochastic volatility factor is described by a particular VARG(1) process with
conditionally independent components. The switching vector Autoregressive Gamma process we
use to describe the risk-neutral dynamics of the factor (xt), in the SVARG(p) Factor-Based Term
Structure Model, presents three generalizations with respect to their specification: a) we consider
an autoregressive order p in general larger than one; b) conditionally to the present and past values
of xt and zt, there is dependence between the components of the factor xt+1; c) the historical and
risk-neutral dynamics of xt+1 is affected by switching regimes.

The plan of the paper is as follows. In Section 2, we present the Index-Car(p) processes. This
family of processes is developed in a univariate and multivariate setting, with and without Switch-
ing Regimes. In particular, we study the (scalar and vector) Autoregressive Gaussian of order p

models and the (scalar and vector) Autoregressive Gamma of order p models, under single-regime
and regime-switching specifications. Then, this class of processes is used, following the SDF mod-
eling principle, to the derive the SARN(p) and the SARG(p) Factor-Based Term Structure Models,
and their multivariate generalizations. In Section 3 we study the SARN(p) and the SVARN(p)
specifications, we derive the Generalized Linear Term Structure formulas and we specify the his-
torical and risk-neutral dynamics of the yield curve processes. These results are given for a latent
or an observable factor. We discuss the propagation of shocks on the interest rate surface, and we
present a two-step estimation procedure for a SVARN(p) Factor-Based Term Structure Model with
observable factor. The second step of this estimation methodology is based on a generalization
of the Kim’s smoothing algorithm. Section 4 deal with the SARG(p) and the SVARG(p) Factor-
Based Term Structure Models. Here, regardless the observable or latent nature of the factor (xt),
we derive the Generalized Linear Term Structure formulas and the yield curve processes, and we
guarantee the positivity of the yields for each time to maturity. Then, the pricing methodology
proposed in Sections 3 and 4, for zero-coupon bonds, is generalized in Section 5 to the case of
interest rate derivatives. Section 6 concludes and appendices gather the proofs.

2 Laplace Transforms, Car(p) Processes and Switching Regimes

It is now well documented [see e.g. Darolles, Gourieroux and Jasiak (2006), Gourieroux and
Jasiak (2006), Gourieroux, Jasiak and Sufana (2004), Gourieroux and Monfort (2006a), Gourieroux,
Monfort and Polimenis (2003, 2006), Pegoraro (2006), Polimenis (2001)] that the Laplace transform
(or moment generating function) is a very convenient mathematical tool in many financial domains.
It is, in particular, a crucial notion in the theory of Car(p) processes [see Darolles, Gourieroux and
Jasiak (2006) for details].
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2.1 Definition of a Car(p) process

Definition 1 [Car(p) process]: A n-dimensional process x̃ = (x̃t, t ≥ 0) is a compound autore-
gressive process of order p [Car(p)] if the distribution of x̃t+1 given the past values x̃t = (x̃t, x̃t−1, . . .)
admits a real Laplace transform of the following type:

E
[

exp(u′x̃t+1) | x̃t

]

= Et[exp(u′x̃t+1)]

= exp
[

ã1(u)′x̃t + . . . + ãp(u)′x̃t+1−p + b̃(u)
]

, u ∈ Rn ,

(1)

where ai(u), i ∈ {1, . . . , p}, and b(u) are nonlinear functions, and where ap(u) 6= 0, ∀u ∈ Rn. The
existence of this Laplace transform in a neighborhood of u = 0, implies that all the conditional
moments exist, and that the conditional expectations and variance-covariance matrices (and all
conditional cumulants) are affine functions of (x̃′

t, x̃
′
t−1, . . . , x̃

′
t+1−p).

2.2 Univariate Index-Car(p) process

An important class of Car(p) processes are the Index-Car(p) processes, which are built from a
Car(1) process. In this section we consider a univariate process xt and the multivariate case will
be considered in Sections 2.6 and 2.7.

Definition 2 [Univariate Index-Car(p) process]: Let exp[a(u)yt + b(u)] be the conditional
Laplace transform of a univariate Car(1) process yt, the process xt admitting a conditional Laplace
transform defined by:

E
[

exp(uxt+1) |xt

]

= exp [a(u)(β1xt + . . . + βpxt+1−p) + b(u)] , u ∈ R , (2)

is called an Univariate Index-Car(p) process.

Note that, if yt is a positive process and if the parameters β1, . . . , βp are positive, the process xt

will be positive.
Using the notation β = (β1, . . . , βp)

′ and Xt = (xt, xt−1, . . . , xt+1−p)
′, the Laplace transform

(2) can be written as:

E
[

exp(uxt+1) |xt

]

= exp [a(u)β′Xt + b(u)] . (3)

2.3 Examples of Univariate Index-Car(p) processes

a. Gaussian model

If yt is a Gaussian AR(1) process defined by:

yt+1 = ν + ρyt + εt+1

where εt+1 is a gaussian white noise distributed as N (0, σ2), the conditional Laplace transform of
yt+1 given yt is:

E
[

exp(uyt+1) | yt

]

= exp
[

uρyt + uν + σ2

2 u2
]

.

The process is Car(1) with a(u) = uρ and b(u) = uν + σ2

2 u2. The associated Index-Car(p) process
has a conditional Laplace transform defined by:

E
[

exp(uxt+1) |xt

]

= exp
[

uρ(β1xt + . . . + βpxt+1−p) + uν + σ2

2 u2
]

;
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so, using the notation ϕi = ρβi, we see that xt+1 is the Gaussian AR(p) process defined by:

xt+1 = ν + ϕ1 xt + . . . + ϕp xt+1−p + εt+1 (4)

and its conditional Laplace transform becomes:

E
[

exp(uxt+1) |xt

]

= exp
[

uϕ′Xt + uν + σ2

2 u2
]

, (5)

where ϕ = (ϕ1, . . . , ϕp)
′.

b. Gamma model

Let us now consider an autoregressive gamma of order one [ARG(1)] process yt. The conditional
Laplace transform is [see Gourieroux and Jasiak (2005) for details]:

E
[

exp(uyt+1) | yt

]

= exp
[

ρu
1−uµ yt − ν log(1 − uµ)

]

, ρ > 0 , µ > 0 , ν > 0 ,

and it is well known that, given yt, yt+1 can be obtained by first drawing a latent variable Ut+1

in the Poisson distribution P(ρyt

µ ) and, then, drawing yt+1

µ in the gamma distribution γ(ν + Ut+1).
The process yt+1 is positive and the associated Index-Car(p) process xt+1 is also positive. The
conditional Laplace transform of this process is:

E
[

exp(uxt+1) |xt

]

= exp
[

ρu
1−uµ(β1xt + . . . + βpxt+1−p) − ν log(1 − uµ)

]

,

with βi ≥ 0, for i ∈ {1, . . . , p}, or using the same notation as above:

E
[

exp(uxt+1) |xt

]

= exp
[

u
1−uµϕ′Xt − ν log(1 − uµ)

]

. (6)

Similarly, given Xt, xt+1 can be obtained by drawing Ut+1 in P(ϕ′Xt

µ ) and xt+1

µ in γ(ν + Ut+1).
It easily seen that the conditional mean and variance of xt+1, given xt, are respectively given by
νµ + ϕ′Xt and νµ2 + 2µϕ′Xt; so, the process xt+1 has the weak AR(p) representation:

xt+1 = νµ + ϕ′Xt + εt+1 , (7)

where εt+1 is a conditionally heteroscedastic martingale difference, whose conditional variance is
νµ2 + 2µϕ′Xt; the process is stationary if and only if ϕ′e < 1 [where e = (1, . . . , 1) ∈ Rp] and,

in this case, the process εt+1 has finite unconditional variance given by νµ2 + 2νµ2 ϕ′e
1−ϕ′e . The

unconditional mean of xt+1 is given by νµ
1−ϕ′e .

2.4 Univariate Switching regimes Car(p) process

Let us first consider a J-state homogeneous Markov Chain zt+1, which can take the values ej ∈ RJ ,
j ∈ {1, . . . , J}, where ej is the jth column of the (J×J) identity matrix. The transition probability,
from state ei to state ej is π(ei, ej) = Pr(zt+1 = ej | zt = ei). It is first worth noting that zt+1 is a
Car(1) process.

Proposition 1 : The Markov chain process zt+1 is a Car(1) process with a conditional Laplace
transform given by:

E[exp(v′zt+1)| zt] = exp(az(v, π)′zt) , (8)
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where

az(v, π) =



log





J
∑

j=1

exp(v′ej)π(e1, ej)



 , . . . , log





J
∑

j=1

exp(v′ej)π(eJ , ej)









′

,

[Proof : straightforward].

Let us now consider a univariate Index-Car(p) process with a conditional Laplace transform
given by exp [a(u)β′Xt + b(u)], and let us assume that b(u) can be written:

b(u) = b̃(u)′λ where

b̃(u) = (b1(u), . . . , bm(u))′ and λ = (λ1, . . . , λm)′ .

(9)

We can generalize this model by assuming that the parameters λi are stochastic and linear
functions of Zt = (z′t, . . . , z

′
t−p)

′. More precisely, we assume that the conditional distribution of
xt+1 given xt and zt+1 has a Laplace transform given by:

E[exp(uxt+1)|xt , zt+1] = exp
[

a(u)β′Xt + b̃(u)′ΛZt

]

, (10)

where Λ is a [m, (p + 1)J ] matrix. Note that we assume no instantaneous causality between xt+1

and zt+1 and we admit one more lag in Zt that in Xt [examples given in Section 2.5 show that
this assumption may be convenient]; if the process zt is not observed by the econometrician the no
instantaneous causality assumption is not really important at the estimation stage since we could
rename zt as zt+1, however it will be useful at the pricing level in order to obtain simple pricing
procedures [Dai, Singleton and Yang (2006) also make this kind of assumption]. The joint process
(xt+1, z

′
t+1)

′ is easily seen to be a Car(p + 1) process.

Proposition 2 : The conditional Laplace transform of (xt+1, z
′
t+1)

′ given xt , zt has the following
form:

E
[

exp(uxt+1 + v′zt+1) | zt, xt

]

= exp
{

a(u)β′Xt +
[

e′1 ⊗ az(v, π)′ + b̃(u)′Λ
]

Zt

}

, (11)

where e1 is the first component of the canonical basis in Rp+1, and where ⊗ denotes the Kronecker
product [Proof : straightforward].

2.5 Examples of Univariate Switching regimes Car(p) processes

a. Gaussian case

Let us start from the AR(p) model (4). Its conditional Laplace transform is given by (5):

E
[

exp(uxt+1) |xt

]

= exp
[

uϕ′Xt + uν + σ2

2 u2
]

,

and the function b(u) has the form (9) with b̃(u)′ =
(

u, u2

2

)

and λ′ = (ν, σ2).

If λ is replaced by ΛZt, the joint process (xt+1, z
′
t+1)

′ is Car(p + 1) with a conditional Laplace
transform given by:

E
[

exp(uxt+1 + v′zt+1) | zt, xt

]

= exp
[

uϕ′Xt +
(

u, u2

2

)

ΛZt + az(v, π)zt

]

. (12)
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More precisely, the dynamics is given by [using the notation Λ =

(

λ′
1

λ′
2

)

]:

xt+1 = λ′
1Zt + ϕ′Xt + (λ′

2Zt)
1/2εt+1 , (13)

where εt+1 is a gaussian white noise distributed as N (0, σ2), Zt = (z′t, . . . , z
′
t−p)

′ and zt is a Markov
chain such that Pr(zt+1 = ej | zt = ei) = π(ei, ej).

In particular, let us consider the case:

Λ =

[

(1,−ϕ1, . . . ,−ϕp) ⊗ ν∗′

e′1 ⊗ σ∗2′

]

(14)

and ν∗′ = (ν∗
1 , . . . , ν∗

J), σ∗2′ = (σ∗2
1 , . . . , σ∗2

J ), the conditional distribution of xt+1 given xt and zt+1

is the one corresponding to the switching AR(p) model defined by:

xt+1 − ν∗′zt = ϕ1 (xt − ν∗′zt−1) + . . . + ϕp (xt+1−p − ν∗′zt−p) + (σ∗′zt)εt+1 . (15)

b. Gamma case

Let us now start from the ARG(p) process associated with the conditional Laplace transform
(6):

E
[

exp(uxt+1) |xt

]

= exp
[

u
1−uµϕ′Xt − ν log(1 − uµ)

]

.

