The VLDB Journal manuscript No.
(will be inserted by the editor)

Omar Benjelloun - Hector Garcia-Molina -
Euijong Whang - Jennifer Widom

David Menestrina -

Qi Su - Steven

Swoosh: a generic approach to entity resolution

Received:

Abstract We consider the Entity Resolution (ER) problem
(also known as deduplication, or merge-purge), in which
records determined to represent the same real-world entity
are successively located and merged. We formalize the gen-
eric ER problem, treating the functions for comparing and
merging records as black-boxes, which permits expressive
and extensible ER solutions. We identify four important prop-
erties that, if satisfied by the match and merge functions, en-
able much more efficient ER algorithms. We develop three
efficient ER algorithms: G-Swoosh for the case where the
four properties do not hold, and R-Swoosh and F-Swoosh
that exploit the 4 properties. F-Swoosh in addition assumes
knowledge of the “features” (e.g., attributes) used by the
match function. We experimentally evaluate the algorithms
using comparison shopping data from Yahoo! Shopping and
hotel information data from Yahoo! Travel. We also show
that R-Swoosh (and F-Swoosh) can be used even when the
four match and merge properties do not hold, if an “approx-
imate” result is acceptable.

Keywords Entity resolution - Generic entity resolution -
Data cleaning

1 Introduction

Entity Resolution (ER) (sometimes referred to as dedupli-
cation) is the process of identifying and merging records
judged to represent the same real-world entity. ER is a well-
known problem that arises in many applications. For exam-
ple, mailing lists may contain multiple entries representing
the same physical address, but each record may be slightly
different, e.g., containing different spellings or missing some
information. As a second example, consider a company that

O. Benjelloun
Google Inc., Mountain View, CA 94043
E-mail: benjello@google.com

H. Garcia-Molina - D. Menestrina - Q. Su - S. E. Whang - J. Widom
Stanford University Computer Science Department, Stanford, CA
94305

E-mail: {hector, dmenest, gisu, euijong, widom} @cs.stanford.edu

has different customer databases (e.g., one for each sub-
sidiary), and would like to consolidate them. Identifying match-
ing records is challenging because there are no unique iden-
tifiers across databases. A given customer may appear in dif-
ferent ways in each database, and there is a fair amount of
guesswork in determining which customers match.

Deciding if records match is often computationally ex-
pensive and application specific. For instance, a customer in-
formation management solution from a company ' we have
been interacting with uses a combination of nickname al-
gorithms, edit distance algorithms, fuzzy logic algorithms,
and trainable engines to match customer records. On the lat-
est hardware, the speeding of matching records ranges from
10M to 100M comparisons per hour (single threaded), de-
pending on the parsing and data cleansing options executed.
A record comparison can thus take up to about 0.36ms, greatly
exceeding the runtime of any simple string/numeric value
comparison. How to match and combine records is also ap-
plication specific. For instance, the functions used by that
company to match customers are different from those used
by others to match say products or DNA sequences.

In this paper we take a “generic approach” for solving
ER, i.e., we do not study the internal details of the functions
used to compare and merge records. Rather, we view these
functions as “black-boxes” to be invoked by the ER engine.
(Incidentally, there has been a lot of work done on the design
of effective comparison and merge functions; see Section 6.)
Given such black-boxes, we study algorithms for efficiently
performing ER, i.e., we develop strategies that minimize the
number of invocations to these potentially expensive black-
boxes. In a way, our work is analogous to the design of ef-
ficient join algorithms, except that the operator we study is
the ER operator. An important component of our work is
that we identify a set of properties that, if satisfied by the
match and merge functions, lead to significantly more effi-
cient ER. For example, associativity of merges is one such
important property: If merges are not associative, the order
in which records are merged may impact the final result. An-

! This company wishes to remain anonymous so that the perfor-
mance numbers we give here are not associated with their product
specifically.

Benjelloun et al.

other notable feature is that we do not perform the matching
and merging separately, but tightly integrate them into a sin-
gle process.

In this paper we focus on “pairwise ER,” a common way
to resolve records in the commercial world. In particular, the
following assumptions are made:

— Pairwise decisions. Our black-box functions to match
and merge records operate on two records at a time. Their
operation depends solely on the data in these records,
and not on the evidence in other records. In general, it is
easier for application specialists to write pairwise record
comparison and merge functions, as opposed to, say, func-
tions that determine when a group of records may repre-
sent the same entity. Note that this requirement needs
only be true at the time ER is performed, and does not
preclude a prior training phase that considers the whole
dataset, or a representative sample. (For example, a first
phase can compute term frequencies for say all prod-
uct descriptions, and the frequencies can then be used
in comparing pairs of descriptions.) Thus, approaches
based on machine learning can be leveraged to match
or merge records.

— No confidences. We do not work with numeric similarity
values or confidences. Record comparison functions may
indeed compute numeric similarities (e.g., how close is
this name to that name), but in the end they make a yes-
no decision as to whether records match. Carrying confi-
dences in the ER computations could in principle lead to
more accurate decisions, but complicates processing sig-
nificantly. For instance, one must decide how to combine
confidences when records are merged. Also, confidences
may decrease upon merges, which makes it more chal-
lenging to compare the information in merged records
to that of base records. In a technical report [26], we
study generic ER with confidences, in an extension of the
framework presented here, where confidences are also
handled by the black-box match and merge functions.

— No relationships. In our model, records contain all the in-
formation that pertains to each entity (See Figure 1 for an
example). We do not consider a separate class of records
that describe relationships between entities. Of course,
some relationships can be represented in our model: for
example, say Fred is Bill’s brother. Then the record for
Fred may contain the value “brother: {Bill}”.

