
University of Pennsylvania University of Pennsylvania

ScholarlyCommons ScholarlyCommons

Technical Reports (CIS) Department of Computer & Information Science

January 1996

SwitchWare: Accelerating Network Evolution (White Paper) SwitchWare: Accelerating Network Evolution (White Paper)

Jonathan M. Smith
University of Pennsylvania, jms@cis.upenn.edu

David J. Farber
University of Pennsylvania

Carl A. Gunter
University of Pennsylvania

Scott M. Nettles
University of Pennsylvania

D. C. Feldmeier
Bell Communications Research

See next page for additional authors

Follow this and additional works at: https://repository.upenn.edu/cis_reports

Recommended Citation Recommended Citation

Jonathan M. Smith, David J. Farber, Carl A. Gunter, Scott M. Nettles, D. C. Feldmeier, and W. David

Sincoskie, "SwitchWare: Accelerating Network Evolution (White Paper)", . January 1996.

University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-CIS-96-38.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_reports/211
For more information, please contact repository@pobox.upenn.edu.

https://repository.upenn.edu/
https://repository.upenn.edu/cis_reports
https://repository.upenn.edu/cis
https://repository.upenn.edu/cis_reports?utm_source=repository.upenn.edu%2Fcis_reports%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_reports/211
mailto:repository@pobox.upenn.edu

SwitchWare: Accelerating Network Evolution (White Paper) SwitchWare: Accelerating Network Evolution (White Paper)

Abstract Abstract
We propose the development of a set of software technologies ("SwitchWare") which will enable rapid
development and deployment of new network services. The key insight is that by making the basic
network service selectable on a per user (or even per packet) basis, the need for formal standardization is
eliminated. Additionally, by making the basic network service programmable, the deployment times, today
constrained by capital funding limitations, are tremendously reduced (to the order of software distribution
times). Finally, by constructing an advanced, robust programming environment, even the service
development time can be reduced.

A SwitchWare switch consists of input and output ports controlled by a software-programmable element;
programs are contained in sequences of messages sent to the SwitchWare switch's input ports, which
interpret the messages as programs. We call these "Switchlets". This accelerates the pace of network
evolution, as evolving user needs can be immediately reflected in the network infrastructure. Immediate
reconfigurability enhances the adaptability of the network infrastructure in the face of unexpected
situations. We call a network built from SwitchWare switches an active network.

Comments Comments
University of Pennsylvania Department of Computer and Information Science Technical Report No. MS-
CIS-96-38.

Author(s) Author(s)
Jonathan M. Smith, David J. Farber, Carl A. Gunter, Scott M. Nettles, D. C. Feldmeier, and W. David
Sincoskie

This technical report is available at ScholarlyCommons: https://repository.upenn.edu/cis_reports/211

https://repository.upenn.edu/cis_reports/211

Switchware: Accelerating Network Evolution
(White Paper)

MS-CIS-96-38

J. M. Smith t l, D. J. Farber t, C. A. Gunter t, S. M. Nettles t ,
D. C. Feldmeier $ ', and W. D. Sincoskie $

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

It CIS Department, University of Pennsylvania

2$ Bell Communications Research

SwitchWare: Accelerating Network Evolution (White Paper)

J. M. Smith f, D. J. Farberf, C. A. Gunter-f; S. M. Nettlesf,
D. C. FeldmeierS and W D. SincoskieS

ABSTRACT

We propose the development of a set of software technologies ("SwitchWare")
which will enable rapid development and deployment of new network services.
The key insight is that by making the basic network service selectable on a per
user (or even per packet) basis, the need for formal standardization is eliminated.
Additionally, by making the basic network service programmable, the deploy-
ment times, today constrained by capital funding limitations, are tremendously
reduced (to the order of software distribution times). Finally, by constructing an
advanced, robust programming environment, even the service development time
can be reduced.

A SwitchWare switch consists of input and output ports controlled by a soft-
ware-programmable element; programs are contained in sequences of messages
sent to the SwitchWare switch's input ports, which interpret the messages as pro-
grams. We call these "Switchlets". This accelerates the pace of network evolu-
tion, as evolving user needs can be immediately reflected in the network infras-
tructure. Immediate reconfigurability enhances the adaptability of the network
infrastructure in the face of unexpected situations. We call a network built from
SwitchWare switches an active network.

1. Introduction

The pace of network evolution (not switch evolution, network evolution) proceeds far too slowly.
To a large degree this is a function of standardization. Standardization is a necessary step in net-
work design to ensure interoperability, as a network's utility increases with the number of inter-
connected nodes. Since today's Internet architecture mandates the implementation of IP in all
routers and hosts, and requires a 5-8 year standards+ development + deployment process (e.g.,
IETF + Cisco + Internet Service Providers), it is inflexible and evolves slowly.

The Internet Protocol (IP) forces interoperability by defining a standard packet format and
addressing scheme which is overlaid on networks comprising the internetwork. Since it must
operate on the least capable of networks, it is designed to offer a minimal set of functions; addi-
tional services are added by overlays on IP. Three undesirable consequences of this design are:

1. It must run everywhere (e.g., at hosts and switches). There are two subconsequences:
changing IP means changing everything, and everyone must share the same service model.

2. Overlays (e.g., the reliable stream overlay of TCP, or multimedia multicast with MBONE.)
are forced by people who don't accept the communal service model, i.e., they want or need
a different service.

'r CIS Department, University of Pennsylvania
3: Bell Communications Research

VERSION OF 6/26/96 - COMMENTS WELCOME

3. IP has no semantics for passing data-link layer information to the end-points.

Overlays are problems for two additional reasons. First, overlays may be inefficient because the
underlying network does not take the functionality of the overlay into account; consider overlay-
ing a packet-switching network on top of a circuit-switching network. Second, partitioning of
resources becomes more difficult because we must split the partitioning of resources within an
overlay from the partitioning of resources among overlays.

A second alternative, stemming from our overall goal of accelerating network evolution, is to
create virtual switches, with important sub-goals.

