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Abstract: We demonstrate that a concentric ring coupler can be employed
for nonlinear switching of the angular momentum of light carried by an
optical vortex. We find different types of stationary vortex states in the
nonlinear coupler and study coupling of both power and momentum of
an optical vortex launched into one of the rings, demonstrating that the
switching takes place well below the collapse threshold. The switching is
more effective for the inner-ring excitation since it triggers more sharply
and for the powers low enough to avoid the vortex instability and breakup.
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1. Introduction

Optical vortices are fundamental structures in the light fields associated with the points of
vanishing intensity and phase singularities of optical beams [1]. Optical vortices have been
generated experimentally in different types of linear and nonlinear optical media [1, 2]. How-
ever, when a vortex beam propagates in a nonlinear medium, it becomes unstable due to the
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Fig. 1. (a) Power diagram of the ring nonlinear coupler. Dashed lines represent the un-
stable collapsing solutions. Inset: Sketch of the concentric ring coupler. Values used (in
normalized units) are: r1 = 5, r2 = 8, r3 = 11 and r4 = 14 for radii and n0 = 1, n1 = 2 for
indices. (b) Examples of nonlinear stationary states corresponding to the points marked on
the power diagram (labels A to F are correspondent in both subfigures).

symmetry-breaking azimuthal instability [2] decaying into several fundamental solitons [3].
Therefore, it is commonly accepted that any kind of an optical device operating with a transfer
of the angular momentum of light and realizing nonlinear switching of an optical vortex would
be impossible due to this inherent nonlinear instability and the subsequent vortex decay.

In a contrast to this common belief, in this paper we suggest a novel type of nonlinear
waveguide coupler created by two weakly coupled concentric ring waveguides which not only
preserves the angular momentum of the input light during the propagation, but also allow non-
linear switching for the beam power and angular momentum operating with ring-like optical
vortex beams. Such two-ring annular waveguide couplers can be created, in particular, by a
proper modulation of nondiffracting ring Bessel-like optical lattices [4] recently generated ex-
perimentally by the optical induction technique [5]. In this context, the ring-shaped solitons
were studied in a multi-ring lattice for the case of a saturable nonlinearity [6].

The purpose of this paper is twofold. First, we suggest a simple design of a concentric ring
coupler that is consistent with the conservation of the angular momentum of the vortex beam.
Second, we study the angular momentum switching in this coupler and compare it with the
familiar switching of the fundamental beams. We are interested how an input beam with a
nonzero angular momentum can tunnel between the ring-like cores (either from the outer ring
or from the inner ring) of the annular coupler, in both linear and nonlinear regimes. To the best
of our knowledge, this problem has never been addressed before, but it seems very important for
suggesting novel ways to manipulate, transform, and control the angular momentum of light.

2. Model and stationary states

We consider a pair of two concentric step-index ring waveguides shown in the inset of Fig. 1(a).
The two concentric cores and the substrate are made of two different materials with the refrac-
tive indices n1 and n0, and both possessing a nonlinear Kerr response. For the sake of simplicity,
we took n0 = 1 (base index) and n1 = 2 (so that the index difference is Δn = 1) in all our cal-
culations. The study is, however, valid for any other values of the indices, since changing the
index difference only supposes a change in the spatial scale of the system and a change in the
base index only produces a shift in the propagation constants. The scalar optical field ψ(r,φ ,z)
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propagating in the z-direction may be described by the normalized equation,

i
∂ψ
∂ z

+ ∇2
⊥ψ +

[
V (r)+ |ψ |2]ψ = 0, (1)

where ∇2
⊥ is the Laplace operator, and V (r) is the external potential of the double-ring coupler.

In the linear regime, this kind of annular structures were studied by means of a conformal
transformation [7, 8], although in a nonlinear regime a numerical approach is more directly
applicable. Since we are interested in ring-shaped fields with nonzero angular momentum, the
indices and dimensions of the coupler are chosen such that the linear coupler supports the usual
even and odd (respect to the middle point between both cores) vortex-type modes. Also, each
of the waveguides, when considered separately, supports the lowest-order vortex-type mode.

