
SyD: A Middleware Testbed for Collaborative

Applications over Small Heterogeneous Devices

and Data Stores⋆

Sushil K. Prasad,Vijay Madisetti2, Shamkant B. Navathe3, Raj Sunderraman,
Erdogan Dogdu, Anu Bourgeois, Michael Weeks, Bing Liu, Janaka Balasooriya,

Arthi Hariharan, Wanxia Xie3, Praveen Madiraju, Srilaxmi Malladi,
Raghupathy Sivakumar2, Alex Zelikovsky, Yanqing Zhang, Yi Pan, and Saied

Belkasim

Computer Science Department, Georgia State University
2School of Electrical and Computer Engineering, Georgia Institute of Technology

3College of Computing, Georgia Institute of Technology

Abstract. Developing a collaborative application running on a collec-
tion of heterogeneous, possibly mobile, devices, each potentially host-
ing data stores, using existing middleware technologies such as JXTA,
BREW, compact .NET and J2ME requires too many ad-hoc techniques
as well as cumbersome and time-consuming programming. Our System
on Mobile Devices (SyD) middleware, on the other hand, has a modu-
lar architecture that makes such application development very system-
atic and streamlined. The architecture supports transactions over mobile
data stores, with a range of remote group invocation options and embed-
ded interdependencies among such data store objects. The architecture
further provides a persistent uniform object view, group transaction with
Quality of Service (QoS) specifications, and XML vocabulary for inter-
device communication. This paper presents the basic SyD concepts and
introduces the architecture and the design of the SyD middleware and
its components. We also provide guidelines for SyD application develop-
ment and deployment process. We include the basic performance figures
of SyD components and a few SyD applications on Personal Digital As-
sistant (PDA) platforms. We believe that SyD is the first comprehensive
working prototype of its kind, with a small code footprint of 112 KB with
76 KB being device-resident, and has a good potential for incorporating
many ideas for performance extensions, scalability, QoS, workflows and
security.

Keywords: Mobile Servers, SyD Coordination Bonds, Object and Web Service
Coordination, Atomic Transactions, Application-Level QoS.

1 Introduction

Requirements for a Middleware Platform: There is an emerging need for
a comprehensive middleware technology to enable development and deployment

⋆ This Research was partially supported by Georgia Research Alliance’s Yamacraw
Embedded Software Contract #CLH49 and #DLN01. The SyD middleware and
demo application codes can be downloaded from www.cs.gsu.edu/˜yes.

of collaborative distributed applications over a collection of mobile (as well as
wired) devices. This has been earlier identified as one of the key research chal-
lenges [3, 14]. Our work is an ongoing effort to address this challenge, and this
paper reports our first prototype design and its implementation. We seek to
enable group applications over a collection of heterogeneous, autonomous, and
mobile data stores, interconnected through wired or wireless networks of vari-
ous characteristics, and running on devices of varying capabilities (pagers, cell
phones, PDAs, PCs, etc.). The key requirements for such a middleware platform
are to allow:

1. Uniform Connected View: Present a uniform view of device, data and net-
work to ease programmer’s burden. Provide a device-independent and a per-
sistent (always connected) object-view of data and services, so as to mask
mobility and heterogeneity. Allow multiple data models and representations
on device data stores.

2. Distributed Server Applications on Small Devices: Enable developing and
deploying distributed server applications possibly hosted on mobile devices.
Support atomic transactions across multiple, independent, and heteroge-
neous device-applications.

3. High-Level Development and Deployment Environment: Enable rapid devel-
opment of reliable and portable collaborative applications over heterogeneous
devices, networks and data stores. Provide a general-purpose high-level pro-
gramming environment that uses existing sever applications and composes
them to create, possibly ad-hoc, integrated applications rapidly.

Limitations of Current Technology: The current technology for the devel-
opment of such collaborative applications over a set of wired or wireless devices
and networks has several limitations. It requires explicit and tedious program-
ming on each kind of device, both for data access and for inter-device and inter-
application communication. The application code is specific to the type of device,
data format, and the network. The data store provides only a fixed set of services
disallowing dynamic reconfiguration. Applications running across mobile devices
become complex due to lack of persistence and weak connectivity. A few exist-
ing middlewares have addressed the stated requirements in a piecemeal fashion.
Limitations include only client-side programming on mobile devices, a restricted
domain of applications, or limited in group or transaction functionalities or mo-
bility support, as further elaborated in Section 8.

SyD Solution: System on Mobile Devices (SyD) is a new platform technol-
ogy that addresses the key problems of heterogeneity of device, data format and
network, and mobility. SyD combines ease of application development, mobility
of code, application, data and users, independence from network and geograph-
ical location, and the scalability required of large enterprise applications con-
currently with the small footprint required by hand held devices. SyD separates
device management from management of groups of users and/or data stores.
Each device is managed by a SyD deviceware that encapsulates it to present a

uniform and persistent object view of the device data and methods. Groups of
SyD devices are managed by the SyD groupware that brokers all inter-device
activities, and presents a uniform world-view to the SyD application. The SyD
groupware directory service enables SyD applications to dynamically form groups
of objects hosted by devices. The SyD groupware enables group communication
and other functionalities across multiple devices. Section 2 presents the detailed
SyD architecture.

Contributions and Significance: The primary contributions of our work pre-
sented here are broadly two-fold [10, 16, 17, 20–22, 26].

1. A proof-of-concept, working middleware, unique of its kind, that enables
distributed server and collaborative applications over multiple small mobile
devices, possibly hosting data stores. This is as much an engineering feat
as is a middleware design. The foot-print of the entire SyD kernel code is
112 KB, out of which only 76 KB is currently device-resident; the rest is for
directory and global event handling. For even smaller devices, this can be
further reduced to 42 KB. The execution time work space used by SyD is
4-8 MB, exclusive of JVM and OS.