This new set of goals, if realized, have profound consequences for the engineering of future
networks. These are:

1. Programmable services, to accelerate network evolution.

2. Extensibility, so that logical overlays can be implemented within the switches rather than as
true overlays at the endpoints. Programmability alone is not extensibility; for example,
extensibility is missing in control software for telephone switches [25]. It seems most use-
ful to provide user-extensibility, so that new applications not imagined by the designers can
be easily added, and we can avoid the risks of a "narrow-gauge" infrastructure.

3. Security, as this is both an increasing concern as networks become more widely applied,
and increasingly difficult as they become more con~plex. For us, robustness is an aspect of
security.

4. Partitioning, to control resource allocation and scheduling under a programmable policy.

5 . Portability, so that software switching performance can keep pace with component technol-
ogy curves, such as processor performance, and carry software switched applications along
the same upslope.

We propose a SwitchWare switch, which provides a programmable element, essentially a com-
puter, to perform switching functions and address this list of goals. Extending the role of comput-
ing in the network is the key to accelerating the evolution of network infrastructure; a compelling
example is the rate of evolution of the World-Wide Web with its simple HTML language and
Common Gateway Interface scripts.

The approach suggested in this paper is an extension of that used to revolutionize telephony
in the early 1990's. Advanced Intelligent Networking [32], developed in part by Bellcore, sepa-
rates the implementation of telephony services from basic switching by moving the service con-
trol to an adjunct processor from the switch. Since each call can now have a different service,
the need for standardization of new services has been eliminated. Deployment times are greatly
reduced, since a new service is essentially data entered into the database of the adjunct processor.
Development times are even reduced by enabling service providers and users to define and
develop new services, and by a graphical programming interface developed by Bellcore. The
telephony industry has seen new production quality service creation times drop from over two
years to as little as two weeks as a result of AIN. The SwitchWare switch will extend the
approach used by AIN to greatly increase the level of programmability in the switch, by reducing
the need for a call model which constrains AIN. We will also apply the technique to internet-
work routers and ATM switches, which have not been attempted by AIN.

2. Switching and the Pace of Network Evolution

The pace of network evolution proceeds far too slowly, relative to the technological changes in
the underlying transmission systems, where laboratory results have reached Terabitlsecond band-
widths, and relative to the applications deployed at the edges of the network, such as the World-
Wide Web and its supporting technologies such as the Java [21] Programming language. The

VERSION OF 6 / 2 6 / 9 6 - COMMENTS WELCOME

element interconnecting the links and end-nodes is a switch; logically (although atypically) it is
possible to view routers, bridges, etc. as specialized switches.

Programmability of switching elements led to major progress in the evolution of our
national network infrastructure. An excellent case study of telecommunications switching infras-
tructure [23] is the Western Electric 3B20D processor [38] and the associated Duplex Multiple
Environment Real Time (DMERT) [IS, 131 operating system. This system was employed in the
Bell System's 5ESS switch systems which remain in widespread use. DMERT is based on the
earlier MERT operating system [19], and provides both a real-time and timesharing environment.
The 3B20D offered user-programmable microcode so that high-performance applications could
in fact create a custom or emulated machine architecture within the context of the 3B20D pro-
cessing unit; this was used to support code and devices from earlier switch fabrics such as the 1A
attached processing unit. Up to four concurrent instruction sets were supported; an instruction set
could be selected with a single native microcode instruction.

This system reflected the importance of software in implementing the national telecornmu-
nications architecture, as it was designed from the start to be an effective execution platform for
software. The programming model allowed programs to be loaded at run-time, but of course was
not accessible to arbitrary users of the phone system.

What has changed in our modern environment is the need for a variety of programmed, cus-
tomized services, and the model of updating central office switches using a van full of magnetic
tapes is no longer appropriate.

2.1. A software approach: the Advanced Intelligent Network (AIN)

As we remarked earlier, the approach suggested in this paper is an extension of that used to rev-
olutionize telephony in the early 1990's, Advanced Intelligent Networking [32], which was
developed in part by Bellcore. The use of an independent control processor in the switching fab-
ric gave service designers access to databases and other processors to provide call processing fea-
tures. The response to a telephone call can then be represented as a state machine, which takes
actions as information is input during a call. Examples of services that can be provided with this
model would include routing of a call to the nearest shop in a chain of Pizza delivery services.
The call processing would reference a Geographic Information System, and could be enhanced
with vendor provided data such as availability of drivers.

The deep, and fundamental restriction on the applicability of this approach is its use of the
call model, which is far too restrictive for the network infrastructure we have now, which is
evolving from circuits to packets, and if the Switchware approach is taken, beyond to typed data
objects.

2.2. Why not the Internet model?

As we argued in the Introduction, this slow evolutionary pace is a function of standardization.
The Internet Protocol (IP) forces interoperability by defining a standard packet format and
addressing scheme which is overlaid on networks comprising the internetwork. Since it must
operate on the least capable of networks, it is designed to offer a minimal set of functions; addi-
tional services are added by overlays on IP.

The difficulty with this model is that it is extremely difficult to interpose new protocol func-
tionality. This can be illustrated with the example of Domain Name Service (DNS). The pres-
sures on DNS are tremendous and likely to increase. Many applications are dependent on it, and
the World Wide Web's use of location-dependent naming places further pressure on DNS perfor-
mance. The future will bring personal networks of perhaps hundreds of processors and

VERSION OF 6/26/96 - COMMENTS WELCOME

intelligent sensors - such a network's elements will need names for management and function
location. DNS will not scale to such an extent with caching, and yet the appropriate caching
functionality cannot be built without interposed protocols for DNS cache management (including
security features to prevent spoofing) and WWW proxies. These features require software
embedded in the information network.

An excellent example of interposed functionality can be drawn from electronic mail sys-
tems, which can interpose tools like the " v a c a t i o n " program to alter mail handling when peo-
ple are on travel. Such systems have been extended with programming to provide priorities based
on addressees and message sizes, which are transparent to the sender.

2.3. SwitchWare Programming

For any workable communication, there must be some agreement; standardization is essentially
an agreement about what the agreement is. The IP protocol has been successful in standardizing
packet formats, but because its standardization process operates at a political tempo rather than a
technological tempo, the pace of evolution has been held back. We believe that a Postscript-like
[35] concept, which raises the level of abstraction of the standard, to SwitchWare services rather
than IP services, is the method for staying on the technology curve. Raising the level of abstrac-
tion also gives a much greater toehold for network management, specifically for automated self-
diagnosis and repair. This is true because (I) behavioral assertions are simpler to state, (2) moni-
toring software is easier to write, and (3) the chain of assertions that lead to diagnosis and repair
is less complex.