We look for the stationary states of the model (1) in the form,

ψ(r,φ ,z) = u(r)exp(i�φ)exp(iβ z), (2)

where u(r) is the radial profile of the corresponding stationary state, β is its propagation con-
stant, and � is the winding number. Substitution of this function into the model (1) yields to the
following z-independent equation,

−β u+
d2 u
d r2 +

1
r

d u
d r

− �2 u
r2 +

[
V (r)+ u2]u = 0. (3)

We consider, for the sake of simplicity, the lower states with nonzero angular momentum, when
� = 1. The nonlinear stationary states can be calculated numerically, and they are characterized
by the power P = 2π

∫
u2 r dr as a function of the propagation constant β , as shown in the power

diagram of Fig. 1(a). Examples of the nonlinear stationary states corresponding to different
points in the power diagram are shown in Fig. 1(b). Due to the inherent asymmetry of the
coupler, at low powers there exist two branches represented by asymmetric modes, one even
with power concentrated on the external ring (e-asymmetric), and one odd (regarded as anti-
asymmetric), whose limit at P = 0 correspond to the linear modes of the concentric ring coupler.
When power exceeds a particular threshold, there appear two new branches, one symmetric and
another asymmetric with power concentrated on the internal ring (i-asymmetric) which join
together at point B. The point B is out of the e-asymmetric branch due to asymmetry of the
coupler which remove degeneracy of the bifurcation point of a symmetric nonlinear coupler [9].

Stability of nonlinear states depends on the branch symmetry and power [9]. In general, in our
case all nonlinear states develop an azimuthal instability if they propagate for a long enough
distance, although those belonging to the e-symmetric and anti-asymmetric branches can be
considered ‘practically stable’, if the mode power is low enough. As an example, the mode
corresponding to point A (see Fig. 1(a)) breaks only for z > 25000, while the mode G breaks at
z > 6000. Since the powers of those two states are similar, we conclude that e-asymmetric states
are less favored to develop the azimuthal instability, remaining stable for much longer distances.
Above the threshold where the symmetric and i-asymmetric states exist, the i-asymmetric states
are less unstable: the mode F breaks at z > 200 whereas the mode C breaks at z > 50. For
higher powers, all the modes become strongly unstable and they first break into a number of
lobes, and then develop the collapse instability (dashed lines in Fig. 1(a)) as usual happens in
self-focusing nonlinear Kerr media [3]. Due to the presence of the ring waveguides the beam
spreading is stopped and so for low powers the beam remains stable.

3. Vortex switching

In order to study the coupling of power and angular momentum, we launch a vortex beam into
one of the ring waveguides. We chose the initial vortex of the form of Eq. (2) with � = 1, but
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Fig. 2. Distribution of the light intensities in the coupler for different propagation distance
z, for three different regimes. Top: external core excitation for the initial power P = 5.
Center: external core excitation, at P = 20. Bottom: internal core excitation, at P = 20.

taking the radial shape of the field u(r) = u0(r) to be that of the single-waveguide mode in
order to assure a good coupling to the ring waveguide, although there would be no problem to
take some other shape like Gaussian. The field is also initially scaled to establish the desired
power and then propagates in a nonlinear regime. At each value of z, we characterize the vortex
beam by calculating the beam power, P =

∫ |ψ |2 rdrdφ , and the angular momentum, Lz =
Im{∫

ψ∗∂φ ψ rdrdφ}, which are monitored for each waveguide. To do so, we consider a circular
boundary just half way between both the cores and use all the points located in the inner part of
this boundary to calculate the power and momentum for the inner core, and those in the external
part to calculate those values for the external core.
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Fig. 3. Normalized power (dashed) and angular momentum (solid) vs. propagation distance
for ring excitation with a single- charged vortex. The individual values for each core are
plotted, together with the total values. (a) simulation for external-core excitation at P=5; (b)
the same at P=20; (c) simulation for internal-core excitation at P=5; (d) the same at P=20.

In Fig. 2, we show the intensity images of the coupler for three different scenarios. Also, for
both internal and external ring excitations, in Fig. 3, we plot the power and angular momentum
for each waveguide together with their total values. Both magnitudes are in normalized units
and on the same scale. In fact, according to the functional form of the input field ψ 0(r,φ) =
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u0(r)exp(i�φ), they are initially proportional,

Lz = Im

{∫
ψ∗

0 ∂φ ψ0 r dr dφ
}

= 2π�

∫
u0(r)2rdr = �P. (4)

The top row in Fig. 2 shows the case when the external core of the ring coupler is excited
with a low-power vortex beam. A periodic power and momentum transfer between the cores is
observed, and the beam remains stable. At such low powers, a similar result is obtained when
the inner core of the coupler is excited. If the power is increased (center row), the azimuthal
instability breaks the beam into a number of the fundamental solitons after some propagation
distance. The larger the input power the shorter the propagation distance at which the vortex
breakup occurs. The resulting fundamental solitons have an oscillating width, and they rotate
inside the ring due to the initially imposed angular momentum, with an angular velocity that is
larger as the solitons width is smaller (see the movies). If the input power is further increased,
the fundamental solitons collapse.