2. A methodology to rapidly develop and deploy robust distributed collabo-
rative applications, and an execution platform to deploy such applications,
while masking mobility and heterogeneity from application programmers,
and allowing inter-device constraints and atomic transactions.

Hardware/Software Platform: Various technologies employed to prototype
SyD kernel testbed are as follows:

1. HP’s iPAQ models 3600 and 3700 with 32 and 64 MB storage running Win-
dows CE/Pocket PC OS interconnected through IEEE 802.11 adapter cards
and a 11 MB/s Wireless LAN.

2. Jeode EVM personal Java 1.2 compatible, implementing Java Virtual Ma-
chine; KVM/MIDP for cellphone emulator.

3. Instant DB version 3.26 on iPAQ for databases for various applications;
Oracle 8i DBMS on PC as a directory server.

4. TCP Sockets for remote method invocation and JAVA RMI for local method
execution through reflection.

5. µCode [15] version 1.03 as the mobile agent frame work on the iPAQ.
6. XML standard for all inter-device communication.

We will not be able to provide in-depth description of all aspects of SyD
middleware, but will attempt to be complete while highlighting our key contri-
butions. This paper is organized as follows. Section 2 provides a broad overview
of SyD and presents the SyD prototype implementation and the current im-
plementation architecture of SyD and SyD-based applications. The next three
sections describe the three key aspects of SyD: Section 3 describes the SyD Lis-
tener module, which enables data hosting and serving capability in small, mo-
bile, devices. Section 4 describes a range of options available in SyD for invoking

individual and group remote methods. Section 5 then describes one key inno-
vation, namely SyD coordination links/bonds which enable distributed object
coordination and rapid ad-hoc application prototyping. Section 6 summarizes
how SyD-based applications are developed in our framework, and mentions a
few sample SyD applications. In Section 7, we attempt to place SyD middleware
among the emerging middleware technologies and assess the level by which SyD
currently meets its design goals. Section 8 presents the related work. Section 9
contains a summary and future work.

2 SyD Architecture Overview

In this section, we describe the design of SyD and related issues, and highlight
the important features of its architecture. Each individual device in SyD may be
a traditional database such as relational or object-oriented database, or may be
an ad-hoc data store such as a flat file, an EXCEL worksheet or a list repository.
These may be located in traditional computers, in personal digital assistants
(PDAs) or even in devices such as a utility meter or a set-top box. These devices
are assumed to be independent in that they do not share a global schema. The
devices in SyD cooperate with each other to perform interesting tasks and we
envision a new generation of applications to be built using the SyD framework.
The SyD architecture is shown in Fig. 1.

Published library of SyD Kernel

SyD Application Object

SyD Groupware

SyD Middleware Object

SyD

Deviceware
SyD

Deviceware

SyD

Deviceware

Device Object Device Object Device Object

Ordered data on

PDA’s
Instant DB

Ordered data on

PC’s outlook

Ordered data on a

set-top box

SyD Application

Fig. 1. SyD Framework

The SyD framework has three layers.

1. At the lowest layer, individual data stores are represented by device objects
that encapsulate methods/operations for access, and manipulation of this

data. The SyD Deviceware consists of a listener module to register objects
and to execute local methods in response to remote invocations, and an
engine module to invoke methods on remote objects. Object composition
and execution of atomic transactions over multiple objects are provided by
a bonding module.

2. At the middle layer, there is SyD groupware, a logically coherent collection
of services, APIs, and objects to facilitates the execution of application pro-
grams. Specifically, SyD groupware consists of a directory service module,
group transactions and global event support, with application-level Quality
of Service (QoS).

3. At the highest level are the applications themselves. They rely only on these
groupware and deviceware SyD services, and are independent of device, data
and network. These applications include instantiations of server objects that
are aggregations of the device objects and SyD middleware objects.

The three-tier architecture of SyD enables applications to be developed in
a flexible manner without knowledge of device, database and network details.
SyD groupware is responsible for making software applications (anywhere) aware
of the named objects and their methods/services, executing these methods on
behalf of applications, allowing the construction of SyD Application Objects
(SyDAppOs) that are built on the device objects. SyD groupware provides the
communications infrastructure between SyD Applications (SyDApps), in addi-
tion to providing QoS support services for SyDApps. SyDApps are applications
written for the end users (human or machine) that operate on the SyDAppOs
alone and are able to define their own services that utilize the SyDAppOs. The
SyD groupware provides only a named device object for use by the SyDApps,
without revealing the physical address, type or location of the information store.

SyDApps are able to operate across multiple networks and multiple devices,
relying on the middleware to provide the supporting services that translate the
SyDApps code to the correct drivers, for both communications and computing.
SyDApps can also decide on their own features and services they offer, without
depending on individual databases residing on remote computing devices to offer
those services. The SyD architecture, thus, is compatible with and extends the
currently emerging Web services paradigm for Internet applications.

Current Prototype Implementation: We have developed a prototype testbed
of SyD middleware that captures the essential features of the SyD’s overall frame-
work and several SyD-based applications. We have designed and implemented a
modular SyD kernel in Java, which includes the following five modules (Fig. 2):

1. The SyDDirectory provides publishing, management, and lookup services to
SyD device objects and their proxies, and users.

2. The SyDListener enables SyD device objects to publish their services (server
functionalities) as “listeners” locally on the device and globally via the di-
rectory services. It responds to invocations of server methods by the users
and other application objects on SyD network.

SyDDirectory

SyDListener

SyDEventHandler

SyDEngine

SyDBond

2. Register

 globally

2. Lookup

SyD

Application

Object

Server

Client UI

SyDKernel

1. Execute

T
C

P
/I

P

1. Invoke

SyDAppO

SyDAppO

SyDAppO

SyDAppO

SyDAppO

3. Remote

Invoke

2. Invoke

1. Publish

Legend

Server
registration

Remote
invocation (client)

Server
method
invocation

Fig. 2. SyD kernel architecture, and interactions among modules and SyD application
objects (SyDAppO)

3. The SyDEngine allows users to execute single or group services remotely and
aggregate results. Its sub-modules extend it with transactions with QoS.