For most rapid evolution, networks must be user-customizable, and for users to drive
deployment of new services, the network must be on-the-fly programmable. That is, it must be
programmable by the packets that flow through it. While not all packets need contain code,
packet sequences can contain modules of programming, as in the mobile agents prototyped by
Knabe [17]. These code objects are used to provide customized services to the level of an indi-
vidual user, or if predictions of hundreds of processors or intelligent sensors per person are true,
perhaps composites of hundreds of such services.

3. Switch Ware Applications

We intend to implement one or more prototype services in a SwitchWare system in order to show
feasibility. These services should have the properties of being useful to a subset, but not necessar-
ily all users of the active network. Services which are useful to all or most users of the network,
like simple unreliable datagram forwarding, or unreliable multicast are susceptible to being
included in a traditional bearer service such as IP. Services which are highly speculative, too for-
ward looking, or simply not well understood are good candidates for being implemented in an
active network. Several example services which match these characteristics are described below.

3.1. Self-paying information transport

The idea of Self-paying information transport (we'll resist using the acronym) is to have an
object which is to be transported through the network include some form of electronic payment
information as part of the object. A simple analogy would be to the stamp on a letter today. A
transportable object (such as a packet or a virtual circuit) would contain, as part of the control
information (i.e. the packet header or VC setup messages) some sort of electronic payment infor-
mation. This could be either e-cash, e-check, or an electronic credit card number. The payment
information would then be examined by the SwitchWare, and if sufficient payment was offered,
the object would be serviced by the SwitchWare. Note the service might be to provide computing

VERSION OF 6/26/96 - COMMENTS WELCOME

by executing the object in the SwitchWare, or to provide communications by switching the
object, to provide storage for state information the object may wish to leave in the SwitchWare
switch, or some combination of these. The payment information may then be altered (some e-
cash subtracted) as the object traverses the network.

This type of service is speculative enough that it would not be possible to consider stan-
dardizing it in a bearer service today. However, it is not hard to envision either commercial or
military scenarios where it might be useful. In commercial situations, it provides the possibility
of creating a dynamic market in network bandwidth, which may be more economically efficient
than todays fairly static tariff structure where prices only change at fixed times of the day. A
provider with an underutilized network might lower his prices, thus attracting objects into his
network. A provider who was overloaded could raise prices until the demand subsided to match
available capacity.

Since payment is really a complex form of priority, it's possible that in a military applica-
tion, the payment may instead be interpreted as an authorization and priority. Requests that car-
ried insufficient priority in times of high demand would be either offered a lower grade of ser-
vice, delayed, or possibly even dropped. Far more dynamic schemes might be constructed as
required. This scheme could be used, for example, to control QoS-based scheduling inside the
SwitchMhre run-time system.

3.2. Network management

Many network management tasks consist of collecting and collating data, such as event counts.
To provide the most useful network management data, such as exception indications, intelligence
must be used to filter out uninteresting (unexceptional) events. An easy way to write a network
management system, assuming that appropriate authentication and protection can be devised, is
to write a network management program using modules constructed from sequences of "pro-
gram" packets.

Fault management is a very important and difficult task, particularly so for large networks
and for correlated failures. Correlated failures may be caused by both environmental factors,
such as earthquakes or explosions, or by malicious intruders. We believe that active networking
can be used to significantly improve fault detection and management capabilities in the network.

Existing network monitoring for fault detection consists of gathering a known set of mea-
surements. The fault management system filters and correlates these measurements. A problem
with this approach is that it's difficult to integrate network elements that operate with different
fault management systems. Network elements are designed to operate with one specific fault
management system. Also, differing design philosophies may prevent the integration of several
fault management systems. These incompatibility issues also make it difficult to evolve the fault
management system, because it is difficult to add a network element that does not conform with
all existing elements.

Active networks can provide the desired flexibility, because the fault management system
can be changed as necessary without the need to worry about backward compatibility. Existing
systems can be reconfigured as necessary simply by changing the code used for fault manage-
ment. Active networking also may allow for hierarchical fault management. As faults are being
isolated and identified, the fault management system can be refocused to examine in more detail
those network elements that may be operating incorrectly. Different versions of fault detection
code can be loaded into selected network elements for each level of the hierarchical fault man-
agement process.

VERSION OF 6 / 2 6 / 9 6 - COMMENTS WELCOME

3.3. Active Network Striping for Software Scalable Bandwidth

One of the major challenges to the vision of Active Network technology and virtual infrastruc-
tures is providing compelling examples of the usefulness of the on-they-fly programmable infras-
tructure. SwitchWare provides the opportunity for software scalable bandwidth to be derived
from the virtual infrastructure. Variations on the same technique can address delay jitter (by
resynching typed packets with SwitchWare) and reliability.

Two interconnected SwitchWare switches and attached host computers are shown in Figure
1.

Figure 1: Interconnected SwitchWare Switches

While adding striping hardware to all switches in a network is unlikely to be cost-effective [39,
401, the SwitchWare infrastructure can be programmed to provide striped services. A software-
implemented solution would stripe most effectively by using multiple interfaces to send multiple
concurrent packets. Thus, simple pseudocode of a Switchlet for sender striping (asynchronous
Send ()), would be:

When Arrives(Packet,InPort)

{

Send((SequenceNumber,Packet),OutPort);

Outport := (OutPort + 1) Mod Channels;
1

and the receiver would execute:

When Arrives((SequenceNumber,Packet),InPort)

{

If (InOrder(SequenceNumber,Expected))

{

Send(Packet,OutPort);

Expected : = Expected +l;

1
else

Queue((SequenceNumber,Packet),QueueName);

Expected : = Expected + 1;
1

The key observation to make about packet striping is that it offers the possibility of multiplying
the throughput available between processors in proportion to the number of stripes.