— Consistent labels. We assume that the input data has gone
through a schema-level integration phase, where incom-
ing data is mapped to a common set of well-defined la-
bels. For instance, we assume that a “salary” label means
the same thing, no matter what the source of the infor-
mation is. However, we do not impose a rigid structure
on records: we allow missing or multiple values for each
label.

The particular variant of the ER problem that we study
in this paper may not be the most sophisticated, but is used
frequently in practice, at least in the commercial world. In-
deed, IBM’s recently introduced “DB2 Entity Analytic Solu-

Name Phone E-mail
r1 | {John Doe} | {235-2635} | {jdoe@yahoo}
T2 {J. Doe} 234-4358
rs | {JohnD.} | {234-4358} | {jdoe@yahoo}

Fig. 1 An instance of records representing persons

tions” [21] (formerly SRD) provides an exact, order insen-
sitive solution to the ER problem (applied to human iden-
tities), which abstracts away from the particular functions
used to compare values. Another leading commercial of-
fering from Fair Isaac Corp. also encapsulates the match
process as pairwise Boolean functions [10]. The customer
information management company uses a pairwise match-
ing framework to which a combination of comparison al-
gorithms can be applied. Although these products have ex-
tra features, the core of their approach is the same as ours.
In fact, their commercial success originally motivated our
study of this particular approach to entity resolution (see
Section 6 for an overview of alternative techniques).

In summary, the ER variant we address here is relatively
simple, but as we will see, can still be very expensive to
compute. One fundamental cause of this complexity in ER
is that record merges can lead to new matches. To illustrate,
consider the records of Figure 1. Suppose that our black-box
record match function works as follows: The function com-
pares the name, phone and email values of the two records.
If the names are very similar (above some threshold), the
records are said to match. The records also match if the
phone and email are identical. For matching records, the
black-box merge function combines the names into a “nor-
malized” representative, and performs a set-union on the e-
mails and phone numbers. Note that phone and e-mail are
being treated as a unit for comparison purposes. We call such
a unit a feature (defined formally in Section 4). Thus, in this
example, there are two features: one is “name” and the other
is the pair “phone+ email”.

For our example, the black-box comparison function de-
termines that r; and ro match, but r3 does not match either
r1 or 5. For instance, the function finds that “John Doe” and
“J. Doe” are similar, but finds “John D.” not similar to any-
thing (e.g., because John is a frequent first name). Thus,
and o merge into a new record r4:

{John Doe} | {234-4358,
235-2635}

Now notice that 4 now matches r3 since the same phone
and e-mail appear in both records. The combination of the
information in r; and r5 led us to discover a new match with
r3, therefore yielding an initially unforeseen merge. Thus,
every time two records are merged, the combined record
needs to be re-compared with “everything else”.

Because record matching is inherently expensive, large
sets of input records are often divided into “buckets” using
application knowledge, and then ER is run on each bucket.
For instance, if we are resolving products, we may be able to
divide them using a “category” field. Thus, camera records
will only be matched against other cameras, CDs will only

T4 {jdoe@yahoo}

Swoosh: a generic approach to entity resolution

be matched against other CDs, and so on. If a record may
match records in more than one category, then typically co-
pies of the record are placed in multiple buckets. For exam-
ple, a cell phone with a camera may be placed in the camera
and the telephone buckets. (In our related work section we
briefly mention other ways in which domain knowledge can
be used to prune the search space.) In this paper we focus
on resolving records within one bucket, that is, we study al-
gorithms that must exhaustively consider all (within bucket)
possible record matches. This type of exhaustive algorithm
is invoked by a higher-level process that divides the data and
decides what buckets need to be resolved. And since buckets
can be quite large, it is still important to have as efficient an
algorithm as possible for exhaustive ER. (Note that if the se-
mantic function that divides records is imprecise, then over-
all matches may be missed, e.g., two wet-suits may be incor-
rectly placed in different buckets, say clothing and sporting
goods. In this paper we do not consider the accuracy of the
semantic function that partitions records.)

In summary, in this paper we make the following contri-
butions:

— We formalize the generic ER problem (Section 2). Un-
like other works that focus only on identifying matching
records (see related work in Section 6), we also include
the process of merging records and how it may lead to
new matches.

— We identify the ICAR properties (see Section 2.2) of
match and merge functions that lead to efficient strate-
gies.

— We present ER algorithms for three scenarios:

— G-Swoosh: The most general ER algorithm, for the
case where the 4 properties of match and merge func-
tions do not hold (Section 3.1).

— R-Swoosh: An algorithm that exploits the 4 prop-
erties of match and merge functions, and that per-
forms comparisons at the granularity of records (Sec-
tion 3.2).

— F-Swoosh: An algorithm that also exploits the 4 prop-
erties, and uses feature-level comparison functions
(Section 4.1). F-Swoosh avoids repeated feature com-
parisons and can be significantly more efficient than
R-Swoosh.

For each algorithm, we show that it computes the correct
ER result and that it is “optimal” in terms of the number
of comparisons performed. (What we mean by “optimal”
varies by scenario and is precisely defined in each sec-
tion.)

— We experimentally evaluate the algorithms using actual
comparison shopping data from Yahoo! Shopping and
hotel information data from Yahoo! Travel. Our results
show that G-Swoosh can only be used on relatively small
data sets when merges occur frequently, while R-Swoosh
and F-Swoosh can handle substantially more data. Fur-
thermore, when we know the features used for compar-
isons, we can use F-Swoosh and achieve between 1.1 and
11.4 performance improvement.