4. The SyDBond module enables a SyD entity to link to other entities for
automatic updates and to create and enforce interdependencies.

5. The SyDEventHandler module handles local and global event registration,
monitoring, and triggering.

Disconnection Tolerance via Proxy: The SyDDirectory keeps track of ap-
plication objects and their associated devices via location information (IP plus
port number). Server applications can register their proxies, too. SyDDirectory
actively maintains the availability of applications hosted on mobile devices ver-
sus their proxies via a “live bit” in the directory entries; this bit can be set/reset
by an application on power-on/power-off or by SyDEngine on time-outs. The
device’s location is also tracked and kept current in the SyD directory. If the
device is inaccessible, due perhaps to an intermittent disconnection or battery
discharge, then, after a timeout, the SyDEngine invokes the proxy application to
complete the requested service and resets the “live-bit” of the application with
the SyD Directory. The application on the mobile device, when online, synchro-
nizes intelligently with its proxy updates and sets its “live-bit”. The assumption
here is that an application running on a mobile device is most up-to-date. (Thus,
a user calendar’s proxy allows a meeting to be only tentatively scheduled, which
after synchronization with the mobile calendar may get converted into a perma-
nent meeting; on the other hand, if mobile calendar is online, permanent meeting
can be setup in real time). A detailed implementation of a proxy module incor-
porating and extending these functionalities is underway.

Applications with similar or inter-related services can be aggregated to form
SyD groups for ad-hoc group functionality of services in SyD-based applications.

The SyDDirectory maintains entries for SyD groups by creating, changing, and
deleting groups. The SyDEngine accesses group information to invoke group
services.

Thus, SyD has some aspects of reflection-orientation through its directory
service, which allows inspection, and adaptability through proxy management,
group dynamics, and reference decoupling. We discuss the other key modules of
SyD in the subsequent sections.

3 Uniform Object View - SyD Listener

Our SyDListener is a key component providing uniform object view of various
data sources and server applications [17]. It enables application serving, and data
store and web service hosting capabilities in small devices, which are tradition-
ally thought of as mere client devices. It is effectively a stand-alone lightweight
extended SOAP server enabling XML-based inter-device interactions. SyDLis-
tener is implemented as a multi-threaded application enabler with simple per-
sistence management and asynchronous invocation functionality for (i) Personal
Profile on Connected Device Configuration (CDC) devices, suitable for high-end
PDAs [11], and (ii) J2ME Mobile Information Device Profile (MIDP) on Con-
nected Limited Device Configuration(CLDC) devices, such as mobile phones [12].

The SyDListener module has dual responsibilities: (1) registering server ap-
plications for remote method invocations, and (2) performing local method exe-
cution and responding with results when remote requests are received [17]. Ser-
vice registration is done locally to local object repository, and globally to SyDDi-
rectory. There are three important classes in SyDListener module: SyDRegistrar,
SyDListener, and SyDDelegate (Fig. 3). SyDRegistrar performs registration of
server and its proxy, initially upon application deployment and after each re-
connection or power-on of the device, ensuring that subsequent invocations are
directed to the server object, not to its proxy. As part of the initialization of
the server object, it typically should have a synchronization mechanism, pos-
sibly application-specific, with its proxy. The SyDListener class is instantiated
at server side and performs listening for, parsing and invoking local methods in
response to remote invocations. The SyDListenerDelegate is at the client side
and performs communication with SyDListener, including transmission of re-
quest messages and receiving of results. The SyDListenerDelegate acts as an
adaptor for SyDListener and hides all the communication details from clients.
This means that the communication method, TCP sockets in this case, can also
be changed without any influence on clients.

CDC/JVM version: The first version of SyDListener is built upon TCP
sockets and Java RMI. SyDListenerDelegate and SyDListener communicate thro-
ugh TCP sockets. SyDListener locally accesses active service objects from RMI
registry (Fig. 3). Inside the SyDListener, we integrate Java reflection mecha-
nism with RMI. This implementation is single-threaded and only provides syn-
chronous invocation. The footprint of this implementation of the whole listener
module is 10.3 KB.

CLDC/KVM Version: The listener architecture provides flexibility in that

SyDListener

socket

SyDListenerDelegate

socket

1. invocation

and result as

XML

documents Client

SyDApp

SyDRegistrar

RMI Registry

SyDDirectory

2. register

locally
3. register

globally

1. register

2. lookup

3. invoke

invoke

TCP/IP

SyDAppWrapper

ClientServer Legend
Server

registration
Server method

invocation

SyDListener

socket

SyDListenerDelegate

socket

1. invocation

and result as

XML

documents Client

SyDApp

SyDRegistrar

RMI Registry

SyDDirectory

2. register

locally
3. register

globally

1. register

2. lookup

3. invoke

invoke

TCP/IP

SyDAppWrapper

ClientServer Legend
Server

registration
Server method

invocation

Fig. 3. SyDListener module architecture using TCP sockets

we could replace RMI with other technologies, and limit the change within
SyDListener and the service application. This was employed to yield a second
version of listener for CLDC devices, and is built upon J2ME Mobile Informa-
tion Device Profile (MIDP). It utilizes the limited programming APIs available
on MIDP and acts as a multi-threaded application server, which manages the
lifecycle of SyD applications without using Java RMI. It provides simple per-
sistence management to service objects and asynchronous method invocation
to service clients. The footprint of the CLDC/KVM version is 19.5 KB, an in-
crease when compared to that of CDC/JVM version because of the missing base
functionalities in CLDC and the new functionalities such as multi-threading.

Figures 4 and 5, respectively, present the total connection time for round-
trip response time from SyDListener using synchronous requests (on iPAQs) and
asynchronous requests (on cell-phone emulator). We employ varying (i) exponen-
tially distributed inter-arrival times of invocation from clients, and (ii) normally
distributed service times (grain-size of method execution) at the SyDListener.
There is a good amount of saving in air time, as well as opportunities for con-
currency in client application with asynchronous invocation, but that does entail
more programming burden.