VERSION OF 6/26/96 - COMMENTS WELCOME

Processor 1 D
Processor 2

and Disk

Processor 3

ATM Switch . . .
. . Striped-Li~k-to%imte

-
Processor 4 S~-.t-Rgs~rleso--K=es

~ o n n e c t i o n d ~ I and Disk

1 I Network] IP Internet
Appliance Connection

4 . ~ (wiriiless?)

Inte reter PzE3
Figure 2: An embedded SwitchWare switch

This multiplication can be accomplished with no change in the hardware; rather, assuming that
the interfaces are attached to processors able to support their memory bandwidth demands, the
focus is on algorithms for deciding which interface(s) to use, and when to stripe, versus simply
using a single connection. Figure 2 illustrates striping in an embedded switch.

3.4. Other applications

Another application of the multiple channel approach is for reliability. Consider the two intercon-
nected SwitchWare switches shown in Figure 1. If three channels worth of capacity are required,
we can implement the striping algorithm on the three channels, and utilize the fourth as an
errorlloss correction channel, as in RAID systems [16]. So, for example, we could (using
Switchware's capacity for processing), for each three packets sent on the three stripes, compute a
fourth packet consisting of the Exclusive-OR of the three packets comprising the stripe. Then, if
any 3 of the four packets arrive in time, the data can be recovered and forwarded.

Such modules can carry out many tasks. For example, consider the sensor fusion required
to detect an automobile on the other side of a bend; a CCD camera, IR camera (at night) or other
sensor could be feeding a broadcast network. An application injected into the network by your
automobile could run a motion detection algorithm on the real-time video feed and signal a mon-
itor in the automobile with an approach speed indication or warning tone. An actuator for a rear
window defroster in a car-area network might fuse information from a smart thermometer with
light diffusion measures to automatically turn on; directional remote motion detection could dim
the high beams, etc. Another example is personal multicast topologies; it is easy to write a small
program which moves itself from SwitchWare switch to switch [33], replicating itself selectively
to output ports to create a per-packet multicast.

Still more applications include:

Speech coding conversion for interoperation of national telecommunications infrastructures;
this would be accomplished with Switchlflare libraries or DSPs if higher performance is

VERSION OF 6/26/96 - COMMENTS WELCOME

needed.

Self-adaptation of packets to network dynamics such as failure and congestion, as they
could carry algorithmic code specifying appropriate responses to failures.

Subnet-specific compression, as bandwidth and latency characteristics dictate how much
effort should be spent compressing.

Data type-specific routing and stream synchronization. As an example video frames might
choose a higher bandwidth link with a greater loss rate, while motion control streams for
interactive telerobotics [2] would select a path with low bandwidth but high reliability and
low delay jitter.

4. Security and Switch Ware

Security of information means that the right information gets to the right people at the right place
at the right time, meaning that security failures occur when these conditions are not met, i.e.,
wrong people, wrong place, wrong information, wrong time. Security failures can include unau-
thorized viewing of information, denial of service [27], and insertion of false information. These
sorts of failures [6] will become more common unless security is designed into a system.

Application Modules

Figure 3: A multi-application's elements share a processor

While cryptography provides potential end-to-end privacy, it has no effect on denial-of-service
attacks, which can prevent correct and timely delivery of important information; such attacks
must be precluded. Consider for example the difficulty of preventing traffic analysis when
packet switching is used. Typically, messages or packets must have headers in the clear, even if
the data portion is protected by a cryptographic privacy transformation. It is easy to imagine a
sequence of packets where the first packet contains a program capable of obtaining a key from a
trusted authority, used by the Switchware to decode the headers of subsequent packets in the
train.

Active networks offer the network users a powerful tool for improving network perfor-
mance and flexibility. However, the powerful capabilities of the system provide powerful tools
to malicious intruders. Consequently, network security and authentication become correspond-
ingly more important. Network elements must assure that any code they execute was produced

VERSION OF 6/26/96 - COMMENTS WELCOME

by an authorized source. Also, any fault detection and management systems must be able to ver-
ify the validity of any network monitoring data that are received from network elements.

Although security and authentication mechanisms are being proposed in many networking
forums, active networking may allow us to design a single integrated security mechanism for all
network resources. This eliminates the need for multiple security/authentication systems that
operate independently at each communication protocol layer. It would also allow us to address
the traditional need for separation of the transport and management planes, which have been sep-
arate for reasons of security, performance and modularity. The difficulty is the resource manage-
ment. Any switching system, no matter how simple or complex, represents a multi-application,
consisting of a number of tasks, which may be concurrent or provided with the illusion of being
so via time-division multiplexing of a shared element. Figure 3 illustrates a multiapplication
[napped onto a single shared processor.

The dashed line of Figure 3 illustrates a crucial design decision; to control multiplexing of
the machine resources, e.g., to associate code activations with interrupts, to operate on network
adapters and persistent state resident on secondary storage, an operating system is used to create
a resource protection boundary between applications, which have access to a "virtual machine",
and the multiplexing mechanism, which has access to all system resources and provides the vir-
tual machine.

4.1. Access Control by O.S. or Compiler? - Multiplexing Implications

Unfortunately, this multiplexing architecture has severe performance limitations, in particular for
the boundary crossing operation between the application and the operating system (the "ker-
nel"). Multiplexing performance is crucial in switching. A great deal of recent research has tried
to alleviate these costs while preserving the protection semantics of the operating system [9, 101.
To obtain an order of magnitude estimate of the penalty for this boundary crossing, we compared
system calls with an ideal scheduling method, i.e., co-routine scheduling. The method used was
the facilities set jrnp () and long jmp () provided by the C library. They provide the ability to
achieve a non-local goto, that is, one which crosses routine boundaries. set j mp () saves the
current "state" of the program (i.e., a minimal set of registers, floating registers, frame pointers,
etc) into a j mp-buf structure (described in /usr / include / set j mp . h) and long j mp () ,
given a j mp-buf, restores the specified state, including the program counter.

On an SGI Challenge L, when the program is run on a 3,334,216 octet file (/unix), it
rccluires 2.43 seconds of execution time; a version of the program which merely reads and writes
takes 0.69 seconds. Counting two context switches per character, we get
(2 r3334216)/(2.43-0.69) or 3,832,432 contexts per second, or 260 nanoseconds per context
switch. Measurements of a microbenchmark which reads 0 bytes from / dev/ nu1 1 repeatedly
show that each read () requires 17 microseconds, with 14.7 microseconds consumed by the
operating system. This suggests that we can context-switch between threads a t least 60 times
fizster if we get the programming language model right, and further optimizations should be able
to reduce costs to approximately a procedure call.