— Since G-Swoosh is so expensive, we investigate using
R-Swoosh even when the ICAR properties of match and
merge functions do not hold. In this case R-Swoosh does
not produce the correct answer, but we show that what R-
Swoosh produces is close to what G-Swoosh produces.
Thus, if the application can tolerate an approximate an-
swer, R-Swoosh and F-Swoosh are viable algorithms for
all scenarios.

2 Fundamentals of Generic ER

We first consider entity resolution at the granularity of records.
Our approach is very generic, since no assumption is made
on the form or data model used for records. Finer granularity
ER will be considered in Section 4.

2.1 Basic Model

We assume an infinite domain of records R. An instance
I ={ry,...,r,} is afinite set of records from R.

A match function M is a Boolean function over R X
R, used to determine if two records r; and 7o represent the
same real-world entity (in which case M (rq,r2) = true).
Such a match function reflects the restrictions we are making
that (i) matching decisions depend solely on the two records
being compared, and (ii) that such decisions are Boolean,
and not associated with any kind of numeric confidence. In
practice, such functions are easier to write than functions
that consider multiple records.

A merge function (i is a partial function from R X R into
‘R, that captures the computation of merged records. Func-
tion p is only defined for pairs of matching records (i.e., for
r1,72 8.t M(rq, o) = true).

When M and p are understood from the context, M (r1,r2)
= true (resp. M(ry,72) = false) is denoted by 71 ~ 7o
(resp. r1 % r2), and u(ry, o) is denoted by (r1, 7).

In order to define ER, we need to introduce two key in-
termediary notions: the merge closure of an instance, and
record domination.

Merge closure Intuitively, given an instance I, we would
like to find all pairs of matching records in I and merge
them, using the match and merge functions defined above.
The notion of extending I with all the records that can be
derived this way is called the merge closure of I:

Definition 2.1 Given an instance I, the merge closure of I,
denoted I is the smallest set of records S such that:

-JICS
— For any records 1,72 € S, if 11 & ra, then (r1,72) € S.

For any instance I, the merge closure of I clearly exists
and is unique. It can be obtained as the fixpoint of adding to
I merges of matching records.

Benjelloun et al.

Note that the merge closure of a (finite) instance I may
be infinite. Intuitively, arbitrarily long chains of matches and
merges may keep producing new records. However, the match
and merge functions used in practice for ER do not exhibit
such a behavior. We will give in Section 2.2 some simple
properties, often satisfied by match and merge functions,
which guarantee that the merge closure is finite.

Domination The merge closure is only a first step towards
defining ER. The goal of ER is to determine the set of records
that best represent some real-life entities. Intuitively, if two
records r and 7’ are about the same entity but » holds more
information than 7', then 7’ is useless for representing this
entity. In this case, we say that r’ is dominated by r, denoted
r’ =< r. For instance, in our example, it is natural to con-
sider that r;{ =< 74, as r4 contains all the values of r{, and
maybe also that 72 < r4. Even though the name “J. Doe”
does not appear in r, it can be considered as subsumed by
“John Doe”.

Formally, domination is defined to be any partial order
relation on records (i.e., a reflexive, transitive and anti-sym-
metric binary relation). The choice of a specific partial order
depends on the particular data and application at hand. Just
like the match and merge functions, we view domination as
a “black-box”. Hence, our focus is not on the accuracy of
the domination test. We will see in Section 2.2 that when
the match and merge function have some simple and natural
properties, then a canonical domination order can be defined
using them.

Domination on records can be naturally extended to in-
stances as follows:

Definition 2.2 Given two instances I, I, we say that Iy
is dominated by I, denoted I; = Iy if Vry € I[1,3ry €
I>, such that r; < ro.

It is straightforward to verify that instance domination
is a partial pre-order, i.e., that it is a reflexive and transitive
relation. Instance domination is not a partial order because it
is not anti-symmetric. Indeed, if r; < ro, the instances {rs}
and {ry,r2} are distinct yet dominate each other.

Entity Resolution We are now ready to define entity resolu-
tion formally:

Definition 2.3 Given an instance I, recall that [is the merge
closure of I. An entity resolution of I is a set of records I’
that satisfies the following conditions:

1. I'C 1,
2. 11T,
3. No strict subset of I’ satisfies conditions 1 and 2

The following property establishes that ER is well-de-
fined. Proofs for this result and subsequent ones can be found
in Appendixes A and B.

Proposition 2.1 For any instance I, the entity resolution of
I exists and is unique. We denote it ER(I).

Although ER is well defined, just like the merge clo-
sure it may be infinite, and therefore not computable. Even
when it is finite, its computation may be very expensive. In-
tuitively, any finite sequence of merges may produce a differ-
ent record, and dominated records can only be removed after
all matches have been found. We will give in Section 3.1 an
algorithm that computes ER when the merge closure is fi-
nite, which is optimal in terms of the number of record com-
parisons it performs. Before that, we introduce in the next
section some natural properties often satisfied by the match
and merge functions, which ensure the ER computation is
tractable.

2.2 ICAR Match and Merge Properties

In practice, some M and p functions have some desirable
properties that lead to efficient ER. We have identified the
following four such properties, which are quite intuitive.

1. Idempotence: Vr, r ~ r and (r,r) = r. A record always
matches itself, and merging it with itself still yields the
same record.

2. Commutativity: Vri,r, 11 & ro iff ro &~ r1, and if r; ~
T2, then <T‘1, T2> = <T2, 7"1>.

3. Associativity: V'ry, 9, r3 such that (r1, (ra, r3)) and ((rq,
T2>, 7“3> exist, <r1, <’I“2, 7“3>> = <<’I"1, T‘Q), 7“3).