Here we have b̃(u) = − log(1− uµ) and λ = ν. If ν is replaced by ΛZt, where ΛZt > 0, the process
xt has, conditionally to the process zt, a weak AR(p) representation given by:

xt+1 = µΛZt + ϕ1 xt + . . . + ϕp xt+1−p + ζt+1 , (16)

where ζt+1 is a conditionally heteroscedastic martingale difference. For instance, we can take :

Λ = e′1 ⊗
ν̃

µ

′

, (17)

where ν̃ ′ = (ν̃1, . . . , ν̃J ), ν̃j ≥ 0. We have ΛZt = ν̃
µ

′
zt and, conditionally to the process zt, the

process xt has a weak AR(p) representation given by:

xt+1 = ν̃ ′zt + ϕ1 xt + . . . + ϕp xt+1−p + ζt+1 . (18)

It is also possible to consider a Λ of the form (1,−ϕ1, . . . ,−ϕp)⊗
ν̃
µ

′
if min(ν̃i) > max(ν̃i)

∑J
i=1 ϕj ,

since in this case ΛZt = 1
µ

(

ν̃ ′zt −
∑J

i=1 ϕj ν̃ ′zt−i

)

≥ 0. The weak conditional AR(p) representa-

tion is then given by:

xt+1 − ν̃ ′zt = ϕ1 (xt − ν̃ ′zt−1) + . . . + ϕp (xt+1−p − ν̃ ′zt−p) + ζt+1 . (19)

2.6 Specification of multivariate Car(1) processes

In order to have simple notations we will consider the bivariate case, but all the results are easily
extended to the general case. A bivariate Car(1) process yt = (y1,t, y2,t)

′ will be defined in a
recursive way. We consider two univariate exponential affine Laplace transforms :

exp [a1(u1)w1,t + b1(u1)] ,

and exp [a2(u2)w2,t + b2(u2)] .

(20)
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Then, we assume that the conditional distribution of y1,t+1 given (y2,t+1, y1,t, y2,t) has a Laplace
transform given by :

Et[exp(u1y1,t+1) | y2,t+1, y1t, y2t] = exp [a1(u1)(βoy2,t+1 + β11y1,t + β12y2,t) + b1(u1)] (21)

and the conditional distribution of y2,t+1, given (y1,t, y2,t), has a Laplace transform given by

Et[exp(u2y2,t+1) | y1,t, y2,t] = exp [a2(u2)(β21y1,t + β22y2,t) + b2(u2)] . (22)

Note that, if the Laplace transforms (20) correspond to positive variables and if the parameters
βo, β11, β12, β21, β22 are positive the bivariate process yt has positive components. Moreover, we
have the following result :

Proposition 3 : The bivariate process yt defined by the conditional dynamics (21), (22) is a
bivariate Car(1) process with a conditional Laplace transform given by :

E[exp(u1y1,t+1 + u2y2,t+1)| y1,t, y2,t] = exp {[a1(u1)β11 + a2(u2 + a1(u1)βo)β21]y1,t

+[a1(u1)β12 + a2(u2 + a1(u1)βo)β22]y2,t

+b1(u1) + b2(u2 + a1(u1)βo)} ,

(23)

[Proof : see Appendix 1].

2.7 Specification of multivariate Index-Car(p) processes

We consider a bivariate process x̃t = (x1,t, x2,t)
′ and we introduce the notations : X1t = (x1,t, . . . ,

x1,t+1−p)
′, X2t = (x2,t, . . . , x2,t+1−p)

′. Given the univariate Laplace transforms like (20), a bivariate
Index-Car(p) is defined in the following way.

Definition 3 : A bivariate Index-Car(p) dynamics is defined by the conditional Laplace transforms:

Et[exp(u1x1,t+1) |x2,t+1, x1,t, x2,t] = exp [a1(u1)(βox2,t+1 + β′
11X1t + β′

12X2t) + b1(u1)] ,

Et[exp(u2x2,t+1) |x1,t, x2,t] = exp [a2(u2)(β
′
21X1t + β′

22X2t) + b2(u2)] ,

(24)
where the βij are p-vectors. It is easily seen that the process x̃t is a Car(p) process with a conditional
Laplace transform given by (23) in which y1,t is replaced by X1t and y2,t by X2t and the βij by the
β′

ij , i.e.

E
[

exp(u′x̃t+1) | x̃t

]

= exp{[a1(u1)β11 + a2(u2 + a1(u1)βo)β21]
′X1t

+[a1(u1)β12 + a2(u2 + a1(u1)βo)β22]
′X2t

+ b1(u1) + b2(u2 + a1(u1)βo)} .

(25)

From the properties of Car(p) processes we get a representation of the form:







x1,t+1 = α1 + αox2,t+1 + α′
11X1t + α′

12X2t + ε1,t+1

x2,t+1 = α2 + α′
21X1t + α′

22X2t + ε2,t+1

(26)
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where the errors terms satisfy :

E[ε1,t+1 |x2,t+1, x̃t ] = 0

E[ε2,t+1 | x̃t] = 0 ;
(27)

in particular, we get

E[ε1,t+1 | x̃t ] = 0

E[ε2,t+1 | x̃t] = 0

Cov(ε1,t+1, ε2,t+1) = E(ε1,t+1ε2,t+1 | x̃t)

= E
[

ε2,t+1E(ε1,t+1 | x2,t+1, x̃t) | x̃t

]

= 0 .

(28)

So, the error terms are non correlated, conditionally heteroscedastic, martingale differences. In
particular, in the stationary case, ε1,t and ε2,t are uncorrelated weak white noises and (26) is a
weak recursive VAR(p) representation of the process x̃t.

In the rest of the paper we will consider two important particular cases.

a) Normal VAR(p) or VARN(p) processes

In this case the conditional distributions defined by (20) are gaussian, with affine expectations and
fixed variances. In other words:

a1(u1) = ρ1u1 , b1(u1) = ν1u1 +
σ2
1
u2
1

2

a2(u2) = ρ2u2 , b2(u2) = ν2u2 +
σ2
2
u2
2

2 .

(29)

Using the notations ϕo = ρ1βo, ϕ11 = ρ1β11, ϕ12 = ρ1β12, ϕ21 = ρ2β21, ϕ22 = ρ2β22, we have the
following strong VAR(p) recursive representation for the process x̃t = (x1,t, x2,t)

′:






x1,t+1 = ν1 + ϕox2,t+1 + ϕ′
11X1t + ϕ′

12X2t + σ1η1,t+1

x2,t+1 = ν2 + ϕ′
21X1t + ϕ′

22X2t + σ2η2,t+1 ,

(30)

where ηt = (η1,t, η2,t)
′ is a bivariate gaussian white noise distributed as N (0, I2), where I2 denotes

the (2 × 2) identity matrix.

b) Gamma VAR(p) or VARG(p) processes

In this case we have:

a1(u1) = ρ1u1

1−u1µ1
, b1(u1) = −ν1 log(1 − u1µ1)

a2(u2) = ρ2u2

1−u2µ2
, b2(u2) = −ν2 log(1 − u2µ2) ,

(31)

and the process x̃t = (x1,t, x2,t)
′ has the following weak VAR(p) representation (using the same

notation as above, and where all the parameters are positive):






x1,t+1 = ν1µ1 + ϕox2,t+1 + ϕ′
11X1t + ϕ′

12X2t + ξ1,t+1

x2,t+1 = ν2µ2 + ϕ′
21X1t + ϕ′

22X2t + ξ2,t+1 ,

(32)
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where ξ1,t and ξ2,t are non correlated, conditionally heteroscedastic, martingale differences. The
conditional variances of ξ1,t+1 and ξ2,t+1 are given by:

V [ξ1,t+1 | x̃t ] = ν1µ
2
1 + 2µ1[ϕo(ν2µ2 + ϕ′

21X1t + ϕ′
22X2t) + ϕ′

11X1t + ϕ′
12X2t]

V [ξ2,t+1 | x̃t] = ν2µ
2
2 + 2µ2(ϕ

′
21X1t + ϕ′

22X2t) .

(33)

It is important to stress that the components of this VARG(p) process are positive6.

2.8 Switching Multivariate Index-Car processes

Switching regimes can be introduced in a multivariate Index-Car(p) model using a method ex-
tending the one retained in the univariate case. If we assume that the functions b1(u1), b2(u2)
appearing in definition 3 can be written, respectively, as b̃1(u1)

′λ1 and b̃2(u2)
′λ2, and if we replace

λ1 and λ2, respectively by Λ1Zt and Λ2Zt, we obtain the following conditional Laplace transform
for the distribution of (x1,t+1, x2,t+1, zt+1) given (x1,t, x2,t, zt):

E[exp(u1x1,t+1 + u2x2,t+1 + v′zt+1)|x1,t, x2,t, zt]

= exp {[a1(u1)β11 + a2(u2 + a1(u1)βo)β21]
′X1t

+[a1(u1)β12 + a2(u2 + a1(u1)βo)β22]
′X2t

+[ e′1 ⊗ az(v, π)′ + b̃1(u1)
′Λ1 + b̃2(u2 + a1(u1)βo)

′Λ2]Zt

}

,

(34)

where az(v, π) is given in Proposition 1. So we obtain a multivariate Car(p + 1) process.

Proposition 4 : The Laplace transform of (x1,t+1, x2,t+1, zt+1), conditionally to (x1,t, x2,t, zt), has

the form given in (34) and the process (x1,t, x2,t, zt) is Car(p + 1).

2.9 Examples of Switching Multivariate Index-Car processes

a. Gaussian case

Taking

a1(u1) = ρ1u1, b1(u1) = ν1u1 +
σ2
1

2 u2
1, b̃1(u1)

′ =
(

u1,
u2
1

2

)

,

a2(u2) = ρ2u2, b2(u2) = ν2u2 +
σ2
2

2 u2
2, b̃2(u2)

′ =
(

u2,
u2
2

2

)

,

Λ1 =

(

λ′
11

λ′
12

)

, Λ2 =

(

λ′
21

λ′
22

)

,

and using the notations ϕo = ρ1βo, ϕ11 = ρ1β11, ϕ12 = ρ1β12, ϕ21 = ρ2β21, ϕ22 = ρ2β22, we obtain
the Switching VARN(p) model:







x1,t+1 = λ′
11Zt + ϕox2,t+1 + ϕ′

11X1t + ϕ′
12X2t + (λ′

12Zt)
1/2η1,t+1

x2,t+1 = λ′
21Zt + ϕ′

21X1t + ϕ′
22X2t + (λ′

22Zt)
1/2η2,t+1 ,

(35)

6In a recent paper Dai, Le and Singleton (2006) propose a multivariate conditionally Gaussian term structure
model where nonlinearities are introduced in the (latent) state-factor (historical and risk-neutral) dynamics by means
of stochastic volatility factors; the joint risk-neutral dynamics of these volatility factors is described by a particular
VARG(1) process with conditionally independent components [ϕo = 0 in our system (32) notation].
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where ηt = (η1,t, η2,t)
′ is a gaussian white noise distributed as N (0, I2), Zt = (z′t, . . . , z

′
t−p)

′, and
where zt is a homogeneous J-state Markov chain with transition probability π(ei, ej). Note that
(35) can also be written as:







x1,t+1 = λ̃′
11Zt + ϕ̃′

11X1t + ϕ̃′
12X2t + ϕo(λ

′
22Zt)

1/2η2,t+1 + (λ′
12Zt)

1/2η1,t+1

x2,t+1 = λ′
21Zt + ϕ′

21X1t + ϕ′
22X2t + (λ′

22Zt)
1/2η2,t+1 ,

(36)

with λ̃11 = λ11 + ϕoλ21, ϕ̃11 = ϕ11 + ϕoϕ21, ϕ̃12 = ϕ12 + ϕoϕ22 or, with obvious notations

x̃t+1 = λ̃′Zt + Φ̃′X̃t +

[

(λ′
12Zt)

1/2 ϕo(λ
′
22Zt)

1/2

0 (λ′
22Zt)

1/2

]

ηt+1 . (37)

b. Gamma case

If we take

a1(u1) = ρ1u1

1−u1µ1
, b1(u1) = −ν1 log(1 − u1µ1), b̃1(u1) = log(1 − u1µ1),

a2(u2) = ρ2u2

1−u2µ2
, b2(u2) = −ν2 log(1 − u2µ2), b̃2(u2) = log(1 − u2µ2) ,

we obtain the positive Switching VARG(p) model







x1,t+1 = µ1Λ
′
1Zt + ϕox2,t+1 + ϕ′

11X1t + ϕ′
12X2t + ξ1,t+1

x2,t+1 = µ2Λ
′
2Zt + ϕ′

21X1t + ϕ′
22X2t + ξ2,t+1 ,

(38)

where ξ1,t and ξ2,t are non correlated, conditionally heteroscedastic, martingale differences, the
conditional variances being respectively given by:

V [ξ1,t+1 | x̃t ] = Λ′
1Ztµ

2
1 + 2µ1[ϕo(Λ

′
2Ztµ2 + ϕ′

21X1t + ϕ′
22X2t) + ϕ′

11X1t + ϕ′
12X2t]

V [ξ2,t+1 | x̃t] = Λ′
2Ztµ

2
2 + 2µ2(ϕ

′
21X1t + ϕ′

22X2t) .

(39)

3 Switching Autoregressive Normal (SARN) Factor-Based Term

Structure Model of order p

We first consider the case of univariate latent factor; the observable factor case and the multivariate
case will be discussed, respectively, in Sections 3.7 and 3.8.