Allowing the user to program and extend the basic network fabric provides great flexibility and
power, but as with any power tool it also creates a safety hazard. It is possible (likely) that pro-
grams down-loaded into a switch or router, could interfere with, corrupt, or subvert the traffic of
other users. Thus a key question in the design of Switchware is how this power can be provided
d e l y .

VERSION OF 6 / 2 6 / 9 6 - COMMENTS WELCOME

4.2. Systems Security and Programming Environments

Familiarity with the Internet Worm [34] or recent security problems [8] found in systems such as
Netscape's Web browser and the Java [21] highlight the importance of security in distributed
computing. Although these problems manifested themselves as security breaches, many of them
were a result of the lack of safety features in the programming language, notably C. Languages
like SML and Java avoid these problems by supporting pointer safety. In pointer safe languages,
pointers cannot point to invalid locations in memory, thus avoiding "core dumps" and array over-
runs. The key features needed for pointer safety are strong (though not necessarily static) type
checking, array bounds checking and automatic storage management or garbage collection.

4.3. Formal Semantics of Programming Languages

"Formal Methods7' is a rubric used to refer to a collection of techniques which seek to apply
ideas from formal mathematical logic to computational problems arising from hardware or soft-
ware. Such techniques have been an active area of investigation for at least two decades.
Although not a panacea, the techniques do have the potential of being quite useful, especially in
areas of program specification, hardware verification, and language design.

In the area of language design, research in programming language theory has developed a
collection of tools appropriate to the mathematical specification of programming languages. The
value of such a specification is that it makes properties of the language, the programs written in
it, and its compilers amenable to rigorous or (in limited cases) automated proof. Formal treat-
ments have been provided for most widely-used languages. For instance: DoD commissioned
the completion of such a semantics for a substantial portion of its Ada language while, more
recently, C++ and other object-oriented languages have been the subject of focused attention.

It has been less common for a programming language to be developed in the context of con-
siderations from programming language theory-language designs are usually more influenced
by programming and compilation issues. However, accounting for theoretical considerations as
part of a design has significant advantages if ensuring certain properties of (programs written in)
the language is of paramount concern. In particular, this is the case when there is a strong need
to guarantee various safety or security constraints. As a motivating example, the programming
language Standard ML (SML) is descended from a Meta-Language (ML) used to guide a goal-
directed theorem-proving system [12]. The standard [22] was completed in 1987 and is
described via a set of mathematical rules. Since the soundness of the language as a theorem-
proving vehicle was a paramount early concern, the semantics of the language was constructed
with great rigor and attention to detail. Consequently, it is one of the most rigorously designed
languages being used in significant programming projects. It has, for instance, been of interest to
DARPA, which has funded research on its potential use in systems and network programming

[141.

We would like to apply techniques similar to the ones used to design and specify SML to
similar goals for the SwitchWare language. This will make it possible to apply a collection of
techniques developed by the programming language theory community to the language. In par-
ticular, it will be possible to formulate and prove various safety and security properties based on
the language definition. This will ensure that programs written in the language and evaluated
with a correct interpreter will respect such properties. Proofs of this kind cannot be viewed as a
'silver bullet'-they will be limited in scope and difficult if the SwitchWare language is large-
but researchers have had success with the development of appropriate mathematical techniques
and marshalling of automated tools to attack such problems for various languages. In particular,
work at Penn under the supervision of Carl Gunter has had significant success with SML, which
should form a solid starting-point for work on the SwitchWare language, which will be

VERSION OF 6/26/96 - COMMENTS WELCOME

implemented as part of the experimental effort in this project.

4.4. Authenticated vpe-checked modules

When we apply mathematical methods to the context of a highly-available distributed switching
fabric, which depends on type-checking, we must face the challenge of making the formal guar-
antees in the face of threats in the network [26]. Several authors have addressed the need for
secure object storage [l l] in such an environment, and new cryptographic technologies [7] for
digital signatures are applicable to this environment; in particular a type-checked module can be
stored in a machine-independent form, which is then either signed directly or supported by a
secure hashing algorithm. New technologies are becoming available for message-hashing, such
as MD5, which can be very helpful in distributed type-checking. A trusted authority is refer-
enced as part of loading a new module into the system. This work can easily build on existing
work for distributing loadable modules [17]. A rogue loadable module can be looked at as a par-
ticularly harmful form of virus, one introduced directly into the network infrastructure, so we can
draw on the considerable work [3 11 focused on this topic.

5. Concurrency and garbage collection

Garbage collection is crucial because it avoids the possibility that storage will be returned to the
memory allocator while it is still in use. Using garbage collection also avoids the possibility that
unused storage will not be returned to the allocator, avoiding the problem of "memory leaks".
Even slow leaks can cause long-lived servers to crash and they also cause systems to use
resources unnecessarily.

Users of emacs know that garbage collectors typically stop the client program while
reclaiming storage, creating a garbage collection pause. These pauses can be of arbitrary length
and several second pauses are not uncommon. While annoying to the users of interactive pro-
grams, they can be catastrophic to real-time control programs. Consider, for example, a com-
puter-augmented jet fighter occasionally losing control for a few seconds at Mach 2! And yet,
such applications are also ones in which freedom from crashes related to pointer errors is highly
desirable. The basic technique for eliminating pauses is to allow the collector to run concur-
rently with the client, as discussed next.

Threads are provided in Java, thus providing low-level support for parallelism; it seems
likely that this will be one of the low-level mechanisms used by parallel applications. Unfortu-
nately, the degree of concurrency offered by such an implementation is limited by the need to
garbage collect the store sequentially. Nettles, et al., have developed a new concurrent GC tech-
nique, replicating collection [29]. Based on ideas from distributed systems, replicating collec-
tion is a simple and and elegant solution to the difficult problem of making copying collection
concurrent. It has been implemented in the runtime of SML/NJ on both DEC uniprocessors run-
ning Mach and on SGI multiprocessors using IRIX. The results of the implementation show that
GC can make good advantage of parallel machines, thus eliminating the concurrency bottleneck
caused by garbage collection. More importantly, the results show that replicating collection is
very successful at eliminating the long pauses often associated with garbage collection. These
pauses are a substantial reason for high-level languages not being used for performance critical
applications. [28] These techniques are applicable to other garbage-collected languages like
Java and should greatly improve the performance of garbage-collected languages, and allow sig-
nificant speedups on multiprocessors.