0

2000

4000

6000

8000

0 100 200 300

Inter-Arrival Time (ms)

C
o

n
n

ec
ti

o
n

 T
im

e
(m

s)

Fig. 4. Synchronous Invocation Model

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300

Inter-Arrival Time (ms)

C
o

n
n

ec
ti

o
n
 T

im
e

(m
s)

ST 100

ST 200

ST 300

Service

Time (ST)

Fig. 5. Async. Invocation Model

4 Remote Methods and Transactions - SyD Engine and

its Extensions

SyD recognizes the need for simplicity in method invocation on individual and
groups of objects as well as the need for sophistication in light of mobility and
heterogeneity of clients and servers. Therefore, it provides a range of mechanisms
with sub-modules for tracking group invocations with real-time constraints, for
adaptive transactions with application-level QoS and for on-server data pro-
cessing with mobile capabilities. At the minimum, (i) language independence is
enforced through a generic “invoke” method to SyDEngine, (ii) reference decou-
pling and group dynamicity are ensured through dynamic object/group IDs to
address mapping via SyDDirectory, and (iii) XML vocabulary is employed to
mask communication heterogeneity.

SyDEngine: The two major components of the SyDEngine are: the SyD-
Dispatcher and the SyDAggregator. The SyDDispatcher module is responsible
for dispatching method calls either on the local device or on to the remote
device. At runtime, the SyDEngine looks up the SyD directory for current de-
vice location or proxy information and makes calls to the methods accordingly.
The average round-trip time between SyDEngine on an iPAQ to SyD directory
hosted on wireless LAN laptop is 218 ms out of which internal processing time
of SyDEngine is only 7 ms. A local directory cache can cut this time further.
The SyDAggregator module is responsible for aggregating multiple SyDDoC
objects obtained from the SyDDispatcher. The possible operations currently im-
plemented are: append, max, min and intersection, primarily over database ta-
bles. The SyDDoC utility provides a uniform data exchange capability through-
out the SyD middleware and SyD-enabled modules. It is based on XML and is
lightweight compared to DOM and SAX models of XML.

SyDQuO

Reference

Monitor

Resource

Monitor

SyDDirectory

QoS Contract

DB

Publish

SyDEventHandler

SyDAdaptor

Pull Push

Update Inform

Adapt

Invoke

SyD

Transaction

Manager

Register

Store

Request

Server

Client

Fig. 6. QoS-aware Transaction

0

10

20

30

40

50

60

70

0 2 4 6 8

of SyDClients

T
ra

n
s
a
c
ti

o
n

P
ro

c
e
s
s
 T

im
e
 (

m
s
)

Regular Transaction Manager
Adaptive Transaction Manager

Fig. 7. Transaction Quality

50

70

90

110

16 48 128 336 1536 13936 41792

Size of data processed(bytes)

R
e
sp

o
n

se
 t

im
e

(m
s)

Mobile agent Synchronous invocation

Fig. 8. Mobile agent vs Sync. invoca-
tion

The three modules, SyDDirectory, SyDListener and SyDEngine, along with
the document utility module SyDDoc form the essential core of the SyD middle-
ware, and account for a foot-print of only 60 KB with 42 KB being device-resident
(the auxiliary technologies such as Jeode or Instant DB are not accounted for in
this). The basic capabilities of SyDEngine are being enhanced by several exten-
sion sub-modules. For example, a client application can employ a Transaction-
Tracker sub-module, residing off-device (possibly as a Web service object), which
supports sophisticated asynchronous group invocations with real-time deadlines
with timeouts [5]. Two additional sub-modules are as follows.

QoS-Aware Transactions: An extended architecture [25, 26] for the devel-
opment and runtime support of QoS-aware transaction service is shown in Fig. 6.
SyDQuO is the core component that describes and represents QoS contracts for
transaction services. SyDDirectory provides QoS contract publish and lookup
services for transactions. Reference Monitor watches all valid QoS contracts
of currently running transactions and sends the updated resource thresholds
to the resource monitor. Resource Monitor monitors the changes of resources
such as CPU and memory. SyDAdapter manages the intra-transaction adap-
tation process while the Transaction Manager supports inter-transaction QoS.
Fig. 7 shows preliminary performance results of the adaptive transaction man-
ager, which sends load feedbacks to SyD clients whose transactions have the
least priority to reduce the transaction transmission rates, thereby achieving
better transaction rate overall. A detailed implementation of this sub-module is
underway.

Agent-based Transactions: Mobile agent sub-module exploits the agent
capability of on-server processing to save communication bandwidth. This sub-
module replaces the SyDEngine-SyDListener pair with µCode’s Client and Server
pair [15]. We have conducted preliminary experiments comparing the synchronous
remote invocation (SI) through SyDEngine-SyDListener pair with the mobile
agent (MA) [9]. Fig. 8 gives the comparison of SI with MA based on the size of
the data processed. In the MA approach, data is processed at server sites and
processed data is sent across the network. In the SI approach, data is collected
from multiple devices and then processing takes place on the gathered data at
the client and therefore results in higher response time. Effort is underway for
SyDEngine to seamlessly switch to MA approach based on data size on agent-
enabled SyD servers.

5 Distributed Coordination - SyDBond Module

A key goal of SyD is to enable SyD objects to coordinate in a distributed fash-
ion. Each SyD object is capable of embedding SyD coordination bonds1 to other
entities enabling it to enforce dependencies and act as a conduit for data and
control flows. Over data store objects, this provides active database like capa-
bilities; in general, aspect-oriented properties among various objects are created
and enforced dynamically. Its use in rapid configuration of ad-hoc collaborative

1 Alternatively called “coordination links” [21, 22], or “Web bonds” in the context of
Web services [18].

applications, such as inter-dependent set of calendars for a meeting setup [20], or
a set of inter-dependent Web services representing airline, car rental, and hotel
in a travel reservation application [4], has been demonstrated. The SyD bonds
have the modeling capabilities of extended Petri nets and can be employed as
general-purpose artifacts for expressing the benchmark workflow patterns [18,
19].