3.1 The historical dynamics

The first set of assumptions of a SARN(p) Term Structure model deals with the historical dynamics.
We assume that the historical dynamics of the latent factor xt is given by

xt+1 = ν(Zt) + ϕ1(Zt)xt + . . . + ϕp(Zt)xt+1−p + σ(Zt)εt+1 , (40)

where εt+1 is a gaussian white noise with N (0, 1) distribution, Zt = (z′t, . . . , z′t−p)
′, and zt is a

J-state non-homogeneous Markov chain such that P (zt+1 = ej | zt = ei;xt) = π(ei, ej ;Xt) (ei is
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the ith column of the identity matrix IJ) and Xt = (xt, . . . , xt+1−p)
′. Equation (40) will be also

written
xt+1 = ν(Zt) + ϕ(Zt)

′Xt + σ(Zt)εt+1 , (41)

where ϕ(Zt) = (ϕ1(Zt), . . . , ϕp(Zt))
′. This model can also be rewritten in the following vectorial

form:
Xt+1 = Φ(Zt)Xt + [ν(Zt) + σ(Zt)εt+1] e1 (42)

where

Φ(Zt) =















ϕ1(Zt) . . . . . . ϕp(Zt)
1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 1 0















is a (p× p)-matrix, and where e1 is the first column of the identity matrix Ip. Note that, since the
coefficients ϕi are allowed to depend on Zt and since the Markov chain zt may not be homogeneous,
the dynamics of (xt, zt) is not Car in general.

3.2 The Stochastic Discount Factor

The second element of a SARN(p) modeling is the SDF. We denote by Mt,t+1 the stochastic
discount factor (SDF) between the date t and t + 1 and in order to get time-varying risk-premia
we specify it as an exponential affine function of the variables (xt+1, zt+1) but with coefficients
depending on the information at time t. More precisely we assume that:

Mt,t+1 = exp
[

−c′Xt − d′Zt + Γ(Zt,Xt) εt+1 −
1
2Γ(Zt,Xt)

2 − δ(Zt,Xt)
′zt+1

]

, (43)

where Γ(Zt,Xt) = γ(Zt)+ γ̃′(Zt)Xt and δ(Zt,Xt) = [ δ1(Zt,Xt), . . . , δJ (Zt,Xt)]
′. Our specification

of the factor risk correction coefficient Γ(Zt,Xt) extends to the multi-lag case the regime-switching
essentially affine specification proposed by Dai, Singleton and Yang (2006). Bansal and Zhou
(2002) assume a market price of factor risk proportional to factor volatilities (completely affine
specification)7. Duffee (2002) and Dai and Singleton (2002) show that, among single-regime con-
tinuous time term structure models, essentially affine specifications for the market price of factor
risk explain dynamic properties of yield curves better than the completely affine specifications of
multifactor CIR models. In Sections 6.6 and 6.7 we will find confirmation of this result and, in
Section 6.8, we will see how pricing the risk associated to the second lagged factor value is cru-
cial in explaining the long horizon Expectation Hypothesis Puzzle. Naik and Lee (1997), Bansal
and Zhou (2002) and Ang and Bekaert (2005) consider the jth-regime risk correction coefficient
δj(Zt,Xt) = 0 for each j ∈ {1, . . . , J}, while, pricing regime-shift risk, gives to our approach the
possibility to better fit interest rates dynamics [see Section 6.8].

It is well known that the existence of a positive stochastic discount factor is equivalent to the
absence of arbitrage opportunity condition and that the price pt at t of a payoff Wt+1 at t + 1 is
given by:

pt = E[Mt,t+1Wt+1 | It] = Et[Mt,t+1Wt+1] ,

7A market price of factor risk is said to be essentially affine when it is proportional to both factor volatilities and
state-factors [see Duffee (2002), Dai and Singleton (2003)].
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where the information It, available for the investors at the date t, is given by (xt, zt). More
generally, the price pt,h at t of an asset paying Wt+h at t + h is:

pt,h = Et [Mt,t+1 · . . . · Mt+h−1,t+hWt+h] .

Using the absence of arbitrage assumption for the short-term interest rate between t and t + 1,
denoted by rt+1 and known at t, we get:

exp(−rt+1) = Et (Mt,t+1)

= exp [−c′Xt − d′Zt] ×
∑J

j=1 π (ei, ej ;Xt) exp [−δ(Zt,Xt)
′ej ] ,

and assuming the normalization condition:

∑J
j=1 π (ei, ej ;Xt) exp [−δ(Zt,Xt)

′ej] = 1 ∀Zt,Xt , (44)

we obtain:
rt+1 = c′Xt + d′Zt . (45)

3.3 Risk premia

In this paper we will use the following definition of a risk premium.

Definition 4 : Let pt the price of a given asset at time t. The risk premium of this asset between
t and t + 1 is ωt = log(Etpt+1) − log pt − rt+1.

Using this definition we obtain interpretations of the Γ and δ functions appearing in the SDF
which generalize that obtained by Dai, Singleton and Yang (2006).

Proposition 5 : The risk premium between t and t+1 of an asset providing the payoff exp(−θxt+1)
at t + 1 is :

ωt(θ) = θΓ(Zt,Xt)σ(Zt) . (46)

Therefore, θ, Γ(Zt,Xt) and σ(Zt) can be seen respectively as a risk sensitivity of the asset, a risk
price and a risk measure. [Proof : see Appendix 2.]

Proposition 6 : If we consider a digital asset providing one money unit at t + 1 if zt+1 = ej , its
risk premium between t and t + 1 is given by :

ωt(θ) = δj(Zt,Xt) , (47)

and the jth component of δ can be seen as the risk premium associated with the digital asset [Proof:
see Appendix 2].

We observe that, in general, the magnitude of the risk premium ωt(θ) is not just depending on
the currently observed values xt and zt, but it includes the present and past values of both factors,
that is, it is a function of the larger information represented by Xt and Zt.

3.4 Risk-Neutral dynamics

The assumptions on the historical dynamics and on the SDF imply a risk-neutral dynamics. The
probability density function of the one-period conditional risk-neutral probability with respect to
the corresponding historical probability is

Mt,t+1

Et(Mt,t+1)
= exp(rt+1)Mt,t+1. Note that using EQ

t as the
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conditional expectation with respect to this risk-neutral distribution, the risk-premium ωt can be
written log(Etpt+1) − log(EQ

t pt+1).

Proposition 7 : The risk-neutral dynamics of the process (xt, zt) is given by:

xt+1 = ν(Zt) + γ(Zt)σ(Zt) + [ϕ(Zt) + γ̃(Zt)σ(Zt)]
′Xt + σ(Zt)ξt+1 , (48)

where ξt+1 is (under Q) a gaussian white noise with N (0, 1) distribution, and where Zt = (z′t, . . . , z
′
t−p)

′,
zt being a Markov chain such that:

Q(zt+1 = ej | zt;xt) = π (zt, ej ;Xt) exp [(−δ(Zt,Xt))
′ej ] .

Note that, from (44), these probabilities add to one [Proof : see Appendix 3].

In order to get a generalized linear term structure we impose that the risk-neutral dynamics
is switching regime gaussian Car(p). Using (13), this impose that the dynamics has to satisfy the
following specification:

xt+1 = ν∗ ′

Zt + ϕ∗ ′

Xt + (σ∗ ′

Zt)ξt+1 , (49)

where Zt = (z′t, . . . , z
′
t−p)

′, with zt a J-state Markov chain such that8

Q(zt+1 = ej | zt = ei) = π∗ (ei, ej) . (50)

From Proposition 7, this implies the following restrictions on the historical dynamics and on
the SDF:

i) σ(Zt) = σ∗′Zt : the historical stochastic volatility must be linear in Zt;

ii)

γ(Zt) =
ν∗′Zt − ν(Zt)

σ∗′Zt
:

for a given historical stochastic drift ν(Zt) and stochastic volatility σ∗′Zt, the coefficient γ(Zt)
belongs to the previous family indexed by the free parameter vector ν∗.

iii)

γ̃(Zt) =
ϕ∗ − ϕ(Zt)

σ∗′Zt
:

for a given historical stochastic slope parameter ϕ(Zt) and stochastic volatility σ∗′Zt the
coefficient vector γ̃(Zt) belongs to the previous family indexed by the free parameter vector
ϕ∗.

iv)

δj(Zt,Xt) = log

[

π (zt, ej ;Xt)

π∗(zt, ej)

]

:

for a given historical transition matrix π (zt, ej ;Xt), the coefficient δj(Zt,Xt) depends on
zt only and belongs to the previous family indexed by the entries π∗(zt, ej) of a transition
matrix.

8Ang and Bekaert (2005) also assume their counterpart to ϕ∗ to be constant over time, and a homogeneous
(risk-neutral) transition matrix for (zt). Bansal and Zhou (2002) consider Q(zt+1 = ej | zt = ei) = π∗ (ei, ej), but
they allow the risk-neutral autoregressive matrix to switch over time [ϕ∗(zt+1), in our notation] : this feature leads
their approach to use a log-linear approximation in order to find an explicit (approximate) pricing formula. This
kind of log-linear approximation, in a general equilibrium square-root term structure model, is also used by Wu and
Zeng (2005).
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Note that condition iv) implies that the risk premia coefficients δj , j ∈ {1, . . . , J}, cannot be all
positive [or all negative] since this would imply π (zt, ej ;Xt) > π∗(zt, ej), ∀j [or π (zt, ej ;Xt) <

π∗(zt, ej), ∀j], which is impossible since
∑J

j=1 π (zt, ej ;Xt) =
∑J

j=1 π∗(zt, ej) = 1. Also note that
condition iv) implies the normalization condition (44).

3.5 The Generalised Linear Term Structure

We have seen in the previous section that the risk-neutral dynamics is defined by relations (49),
(50); relation (49) can be rewritten:

Xt+1 = Φ∗Xt +
[

ν∗′Zt + (σ∗′Zt)ξt+1

]

e1 (51)

where

Φ∗ =















ϕ∗
1 . . . . . . ϕ∗

p

1 0 . . . 0
0 1 . . . 0
...

. . .
...

0 . . . 1 0















is a (p × p) − matrix ,

Xt = (xt, . . . , xt+1−p)
′ ,

and where e1 is the first column of the identity matrix Ip.
Denoting by B(t, h) the price at t of a zero-coupon with residual maturity h, we have the

following result.

Proposition 8 : In the univariate SARN(p) Factor-Based Term Structure Model the price at date
t of the zero-coupon bond with residual maturity h is :

B(t, h) = exp (C ′
h Xt + D′

h Zt) , for h ≥ 1 , (52)

where the vectors Ch and Dh satisfy the following recursive equations :







Ch = Φ∗′Ch−1 − c

Dh = −d + C1,h−1 ν∗ + 1
2 C2

1,h−1 σ∗2 + D̃h−1 + F (D1,h−1) ,

(53)

where C1,h−1 denotes the first component of the p-dimensional vector Ch−1, D1,h−1 and D2,h−1 are,
respectively, the first J-dimensional component and the remaining (pJ)-dimensional component of
Dh−1, i.e. Dh−1 = (D′

1,h−1,D
′
2,h−1)

′, D̃h−1 = (D′
2,h−1, 0)

′, and where F (D1,h−1) = e1 ⊗ az(D1,h−1,

π∗), e1 being the vector (1, 0, . . . , 0)′ of size (p + 1) and az is the J-vector given in Proposition 1;
σ∗2 is the vector whose components are the squares of the entries of σ∗. The initial conditions are
C0 = 0, D0 = 0 (or C1 = −c, D1 = −d) [Proof : see Appendix 4].
For clarity we give again the expression of az(D1,h−1, π

∗) :

az(D1,h−1, π
∗)

=



log





J
∑

j=1

exp(D′
1,h−1ej)π

∗(e1, ej)



 , . . . , log





J
∑

j=1

exp(D′
1,h−1ej)π

∗(eJ , ej)









′

.
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From Proposition 8 we see that the yields to maturity are:

R(t, h) = −
1

h
log B(t, h)

(54)

= −
C ′

h

h
Xt −

D′
h

h
Zt , h ≥ 1 .

So, they are linear functions of the p-dimensional vector Xt and of the (p+1)J-dimensional vector
Zt. This means that, the term structure at date t depends on the present and past values of xt and
zt, and not just on their values in t. Moreover, we observe that there is, in general, instantaneous
causality between xt and zt.

3.6 The Switching VARMA yield curve process

The result presented in Proposition 8 describes, conditionally to Xt and Zt, the yields as a de-
terministic function of the time to maturity h, for a fixed date t. Nevertheless, in many financial
and economic contexts one needs to study the effects, of a shock in the state variables, on the
yield curve at different future times and for several maturities (e.g.: a Central Bank that needs
to set a monetary policy). This means that we are interested in the dynamics of the process
RH = [R(t, h), 0 ≤ t < T, h ∈ H ], for a given set of residual time to maturities H = (1, . . . ,H).

If we consider a fixed h, the process R = [R(t, h), 0 ≤ t < T ] can be described by the following
proposition.