VERSION OF 6/26/96 - COMMENTS WELCOME

6. Run-time support for the Bellcore Programmable Output Port Controller - OPCv2

Switches require buffers to handle the case in which multiple input packets are destined for sin-
gle output port simultaneously. If we desire a switch that provides Quality of Service, then a
scheduling mechanism determines the order in which packets are processed by the output port.
Although many different scheduling algorithms are possible, a single programmable packet
scheduler can be built that is capable of implementing a variety of algorithms. Any packet
scheduling algorithm can be split into two parts. The first part of the algorithm is the computa-
tion of a label for each packet. The second part of the algorithm is the sorting of packets based
on their label to establish their transmission order. By allowing programmability of the label
generation algorithm, the QoS mechanism of the switch can be changed easily to implement vari-
ous packet scheduling policies.

Bellcore has already built such a device into the output port controller of the Sunshine ATM
switch [20]. An Intel 80960 processor is used to compute packet labels for each cell, and a cus-
tom VLSI sorting chip is used to order the cells by packet label for transmission. The existing
Bellcore design can be used to determine the primitive operations necessary to allow specifica-
tion of a packet scheduling algorithm. The existing packet scheduler also could be used as a
stepping-stone to a more sophisticated design.

7. Other research in this area

Borenstein's ATOMICMAIL [5] system used LISP functions embedded in electronic mail mes-
sages, to support overlay functions such as automatically generated mailing lists and software
distribution via e-mail. Considerable value stemmed from combining message transport with
programs applied to interpreting the messages, especially for widely heterogeneous user environ-
ments.

The SOFTNET [41] system was a packet radio network where packets of multithreaded M-
FORTH code were interpreted by network elements consisting of two-processor nodes; one ser-
viced network events, and the other ran user programs. The nodes were supported by a small
operating system, which protected the network elements, e.g., to prevent buggy programs from
destroying the packet-switching fabric. The focus was proof-of-concept rather than a wholesale
change in network infrastructure, models and run-time support.

Erlang [I] is a concurrent functional programming language for large industrial real-time
systems, providing transparent cross-platform distribution, primitives for detecting run-time
errors, real-time GC, and dynamic code replacement. Erlang has been deployed in switches
built by Ericsson. It does not provide the strong static type checking we propose in our
approach.

A previous Bellcore project, the Touring Machine, is a distributed multimedia cornrnunica-
tion system which supported 150 users in both point-to-point communications and broadcast
meetings and lectures. The architecture has many similarities to an active network. Network ele-
ments, such as the end nodes, switches, and audiolvideo bridges, all have associated processors.
All communication functions, such as connection setupltear-down, were performed by sending
blocks of executable LISP code to various processor platforms in the network. There was no for-
mal model and no abstraction useful for security and interoperability validation developed.

We intend to work with other researchers on Active Networks, contribute software and
methods, utilize research prototypes, and to host nodes for experimental efforts, which may com-
municate over existing transmission facilities (such as the Internet). Table I relates our research
activities and Tennenhouse's [37] proposed framework.

VERSION OF 6/26/96 - COMMENTS WELCOME

Table I: SwitchWare Contributions to overall effort, *s for relative importance

We have had informal discussions with other research groups interested in Active Networks and
are aware of their work and contributions. We will borrow technology as appropriate in an
attempt to produce an integrated effort in Active Network research.

The SPIN [3] Project is an effort to build extensible operating systems kernels, with the idea
that type-safe Modula-3 code could be loaded into an operating system for reasons of perfor-
mance or access to resources. This work reinforces our belief that type-safe modern program-
ming languages are a fertile ground for systems programming in even the most performance-
sensitive environment. While it is unlikely we can directly employ any of the code produced by
the SPIN Project in our efforts, we expect that interactions with like-minded researchers will be
valuable. The setting of a switch infrastructure has different challenges, including the need for
resource partitioning algorithms, distributed loading of type-checked modules, security and a
high degree of multiplexing1 parallel processing, that are less pressing for workstations.

The Scout Project [24] at the University of Arizona uses an algorithm, pathfinding, to opti-
mize the paths through protocol executions in a realization. This is a valuable technology that
could be employed in the building of SwitchWare, but does not directly address the algorithmic,
security and management issues we face in the design of an on-the-fly upgradable network
infrastructure. We believe that while Scout itself may be able to operate across many environ-
ments, it is providing a level of abstraction that is too low to gain the interoperability advantages
of our extensions to SML/NJ.

Middleware
Svcs ./Apps.

* *
* *
* *

Activity

1 .Formal Model

2.Runtime Env.

3.Router
4.Security

5 .OPCv2

The Exokernel [lo] project at MIT has been focusing on an operating system restructuring,
where much of the operating system functionality is carried out in libraries. There is still, for
security, a need for a small kernel. We believe, as we discussed in Section 4, that the protection
kernel approach has some fundamental performance limitations, especially as regards the high
degree of multiplexing found in a network switch. We believe that as the Exokernel architects
attempt to re-virtualize the O.S. functions, for example by providing multiplexing of an adapter
with a processor embedded in the adapter, that they will run into problems either with the level of
abstraction (and therefore interoperability) or with performance barriers that are unavoidable on
today's hardware. What it seems likely they will contribute is a great deal of knowledge on how
to craft systems which provide dedicated application access to adaptors, a model which the
SwitchWare run-time may employ.

The FOX Project at CMU [14] is likely to be an essential supplier of technology. To some-
what oversimply, the research group at CMU has been focused on evangelizing SML to the sys-
tems community, and they have been doing this by focusing on interesting problems such as writ-
ing a TCPIIP in Standard ML [4]. We look at the CMU work as providing tools. Their imple-
mentation ideas for compilers [36] and run-time environments [18] can be viewed as aids and
assists to providing a high-performance implementation of our SwitchTYare language system; in
essence, our SMLINJ extensions for SwitchWare ride the compiler technology curve as well. Our
run-time research compliments their research, and our setting, a high-performance switch as part

Platform
Develop.