Due to the proportionality relationship between the momentum and power [see Eq. (4)],
and the fact that we chose � = 1, the power and angular momentum have the same numerical
value meanwhile the beams remain unbroken (notice coincident continuous and dashed lines in
Fig. 3). Nevertheless, it is notable that this parallel behavior diverges from the point where the
beams breakup occurs, due to the instabilities (notice a separation of the continuous and dashed
lines), revealing differences in the momentum coupling. Besides, the total angular momentum
is not longer conserved as is shown in the plots.
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Fig. 4. Switching curves for the power (dark dashed lines) and angular momentum (light
continuous lines) for (a) outer-waveguide excitation, and (b) inner-waveguide excitation.
Also shown is the total angular momentum (dotted line).

Another interesting feature observed in simulations is the difference in suppression of cou-
pling between internal and external ring excitation. When the larger external-ring core is ex-
cited, a higher power density is coupled into the inner core, and the beam breaks for a lower
input power than the necessary to complete the switching. This is evident from Fig. 2 (center
row) where it is shown that after the beam breakup, the core coupling is still possible for a
long enough propagation distance. To account for the switching property, in Fig. 4 we show
the switching curves for both vortex power and angular momentum. They are constructed by
launching the field into one of the cores, simulating the propagation for half a beating length
and measuring the output power at the same core; the plot is the ratio between output and input
power. The beating length is defined as the distance required to perform a complete coupling
cycle, i.e. a power transfer to the second core and back to the first core, and it is obtained by
simulation in the linear regime. For the parameter values considered here the half beating length
resulted in z=73.75 and z=73.85, for internal and external ring excitation, respectively.
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We mention also that, due to the asymmetry of the coupler (i.e., the rings of different diam-
eters), a complete power transfer does not occur in the linear regime. That is why raising the
power produces an initial increase of the coupled power and the switching curve decreases at
low powers. Also, for the external-ring excitation, see Fig. 4(a), the triggering is more steady
and it takes place at higher powers than that for the internal-ring excitation, Fig. 4(b). This is
due to a lower power density in the external ring because of its larger area. The power diagram
of Fig. 1(a) allows to explain the switching property. In fact, for powers over the threshold
(power around that of point B), the existence of both asymmetric modes with a lower power
and higher stability than the symmetric one makes the energy to remain in the first excited core.

The separation between the power and angular momentum curves denotes the point where
the azimuthal instability breaks the beam before it propagates half a beating length. It happens
clearly after switching takes place in the case of internal-ring excitation, but slightly below that
point, for external-ring excitation. This behavior is consistent with the fact that the i-asymmetric
branch in the power diagram of Fig. 1(a) is more stable than the e-asymmetric one. The curves
reach an end-point when the power is so high that collapse takes place before the beam propa-
gates for half a beating length. This fact, together with the higher slope of the switching curve
makes internal-ring excitation more effective for both power and angular momentum switching.

A practical implementation of the device could be carried out in a number of ways, for
instance by a omnidirectional optical waveguide. Another possibility is the use of the optical
induction technique, for example illuminating a photorefractive crystal with the suitable pattern
to generate the coupler. The basic requirements are that the coupler waveguides support the
lowest vortex mode and the materials are able to show the nonlinear effects for the power used.

Finally, we would like to mention briefly our studies of the structural stability of the vortex
switching. It is known [10] that singularities in systems with some artificial symmetry features
are nongeneric, i.e. they may become structurally unstable. In the system we have studied here,
it is assumed that the axes of both the waveguide and launched vortex beam coincide ideally,
while in a practical implementation they would present nonvanishing errors. In this way, we
have performed a series of additional simulations when the center of the launched vortex is
transversally shifted. We have observed that the instabilities appear for shorter propagation dis-
tances, and this distance decreases dramatically for a small shift, but after a further increase of
the shift it saturates, affecting the switching much weaker. On the other hand, such instabilities
for the inner excitation do not appear in the first coupling period, even for moderately large
displacements. This still allows the vortex switching to occur without azimuthal instabilities.
Finally, the larger the shift the larger the amount of power which is dissipated due to the cou-
pling mismatch. In summary, we have found that the effect of the shift is quantitative, and it
does not change substantially any of the results presented above.

4. Conclusions

We have suggested a ring optical coupler for periodic transfer of both power and angular mo-
mentum of light. In the nonlinear regime, we demonstrate that the internal-ring excitation is
more effective since the slope of the switching curve is larger and switching is triggered well
before the vortex beam breaks up due to the azimuthal instability. A study of the structural
instabilities demonstrated the usefulness of the device under realistic practical conditions.
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