Proposition 9 : For a fixed time to maturity h, the process R = [R(t, h), 0 ≤ t < T ] is, under
the historical probability, a Switching ARMA(p, p − 1) process of the following type :

Ψ(L,Zt)R(t + 1, h) = Dh(L)Ψ(L,Zt) zt+1 + Ch(L) ν(Zt) + Ch(L)[(σ∗′Zt) εt+1] . (55)

where

Ch(L) = −
1

h
(C1,h + C2,hL + . . . + Cp,hLp−1)

Dh(L) = −
1

h
(D1,h + D2,hL + . . . + Dp+1,hLp)

Ψ(L,Zt) = 1 − ϕ1(Zt)L − . . . − ϕp(Zt)L
p ,

are lag polynomials in the lag operator L, and where the AR polynomial Ψ(L,Zt) applies to t

[Proof : see Appendix 5].

Proposition 10 : For a given set of residual time to maturities H = (1, . . . ,H), the stochastic
evolution of the yield curve process RH = [R(t, h), 0 ≤ t < T, h ∈ H ] takes the following particular
Switching H-variate VARMA(p, p − 1) representation:

Ψ(L,Zt)











R(t + 1, 1)
R(t + 1, 2)

...
R(t + 1,H)











=











C1(L)
C2(L)

...
CH(L)











(σ∗′Zt)εt+1 +











D1(L)
D2(L)

...
DH(L)











Ψ(L,Zt) zt+1 +











C1(L)
C2(L)

...
CH(L)











ν(Zt) .

(56)
Similar results are easily obtained in the risk-neutral world.
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3.7 Endogenous case

In the previous sections the factor xt was latent. It is often assumed, in term structure models,
that the factor xt is the short rate process rt+1. In this case the previous results remain valid,
the only modification comes from the absence of arbitrage opportunity condition for rt+1, which
imposes:

c = e1 , d = 0 , (57)

with e1 the first column of the identity matrix Ip; consequently, the initial conditions in the recursive
equations of Proposition 8 become:

C1 = −e1 ,D1 = 0 . (58)

Moreover, the Switching ARMA(p, p − 1) representation (55), or its analogous in the risk-neutral
world, could be used to analyse how a shock on εt, i.e. on rt+1 = R(t, 1), is propagated on the
surface [R(t+ τ, h), τ ∈ T , h ∈ H ], where T = {0, . . . , T − t− 1} and H = (1, . . . ,H) (for instance
when the process zt is latent).

3.8 Multi-Factor generalization : the SVARN(p) Factor-Based Term Structure
Model

For sake of notational simplicity we consider the two factor case but an extension to more that
two factors is straightforward. The historical dynamics of x̃t = (x1,t, x2,t)

′ is a bivariate SVARN(p)
model given by:







x1,t+1 = ν1(Zt) + ϕo(Zt)x2,t+1 + ϕ11(Zt)
′X1t + ϕ12(Zt)

′X2t + σ1(Zt)ε1,t+1

x2,t+1 = ν2(Zt) + ϕ21(Zt)
′X1t + ϕ22(Zt)

′X2t + σ2(Zt)ε2,t+1 ,

(59)

where ε1,t and ε2,t are independent standard normal white noises, X1t = (x1,t, . . . , x1,t+1−p)
′,

X2t = (x2,t, . . . , x2,t+1−p)
′, Zt = (z′t, . . . , z

′
t−p)

′, with zt a J-state non-homogeneous Markov chain

such that P (zt+1 = ej | zt = ei; x̃t) = π(ei, ej ; X̃t), and where X̃t = (X ′
1t,X

′
2t)

′. The recursive form
(59) is equivalent to the canonical form :







x1,t+1 = ν̃1(Zt) + ϕ̃11(Zt)
′X1t + ϕ̃12(Zt)

′X2t + σ1(Zt)ε1,t+1 + ϕo(Zt)σ2(Zt)ε2,t+1

x2,t+1 = ν2(Zt) + ϕ21(Zt)
′X1t + ϕ22(Zt)

′X2t + σ2(Zt)ε2,t+1 ,

(60)

where ν̃1 = ν1 + ϕoν2, ϕ̃11 = ϕ11 + ϕoϕ21, ϕ̃12 = ϕ12 + ϕoϕ22 or, with obvious notations:

x̃t+1 = ν̃(Zt) + Φ̃(Zt)X̃t + S(Zt)εt+1 , (61)

where

S(Zt) =

[

σ1(Zt) ϕo(Zt)σ2(Zt)
0 σ2(Zt)

]

Using the notation

Γ(Zt, X̃t) =
[

Γ1(Zt, X̃t), Γ2(Zt, X̃t)
]′
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where Γi(Zt, X̃t) = γi(Zt) + γ̃i(Zt)
′X̃t, i ∈ {1, 2} and Γ(Zt, X̃t) = γ(Zt) + Γ̃(Zt)X̃t, with γ(Zt) =

[γ1(Zt), γ2(Zt)]
′, Γ̃(Zt) = [γ̃1(Zt)

′, γ̃2(Zt)
′]′, the SDF is defined as :

Mt,t+1 = exp
[

−c′X̃t − d′Zt + Γ(Zt, X̃t)
′ εt+1 −

1
2Γ(Zt, X̃t)

′Γ(Zt, X̃t) − δ(Zt, X̃t)
′zt+1

]

. (62)

Assuming the normalization condition (44) and the absence of arbitrage opportunity for rt+1 we
get:

rt+1 = c′X̃t + d′Zt . (63)

It is also easily seen that the risk premium for an asset providing the payoff exp(−θ′x̃t+1) at t + 1
is ω(θ) = θ′S(Zt)Γ(Zt, X̃t) and that the risk premium associated with the digital payoff I(ej)(zt+1)
is unchanged.

Proposition 11 : The risk-neutral dynamics of the process (x̃t, zt) is given by:

x̃t+1 = ν̃(Zt) + S(Zt)γ(Zt) + [Φ̃(Zt) + S(Zt)Γ̃(Zt, X̃t)]X̃t + S(Zt)ξt+1 , (64)

where ξt+1 is (under Q) a bivariate gaussian white noise with N (0, I2) distribution, and where
Zt = (z′t, . . . , z

′
t−p)

′, zt being a Markov chain such that:

Q(zt+1 = ej | zt; x̃t) = π(zt, ej ; X̃t) exp
[

(−δ(Zt, X̃t))
′ej

]

.

[Proof : see Appendix 6.]

If we want to obtain a Switching bivariate Car process in the risk-neutral world, we must have
using (37) :

i)

σ1(Zt) = σ∗′

1 Zt

σ2(Zt) = σ∗′

2 Zt

ϕo(Zt) = ϕ∗
o ,

and, therefore,

S(Zt) =

[

σ∗′

1 Zt ϕ∗
oσ

∗′

2 Zt

0 σ∗′

2 Zt

]

ii)
γ(Zt) = [S(Zt)]

−1[ν∗Zt − ν̃(Zt)] ,

where ν∗ is a (2 × (p + 1)J)-matrix.

iii)

Γ̃(Zt) = [S(Zt)]
−1

[

Φ∗ − Φ̃(Zt)
]

,

where Φ∗ is a (2 × 2p)-matrix.

iv)

δj(Zt, X̃t) = log

[

π(zt, ej ; X̃t)

π∗(zt, ej)

]

.
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The risk-neutral dynamics can be written:







x1,t+1 = ν∗
1Zt + Φ∗

1X̃t + S∗
1(Zt)ξt+1

x2,t+1 = ν∗
2Zt + Φ∗

2X̃t + S∗
2(Zt)ξt+1 ,

(65)

where ν∗
i ,Φ∗

i , S
∗
i are the ith row of ν∗,Φ∗, S∗, with i ∈ {1, 2}, or

X̃t+1
Q
= Φ̃∗X̃t + [ν∗

1Zt + S∗
1(Zt)ξt+1] e1 + [ν∗

2Zt + S∗
2(Zt)ξt+1] ep+1 ,

where e1 (respectively, ep+1) is of size 2p, with entries equal to zero except the first (respectively,
the (p + 1)th) one which is equal to one, and

Φ̃∗ =





















Φ∗
11 Φ∗

12

Ĩ 0̃

Φ∗
21 Φ∗

22

0̃ Ĩ





















where Φ∗
1 = (Φ∗

11,Φ
∗
12), Φ∗

2 = (Φ∗
21,Φ

∗
22), and where 0̃ is a [(p − 1) × p ]-matrix of zeros and Ĩ is a

[(p − 1) × p ]-matrix equal to (Ip−1, 0), where 0 is a vector of size (p − 1).
The term structure is given by the following proposition:

Proposition 12 : In the bivariate SVARN(p) Factor-Based Term Structure Model the price at
date t of the zero-coupon bond with residual maturity h is :

B(t, h) = exp
(

C ′
h X̃t + D′

h Zt

)

, for h ≥ 1 (66)

where the vectors Ch and Dh satisfy the following recursive equations :


























Ch = Φ̃∗′Ch−1 − c

Dh = −d + C1,h−1 ν∗′

1 + Cp+1,h−1 ν∗′

2 + 1
2 C2

1,h−1(σ
∗2
1 + ϕ∗2

o σ∗2
2 )

+ (C1,h−1)(Cp+1,h−1)ϕ
∗2
o σ∗2

2 + 1
2 C2

p+1,h−1σ
∗2
2 + D̃h−1 + F (D1,h−1) ,

(67)

where D̃h−1 and F (D1,h−1) have the same meaning as in Proposition 8, and the initial conditions
are C0 = 0, D0 = 0 (or C1 = −c, D1 = −d) [Proof : see Appendix 7].

So, Proposition 12 shows that the yields to maturity are:

R(t, h) = −
C ′

h

h
X̃t −

D′
h

h
Zt , h ≥ 1 . (68)

In the endogenous case we can take x1t = rt+1, and x2t = R(t,H) for a given time to maturity H.
In this case the absence of arbitrage conditions for rt+1 and R(t,H) imply:

(i) C1 = −e1, D1 = 0 , or c = e1, d = 0

(ii) CH = −H ep+1, DH = 0 .

(69)
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Using the notations Ch = (C1,h, C∗
1,h, Cp+1,h, C∗

2,h)′, C̃1,h = (C∗ ′

1,h, 0)′, C̃2,h = (C∗ ′

2,h, 0)′ (where the

zeros are scalars), and C̃h = (C̃ ′
1,h, C̃ ′

2,h)′, it easily seen that the recursive equation Ch = Φ̃∗′Ch−1−c

can be written :

Ch = Φ∗′

1 C1,h−1 + Φ∗′

2 Cp+1,h−1 + C̃h−1 − c .

Conditions (i) are used as initial values in the recursive procedure of Proposition 10, and condi-
tions (ii) implies restrictions on the parameters Φ̃∗, ν∗

1 , ν∗
2 which must be taken into account at

the estimation stage. Note that, the number of constrains is less than the number of additional
parameters appearing in the SDF and, therefore, the historical dynamics is not further constrained.

3.9 Estimating SVARN(p) Factor-Based Term Structure Models

3.9.1 Observable Factor Approach

The purpose of this section is to propose an estimation methodology for the Gaussian term structure
models presented above, in the case where the factor is a vector of yields at different maturities. The
observable nature of the factor has several important advantages. First, thanks to data, we are able
to detect stylized facts on interest rates which give us the possibility to justify the autoregressive
model with switching regimes we propose for the historical dynamics of (xt): indeed, a large
empirical literature on bond yields show that interest rates have an historical multi-lag dynamics
characterized by switching of regimes [see, among the others, Hamilton (1988), Garcia and Perron
(1996), Christiansen and Lund (2005), Cochrane and Piazzesi (2005)]. Second, observations on
the Gaussian-distributed factor lead to a maximum likelihood estimation of historical parameters
and, therefore, we are able to rank the models in terms of various information criteria. Finally, the
difference between directly observed and estimated factor values determine model residuals that
can be used to derive various diagnostic criteria.

Compared with this (multi-lag regime-switching) observable factor approach, the classical
continuous-time affine term structure approach à la Duffie and Kan (1996) and Dai and Singleton
(2000) has some different features [see also Dai, Singleton and Yang (2006)]. First, the factors are
in general assumed not observable and therefore justifications for the (historical) factors dynamics,
along with a precise econometric analysis of model residuals, are not possible. Second, in order to
reconstruct a time series of the latent factors, for an exact maximum likelihood estimation, prices of
some zero-coupon bonds are assumed to be perfectly observed in order to inverse the pricing equa-
tions [see Chen and Scott (1993) and Pearson and Sun (1994)]; this inversion technique depends
on the selected zero-coupon bonds and on their parameter values, which are not initially available,
and therefore the reconstructed time series are model-sensitive [see also Collin-Dufresne, Goldstein
and Jones (2005)]. Third, the class of Compound Autoregressive (Car) processes is much larger
than the discrete-time counterpart of the continuous-time affine class9 [see Gourieroux, Monfort
and Polimenis (2006), and Darolles, Gourieroux and Jasiak (2006)].