IC

*

Enabling
Tech.

VERSION OF 6/26/96 - COMMENTS WELCOME

Pgm'ing
Models

*
* *

* *

Active
Ctls.1Algs.

*

* *

**

Netw.
Ops.

* *
* *

of an active network infrastructure, draws on the demonstrated strengths of our team and its
organizations. Our focus in programming language semantics allows us to attack the theoretical
problems in a restricted context, that of an Active Network Switch, that increases our chances of
success.

Turner's group [30] at Washington University propose an approach of interconnectin power-
ful general purpose processors with an ATM switching system. Thus, the hardware has the abil-
ity, in principle, to execute Switchware-like software. They make two important assumptions
which we believe are unproven, and which the SwitchWare architecture is not fundamentally sub-
ject to. First, they believe that by detecting opportunities to set up ATM circuits, they can avoid
most per-packet processing once a "flow" is detected through their system. This means that
software participation in packet processing is an exception rather than the rule. SwitchWare tech-
nology attempts to make packet processing fast enough that all packets could be processed; hard-
ware assists are assists and not essential. Second, they presume that a stripped-down UNIX oper-
ating system can in fact process the "non-flowed" packets fast enough to provide gigabit range
performance. Based on our measurements of UNIX context-switching performance on extremely
fast processors, we believe that this approach is wrong. The protection overhead of a conven-
tional operating system architecture is too large to sustain high degrees of IP multiplexing, and is
likely to induce considerable jitter. Additionally, we believe that the security of this approach
(both for access control and resource denial, such as bandwidth starvation) is dependent on the
security of UNIX rather than provable statements about security enforced at compile time, as in
our approach. If you can do it once in the compiler, why do it repeatedly at run time?

8. Plan of Work

Project tracking is shown in Figure 4. Our networking priorities are, in order, (I) flexibility, (2)
robustness, (3) security, (4) link performance and (5) processor performance. Our approach
addresses the first four, to the detriment of the fifth.

Although SwitchWare will depend critically on formal and mathematical techniques, we
plan to pursue an experimental approach for the project as a whole. The programming language
implementation challenge in SwitchWare will be providing good performance for SML when it is
used as a systems programming language. A recent implementation of SML, the TIL compiler at
CMU by Morrisett and Tarditi [36], strongly suggests that SML implementations with perfor-
lnance similar to C are feasible.

8.1. Experimental Methodology - Highlights

A first-order experiment will be performed by attaching a number of network adaptors (perhaps
several ATM adaptors, and one or more varieties of Ethernet) to a small scale shared-memory
multiprocessor. The processors would then act simultaneously as port controllers and execution
engines for the language. The loadable language modules would be transported between Switch-
Whve switches, forming trains of active packets, which we call Switchlets. To preserve the power
of the semantic model, type-checked modules are digitally checksummed with a Secure Hash
Algorithm provided by a trusted authority. This takes advantage of the fact that it is easier to ver-
ify the proof than to do the proof.

This approach provides the concurrent execution model necessary in any realistic switching
environment, while providing an attractive environment in which to develop software and algo-
rithms. This would provide initial insights into the programming model, and demonstrate that
packet interpretation can be usefully applied. The same environment will be used for SML run-
time system and active router experiments. Additional experience will be gained from the Bell-
core Programmable Output Port Controller - OPCv2.

VERSION OF 6/26/96 - COMMENTS WELCOME

Formal
Switch Ware
Semantics
I

Switch Ware Applications Possible
Run-Time and Active Switch Ware Timeline

System
I

prot6type
Runttime
on SGI

i I
suGport
Active
R o ~ t e r

t
~ e d s u r e

and qxtend
to OPCv2

Routing
I

I

Active
Roper

t
I

switch Ware
Aphli-
catipns

t
~ x k n d
Aphli-
cat$ons

Accelerator
I

I

 nuder rate
Switcb Ware

Arohs.

t
I

~ d n k
Switch Ware

Arohs.

t

Figure 4: Project Tracks and Timeline

9. References

[l] J . Armstrong, M. Williams, and R. Virding, Concurrent Programming in Erlang, Prentice
Ha11 (1993). ISBN 13-285792-8

[2] Ruzena Bajcsy, David J. Farber, Richard P. Paul, and Jonathan M. Smith, "Gigabit Teler-
obotics: Applying Advanced Information Infrastructure," in 1994 International Symposium
on Robotics and Manufacturing, Maui, HI (August 1994).

[3] Brian Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gun Sirer, David Becker, Marc
Fiuczynski, Craig Chambers, and Susan Eggers, "Extensibility, Safety and Performance in
the SPIN Operating System," in Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP-15), Copper Mountain, CO (December 1995), pp. 267-284.

[4] E. Biagioni, "A Structured TCP in Standard ML," in Proceedings, 1994 SIGCOMM Con-
,ference, London, U K (Aug. 31st - Sep. 2nd, 1994), pp. 36-45.

151 Nathaniel S. Borenstein, "Computational Mail as Network Infrastructure for Computer-
Supported Cooperative Work," in Proceedings, Computer Supported Cooperative Work
Conference, Toronto, CANADA (1 992).

[6] System Security Study Committee - National Research Council, Computers at Risk: Safe
Computing in the Information Age, National Academy Press (1991).

[7] G. Davida, Y. Desmedt, and B. Matt, "Defending Systems Against Viruses through Crypto-
graphic Authentication," in Proceedings, IEEE Symposium on Security and Privacy (1989),
pp. 312-318.

[8] D. Dean and D. Wallach, "Security Flaws in the HotJava Web Browser," Technical Report,
Princeton University, Computer Science (November 3rd, 1995).

VERSION OF 6/26/96 - COMMENTS WELCOME

[9] P. Druschel, L. L. Peterson, and B. S. Davie, "Experiences with a High-Speed Network
Adaptor: A Software Perspective," in Proceedings, 1994 SIGCOMM Conference, London,
UK (Aug. 3 1st - Sep. 2nd, 1994), pp. 2-13.