5.1 SyDBond Module

Coordination bonds enable applications to create contracts between entities and
enforce interdependencies and constraints, and carry out atomic transactions
spanning over a group of entities/processes. While it is convenient to think of an
entity as a row, a column, a table, or a set of tables in a data-store, the concept
transcends these to any SyD object or its component. There are two types of
bonds: subscription bonds and negotiation bonds. Subscription bonds allow au-
tomatic flow of information from a source entity to other entities that subscribe
to it. This can be employed for synchronization as well as more complex changes,
needing data or event flows. Negotiation bonds enforce dependencies and con-
straints across entities and trigger changes based on constraint satisfaction.

A SyD bond is specified by its type (subscription/negotiation), its status
(certain/tentative), references to one or more entities, triggers associated with
each reference (event-condition-action rules), a priority, a constraint (and, or,
xor), bond creation and expiry times, and a waiting list of tentative bonds (a
priority queue). A tentative bond may become certain if the awaited certain
bond is destroyed. Let an entity A be bonded to entities B and C, which may in
turn be bonded to other entities. A change in A may trigger changes in B and C,
or A can change only if B and C can be successfully changed. In the following,
the phrase “Change X” is employed to refer to an action on X (action usually is a
particular method invocation on SyD object X with specified set of parameters);
“Mark X” refers to an attempted change, which triggers any associated bond
without an actual change on X.

• Subscription-and Bond: Mark A; If successful Change A then Try: Change
B and Change C. A “try” may not succeed.

• Negotiation-and Bond: Change A only if B and C can be successfully changed.

Similar semantics can be defined with “or” and “xor” logic. A subscription bond
from A to B is denoted as a dashed directed arrow from A to B. A negotiation
bond from A to B is denoted as a solid directed arrow from A to B. A negotiation-
and bond from A to B and C is denoted by two solid arrows, one each to B and
C, with a “∗” in between the arrows. Similarly, a “+” and a “∧” depict “or”
and “xor” logic, respectively. A tentative bond, which is a negotiation bond in
a waiting list, is shown as a solid arrow with cuts.

5.2 Modeling Dependencies Using Coordination Bonds

The modeling and execution capabilities of SyD bonds can be illustrated through
typical scenarios of dependencies.

Producer-Consumer Dependencies: Fig. 9 shows how a classic relationship
of a producer and consumer object can be bonded using two negotiation bonds.
The Place Order method at a consumer object needs to ensure that the producer
has enough inventories such that the corresponding Accept Order method will
get executed successfully. Before guaranteeing this, the Accept Order probably
will check the current and projected inventory. A negotiation bond is created
from consumer to producer. This is the basic situation for deploying a negoti-
ation bond. Once an order has been placed by the consumer and accepted by
the producer, a subscription bond serves notice to Dispatch Goods method. Note
that the bonds are useful within an object as well. Again before Dispatch Goods

executes, it needs to ensure that consumers Accept Delivery method can be com-
pleted successfully (ensuring that enough space is available, for example) [18].

Accept Order ()

Dispatch Goods()

Producer

Place Order ()

Accept Delivery ()

Consumer
Negotiation

Bond (NB)

Subscription

Bond (SB)

NB

Fig. 9. Coordinating Producer-Consumer Objects

A Meeting Example: The potential of SyD bonds and their utility in modeling
and enforcing contracts among coordinating objects can be further illustrated by
a calendar of meeting example. For this application, we demonstrate here how
an empty time slot is found, how a meeting is setup (tentative and confirmed),
and how voluntary and involuntary changes are automatically handled. A simple
scenario is as follows: A wants to call a meeting between dates d1 and d2 involv-
ing B, C, D and himself. The first step is to find the empty slots in everybody’s
calendar. A then clicks the desired empty slot. This causes a series of steps. A
negotiation-and bond is created from A’s slot to the specific slot in each calendar
table (Fig. 10). Choosing the desired slot attempts to write and reserve that slot
in A’s calendar, triggering the negotiation-and bond. The “action” of this bond
is as follows:

1. Query each table for this desired slot, ensure that it is not reserved, and
reserve this slot.

2. If all succeed, then each corresponding slot at A, B, C and D creates a
negotiation bond back to A’s slot.

Else, for those folks who could not be reserved, a tentative bond back to A is
queued up at the corresponding slots to be triggered whenever the status of
the slot changes. The forward negotiation-and bond to A, B, C and D are left
in place. Back subscription bonds to A from others are created to inform A of

subsequent changes in the other participants and to help A decide to cancel this
tentative meeting or try another time slot. Assume that C could not be reserved.
Thus, C has a tentative back bond to A, and others have subscription bonds to
A (Fig. 11). Whenever C becomes available, if the tentative bond back to A
is of highest priority, it will get triggered, informing A of C’s availability, and
will attempt to change A’s slot to be reserved. This triggers the negotiation-and
bond from A to A, B, C and D, resulting in another round of negotiation. If
all succeed, then corresponding slots are reserved, and the target slots at A, B,
C and D create negotiation bonds back to A’s slot (Fig. 10). Thus, a tentative
meeting has been converted to committed. Now suppose D wants to change
the schedule for this meeting. This would trigger its bond to A, triggering the
forward negotiation-and bond from A to A, B, C and D. If all succeed, then
a new duration is reserved at each calendar with all forward and back bonds
established. If not all can agree, then D would be unable to change the schedule
of the meeting.