3.9.2 Two-Step Estimation Procedure

The methodology we follow to estimate the parameters of our (observable factor) Gaussian switch-
ing regime term structure models is based on a consistent two-step procedure. In the first step, using
the observations on the endogenous factor (xt), the vector of historical parameters θP is estimated

9For instance, the discrete-time Gaussian VAR(1) process has a continuous-time equivalent if and only if there
exists a matrix ϑ such that ϕ = exp(−ϑ).
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by the maximization of the likelihood function calculated by means of the Kitagawa-Hamilton filter
[see Hamilton (1994)]. In the second step, using observations on yields with maturities different
from those used in the first step, and for a given estimates of the conditional historical (regime-
dependent) variance-covariance matrix, we estimate the vector of risk-neutral parameters θQ by
minimizing the sum of squared fitting errors between the observed and theoretical yields. The
latent variable Zt = (zt, . . . , zt−p)

′, in the yield-to-maturity formula of the SVARN(p) model, is
extracted using smoothed probabilities, for each regime and each date, calculated with a general-
ization of the Kim’s smoothing algorithm [see Appendix 8 for the proof, and Billio and Monfort
(1998) for an equivalent result in a Kalman filtering setting]. Thus, we estimate θQ by nonlin-
ear least squares (NLLS) constrained by restrictions (69)-(ii) implied by the absence of arbitrage
opportunity on the long rate.

We denote by H∗ the set of maturities (except the short rate) used to estimate θP, and by H∗∗

the set of remaining maturities used to estimate the vector of risk-neutral parameters θQ (different
from the historical parameters). The constrained NLLS estimator is given by :



















































θ̂Q = Arg minθQ
S2(θQ)

S2(θQ) =

T
∑

t=p

∑

h∈H∗∗

[R̃(t, h) − R(t, h)]2,

s. t.

T
∑

t=p

∑

h∈H∗

[R̃(t, h) − R(t, h)]2 = 0 ,

(70)

where R̃(t, h) and R(t, h) denote, respectively, the observed and model-implied yields in which θP

has been replaced the maximum likelihood estimator and Zt by smoothed values. The constraints
in the minimization program (70) guarantees the absence of arbitrage opportunity on the yields
determining the factor (xt), with the exception of the short rate for which the arbitrage restriction
is automatically satisfied.

4 Switching Autoregressive Gamma (SARG) Factor-Based Term
Structure Model of order p

Like for SARN(p) models, we start the description of the SARG(p) modeling by the case of one
latent factor.

4.1 The historical dynamics

We assume that the Laplace transform of the conditional distribution of xt+1, given (xt, zt), is:

E
[

exp(uxt+1) |xt, , zt

]

= exp
[

u
1−uµ(Zt,Xt)

[ϕ1(Zt)xt + . . . + ϕp(Zt)xt−p+1]

− ν(Zt) log(1 − uµ(Zt,Xt))] ,

(71)

where Zt = (z′t, . . . , z
′
t−p)

′, with zt a J-state non-homogeneous Markov chain such that P (zt+1 =
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ej | zt = ei;xt) = π(ei, ej ; X̃t), and where Xt = (xt, . . . , xt+1−p)
′. Using the notation:

A[u;ϕ(Zt), µ(Zt,Xt)] = u
1−uµ(Zt,Xt)

[ϕ1(Zt), . . . , ϕp(Zt)]
′ = u

1−uµ(Zt,Xt)
ϕ(Zt)

b[u; ν(Zt), µ(Zt,Xt)] = − ν(Zt) log(1 − uµ(Zt,Xt)) ,

relation (71) can be written:

E
[

exp(uxt+1) |xt, , zt

]

= exp {A[u;ϕ(Zt), µ(Zt,Xt)]
′Xt + b[u; ν(Zt), µ(Zt,Xt)]} . (72)

The process (xt) can also be written:

xt+1 = ν(Zt)µ(Zt,Xt) + ϕ1(Zt)xt + . . . + ϕp(Zt)xt+1−p + εt+1

= ν(Zt)µ(Zt,Xt) + ϕ(Zt)
′Xt + εt+1 ,

(73)

where εt+1 is a martingale difference sequence with conditional Laplace transform given by:

E
[

exp(uεt+1) |xt, , zt

]

= exp {−u[ν(Zt)µ(Zt,Xt) + ϕ(Zt)
′Xt]

+ A[u;ϕ(Zt), µ(Zt,Xt)]
′Xt + b[u; ν(Zt), µ(Zt,Xt)]}

= exp {[A[u;ϕ(Zt), µ(Zt,Xt)] − uϕ(Zt)]
′Xt

+ b[u; ν(Zt), µ(Zt,Xt)] − u ν(Zt)µ(Zt,Xt)} .

(74)

Note that the dynamics of (xt, zt) is in general not Car.

4.2 The Stochastic Discount Factor

In the SARG(p) model the SDF is specified in the following way:

Mt,t+1 = exp {−c′Xt − d′Zt + Γ(Zt,Xt)εt+1 + Γ(Zt,Xt) [ν(Zt)µ(Zt,Xt) + ϕ(Zt)
′Xt]

−A[Γ(Zt,Xt);ϕ(Zt), µ(Zt,Xt)]
′Xt

−b[Γ(Zt,Xt); ν(Zt), µ(Zt,Xt)] − δ(Zt,Xt)
′zt+1} ,

(75)

where Γ(Zt,Xt) = γ(Zt) + γ̃′(Zt)Xt, or, equivalently

Mt,t+1 = exp {−c′Xt − d′Zt + Γ(Zt,Xt)xt+1 − A[Γ(Zt,Xt);ϕ(Zt), µ(Zt,Xt)]
′Xt

−b[Γ(Zt,Xt); ν(Zt), µ(Zt,Xt)] − δ(Zt,Xt)
′zt+1} ,

(76)

Assuming the normalisation condition (44), we get that:

rt+1 = c′Xt + d′Zt . (77)
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4.3 Useful Lemmas

In the subsequent sections we will use several times the following lemmas. Let us consider the
functions:

ã(u; ρ, µ) =
ρu

1 − uµ
and b̃(u; ν, µ) = −ν log(1 − uµ) ;

we have:

Lemma 1 :

ã(u + α; ρ, µ) − ã(α; ρ, µ) = ã(u; ρ∗, µ∗)

b̃(u + α; ν, µ) − b̃(α; ν, µ) = b̃(u; ν, µ∗)

with ρ∗ =
ρ

(1 − αµ)2
, µ∗ =

µ

1 − αµ
,

[Proof : see Appendix 9].

Lemma 1 immediately implies Lemma 2.

Lemma 2 :

A[u + α;ϕ(Zt), µ(Zt,Xt)] − A[α;ϕ(Zt), µ(Zt,Xt)] = A[u;ϕ∗(Zt), µ
∗(Zt,Xt)]

b[u + α; ν(Zt), µ(Zt,Xt)] − b[α; ν(Zt), µ(Zt,Xt)] = b[u; ν(Zt), µ
∗(Zt,Xt)]

with ϕ∗(Zt) =
ϕ(Zt)

[1 − αµ(Zt,Xt)]2
, µ∗(Zt,Xt) =

µ(Zt,Xt)

1 − αµ(Zt,Xt)
.

4.4 Risk-neutral dynamics

The Laplace transform of the risk-neutral conditional distribution of (xt+1, zt+1) is, using the
notation Γt = Γ(Xt, Zt):

EQ
t [exp(uxt+1 + v′zt+1)] = Et{exp [(u + Γt)xt+1 − A[Γt;ϕ(Zt), µ(Zt,Xt)]

′Xt

−b[Zt; ν(Zt), µ(Zt,Xt)] + (v − δ(Zt,Xt))
′zt+1]}

= exp {[(A[u + Γt;ϕ(Zt), µ(Zt,Xt)] − A[Γt;ϕ(Zt), µ(Zt,Xt)])
′Xt

+ b[u + Γt; ν(Zt), µ(Zt,Xt)] − b[Γt; ν(Zt), µ(Zt,Xt)]]}

×
∑J

j=1 π(zt, ej ;Xt) exp [(v − δ(Zt,Xt))
′ej] ,

(78)
and, using Lemma 2, (79) can be written:

E
Q
t [exp(uxt+1 + v′zt+1)] = exp{A[u;ϕ∗(Zt), µ

∗(Zt,Xt)]
′Xt + b[u; ν(Zt), µ

∗(Zt,Xt)]}

×
∑J

j=1 π(zt, ej ;Xt) exp [(v − δ(Zt,Xt))
′ej ] ,

(79)

with ϕ∗(Zt) =
ϕ(Zt)

[1 − Γtµ(Zt,Xt)]2
and µ∗(Zt,Xt) =

µ(Zt,Xt)

1 − Γtµ(Zt,Xt)
.
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So, from (72), we see that the risk-neutral conditional distribution of xt+1, given (xt, zt), is in
the same class as the historical one and obtained by replacing ϕ(Zt) with ϕ∗(Zt), and µ(Zt,Xt)
with µ∗(Zt,Xt).

In order to get a generalize linear term structure we impose that the risk-neutral dynamics is a
switching regime Gamma Car(p) process. So, using the results in Section 2.5.b, we get that ϕ∗(Zt)
and µ∗(Zt,Xt) must be constant, ν(Zt) = ν∗′Zt and π (zt, ej ;Xt) = π∗ (zt, ej) exp [(δ(Zt,Xt))

′ej ].
Also note that µ∗ must be positive as well as the components of ν∗ and ϕ∗. This implies the
following constraint on the historical dynamics and on the SDF:

µ(Zt,Xt) = µ∗[1 − Γ(Zt,Xt)µ(Zt,Xt)]

ϕ(Zt) = ϕ∗[1 − Γ(Zt,Xt)µ(Zt,Xt)]
2

ν(Zt) = ν∗′Zt

δj(Zt,Xt) = log
[

π(zt,ej ;Xt)
π∗(zt,ej)

]

.

We see that ϕ(Zt) = ϕ∗

µ∗2 µ(Zt,Xt)
2, so µ(Zt,Xt) must depend only on Zt, and therefore the same

is true for Γ(Zt,Xt). Finally, we have the constraint:

i)
µ(Zt) = µ∗[1 − Γ(Zt)µ(Zt)]

ii)
ϕ(Zt) = ϕ∗[1 − Γ(Zt)µ(Zt)]

2

iii)

ν(Zt) = ν∗′Zt

iv)

δj(Zt,Xt) = log

[

π (zt, ej ;Xt)

π∗(zt, ej)

]

;

In particular, since ϕ(Zt) = ϕ∗

µ∗2 µ(Zt)
2, the random vector must be proportional to a deterministic

vector.
Moreover, it is easily seen that the risk premium corresponding to the payoff exp(−θxt+1) at

t + 1 is:
ωt(θ) = {A[−θ;ϕ(Zt), µ(Zt)] − A[−θ;ϕ∗, µ∗]}′ Xt

+ b[−θ; ν∗′Zt, µ(Zt)] − b[−θ; ν∗′Zt, µ
∗] .

Like in the gaussian case, we obtain an affine function in Xt also depending on Zt. The risk
premium associated with the digital asset providing one money unit at t + 1 if zt+1 = ej , is still
given by (47).
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4.5 The Generalised Linear Term Structure

Let us introduce the notations:

A∗(u) = A(u;ϕ∗, µ∗)

C̃h = (C2,h, . . . , Cp,h, 0)′ .

(80)

As usual, B(t, h) is the price at t of a zero-coupon bond with residual maturity h.

Proposition 13 : In the univariate SARG(p) Factor-Based Term Structure Model the price at
date t of the zero-coupon bond with residual maturity h is :

B(t, h) = exp (C ′
h Xt + D′

h Zt) , for h ≥ 1 , (81)

where the vectors Ch and Dh satisfy the following recursive equations :







Ch = −c + A∗(C1,h−1) + C̃h−1

Dh = −d − ν∗ log(1 − C1,h−1µ
∗) + D̃h−1 + F (D1,h−1) ,

(82)

where D̃h−1 and F (D1,h−1) have the same meaning as in Proposition 8; the initial conditions are
C0 = 0, D0 = 0 (or C1 = −c, D1 = −d) [Proof : see Appendix 10].

Again, we obtain a generalised linear term structure given by:

R(t, h) = −
C ′

h

h
Xt −

D′
h

h
Zt , h ≥ 1 , (83)

and, in the same spirit of Propositions 9 and 10 for the univariate SARN(p) model [see Section 3.6],
it is easy to verify that the processes R = [R(t, h), 0 ≤ t < T ] and RH = [R(t, h), 0 ≤ t < T, h ∈
H ] are, respectively, a weak Switching ARMA(p, p − 1) process and a weak H-variate Switching
VARMA(p, p − 1) process.
In the endogenous case, where xt = rt+1, the previous results remains valid with C1 = −e1, D1 = 0.

4.6 Positivity of the yields

Since rt+1 = R(t, 1) = c′Xt + d′Zt, and since the components of Xt are positive, the short term
process will be positive as soon as the components of c and d are nonnegative. The positiv-
ity of rt+1 implies that of R(t, h), at any date t and time to maturity h, because R(t, h) =
− 1

h log E
Q
t [exp(−rt+1 − . . . −rt+h)].