[lo] Dawson R. Engler, M. Frans Kaashoek, and James O'Toole, Jr., "Exokernel: An Operating
System Architecture for Application-Level Resource Management," in Proceedings of the
15th ACM Symposium on Operating System Principles (SOSP-15), Copper Mountain, CO
(December 1995).

[I 11 Virgil D. Gligor and Bruce G. Lindsay, "Object Migration and Authentication," IEEE
Transactions on Software Engineering SE-5(6), pp. 607-61 1 (November 1979).

[12] M. J. C. Gordon, R. Milner, and C. Wadsworth, Edinburgh LCE: Springer (1979).

[13] M.E. Grzelakowski, J.H. Campbell, and M.R. Dubman, "DMERT Operating System," Bell
System Technical Journal 62(1), pp. 303-323 (January 1983).

[14] http://www.cs.cmu.edu/afs/cs/project/fox/mosaic/HomePage.html,
Fox Project, CMU School of Computer Science, 1995.

[15] J.R. Kane, R.E. Anderson, and P.S. McCabe, "Overview, Architecture, and Performance of
DMERT," Bell System Technical Journal 62(1), pp. 291-302 (January 1983).

[16] Randy H. Katz, Garth A. Gibson, and David A. Patterson, "Disk System Architectures for
High Performance Computing," Proceedings of the IEEE 77(12) (December 1989).

[17] Frederick Colville Knabe, "Language Support for Mobile Agents," CMU-CS-95-223,
CMU School of Computer' Science (December 1995). Ph.D. Thesis

[18] Mark Leone and Peter Lee, "Optimizing ML with Run-Time Code Generation," in Pro-
ceedings, ACM SIGPLAN PLDI '96 (May 1996). to appear

[I 91 H. Lycklama and D.L. Bayer, "The MERT Operating System," Bell System Technical Jour-
rznl57(6, Part 2), pp. 2049-2086 (July/August 1978).

1201 W. S. Marcus, "An experimental device for multimedia experimentation," IEEE/ACM
Transactions on Networking, to appear (1996).

[2 11 Sun Microsystems, "The Java Language: A White Paper," h t t p : / / j ava . sun. com
(1995).

[22] R. Milner, M. Tofte, and R. Harper, The Definition of Standard ML, The MIT Press (1990).

[23] R. W. Mitze, H. L. Bosco, N. X. DeLessio, R. J. Frank, N. A. Martellotto, W. C. Schwartz,
and R. W. Wolfe, "3B20D Processor and DMERT as a Base for Telecommunications
Applications," Bell System Technical Journal 62(1), pp. 18 1 - 190 (January 1983).

[24] A. B. Montz and D. Mosberger, S. W. O'Malley, L. L. Peterson, T. A. Proebsting, J. H.
Hartman, "Scout: A communications-oriented operating system," Technical Report 94-20,,
Department of Computer Science, University of Arizona (June 1994).

[25] MTSs, Engineering and Operations in The Bell System, AT&T Bell Laboratories, Murray
Hill, NJ (1983). ISBN #0-932764-04-5

[26] R. Needham and M. Schroeder, "Using Encryption for Authentication in Large Networks,"
Communications of the ACM 21(12), pp. 993-999 (December, 1978).

[27] Roger M. Needham, "Denial of Service: An Example," Communications of the ACM
37(1 I), pp. 42-46 (November 1994).

[28] S. Nettles and J. O'Toole, "Real-Time Replication Garbage Collection," in SIGPLAN Sym-
posium on Programming Language Design and Implementation, ACM (June 1993).

[29] James O'Toole, Scott Nettles, and David Gifford, "Concurrent Compacting Garbage Col-
lection of a Persistent Heap," in Proceedings, 14th ACM Symp. Operating Syst. Principles

VERSION OF 6 / 2 6 / 9 6 - COMMENTS WELCOME

(December, 1993), pp. 161-174.
I P

1301 Guru Parulkar, Douglas C. Schmidt, and Jonathan S. Turner, "a t m: a Strategy for Inte-
grating IP with ATM," in Proceedings, SIGCOMM 95, Cambridge, MA (Aug. 28th to Sept.
1, 1995), pp. 49-58.

[3 11 M. Pozzo and T. Gray, "A model for the containment of Computer Viruses," in Second
Aerospace Computer Security Applications Conference (December 1986), pp. 1 1 - 18.

[32] Bell Communications Research, Inc., "AIN Release 1 Service Logic Program Framework
Generic Requirements," FA-NWT-001132.

[33] John F. Shoch and Jon A. Hupp, "The Worm Programs - Early Experience with a Dis-
tributed Computation," Communications of the ACM 25(3) (March 1982).

[34] Eugene H. Spafford, "The Internet Worm: Crisis and Aftermath," Communications of the
ACM 32(6), pp. 678-687 (June 1989).

[35] Adobe Systems, Inc., PostScript Language Reference Manual, Addison-Wesley, Reading,
M A (1985).

[36] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Bob Harper, and Peter Lee, "TIL:
A Type-Directed Optimizing Compiler for ML," in Proceedings, ACM SIGPLAN PLDI '96
(May 1996). to appear

[37] D.L. Tennenhouse and D.J. Wetherall, Towards an Active Network Architecture, Jan. 1996.

[38] W.N. Toy and L.E. Gallaher, "Overview and Architect~lre of the 3B20D Processor," Bell
System Technical Journal 62(1), pp. 18 1-190 (January 1983).

[39] C. Brendan S. Traw, Applying Architectural Parallelism in High Performance Network Sub-
systems, CIS Dept., University of Pennsylvania (1995). Ph.D. Thesis

[40] C. Brendan S. Traw and Jonathan M. Smith, "Striping within the Network Subsystem,"
IEEE Network, pp. 22-32 (JulyIAugust 1995).

[41] J. Zander and R. Forchheimer, "Softnet - An approach to Higher Level Packet Radio," in
Proceedings, AMRAD Conference, San Francisco (1983).

VERSION OF 6/26/96 - COMMENTS WELCOME

	SwitchWare: Accelerating Network Evolution (White Paper)
	Recommended Citation

	SwitchWare: Accelerating Network Evolution (White Paper)
	Abstract
	Comments
	Author(s)

	tmp.1183128877.pdf.33Zga