4. Representativity: If r3 = (r1,r2) then for any r4 such
that r; ~ r4, we also have r3 ~ ry4.

We call these the ICAR properties. We stress that not all
match and merge functions will satisfy these properties, but
it is nevertheless important to study the special case where
they hold.

Commutativity and idempotence are fairly natural prop-
erties to expect from match and merge functions. Associa-
tivity is also a reasonable property to expect from a merge
function. Note that if associativity does not hold, then it be-
comes harder to interpret a result record, since it not only
depends of the source records, but on the order in which they
were merged.

The meaning of the representativity property is that record
r3 obtained from merging two records r; and 7o “repre-
sents” the original records, in the sense that any record 74
that would have matched r; (or ro by commutativity) will
also match r3. Intuitively, this property states that there is no
“negative evidence”: merging two records r; and ry cannot
create evidence (in the merged record r3) that would prevent
r3 from matching any other record that would have matched
71 Or T9.

Note also that we do not assume the match function to
be transitive (i.e. r; &~ ro and ro ~ r3 does not necessarily
imply r; =~ r3). Transitive match functions were considered
by [27]. In practice, designing transitive match functions is
difficult.

Swoosh: a generic approach to entity resolution

Merge domination When the match and merge functions sat-
isfy the ICAR properties, there is a natural domination order
that can be defined based on them, which we call the merge
domination:

Definition 2.4 Given two records, r; and ro, we say that ry
is merge dominated by ro, denoted 1 < 79, if 11 &~ ro and
(r1,m2) = T2.

The properties of the match and merge functions defined
in the previous section guarantee that merge domination is a
valid domination partial order on records:

Proposition 2.2 Merge domination is a valid domination
order.

Note that all the properties we required for match and
merge functions are necessary to ensure that domination is a
partial order relation.

The merge domination order on records is useful to un-
derstand how records relate to each other. For instance one
can easily check that the following monotonicity conditions
hold:

(A) forany records rq, 75 such that vy & ry, it holds that r; <
(ri,72) and ro < (rq,r2), i.e., a merge record always
dominates the records it was derived from,

B) if r1 < ro and 71 =~ r, then ro = r, i.e., the match
function is monotonic,

(©) if ry < 7o and 71 = r, then (r1,7r) < (ro,r), ie., the
merge function is monotonic,

(D) if r; < 5,72 < sand rp & ro, then (ry,72) < s.

Interestingly, merge domination is a canonical domina-
tion order in the sense that it is the only one for which the
match and merge functions “behave well”, i.e., satisfy the
above monotonicity conditions:

Proposition 2.3 Given match and merge functions such that
the match function is reflexive and commutative, if a domi-
nation order = exists such that the four monotonicity condi-
tions (A)-(D) above are satisfied with < replaced by =, then
the ICAR properties of Section 2.2 are also satisfied, and <
coincides with the merge domination order <.

In some sense, the above proposition justifies the prop-
erties we required from match and merge functions, as they
capture the requirements needed to make entity resolution
a monotonic process. We believe that checking our simple
properties on match and merge functions is more practical
than looking for an order for which the monotonicity condi-
tions (A)-(D) are satisfied. In the rest of the paper, whenever
the match and merge function satisfy the ICAR properties of
Section 2.2, we consider merge domination to be our default
domination order.

ER with ICAR properties When the match and merge func-
tions satisfy the ICAR properties above, then the ER process
itself has interesting computational properties: it is guaran-
teed to be finite, records can be matched and merged in any
order, and dominated records can be discarded anytime. We
next define the notion of maximal derivation sequence, and
then use it to state these properties precisely.

Definition 2.5 Given an instance I, a derivation step I — I'
is a transformation of instance I into instance I’ obtained by
applying one of the following two operations:

— Merge step: Given two records r; and ro of I s.t. r; ~
Tg,andT’g = <7‘1,T2> ¢ [,I/ :IU{’I"g},

— Purge step: Given two records r; and 72 of I s.t. 11 <
TQ,I/ =1-— {Tl}.

A derivation sequence I = I, is any non-empty sequence of
derivation steps I — Iy — ... — I,,. A derivation sequence

I — I, is maximal if there exists no instance I, s.t. I, —
I,,+1 is a valid derivation step.

The following theorem (proven in appendix) states the
properties of ER:

Theorem 2.1 Given match and merge functions that are idem-
potent, commutative, associative and representative, for any
instance I, ER(I) is finite, and any maximal derivation se-
quence starting from I computes ER(I).

Union Class of Match and Merge Functions There is a broad
class of match and merge functions that satisty the I[CAR
properties because they are based on union of values. We
call this class the Union Class. The key idea is that each
record maintains all the values seen in its base records. For
example, if a record with name {John Doe} is merged with a
record with name {J. Doe}, the result would have the name
{John Doe, J. Doe}. Unioning values is convenient in prac-
tice since we record all the variants seen for a person’s name,
a hotel’s name, a company’s phone number, and so on. Keep-
ing the “lineage” of our records is important in many appli-
cations, and furthermore ensures we do not miss future po-
tential matches. Notice that the actual presentation of this
merged record to the user does not have to be a set, but can
be any string operation result on the possible values (e.g.,
{John Doe}). Such a strategy is perfectly fine as long as the
records only use the “underlying” set values for matching
and merging. Two records match if there exists a pair of val-
ues from the records that match. In our example, say the
match function compares a third record with name {Johnny
Doe} to the merged record obtained earlier. If the function
compares names, then it would declare a match if Johnny
Doe matches either one of the two names. The match and
merge functions in this Union Class satisfy the ICAR prop-
erties as long as the match function is reflexive and commu-
tative (two properties that most functions have):

Benjelloun et al.