This positivity can also be observed from the recursive equations of Proposition 13. Indeed,
using the fact that µ∗ and the components of ϕ∗ and ν∗ are positive and that 0 < π∗

ij < 1, it easily
seen that, for any u < 0, the components of A∗(u) and −ν∗ log(1−C1,h−1µ

∗) are negative and the
result follows.
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4.7 Multi-Factor generalization : the SVARG(p) Factor-Based Term Structure
Model

The bivariate process x̃t = (x1,t, x2,t) is a SVARG(p) model defined by the following conditional
Laplace transforms:

Et[exp(u1x1,t+1) |x2,t+1, x1,t, zt ] = exp

{

u1

1 − u1µ1(Zt)

[

ϕo(Zt)x2,t+1 + ϕ11(Zt)
′X1t + ϕ12(Zt)

′X2t

]

−ν1(Zt) log(1 − u1µ1(Zt))} ,

(84)

Et[exp(u2x2,t+1) |x1,t, x2,t, zt ] = exp

{

u2

1 − u2µ2(Zt)

[

ϕ21(Zt)
′X1t + ϕ22(Zt)

′X2t

]

−ν2(Zt) log(1 − u2µ2(Zt))} .

(85)

We will use the notations:

ϕo(Zt) = ϕo,t ,

[ϕ11(Zt)
′, ϕ12(Zt)

′ ] = ϕ′
1,t , [ϕ21(Zt)

′, ϕ22(Zt)
′ ] = ϕ′

2,t ,

µi(Zt) = µi,t , νi(Zt) = νi,t , i ∈ {1, 2} ,

and using the functions ã, b̃, A,B defined in Lemma 1 and in Section 4.1, we will introduce the
notations:

a1,t(u1) = ã(u1;ϕo,t, µ1,t)

b1,t(u1) = b̃(u1; ν1,t, µ1,t) , b2,t(u2) = b̃(u2; ν2,t, µ2,t)

A1,t(u1) = A(u1;ϕ1,t, µ1,t) , A2,t(u2) = A(u2;ϕ2,t, µ2,t) .

With these notations, the Laplace transforms (84) and (85) become respectively:

Et[exp(u1x1,t+1) |x2,t+1, x1,t, zt ] = exp
[

a1,t(u1)x2,t+1 + A1,t(u1)
′X̃t + b1,t(u1)

]

, (86)

Et[exp(u2x2,t+1) |x1,t, x2,t, zt ] = exp
[

A2,t(u2)
′X̃t + b2,t(u2)

]

, (87)

where X̃t = (X ′
1t,X

′
2t)

′. Moreover, the joint conditional Laplace transform of (x1,t+1, x2,t+1), given
(x1,t, x2,t, zt), is:

Et[exp(u1x1,t+1 + u2x2,t+1) |x1,t, x2,t, zt ]

= exp
{

[A1,t(u1) + A2,t(u2 + a1,t(u1))]
′X̃t + b1,t(u1) + b2,t(u2 + a1,t(u1))

}

.

(88)

The process zt is assumed to be a non-homogeneous Markov chain such that P (zt+1 = ej | zt =
ei; x̃t) = π(ei, ej ; X̃t).

26



We now introduce the SDF:

Mt,t+1 = exp{−c′X̃t − d′Zt + Γ1tx1,t+1 + Γ2tx2,t+1

− [A1,t(Γ1t) + A2,t(Γ2t + a1,t(Γ1t))]
′X̃t

− [b1,t(Γ1t) + b2,t(Γ2t + a1,t(Γ1t))] − δ(Zt, X̃t)
′zt+1} ,

(89)

where Γ1t = Γ1(Zt) and Γ2t = Γ2(Zt).

4.8 Risk-neutral dynamics in the multifactor case

We can now present, using the lemmas presented above, the joint conditional Laplace transform
of (x1,t+1, x2,t+1) in the risk-neutral world in the following proposition.

Proposition 14 : The joint conditional Laplace transform of (x1,t+1, x2,t+1) in the risk-neutral
world is given by :

EQ
t [exp(u1x1,t+1 + u2x2,t+1) |x1t, x2t, zt ] = exp

{

[A∗
1,t(u1) + A∗

2,t[u2 + a∗1,t(u1)]]
′X̃t

+ b∗2,t[u2 + a∗1,t(u1)] + b∗1,t(u1)
}

,

(90)
where

A∗
1,t(u1) = A1(u1;ϕ

∗
1t, µ

∗
1t) ,

A∗
2,t[u2 + a∗1,t(u1)] = A

[

u2 + ã(u1;ϕ
∗
ot, µ

∗
1,t);ϕ

∗
2t, µ

∗
2t

]

,

b∗2,t[u2 + a∗1,t(u1)] = b̃
[

u2 + ã(u1;ϕ
∗
ot, µ

∗
1,t); ν

∗
2t, µ

∗
2t

]

,

b∗1,t(u1) = b̃1(u1; ν
∗
1t, µ

∗
1t) ,

and with

ϕ∗
ot =

ϕot

(1 − Γ1t µ1t)
2 , ϕ∗

1t =
ϕ1t

(1 − Γ1t µ1t)
2 , ϕ∗

2t =
ϕ2t

{1 − [Γ2t + a1,t(Γ1t)]µ2t}
2

µ∗
1t =

µ1t

(1 − Γ1tµ1t)
, µ∗

2t =
µ2t

{1 − [Γ2t + a1,t(Γ1t)]µ2t}
.

So, (90) has exactly the same form as (88) with different parameters. In other words the risk-neutral
dynamics belongs to the same class as the historical one [Proof : see Appendix 11].

In order to have a Car process in the risk-neutral world, we know from Section 2.9 that we
must have the following constraint between the SDF and the historical dynamics:

i)
µ1t

1 − Γ1tµ1t
= µ∗

1

ii)
ϕ1t

(1 − Γ1tµ1t)2
= ϕ∗

1

27



iii)

ν1(Zt) = ν∗′

1 Zt

iv)
ϕot

(1 − Γ1tµ1t)2
= ϕ∗

o

v)
µ2t

1 − [Γ2t + a1,t(Γ1t)]µ2t
= µ∗

2

vi)
ϕ2t

(1 − [Γ2t + a1,t(Γ1t)]µ2t)2
= ϕ∗

2

vii)

ν2(Zt) = ν∗′

2 Zt .

Moreover, the constraint on the dynamics of the Markov chain are the same as in the gaussian
case, namely:

viii)

δj(Zt, X̃t) = log

[

π(zt, ej ; X̃t)

π∗(zt, ej)

]

.

It is worth noting that, if there is no instantaneous causality between x1,t+1 and x2,t+1, that is if
ϕot = 0, function a1t is also equal to zero and constraint v) and vi) are simpler and become similar
to i) and ii).

4.9 The Generalized Linear Term Structure in the multifactor case

Using the notations:

a∗1(u1) = ã(u1;ϕ
∗
o, µ

∗
1) ,

A∗
1(u1) = A(u1;ϕ

∗
1, µ

∗
1) ,

A∗
2(u2) = A(u2;ϕ

∗
2, µ

∗
2) ,

C̃h = (C2,h, . . . , Cp,h, 0, Cp+2,h, . . . , C2p,h, 0)′ ,

we have

Proposition 15 : In the bivariate SVARG(p) Factor-Based Term Structure Model the price at
date t of the zero-coupon bond with residual maturity h is :

B(t, h) = exp
(

C ′
h X̃t + D′

h Zt

)

, for h ≥ 1 (91)
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where the vectors Ch and Dh satisfy the following recursive equations :























Ch = −c + A∗
1(C1,h−1) + A∗

2[Cp+1,h−1 + a∗1(C1,h−1)] + C̃h−1

Dh = −d − ν∗
1 log(1 − C1,h−1µ

∗
1) − ν∗

2 log[1 − (Cp+1,h−1 + a∗1(C1,h−1))µ
∗
2]

+ D̃h−1 + F (D1,h−1) ,

(92)

where D̃h−1 and F (D1,h−1) have the same meaning as in Proposition 8; the initial conditions are
C0 = 0, D0 = 0 (or C1 = −c, D1 = −d) [Proof : see Appendix 12].
So, Proposition 15 shows that, also for the SVARG(p) model, yields to maturity are linear functions
of X̃t and Zt.

In the endogenous case, we can consider as factors the short rate rt+1 and the long rate R(t,H),
for a given time to maturity H. Now, if we want to define a joint historical and risk-neutral
dynamics for these variables, compatible with the no-arbitrage opportunity condition, we have to
take into account domain restrictions on R(t,H) : given that the support of rt+1 is D1 = (0,+∞),
under A.A.O. the support of R(t,H) has to be DH = [ b,+∞), for some constant b > 0 [see
Gourieroux, Monfort (2006b) for details]. Consequently, the bivariate SVARG(p) process x̃t, being
with support D = D1 × D1, will be specified for x1t = rt+1 and x2t = R(t,H) − b, and the results
presented for the SVARN(p) case [see Section 3.8] will apply also in this case.

It is also easily seen that the risk premium of the payoff pt+1 = exp(−θ1x1,t+1 −θ2x2,t+1) is:

ωt(θ1, θ2) = {A2,t[−θ2 + a1,t(−θ1)] + A1,t(−θ1) − A∗
2[−θ2 + a∗1(−θ1)] − A∗

1(−θ1)}
′ Xt

+ b2,t[−θ2 + a1,t(−θ1)] + b1,t(−θ1) − b∗2,t[−θ2 + a∗1(−θ1)] − b∗1,t(−θ1) ,

with
b1,t(u1) = −ν∗′

1 Zt log(1 − u1µ
∗
1)

b2,t(u2) = −ν∗′

2 Zt log(1 − u2µ
∗
2) ,

and the risk premium of the digital asset is still given by relation (47).

5 Derivative Pricing

5.1 Generalization of the recursive pricing formula

In the previous sections, thanks to the feature that the process (x̃t, zt) is Car in the risk-neutral
world, we have derived explicit recursive formulas for the zero-coupon bond price B(t, h). In fact,
as noted in Gourieroux, Monfort and Polimenis (2003), the recursive approach can be generalized
to the case of other assets. In particular, given that Car processes have an exponential-affine multi-
horizon (complex) conditional Laplace transform, we are able to determine explicit or quasi explicit
pricing formula for interest rate derivative prices. Let us consider a class of payoffs g(X̃t+h, Zt+h),
(t, h) varying, for a given g function and let us assume that the price at t of this payoff is of the
form:

Pt(g, h) = exp
[

Ch(g)′X̃t + Dh(g)′Zt

]

. (93)
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It is clear that:

exp
[

Ch(g)′X̃t + Dh(g)′Zt

]

= Et

[

Mt,t+1 exp
(

Ch−1(g)′X̃t+1 + Dh−1(g)′Zt+1

)]

= exp(−c′X̃t − d′Zt)E
Q
t

[

exp
(

Ch−1(g)′X̃t+1 + Dh−1(g)′Zt+1

)]

;

so the sequences Ch(g),Dh(g), h ≥ 1, follow recursive equations which does not depend on g and,
therefore, are identical to the case g = 1, that is to say to the zero-coupon bond pricing formulas
given in the previous sections. The only condition for (93) to be true is to hold for h = 1 and, of
course, this initial condition depends on g.

Formula (93) is valid for h = 1 if g(X̃t+h, Zt+h) = exp(ũ′X̃t+h + ṽ′Zt+h) for some vector ũ and
ṽ. Indeed, using the notations

ũ′X̃t+1 = u′
1x̃t+1 + u′

−1X̃t

ṽ′Zt+1 = v′1zt+1 + v′
−1Zt ,

with u′
−1 = (u′

2, . . . , u
′
p, 0), v′−1 = (v′2, . . . , v

′
p, 0), we get:

Pt(ũ, ṽ; 1) = exp(−c′X̃t − d′Zt + u′
−1X̃t + v′

−1Zt)

×EQ
t [exp (u′

1x̃t+1 + v′1zt+1)] ,

(94)

which, using the Car representation of (x̃t+1, zt+1) under the probability Q, has obviously the
exponential linear form (93) and provides the initial conditions of the recursive equations. The
standard recursive equations provide the price Pt(ũ, ṽ;h) at date t for the payoff exp(ũ′X̃t+h +
ṽ′Zt+h). So we have the following proposition.

Proposition 16 : The price Pt(ũ, ṽ;h) at time t of the payoff g(X̃t+h, Zt+h) = exp(ũ′X̃t+h+ṽ′Zt+h)
has the exponential form (93) where Ch(g) and Dh(g) follow the same recursive equations as in
the zero-coupon bond case with initial values C1(g) and D1(g) given by the coefficients of X̃t and
Zt in equation (94).

When ũ and ṽ have complex components, Pt(ũ, ṽ;h) provides the complex Laplace transform
Et[Mt,t+h exp(ũ′X̃t+h + ṽ′Zt+h)].