B’s

C’s

A’s Calendar

*

D’s

Back Negotiation
Bond

Forward Negotiation
Bond

B’sA’s Calendar

*

Fig. 10. A Scheduled Meeting

Committed
elsewhere

*

Waiting
list

Tentative Bond
Committed
elsewhere

*

Waiting
list

Subscription bond

A B

C

D

Fig. 11. A Tentative Meeting

5.3 Modeling Workflow Control Patterns

SyD bonds are being applied in distributed coordination among Web services, in
particular, to express workflows (therefore, renamed Web coordination bonds).
We illustrate the implementation of a few selected workflow patterns [1] using
Web bonds. Further details are in [19].

Exclusive Choice (Xor-Split): Xor-Split is a point in a workflow where
only one of possible paths is selected. Almost all the workflow modeling frame-
works (except Petri net based) require considerable designer involvement to en-
force XOR-Split. Web bonds eliminate this requirement by embedding xor logic
among subscription bonds (Fig 12). If both paths get evaluated to true, only
one will be selected. Negotiation bonds from B and C to A ensure that B and C

could be executed only after A is completed.
Multiple instances with prior runtime knowledge: As number of in-

stances is not known at the design time, most of the workflow models cannot

^A

C

B

Fig. 12. Xor-Split

A B Ccreate() sync()

*

I3I2I1

*

Fig. 13. Multiple instances with prior runtime
knowledge

enforce this construct. Due to the dynamic creation and deletion facility of Web
bonds, this can easily be enforced. Activity B passes the control to create sub-
activity with instance creation parameters. Subscription bonds with and logic
will be created with each instance (Fig. 13). At the same time, it makes sure
that the sub-activity Sync creates negotiation bond with each instance. Having
negotiation bonds to each instance, Sync activity ensures that it waits for all
instances to be finished before passing the control to C.

6 Guidelines for Developing Collaborative Applications

SyD Methodology: SyD allows rapid development of a range of portable
and reliable applications. The three-tier architecture of SyD enables develop-
ment of applications in a flexible manner without explicit dependence on device,
database, and network details. The steps involved in developing a SyD applica-
tion are as follows.

Step 1: Model the application using SyD device objects, the device-based
predefined or new objects, SyDMWOs, the available middleware objects, and
SyDAppOs, new or previously designed application objects developed by an
application platform developer. SyD directory aids in this search. Create, deploy
and publish those server objects that are unavailable, by specifying their data
and methods.

Step 2: Develop high level application server code by employing the ob-
jects/methods in Step 1. If new, composite server functionalities need to be
published. Additionally, develop a separate client code, which typically is like a
browser/GUI page.

Sample SyD Applications: Currently there are two key SyD applications,
one each in the personal and enterprise domains. We implemented these using
various technologies, including JDBC, SOAP, and SyD. The initial database pro-
gramming using JDBC, and subsequently using SOAP, were carried out as stu-
dent projects. These highlighted the cumbersome programming, lack of support
for small devices, and the desired SyD-like features. The SyD-based development
was by far the quickest, with more functionalities, due to high-level APIs of SyD
(2-3 weeks each by 3-4 students), with comparable execution efficiencies.

Personal System of Calendar Application: The first is a calendar ap-
plication in which each user has his own database that is either stored locally or

on a proxy. The application can be logically divided into two parts, the server
and the client. The server part includes all the methods that interact with the
local data store and can be invoked remotely. The client part consists of the user
interface which enables the user to interact with the application. One example of
the SyD functionality is that the calendar application uses the SyDBond mod-
ule to logically bond all members of a particular meeting together. A meeting
can be rescheduled in real-time for all attendees by invoking the corresponding
SyD Bonds by anyone participant [20, 21]. The time to setup a meeting between
two iPAQs is about 1-2 secs, and increases slightly for larger groups. Automatic
rescheduling and cancellation also have similar timing characteristics.

Enterprise Fleet Application: The second application is a truck fleet that
operates an automated package delivery system. In this system, a user may con-
nect through the Internet to the Web and Data Center (WDC), request delivery
of a package, and give information pertaining to the package. The WDC passes
this information to a depot, which schedules a pick-up [16, 23]. Average execu-
tion time for truck-to-truck communication querying about location using SyD
is 885 ms, where as using JDBC is 1150 ms. Thus, the various abstraction layers
(SyDEngine, Directory and Listener) are efficient and comparable to the older
technology.

Developing Ad-Hoc Applications and Travel Application: SyD bonds
can be employed to compose Web services (non-SyD-enabled) with an ad-hoc
SyD application acting as a centralized coordinator. In [4], we demonstrate a
travel application which allows for automatic rescheduling and cancellation of
itineraries involving reservations for airline, hotel and car. Once an itinerary is
decided and the trip is planned for the user, bonds are created and maintained
in the user’s SyDBond database. If the flight is canceled, then automatic cancel-
lation of car and hotel reservations is triggered, thus easing the burden on the
user to manually cancel all associated reservations. An ad-hoc application devel-
oper’s nook provides a simple GUI-based interface for the application developer
to initially set up and develop SyDBond-enabled coordinator applications.

7 Discussion

SyD has been driven by the current practical necessity to contribute fundamen-
tally on certain aspects of middleware, database, Internet, mobile computing and
related arenas. We briefly discuss SyD’s place among the emerging middleware
and distributed computing technologies, as well as where it is in terms of its
goals. SyD as a middleware has a varying degree of flavors of object orientation
(to mask heterogeneity), coordination orientation (for distributed coordination
and ad-hoc group applications), and aspect orientation (distributed coordina-
tion among SyD objects with dynamic restructuring of embedded SyD bonds
among coordinating objects). Additionally, it presents a reflection orientation
with inspection, reference decoupling and dynamicity of groups through SyD-
Directory, and adaptation through smart proxy management, real-time tracking
and scheduling of sub-invocations and application level QoS.