Proposition 2.4 Given match and merge functions such that
the match function is reflexive and commutative, if the match
and merge functions are in the Union Class, the ICAR prop-
erties are satisfied.

Beyond the Union Class, there are other functions that
while not strictly in this class, also record in some way all
the values they have encountered. For example, a record
may represent the range of prices that have been seen. If
the record is merged with another record with a price out-
side the range, the range is expanded to cover the new value.
Thus, the range covers all previously encountered values. In-
stead of checking if the prices in the records match exactly,
the match function checks if price ranges overlap. It can be
shown that match and merge functions that keep all values
explicitly or in ranges also satisfy the ICAR properties.

In this section, we proposed four simple and natural con-
ditions on merge and match functions for records: commu-
tativity, idempotence, representativity, and associativity. We
showed that under these conditions, records and instances
can be meaningfully ordered through merge domination, and
that ER is finite and independent from the order in which
records are processed. We believe that the ICAR properties
above are important in practice, for two main reasons:

(a) There are many applications where these properties hold.
For example, in some intelligence gathering applications,
values are unioned during merges, to accumulate all ev-
idence. One can show that such “additive” applications
use Union Class match and merge functions, satisfying
the properties. The properties also hold if values can be
combined (when two record are merged) into a “repre-
sentative value” that captures all matches with values it
represents.

By understanding the huge performance advantages that
the properties give us we believe that application de-
signers will be strongly incentivized to develop func-
tions that have the properties. In some cases, achieving
the properties involves small changes. For example, in
one application we ran across a match function that was
not idempotent. However, it was easy to make the func-
tion idempotent by adding an explicit check for the case
where both input records had identical content. In other
cases, obtaining good functions may involve more com-
plex changes. But without knowing what efficient algo-
rithms exist for the case where the properties hold, the
designer may never put the effort into developing good
functions.

In the next two sections, we propose actual algorithms
to compute ER for both the cases when the properties do
not hold and when they do. The performance advantage of
having the properties satisfied will be illustrated by our ex-
periments in Section 5.

(b)

3 Record-Level ER Algorithms

We start by presenting G-Swoosh, an algorithm that does not
require the match and merge functions to satisfy any partic-

input: a set I of records
output: a set I’ of records, I' = ER(I)
I'—I; N0
repeat
I' —I'"'UN;N <0
for all pairs (r,7') of records in I’ do
if r ~ 7’ then
merged «— (r,r")
if merged € I’ then
10: add merged to N
11: end if
12: end if
13: end for
14: until N = ()
15: for all pairs (7, 7") of records in I’ where r # ' do
16: ifr’ <r then

e A A R ol Sy

o

17: Remove r’ from I’
18: end if
19: end for

Alg. 1: The BFA algorithm for ER(I)

ular properties. As ER may be infinite, G-Swoosh may not
terminate, and in general is expensive, but we show that it is
cost optimal for this very general scenario. We then present
R-Swoosh, an algorithm that applies when the match and
merge functions satisfy the ICAR properties, and which is
also optimal for that situation.

3.1 The G-Swoosh Algorithm

To motivate G-Swoosh, we first present a simple, naive al-
gorithm that makes no assumptions about the match and
merge functions. As defined in Section 2.1, ER(I) is the set
of all non-dominated records that can be derived from the
records in I, or from records derived from them. Algorithm 1
presents a “brute force” algorithm, BFA, that performs ER.
The proposition that follows states the correctness of BFA.
Its proof is given in Appendix.

Proposition 3.1 For any instance I such that I is finite, BFA
terminates and correctly computes ER(I).

To illustrate how BFA works, consider the instance of
Figure 2. The initial instance [is represented by the records
in the left column. Matching (similar) records are enclosed
by a rectangle, and the arrow points to the resulting merged
record. The horizontal order corresponds to the progression
of the algorithm.

In the first iteration, BFA compares all possible pairs of
records in the initial I, generating the new records r1o and
r23. Since new records were generated, the algorithm contin-
ues with a second iteration, in which 7 records are compared
(the 5 original ones plus the two new ones). Thus, in this sec-
ond iteration, the new record 7123 is generated. Again, since
a new record was found, we iterate with I’ now containing 8
records generating rj235. The fourth and last iteration finds
no matches. Finally, BFA eliminates all dominated records
and terminates.

Swoosh: a generic approach to entity resolution

Fig. 2 “Brute force” ER on a simple instance

It is clear that BFA is performing a large number of match
calls, and that many of them are unnecessary. For example,
note that records 4 and 75 are compared a total of four
times. The three redundant comparisons could be avoided
by “remembering” results of previous match calls. The G-
Swoosh algorithm (Algorithm 2) avoids all these unneces-
sary comparisons, not by explicitly remembering calls, but
by intelligently ordering the match and merge calls.

1: input: a set [of records

2: output: a set I’ of records, I' = ER(I)
I 0

4: while I # () do

S5: r <« arecord from I

6: remove r from I

7: forall records 7’ in I’ U {r} do

8: if » ~ 1’ (resp. v’ ~ r) then

9: merged « (r,r') (resp. (r',r))
10: if merged ¢ TUI' U {r} then
11: add merged to [
12: end if
13: end if
14: end for

15 addrtol’

16: end while

17: Remove dominated records from I’ (See lines 15-18 in BFA)
18: return I’

Alg. 2: The G-Swoosh algorithm for ER(I)

G-Swoosh works by maintaining two sets. I is the set
of records that have not been compared yet, and I’ is a set
of records that have all been compared with each other. The
algorithm iteratively takes a record r out of I, compares it to
every record in I/, and then adds it to I’. For each record »’/
that matches r, the record (r, r’) is added to I.