5.2 Explicit and quasi explicit pricing formulas

The explicit formulas for zero-coupon bond prices also immediately provide explicit formulas for
some derivatives like swaps. Moreover, the result of Section 5.1, where ũ and ṽ have complex
components, can be used to price payoffs of the form:

[

exp(ũ′
1X̃t+h + ṽ′1Zt+h) − exp(ũ′

2X̃t+h + ṽ′2Zt+h)
]+

,

like caps, floors or options on zero-coupon bonds. Let us consider, for instance, the problem to
price, at date t, a European call option on the zero-coupon bond B(t + h,H − h), then the pricing
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relation is :

pt(K,h) = Et

[

Mt,t+h (B(t + h,H − h) − K)+
]

= Et

[

Mt,t+h (exp[−(H − h)R(t + h,H − h)] − K)+
]

,

(95)

and, substituting here the yield to maturity formula (68), for the SVARN(p) model, or formula
(91), for the SVARG(p) model, we can write :

pt(K,h) = Et

[

Mt,t+h

(

exp[C ′
H−hX̃t+h + D′

H−hZt+h] − K
)+

]

= Et

[

Mt,t+h

(

exp[C ′
H−hX̃t+h + D′

H−hZt+h] − K
)

I[−C′

H−h
X̃t+h−D′

H−h
Zt+h<− log K]

]

= Et

[

Mt,t+h

(

exp[C ′
H−hX̃t+h + D′

H−hZt+h]
)

I[−C′

H−h
X̃t+h−D′

H−h
Zt+h<− log K]

]

−KEt

[

Mt,t+hI[−C′

H−h
X̃t+h−D′

H−h
Zt+h<− log K]

]

= Gt(CH−h,DH−h,−CH−h,−DH−h,− log K;h)

−KGt( 0, 0,−CH−h,−DH−h,− log K;h) ,

(96)
where I denotes the indicator function, and where

Gt(ũ0, ṽ0, ũ1, ṽ1,K;h) = Et

[

Mt,t+h

(

exp[ũ′
0X̃t+h + ṽ′0Zt+h]

)

I[−ũ′

1
X̃t+h−ṽ′

1
Zt+h<K]

]

denotes the truncated real Laplace transform which we can be deduced from the (untruncated)
complex Laplace transform. More precisely, we have the following formula [see Duffie, Pan, Sin-
gleton (2000) for details]:

Gt(ũ0, ṽ0, ũ1, ṽ1,K;h) =
Pt(ũ0, ṽ0, h)

2

−
1

π

∫ +∞

0

[

Im[Pt(ũ0 + iũ1y, ṽ0 + iṽ1y;h)] exp(−iyK)

y

]

dy

(97)

where Im(z) denotes the imaginary part of the complex number z. So, formula (96) is quasi explicit
since it only requires a simple (one-dimensional) integration to derive the values of Gt.
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6 Conclusions

This paper has developed a general discrete-time modeling of the term structure of interest rates
able to take into account at the same time several important features : a) an historical dynam-
ics of the factor involving several lagged values and switching regimes; b) a specification of the
exponential-affine stochastic discount factor (SDF) with time-varying coefficients implying stochas-
tic risk premia, functions of the present and past values of the factor (xt) and the regime indicator
function (zt); c) explicit or quasi explicit formulas for zero-coupon bond (the Generalized Linear
Term Structure formula) and interest rate derivative prices; d) the positivity of the yields at each
maturity (in the Autoregressive Gamma framework), regardless the observable or latent nature
of the factor (xt). We have studied, in the Gaussian framework, the theory of SARN(p) and the
SVARN(p) Factor-Based Term Structure Models, providing a generalization of the recent modeli-
sation proposed by Dai, Singleton and Yang (2006). In the case of an observable factor (yields at
different maturities), we have presented a two-step estimation procedure based on a generalization
of the Kim’s smoothing algorithm. In the Autoregressive Gamma setting, we have proposed the
SARG(p) and the SVARG(p) Factor-Based Term Structure Models, extending several discrete time
CIR term structure models like Naik and Lee (1997) and Bansal and Zhou (2002).
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Appendix 1 : Proof of Proposition 3

E[exp(u1y1,t+1 + u2y2,t+1)| y1,t, y2,t]

= E
[

exp(u2y2,t+1)E
(

exp(u1y1,t+1)| y1,t, y2,t+1

)

| y1,t, y2,t

]

= exp [a1(u1)(β11y1,t + β12y2,t) + b1(u1)] Et

[

exp((u2 + a1(u1)βo)y2,t+1) | y1,t, y2,t

]

= exp [a1(u1)(β11y1,t + β12y2,t) + b1(u1)

+a2(u2 + a1(u1)βo)(β21y1,t + β22y2,t) + b2(u2 + a1(u1)βo)]

= exp {[a1(u1)β11 + a2(u2 + a1(u1)βo)β21]y1,t

+[a1(u1)β12 + a2(u2 + a1(u1)βo)β22]y2,t + b1(u1) + b2(u2 + a1(u1)βo)} .

Appendix 2 : Proof of Propositions 5 and 6

Proof of Proposition 5 : Let us first consider an asset providing the payoff exp(−θxt+1) at t+1;
the price at t of this asset is

pt = Et[Mt,t+1 exp(−θxt+1)]

= exp
[

−rt+1 − θν(Zt) − θϕ(Zt)
′Xt −

1
2Γ(Zt,Xt)

2
]

×

Et {exp [[Γ(Zt,Xt) − θσ(Zt)] εt+1]}

= exp
[

−rt+1 − θν(Zt) − θϕ(Zt)
′Xt − θΓ(Zt,Xt)σ(Zt) + θ2

2 σ2(Zt)
]

,

and
Etpt+1 = Et[exp(−θxt+1)]

= exp [−θν(Zt) − θϕ(Zt)
′Xt]×

Et {exp [[−θσ(Zt)] εt+1]}

= exp
[

−θν(Zt) − θϕ(Zt)
′Xt + θ2

2 σ2(Zt)
]

.

Finally, from Definition 4, the risk premium is:

ωt(θ) = θΓ(Zt,Xt)σ(Zt) .

Proof of Proposition 6 : Similarly, if we consider a digital asset providing one money unit at
t + 1 if zt+1 = ej , we get:

pt = Et[Mt,t+1I(ej)(zt+1)]

= exp[−rt+1] exp[−δj(Zt,Xt)]π (zt, ej ;Xt) ,
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and
Etpt+1 = Et[I(ej)(zt+1)]

= π (zt, ej ;Xt) .

Therefore, applying Definition 4, the risk premium is :

ωt(θ) = δj(Xt, Zt) .

Appendix 3 : Proof of Proposition 7

The Laplace transform of the one-period conditional risk-neutral probability is:

EQ
t [exp(uxt+1 + v′zt+1)]

= Et{exp[Γ(Zt,Xt) εt+1 −
1
2Γ(Zt,Xt)

2 − δ′(Zt,Xt)zt+1

+u[ν(Zt) + ϕ(Zt)
′Xt + σ(Zt)εt+1] + v′zt+1]}

= exp
{

u[ϕ′(Zt)Xt + Γ(Zt,Xt)σ(Zt)] + uν(Zt) + 1
2u2σ(Zt)

2
}

×

∑J
j=1 π (zt, ej ;Xt) exp [(v − δ(Zt,Xt))

′ej ]

= exp
{

u[ϕ(Zt) + γ̃(Zt)σ(Zt)]
′Xt + u[ν(Zt) + γ(Zt)σ(Zt)] + 1

2u2σ(Zt)
2
}

×

∑J
j=1 π (zt, ej ;Xt) exp [(v − δ(Zt,Xt))

′ej ] .

Therefore, we get the result of Proposition 7.
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Appendix 4 : Proof of Proposition 8

Assuming that (52) is true for h − 1, we get:

B(t, h) = exp(C ′
hXt + D′

hZt)

= exp (−rt+1) E
Q
t [B(t + 1, h − 1)]

= exp [−c′Xt − d′Zt] E
Q
t

[

exp
(

C ′
h−1Xt+1 + D′

h−1Zt+1

)]

= exp [−c′Xt − d′Zt]×

E
Q
t

[

exp
(

C ′
h−1

[

Φ∗Xt +
(

ν∗′Zt + σ∗′Zt ξt+1

)

e1

]

+ D′
1,h−1zt+1 + D̃′

h−1Zt

)]

= exp

[

(

Φ∗′Ch−1 − c
)′

Xt +
(

−d + C1,h−1ν
∗ + 1

2C2
1,h−1σ

∗2 + D̃h−1

)′

Zt

]

×

E
Q
t

[

exp
(

D′
1,h−1zt+1

)]

= exp

{

(

Φ∗′Ch−1 − c
)′

Xt +

[

−d + C1,h−1ν
∗ + 1

2C2
1,h−1σ

∗2 + D̃h−1 + F (D1,h−1)
]′

Zt

}

,

and the result follows by identification.

Appendix 5 : Proof of Proposition 9

Using the lag polynomials:

Ch(L) = −
1

h
(C1,h + C2,hL + . . . + Cp,hLp−1)

Dh(L) = −
1

h
(D1,h + D2,hL + . . . + Dp+1,hLp)

Ψ(L,Zt) = 1 − ϕ1(Zt)L − . . . − ϕp(Zt)L
p ,

we get from (54):

R(t, h) = Ch(L)xt + Dh(L)′zt ,

and

Ψ(L,Zt)R(t + 1, h) = Ch(L)Ψ(L,Zt)xt+1 + Dh(L)Ψ(L,Zt) zt+1,

= Dh(L)Ψ(L,Zt) zt+1 + Ch(L) ν(Zt) + Ch(L)[(σ∗′Zt) εt+1] .
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Appendix 6 : Proof of Proposition 11

The Laplace transform of the one-period conditional risk-neutral distribution is :

E
Q
t [exp(u′x̃t+1 + v′zt+1)]

= Et{exp[Γ(Zt, X̃t)
′ εt+1 −

1
2Γ(Zt, X̃t)

′Γ(Zt, X̃t) − δ′(Zt, X̃t)zt+1

+u′[ν̃(Zt) + Φ̃(Zt)X̃t + S(Zt)εt+1] + v′zt+1]}

= exp
{

u′[ Φ̃(Zt)X̃t + S(Zt)Γ(Zt, X̃t)] + u′ν̃(Zt) + 1
2u′S(Zt)S(Zt)

′u
}

×

∑J
j=1 π(zt, ej ; X̃t) exp

[

(v − δ(Zt, X̃t))
′ej

]

= exp
{

u′[ Φ̃(Zt) + S(Zt)Γ̃(Zt, X̃t)]X̃t + u′[ ν̃(Zt) + S(Zt)γ(Zt)] + 1
2u′S(Zt)S(Zt)

′u
}

×

∑J
j=1 π(zt, ej ; X̃t) exp

[

(v − δ(Zt, X̃t))
′ej

]

.

Therefore, we get the result of Proposition 11.

Appendix 7 : Proof of Proposition 12

Assuming that (66) is true for h − 1, we get:

B(t, h) = exp(C ′
hX̃t + D′

hZt)

= exp (−rt+1) E
Q
t [B(t + 1, h − 1)]

= exp
[

−c′X̃t − d′Zt

]

E
Q
t

[

exp
(

C ′
h−1X̃t+1 + D′

h−1Zt+1

)]

= exp
[

−c′X̃t − d′Zt

]

×

E
Q
t

[

exp
(

C ′
h−1Φ̃

∗X̃t + C1,h−1(ν
∗
1Zt + S∗

1(Zt)ξt+1)

+Cp+1,h−1(ν
∗
2Zt + S∗

2(Zt)ξt+1) + D′
1,h−1zt+1 + D̃′

h−1Zt

)]

= exp

[

(

Φ̃∗′Ch−1 − c
)′

Xt +
[

−d + C1,h−1ν
∗′

1 + Cp+1,h−1ν
∗′

2

+1
2C2

1,h−1(σ
∗2
1 + ϕ∗2

o σ∗2
2 ) + (C1,h−1)(Cp+1,h−1)ϕ

∗2
o σ∗2

2

+1
2C2

p+1,h−1σ
∗2
2 + D̃h−1 + F (D1,h−1)

]′

Zt

]

,

and the result follows by identification.
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Appendix 8 : A Generalization of the Kim’s Smoothing Algorithm

The proof of the Smoothing algorithm for the general model:

yt+1 = ϑy

(

yt, z
t+1
t−p+1, ηt+1

)

zt+1 = ϑz

(

yt, zt, εt+1

)

,

(A.1)

with (εt) and (ηt) independent white noise processes, (yt) an observable process, (zt) a non-
homogeneous (latent) Markov chain, where yt = (yt, yt−1, . . .), zt+1

t−p+1 = (zt−p+1, . . . , zt+1), and

where p ∈ N and h ∈ N+, is based on the following three lemmas.

Lemma I : Model (A.1) can be written, for each integer h ≥ 2, in the following way :

yt+h = ϑ
(h)
y

(

yt, z
t+1
t−p+1, ηt+1, . . . , ηt+h, εt+2, . . . , εt+h

)

zt+h = ϑ
(h)
z

(

yt, z
t+1
t−p+1, ηt+1, . . . , ηt+h−1, εt+2, . . . , εt+h

)

,

(A.2)

[Proof : by recursive substitution, starting from (yt+1, zt+1)]. In particular, for each h ≥ 1 and
replacing t by t + p, we have:

yt+p+h = ϑ
(h)
y

(

yt+p, z
t+p+1
t+1 , ηt+p+1, . . . , ηt+p+h, εt+p+2, . . . , εt+p+h

)

zt+p+h = ϑ
(h)
z

(

yt+p, z
t+p+1
t+1 , ηt+p+1, . . . , ηt+p+h−1, εt+p+2, . . . , εt+p+h

)

,

(A.3)

where, with the notation Iε(t + p, h) := (εt+p+2, . . . , εt+p+h), we assume Iε(t + p, 1) = ∅.