The overriding philosophy of SyD has been to be simple and modular, from
middleware design and implementation to application development and exe-
cution. The main goal has been to mask heterogeneity of device, data, lan-
guage/OS, network and mobility for rapid collaborative application develop-
ment. These have been achieved to the following extent: (i) device and data
store through listener, (ii) language and OS through generic remote invocation
semantics, (iii) network by XML vocabulary for all inter-device communica-
tion, (iv) mobility by (a) reference decoupling and replication/proxy through
combined workings of SyD engine, directory service and registrar, (b) tempo-
ral decoupling through asynchronous invocation with various remote invocation
options for mobile clients, and (c) an always connected object view through
persistence/proxy mechanism for mobile hosts. A secondary goal has been to
develop coordination mechanisms among objects to enable rapid ad-hoc appli-
cation development, which has yielded SyD bond artifacts.

SyD’s object model is persistent, is replicated with proxies, and encapsulates
its distribution and replication policies, security, transaction support, etc. The
object interface is generic XML/SOAP based for interoperability. Object refer-
ence is via XML strings dynamically bound through the directory service. Other
aspects are as follows: (i) communication types are both synchronous and asyn-
chronous; (ii) process model - listener is the object server, ensuring registration
of objects and its proxies initially and after each disconnect; (iii) naming - ob-
ject reference is generic XML using global id, id-to-address mapping is dynamic
and location independent; (iv) synchronization - object implements its own syn-
chronization mechanism for transaction support or for locking; SyD bonds are
employed for inter-object coordination to enforce dependencies; (v) replication
- proxy containing actively-managed replica or a functional substitute, object
responsible for synchronization with proxy; used for persistence in connectivity
for mobile objects; coordination bonds can be employed for coordination among
object and its proxies; (vi) fault tolerance - faults/disconnections are supported
through seamless switching between object and its proxies; varying level of trans-
action support and adaptive QoS properties are supported by SyDEngine and its
sub-modules; (vii) security - objects encapsulate their own authentication mech-
anism; SyD relies on underlying network model for communication security.

8 Related Work

In this section we review several related middleware systems for mobile intelligent
devices. Generally, these systems can be classified into P2P-protocol oriented
systems and dynamic distributed applications (e.g. JXTA) or IP-based client-
server applications (Jini, Microsoft .NET, IBM WebSphere Everyplace Suite).
A large body of work in the heterogeneous database integration area has largely
remained in the research domain without any specific products that can be
named.

JXTA [2] is a set of open, generalized P2P protocols that allows any con-
nected device on the network — from cell phone to PDA, from PC to server -
to communicate and to collaborate as peers. Currently, JXTA provides a way of

peer-to-peer communication at the level of socket programming. Proem [8, 7] is
another mobile peer-to-peer platform supports developing and deploying mobile
peer-to-peer applications. Compared to JXTA, Proem is geared more toward
supporting mobile applications characterized by immediate physically proximal
peers. SyD goes further in this arena by focusing on general collaborative appli-
cations involving intensive database operations and complex business logic. In
contrast to Proem, SyD relies on proxies and provides mechanisms for reusing
existing SyD applications and services. Jini [13], a more mature system com-
pared to JXTA, uses Java’s remote method invocation. Jini’s limitations include
the lack of scalability - Jini was originally designed for resource sharing within
groups of about 10 to 100 - and that at least one machine on the network is
required to run a full Java technology-enabled environment. Qualcomm’s Bi-
nary Runtime Environment for Wireless (BREW) allows development of a wide
variety of handset applications that users can download over carrier networks
onto any enabled phone. Microsoft’s .Net is a platform based on Web Services
built using open, Internet-based standards such as XML, SOAP and HTTP.
Communication among .NET Web Services is achieved through SOAP message
passing. IBM WebSphere provides the core software needed to deploy, integrate
and manage e-business applications. Web Sphere Everyplace Suite extends them
to PDA’s and Internet appliances. It supports client-side programming through
WAP and allows the creation of discrete groups of users.

Table 1. SyD Comparison to existing middleware systems

N

N

N

N

N

N

Y

Atomic

Tranx

NNYNYWebSphere

Everyplace

Suite

YYNYYProem

YYNYXJXTA

YNNNYBREW

YNNYNJini

NNNNY.NET compact

framework

YYYYYSyD

Platform

Independence

Disconnection

Tolerated

Workflow

Modeling

Server on

Mobile Host

Mobile

Domain

Middlewares

N

N

N

N

N

N

Y

Atomic

Tranx

NNYNYWebSphere

Everyplace

Suite

YYNYYProem

YYNYXJXTA

YNNNYBREW

YNNYNJini

NNNNY.NET compact

framework

YYYYYSyD

Platform

Independence

Disconnection

Tolerated

Workflow

Modeling

Server on

Mobile Host

Mobile

Domain

Middlewares

SyD supersedes the above technologies in terms of unique features such as ori-
entation on mobile-specific applications, easy application to mobile devices, het-
erogeneity of data, simple middleware API, heterogeneous software/hardware,
etc. Only SyD supports a normal database transaction model. Table 1 summa-
rizes the important differences and similarities between SyD and above major
related technologies.

Among research projects and experimental systems, the ICEBERG Project
at U. C. Berkeley [24] is based on an open and composite service architecture
based on Internet standards for flow routing and agent deployment. Cooltown is
HP’s vision of a technology future where people, places, and things are first class
citizens of the connected world, wired and wireless [6]. The Wireless Messaging
API (WMA) 1.0 extends the J2ME platform by providing application devel-
opers device-independent access to “short message service” and “cell broadcast
service”. MicroChai VM is a Java application environment that allows customers
to download Java applications to mobile intelligent devices.

9 Conclusions

We have described the System on Mobile Devices (SyD) which is the first work-
ing middleware prototype supporting an efficient collaborative application de-
velopment for deployment on a collection of mobile devices. Our prototype also
supports peer-to-peer and server applications. One of the main advantages of
SyD is a modular architecture which hides inherent heterogeneity among devices
(their OS and languages), data stores (their format and access mechanism) and
networks (protocols, wired or wireless) by presenting a uniform and persistent
object view of mobile server applications and data-stores interacting through
XML/SOAP requests and responses.