Returning to the example of Figure 2, r; is first added
to I’ (there is nothing yet to compare against). Next, ro is
compared against all records in I’, i.e. against 1. This step
generates r12, which is placed in I. At the same time, 75
is added to I’. Next, r3 is compared against I’ = {ry,72},
adding ro3 to I and 73 to I'. Records 74, r5 and r15 gen-
erate no matches, so at this point we have I = {re3} and
I' = {ry,rq,73,74,75,712}. When we compare 7,3 against

I’ we add 7123 to I and 793 to I’. We continue in this fashion
until is empty and I’ contains I (i.e., all the records shown
in Figure 2), then dominated records are removed and the
algorithm terminates. It is easy to see that in this example
G-Swoosh performs many fewer comparisons than BFA.

Note incidentally that if the commutativity and idempo-
tence properties hold, we can eliminate many comparisons
in G-Swoosh (as well as in BFA). Idempotence and commu-
tativity of the match and merge functions are easy to satisfy
in most applications. If they hold, in G-Swoosh we can elim-
inate one of the two match calls in line 8, and one of the two
merge calls in line 9. Furthermore, we do not need to match
r against itself (line 7).

Proposition 3.2 For any instance I such that I is finite, G-
Swoosh terminates and computes ER(I).

Even though G-Swoosh may not terminate (because the
match and merge functions are so general), it is an optimal
algorithm, in terms of the number of record comparisons,
our main cost metric.

Theorem 3.1 G-Swoosh is optimal, in the sense that no al-
gorithm that computes ER(I) makes fewer comparisons in
the worst case.

Notice that in our evaluation of BFA and G-Swoosh we
have used the number of calls to the match function as the
main metric. We believe this metric is the right one. Each
record comparison may be quite complex, taking into ac-
count several data values and using costly techniques. More-
over, the number of record comparisons is roughly quadratic
in the number of records in the original instance (see Sec-
tion 5). (As an aside, note that the quadratic cost is not spe-
cific of our approach; for instance, machine learning ap-
proaches, overviewed in Section 6, need to compute simi-
larities for at least all pairs of records.) By contrast, merg-
ing records is generally less costly, as it often relies on sim-
ple syntactic rules. It is also less of a discriminating factor
between algorithms, since for a given instance they will all
roughly perform the same merges.

Another cost factor in G-Swoosh is the elimination of
dominated records at the end. Depending on how domina-
tion is defined, this step can also be quite expensive, but is
similar for both BFA and G-Swoosh algorithms.

If domination is a “black-box” partial order, then we
can only eliminate dominated records after we generate the
merge closure I (Definition 2.1). However, if we know how
domination is checked, we may be able to perform dom-
inated record elimination more efficiently. In particular, if
we know that dominated records can never generate undom-
inated records, then we can eliminate dominated records as
soon as they are found. Note that this informal property ex-
actly corresponds to monotonicity properties B and C of
Proposition 2.2. There are actually several ways to exploit
this property to improve G-Swoosh by eliminating domi-
nated records early, but we do not discuss them here.

Benjelloun et al.

1: input: a set I of records /* Initialization */

2: output: a set I’ of records, I’ = ER(I)

I 0

4: while I # () do /* Main loop */

5 currentRecord « arecord from

6: remove currentRecord from I

7: buddy < null

8: for all records ' in I’ do

9 if M (currentRecord,r') = true then

10: buddy «— r’

11: exitfor

12: end if

13: end for

14: if buddy = null then

15: add currentRecord to I’
16: else

17: r" «—< currentRecord, buddy >
18: remove buddy from I’

19: addr” to I

20: endif

21: end while

22: return I’

Alg. 3: The R-Swoosh algorithm for ER(I)

3.2 The R-Swoosh Algorithm

In this section we assume that the ICAR properties defined
in Section 2.2 hold. Furthermore, we assume that merge dom-
ination (Definition 2.4) is used as the definition of domina-
tion. As we argued earlier, these properties hold naturally
in some applications. In other applications the match and
merge properties may not initially satisfy these properties,
but with small changes to the functions we may achieve the
properties.

The properties simplify ER processing in two significant
ways:

1. When two records r; and o match to yield ry2, we are
able to immediately discard the source records r; and 72,
since whatever records can be derived from r; or r5 can
now be derived from 7r15.

2. If we eliminate records used in a merge, we do not need
to explicitly eliminate dominated records. To see this
fact, say we run ER without explicitly eliminating domi-
nated records at the end. In particular, say two records 1
and ro appear in the final answer, and r; < 7. By def-
inition of merge domination, r; & ro and (ry,72) = 7.
Thus, the comparison of r; and r, should have generated
merged record 75, and r; should have been eliminated.

We use these two ideas in the R-Swoosh algorithm, given
in Algorithm 3. To illustrate the operation of R-Swoosh, we
revisit the example of Figure 2. Processing is similar to that
of G-Swoosh, except when we find a match, we immediately
discard both source records. In particular, when we find that
r in I matches 7’ in I’, we do not need to compare r to
any other I’ records: we simply remove r from [and 7o
from I’ and add the new records to I. For example, after r;
and 7 are processed, I’ is empty (in G-Swoosh it contained
{r1,r2}) and I = {rs,r4,75,712}. When we next compare
r3 against I’ we do not perform any comparisons and just

add r3 to I'. The final result is I’ = {ry, 71235 }. At the end,
there is no need to remove dominated records.