Lemma II : If I1 ⊂ I ⊂ I2 and P[zt|I1] = P[zt|I2], then P[zt|I1] = P[zt|I] = P[zt|I2] [Proof :
straightforward].

Lemma III : Given model (A.1), the following relation holds :

P

[

zt | z
t+p+1
t+1 , yT

]

= P

[

zt | z
t+p+1
t+1 , yt+p

]

. (A.4)

Proof : Given the three sets I1 =
(

z
t+p+1
t+1 , yt+p

)

, I =
(

z
t+p+1
t+1 , yT

)

and I2 =
(

z
t+p+1
t+1 , yt+p, η

T
t+p+1,

εT
t+p+2

)

, we have that :

(i) I1 ⊂ I,

(ii) I ⊂ I2,

(iii) (ηT
t+p+1, ε

T
t+p+2) ⊥ (zt+p+1

t+1 , yt+p, zt).

The proof of relation (i) is straightforward. Relation (ii) holds given that, from Lemma I, we can
always write, for any s > t + p :

ys = ϑ
(s−t−p)
y

(

yt+p, z
t+p+1
t+1 , ηt+p+1, . . . , ηs, εt+p+2, . . . , εs

)

, (A.5)
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and, therefore, (yT ) ⊂
(

yt+p, z
t+p+1
t+1 , ηT

t+p+1, ε
T
t+p+2

)

, that is, I ⊂ I2.

With regard to relation (iii), from Lemma I applied to (zt+1, yt+1), we have:

zt+p+1 = ϑ
(t+p+1)
z

(

y0, z
1
−p+1, η1, . . . , ηt+p, ε2, . . . , εt+p+1

)

yt+p = ϑ
(t+p)
y

(

y0, z
1
−p+1, η1, . . . , ηt+p, ε2, . . . , εt+p

)

,

(A.6)

and given that zt = ϑz

(

yt−1, zt−1, εt

)

, we conclude (using the notation P for the p.d.f.) :

P
(

ηT
t+p+1, ε

T
t+p+2 | z

t+p+1
t+1 , yt+p, zt

)

= P
(

ηT
t+p+1, ε

T
t+p+2

)

, (A.7)

and relation (iii) is proved. Now, given property (iii), we have:

P[zt | I2] =
P[zt, I2]

P[I2]

=
P[zt+p+1

t+1 , yt+p, zt, η
T
t+p+1, ε

T
t+p+2]

P[zt+p+1
t+1 , yt+p, η

T
t+p+1, ε

T
t+p+2]

=
P[zt+p+1

t+1 , yt+p, zt]P[ηT
t+p+1, ε

T
t+p+2]

P[zt+p+1
t+1 , yt+p]P[ηT

t+p+1, ε
T
t+p+2]

=
P[zt, I1]

P[I1]
= P[zt | I1] ,

(A.8)

and applying Lemma II, we prove (A.4).

If p ≥ 1, the smoothing formula is :

P[zt, . . . , zt+p | yT ] =
P[zt, . . . , zt+p | yt+p ]

P[zt+1, . . . , zt+p | yt+p ]

∑

zt+p+1

P[zt+1, . . . , zt+p+1 | yT ] . (A.9)

Proof : Applying Lemma III, we can write

P[zt, . . . , zt+p+1 | yT ]

= P[zt| zt+1, . . . , zt+p+1, yT ] P[zt+1, . . . , zt+p+1 | yT ]

= P[zt| zt+1, . . . , zt+p+1, yt+p] P[zt+1, . . . , zt+p+1 | yT ]

= P[zt+1, . . . , zt+p+1 | yT ]
P[zt, . . . , zt+p+1, yt+p ]

P[zt+1, . . . , zt+p+1, yt+p ]

= P[zt+1, . . . , zt+p+1 | yT ]
P[zt+p+1 | zt+p, . . . , zt, yt+p ]P[zt+p, . . . , zt | yt+p ]

P[zt+p+1 | zt+p, . . . , zt+1, yt+p ]P[zt+p, . . . , zt+1 | yt+p ]

(A.10)
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and, (zt) being (conditionally) a Markov chain, relation (A.10) can be written:

P[zt, . . . , zt+p+1 | yT ]

= P[zt+1, . . . , zt+p+1 | yT ]
P[zt, . . . , zt+p | yt+p ]

P[zt+1, . . . , zt+p | yt+p ]
;

(A.11)

now, if we integrate out zt+p+1 on the LHS and RHS of (A.11), we obtain (A.9). The smoothing
algorithm start, at t = T − p − 1, from P[zT−p, . . . , zT−1 | yT ] =

∑

zT
P[zT−p, . . . , zT | yT ], with

P[zT−p, . . . , zT | yT ] provided by the Kitagawa-Hamilton filter.

If p = 0, the smoothing formula is :

P[zt | yT ] = P[zt | yt ]
∑

zt+1

P[zt+1 | zt, yt ]P[zt+1 | yT ]

P[zt+1 | yt ]
. (A.12)

Proof : Given that
P[zt, zt+1 | yT ]

= P[zt | zt+1, yT ] P[zt+1 | yT ]

= P[zt | zt+1, yt] P[zt+1 | yT ]

= P[zt+1 | yT ]
P[zt, zt+1 | yt ]

P[zt+1 | yt ]

= P[zt+1 | yT ]
P[zt+1 | zt, yt ]P[zt | yt]

P[zt+1 | yt ]
,

(A.13)

if we integrate out zt+1 from the LHS and RHS of (A.13) we obtain (A.12).
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Appendix 9 : Proof of Lemma 1

ã(u + α; ρ, µ) − ã(α; ρ, µ) =
ρ(u + α)

1 − (u + α)µ
−

ρα

1 − αµ

= ρ
u

(1 − αµ)2 − uµ(1 − αµ)

=
ρ

(1 − αµ)2
u

1 − uµ
1−αµ

=
ρ∗u

1 − uµ∗
= ã(u; ρ∗, µ∗) ;

b̃(u + α; ν, µ) − b̃(α; ν, µ) = −ν log(1 − (u + α)µ) + −ν log(1 − αµ)

= −ν log

[

1 − (u + α)µ

1 − αµ

]

= −ν log

[

1 −
uµ

1 − αµ

]

= −ν log(1 − uµ∗)

= b̃(u; ν, µ∗) .

Appendix 10 : Proof of Proposition 13

Assuming that (81) is true for h − 1, we get:

B(t, h) = exp(C ′
hXt + D′

hZt)

= exp [−c′Xt − d′Zt] E
Q
t

[

exp
(

C ′
h−1Xt+1 + D′

h−1Zt+1

)]

= exp
(

−c′Xt − d′Zt + C̃ ′
h−1Xt + D̃′

h−1Zt

)

E
Q
t

[

exp
(

C1,h−1xt+1 + D′
1,h−1zt+1

)]

= exp
[

−c′Xt − d′Zt + C̃ ′
h−1Xt + D̃′

h−1Zt + A∗(C1,h−1)
′Xt

−ν∗′Zt log(1 − C1,h−1µ
∗) + F ′(D1,h−1)Zt

]

,

and the result follows by identification.
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Appendix 11 : Proof of Proposition 14

The joint conditional Laplace transform of (x1,t+1, x2,t+1) in the risk-neutral world is:

EQ
t [exp(u1x1,t+1 + u2x2,t+1) |x1,t, x2,t, zt ]

= exp
{

A2,t [u2 + Γ2t + a1,t(u1 + Γ1t)]
′ X̃t + b2,t(u2 + Γ2t + a1,t(u1 + Γ1t))

+ A1,t(u1 + Γ1t)
′X̃t + b1,t(u1 + Γ1t)

−A2,t(Γ2t + a1,t(Γ1t))
′X̃t − b2,t(Γ2t + a1,t(Γ1t))

−A1,t(Γ1t)
′X̃t − b1,t(Γ1t)

}

.

Using Lemma 2 we get:

A2,t [u2 + Γ2t + a1,t(u1 + Γ1t)] − A2,t(Γ2t + a1,t(Γ1t)) = A [u2 + a1,t(u1 + Γ1t) − a1,t(Γ1t);ϕ
∗
2t, µ

∗
2t] ,

with
ϕ∗

2t =
ϕ2t

{1 − [Γ2t + a1,t(Γ1t)]µ2t}
2 , µ∗

2t =
µ2t

{1 − [Γ2t + a1,t(Γ1t)]µ2t}
,

and using Lemma 1

A [u2 + a1,t(u1 + Γ1t) − a1,t(Γ1t);ϕ
∗
2t, µ

∗
2t]

= A [u2 + ã(u1 + Γ1t;ϕot, µ1,t) − ã(Γ1t;ϕot, µ1,t);ϕ
∗
2t, µ

∗
2t]

= A
[

u2 + ã(u1;ϕ
∗
ot, µ

∗
1,t);ϕ

∗
2t, µ

∗
2t

]

= A∗
2,t[u2 + a∗1,t(u1)] (say)

with
ϕ∗

ot =
ϕot

(1 − Γ1t µ1t)
2 , µ∗

1t =
µ1t

(1 − Γ1tµ1t)
.

Similarly, we get:

b2,t [u2 + Γ2t + a1,t(u1 + Γ1t)] − b2,t(Γ2t + a1,t(Γ1t))

= b̃
[

u2 + ã(u1;ϕ
∗
ot, µ

∗
1,t); ν

∗
2t, µ

∗
2t

]

= b∗2,t[u2 + a∗1t(u1)] (say) ,

b1,t(u1 + Γ1t) − b1,t(Γ1t) = b̃1(u1; ν
∗
1t, µ

∗
1t) = b∗1,t(u1) (say) ,

A1,t(u1 + Γ1t) − A1,t(Γ1t) = A1(u1;ϕ
∗
1t, µ

∗
1t) = A∗

1,t(u1) (say) ,

with
ϕ∗

1t =
ϕ1t

(1 − Γ1t µ1t)
2 .
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And finally, the joint conditional Laplace transform of (x1,t+1, x2,t+1) becomes:

EQ
t [exp(u1x1,t+1 + u2x2,t+1) |x1t, x2t, zt ] = exp

{

[A∗
1,t(u1) + A∗

2,t[u2 + a∗1,t(u1)]]
′X̃t

+ b∗2,t[u2 + a∗1,t(u1)] + b∗1,t(u1)
}

,

and the result of Proposition 14 is proved.

Appendix 12 : Proof of Proposition 15

Assuming that (91) is true for h − 1, we get:

B(t, h) = exp(C ′
hX̃t + D′

hZt)

= exp
[

−c′X̃t − d′Zt

]

E
Q
t

[

exp
(

C ′
h−1X̃t+1 + D′

h−1Zt+1

)]

= exp
(

−c′X̃t − d′Zt + C̃ ′
h−1X̃t + D̃′

h−1Zt

)

E
Q
t

[

exp
(

C ′
1,h−1x1,t+1 + C ′

p+1,h−1x2,t+1 + D′
1,h−1zt+1

)]

= exp
[

−c′X̃t − d′Zt + C̃ ′
h−1X̃t + D̃′

h−1Zt + A∗
1(C1,h−1)

′X̃t

−ν∗′

1 Zt log(1 − C1,h−1µ
∗
1) + A∗

2[Cp+1,h−1 + a∗1(C1,h−1)]
′X̃t

−ν∗′

2 Zt log[1 − (Cp+1,h−1 + a∗1(C1,h−1))µ
∗
2] + F ′(D1,h−1)Zt

]

,

and the result follows by identification.
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Paris-Dauphine (France).

Piazzesi, M. (2003) : ”Affine Term Structure Models”, forthcoming Handbook of Financial
Econometrics.

Polimenis, V. (2001) : ”Essays in Discrete Time Asset Pricing”, Ph. D. Thesis, Wharton
School, University of Pennsylvania.

Roberds, W., and C. H. Whiteman, (1999) : ”Endogenous Term Premia and Anomalies in
the Term Structure of Interest Rates : Explaining the Predictability Smile”, Journal of Monetary
Economics, 44, 555-580.

Stanton, R., (1997) : ”A Nonparametric Model of the Term Structure Dynamics and the Market
Price of Interest Rate Risk”, The Journal of Finance, 52, 1973-2002.

Vasicek, O. (1977) : ”An Equilibrium Characterization of the Term Structure”, Journal of
Financial Economics, 5, 177-188.

Wu, S., and Y. Zeng, (2005) : ”A General Equilibrium Model of the Term Structure of Interest
Rates under Regime-Switching Risk”, International Journal of Theoretical and Applied Finance,
8, 839-869.

46