With R-Swoosh we clearly avoid many comparisons that
G-Swoosh would have performed. For instance, once r; is
merged into r12, we do not need to compare r; to any other
records. Furthermore, we avoid generating some intermedi-
ate merged records. For example, R-Swoosh never generates
ro3; 3 merges directly with r15 to generate r123.

The following proposition establishes the correctness of
the R-Swoosh algorithm.

Proposition 3.3 Given an instance I, the R-Swoosh algo-
rithm computes ER(I).

As R-Swoosh randomly picks the next record from the
set I, this leaves room for improvement. In some cases, addi-
tional knowledge can be used to influence the order in which
records are picked (e.g. through sorting the records, in the
style of [19]), so that the number of comparisons is reduced
on average. However, if we have no knowledge of what order
is best, then R-Swoosh is “optimal” in the sense that even on
the most unfavorable instances, R-Swoosh performs at least
as well as any other possible algorithm.

Proposition 3.4 For any instance I of n records such that
entity resolution yields j records, R-Swoosh performs at most
(n—1)2 - % record comparisons. There exists an
instance (with n records, yielding j records) on which any

algorithm performs at least as many record comparisons.

4 Feature-Level ER

Although R-Swoosh is optimal in terms of record compar-
isons, it may still perform redundant comparisons of the un-
derlying values. To see why, recall the example we used in
the introduction, corresponding to the instance of Figure 1.
The names “John D.” and “John Doe” are first compared
when records r; and r3 are compared, and then recompared
when 74 (obtained from merging r; and r3) and r3 are com-
pared. More generally, different records may share common
values, therefore the same comparisons may be performed
redundantly.

We classify value comparisons based on their outcome:
Positive comparisons are the ones that succeed (e.g., the
names “John Doe” and “J. Doe” are similar), while nega-
tive comparisons fail (e.g., “John D.” and “John Doe” do not
match in our example). Our goal is to avoid repeating both
positive and negative value comparisons.

To avoid these redundant comparisons, we refine the gran-
ularity of the match function, to take into account the con-
tents of records. We break down the process of comparing
records into several fine-grained comparisons on features
(data subsets) of the compared records. In the previous ex-
ample, the name is such a feature, while the combination of
e-mail and phone number forms another feature. For each
feature, a specific comparison function is used. Two records
match if one or more of their features match. In a nutshell,

Swoosh: a generic approach to entity resolution

the F-Swoosh algorithm will improve performance by tak-
ing into account these feature comparisons, and by keeping
track of encountered values in order to avoid positive and
negative redundant comparisons.

More formally, we consider a finite set of features f1,. . .,
fm. Each feature f; is a function on records that returns
a set of feature values from some domain Dy,. For exam-
ple, since the second feature fo of our example above is
“phone+email,” fo(ry) = {{234-4358, jdoe@yahoo}, {235-
2635, jdoe@yahoo}}. Each feature f; comes with a boolean
match function My, defined over Dy, x Dy,. Two records
r1, o match iff there exists a feature f; and feature values
v1,v2 8.t.v1 € fi(r1), vo € fi(re) and My, (v1,v2) = true.

Thus, record matching is defined as an existentially quan-
tified disjunction over feature matches. One could think of
the scenario where record matching can be done by any one
of several match functions. Suppose two records match if
they are similar according to either an edit distance algo-
rithm or a fuzzy logic algorithm. In this case, the entire match-
ing is a disjunction of the two match functions. On the other
hand, if the individual match functions by themselves are
not powerful enough to determine matches, one may want
to consider more complex combinations of features, e.g.,
involving conjunction, universal quantification, or negation.
However, the disjunctive case we consider here leads to sim-
ple bookkeeping, since one can determine if records match
by comparing one feature at a time. We believe that with
more complex conditions, bookkeeping will be significantly
more complex, and more storage will be necessary, slowing
down the performance of F-Swoosh. Bookkeeping becomes
more complex because we can no longer store each feature
separately as we do in F-Swoosh based on the assumption
that a single feature match implies an entire record match.
Managing several features together also requires larger data
structures, which take longer to access.

Just as for R-Swoosh, we still require that the ICAR
properties of Section 2.2 be satisfied. We need to make sure
that the feature-level match functions My, are such that their
combination yields a record-level match function that satis-
fies these properties. A simple sufficient condition is to have
an idempotent, commutative and associative merge function,
and have each of the My, be idempotent, commutative and
representative for this merge function.

4.1 The F-Swoosh Algorithm

We now present the F-Swoosh algorithm. As its name sug-
gests, F-Swoosh has a similar structure to that of R-Swoosh.
The set I’ is here also used to incrementally build a set of
non-dominated, non-matching records. The main difference
is that for each feature, a hash table and a set are used to keep
track of previously seen feature values and save redundant
positive and negative comparisons, respectively. An impor-
tant point is that these data structures have a size which is
only linear in the size of the data. Simply recording the out-
come of all previously performed match comparisons would

occupy a quadratic space, which is unacceptable for large
datasets. The F-Swoosh algorithm is given in Algorithm 4.
We first introduce the data structures used by F-Swoosh, be-
fore discussing the algorithm itself and its properties.

For each feature f;, we maintain a data structure Py, that
avoids repeating positive value comparisons for f;. Py, is a
hash table that records all previously seen values of f;, and
associates with each feature value v the record r 2 that cur-
rently “represents” v. The record r is either the first record
where feature value v appeared for feature f;, or one that was
derived from it through a sequence of merge steps. If there is
no such record, i.e., feature value v is seen for the first time,
Py, (v) returns null. Note that there can be at most one record
associated with the feature value v for f;; if more than one
record has been seen, the records have been merged into the
record returned by Py, (v). The hash table is updated by a
command of the form Py, (v) « r. If the feature value v (for
fi) had not been recorded earlier, then this command adds
the pair (v,7) to the table. If v had been seen (for f;), then
the command replaces the (v,r’) pair by (v,r), indicating
that the old record ' has been merged into .

For each feature f;, we also maintain a data structure Vg,
aimed at avoiding redundant negative value comparisons.
Ny, is a set that records the feature values of f; that were
compared against all the feature values of records in I’ and
did not match any of them (line 31). By representativity, this
implies that if the record currently processed by the algo-
rithm has an f; value that appears in Ny,, then this value
need not be further compared (line 23).

Algorithm When a new record is processed by F-Swoosh,
the algorithm first registers any new feature values (lines 12-
14), then checks if any of the values of the record already ap-
peared in a different record (lines 15-20). If this is the case,
the record will be merged with the one pointed by the corre-
sponding entry in the Py, hash table. If not, the feature values
of the record are compared to those of the records in I’ (lines
21-34), and if no match is found, the record is inserted in I’.
As for R-Swoosh, when a match is found, the old records
buddy and currentRecord are purged, while the merged
record is placed in I for processing. Additionally, the Py,
hash tables are updated so that feature values that previously
pointed to buddy or currentRecord now point to the new
merged record (lines 42-44).

As an optimization, and to avoid scanning the hash tables
in this last step, one can keep an “inverted” hash table that
maintains, for each record, a list of (features, feature value)
pairs that point to it. This data structure costs space linear
in the size of the instance, and its maintenance is straight-
forward. This optimization was used in the code that ran our
experiments.

To illustrate the operation of F-Swoosh, suppose we have
the three records r; = {name: John Doe, phone: 235-2635,
email: jdoe@yahoo}, vy = {name: Fred, phone: 678-1253,
email: fred@yahoo}, and r3 = {name: John Doe, phone:

2 In fact, we slightly abuse notation, as this is a pointer to the corre-
sponding record, and not the record itself.

Benjelloun et al.

235-2635, email: jdoe@microsoft}. Suppose that there are
two features “name” and “phone+email,” and that two records
match if their names are similar or if both their phones and
emails are the same. We first add r; to I’ and then com-
pare ro to 1. Since o does not match with rq, 5 is also
added to I’. Unlike R-Swoosh, however, r3 is then directly
merged with r; (without running the match function) be-
cause the feature value {John Doe} is found in P, 4me. The
merged record 13 = {name: John Doe, phone: 235-2635,
email: {jdoe@yahoo, jdoe@microsoft}} is now the current
record. This time, we do not need to compare the names of
r13 and 7o (unlike R-Swoosh) because {John Doe} is found
in Nygme (Which means that we know {John Doe} has al-
ready been compared with all the feature values of “name”
in I’ and thus does not match with {Fred}). After we com-
pare the “phone+email” values of ry3 and rq, 713 is added
to I’. As a result, F-Swoosh performs fewer feature value
comparisons than R-Swoosh.

The correctness of F-Swoosh is established by the fol-
lowing proposition.

Proposition 4.1 Given an instance I, the F-Swoosh algo-
rithm computes the maximal derivation of I, and therefore
solves the ER problem.

F-Swoosh exercises a lot of care not to perform redun-
dant or unnecessary feature value comparisons. The Py, hash
tables records all previously seen feature values, (including
those that may have disappeared from I’ because of merges)
and keep track of records that represent them, to immedi-
ately merge any records where these feature values may ap-
pear again (lines 15-20). Pairs of feature values that match
immediately lead to a merge, and are never recompared again,
while pairs of feature values that do not match (or feature
values that represents them) are added to the sets N¢,, and
once this happens, are guaranteed to never be recompared
again.

Some feature value comparisons may still be carried out
multiple times by F-Swoosh. In particular, pairs of feature
values that do not match may be recompared at a later time
if a merge happens, and at least one of the feature values
hasn’t been recorded in Ny,. Avoiding such redundancies
would require to store the outcome of all previous unsuc-
cessful feature value comparisons, which would have an un-
acceptable storage cost. Instead, our algorithm tries to min-
imize the windows where such redundant comparisons may
occur, by constraining the order in which records are pro-
cessed. Whenever a match is found, the merged record will
be set as the next record to be processed (line 45), and no
new record will be processed before the merged record, or
one derived from it is added to I’. At this time, encountered
feature values have been added to Ny, and will not be re-
compared against each other.

The benefits of F-Swoosh are further illustrated by our
experimental evaluation, presented in Section 5.

: input: a set [of records
: output: a set I’ of records, I’ = ER(I)
Py « empty hash table, for each feature f /* Initialization */
Ny « empty set, for each feature f
I' — 0, currentRecord «— null
: while I # 0 or currentRecord # null do /* Main loop */
if currentRecord = null then
currentRecord «— arecord from
remove current Record from [
10: endif
11: buddy «— null
12: forall (f,v) of currentRecord do /* Keep track of any new
values in the record */
13: if Py(v) = null then Py(v) «— currentRecord
14: end for
15: for all (f,v) of currentRecord do /* Was any value previ-
ously encountered? */

PRI W

16: if Ps(v) # currentRecord then

17: buddy «— Py(v)

18: exitfor

19: end if

20: end for

21: if buddy = null then /* If not, look for matches */

22: for all (f, v) of currentRecord do

23 if v & Ny then /* If a value never made it to Ny... */

for all