The paper has demonstrated the systematic and streamlined application de-
velopment and deployment capability of SyD on three representative applications
from disparate domains: a system of mobile fleet vehicles, a system of calendars,
and a travel application.

The device-resident portion of our system has a small code footprint to be
accommodated within mobile devices (76 KB). SyD employs seamless switch-
ing between a hosted application and its stable proxy to tolerate temporary
disconnections and provide persistence.

The ongoing and future work involves porting SyD to devices other than
iPAQs such as Palm Pilots and cell phones, obtaining a pure peer-to-peer ver-
sion, possibly leveraging off JXTA’s directory service, providing more robust
QoS functionalities, and addressing dynamic group security issues.

Acknowledgments: To current and past students who contributed at vari-
ous stages: S. Bhagavati, P. Bhatia, T. Chang, W. Chen, X. Chen, S. Desetty,
B. Gamulkiewicz, J. Gong, J. He, Y. He, P. Jayanthi, W. Johnson, H. Liu, F.
Tan, Y. Tang, and W. Zhong.

References

1. W. M. P. Aalst van der. Workflow patterns. 2003. http://tmitwww.tm.tue.nl/

research/patterns,.
2. D. Brookshier. JXTA: Java P2P Programming. Sams, 2002.
3. Keith W. Edwards, Mark W. Newman, et al. Challenge:: recombinant computing

and the speakeasy approach. In Procs. of the 8th annual Intl. conference on Mobile
computing and networking, pages 279–286, Atlanta, Georgia, USA, 2002.

4. Arthi Hariharan, Sushil K. Prasad, et al. A framework for constraint-based col-
laborative web service applications and a travel application case study. In Intl.
Symposium on Web Services and Applications (ISWS), Las Vegas, June 21-24,
2004.

5. William G. Johnson. Relaxed Transaction Model for Composite Web Services Us-
ing XML. MS thesis, Computer Science Department, Georgia State University,
Atlanta, 2004. http://konya.cs.gsu.edu/∼wjohnson6.

6. T. Kindberg, J. Barton, et al. People, places, things: Web presence for the real
world. In Procs. 3rd Annual Wireless and Mobile Computer Systems and Applica-
tions, page 19, Monterey, Dec, 2000.

7. G. Kortuem. Proem: A peer-to-peer computing platform for mobile ad-hoc net-
works. In Advanced Topic Workshop Middleware for Mobile Computing, Heidel-
berg, Nov 2001.

8. G. Kortuem, J. Schneider, et al. When peer-to-peer comes face-to-face: Collabo-
rative peer-to-peer computing in mobile ad-hoc networks. In First Intl. Conf. on
Peer-to-Peer Computing (P2P2), pages 75–91, Sweden, Aug 2001.

9. Praveen Madiraju, Sushil K. Prasad, et al. An agent module for a system of mobile
devices. In Procs. of the 3rd Intl. Workshop on Agents and Peer-to-Peer Computing
(AP2PC) in conjunction with Third Intl. Joint Conf. on Autonomous Agents and
Multi Agent Systems (AAMAS). LNCS, New York, July, 2004.

10. Vijay Madisetti. SyD: A middleware infrastructure for mobile iAppliance devices.
EE Times Network, Nov 5, 2002.

11. Sun Microsystems. Connected Device Configuration (CDC) and the Foundation
Profile. Technical White Paper, 2001.

12. Sun Microsystems. Connected Limited Device Configuration (CLDC). JSR-000139,
May, 2000.

13. Jan Newmarch. A Programmer’s Guide to Jini Technology. A Press, 2000.

14. Thomas Phan, Lloyd Huang, and Chris Dulan. Integrating mobile wireless devices
into the computational grid. In MobiCom, pages 271 – 278, Atlanta, Sep, 2002.

15. Gian Pietro Picco. µcode: A lightweight and flexible mobile code toolkit. In Mobile
Agents, Procs. of the 2nd Intl. Workshop on Mobile Agents (MA), volume 1477,
pages 160–171. Springer, LNCS, Stuggart, 1998.

16. S. K. Prasad, M. Weeks, et al. Mobile fleet application using SOAP and sys-
tem on devices (SyD) middleware technologies. In Communications, Internet and
Information Technology (CIIT), pages 426–431, St. Thomas, Nov 18-20, 2002.

17. Sushil Prasad, Erdogan Dogdu, et al. Design and implementation of a listener
module for handheld mobile devices. In ACM Southeast Conf., Savannah, Mar
7-8, 2003.

18. Sushil K. Prasad and Janaka Balasooriya. Web coordination bonds: A simple
enhancement to web services infrastructure for effective collaboration. In 37th
Hawaii Intl. Conf. on System Sciences, Big Island, Jan 5-8, 2004.

19. Sushil K. Prasad and Janaka Balasooriya. Web coordination bonds: A simple
and theoretically sound framework for effective collaboration among web services.
Technical report, CS-TR-04-01, Department of Computer Science, Georgia State
University, June, 2004. http://www.cs.gsu.edu/∼cscskp/Pub/PB04TR.pdf.

20. Sushil K. Prasad et al. Implementation of a calendar application based on SyD
coordination links. In 3rd Intl. Workshop Internet Computing and E-Commerce in
conjunction with the 17th Annual Intl. Parallel & Distributed Processing Sympo-
sium (IPDPS), page 242. IEEE Computer Society Press, Nice, April 22-26, 2003.

21. Sushil K. Prasad et al. Enforcing interdependencies and executing transactions
atomically over autonomous mobile data stores using SyD link technology. In
Mobile Wireless Network Workshop held in conjunction with The 23rd Intl. Conf.
on Distributed Computing Systems (ICDCS), pages 803–811, Providence, May.

22. Sushil K. Prasad, V. Madisetti, et al. System on mobile devices (SyD): Kernel
design and implementation. In First Intl. Conf. on Mobile Systems, Applications,
and Services (MobiSys), Poster and Demo Presentation, San Francisco, May 5-8,
2003.

23. Sushil K. Prasad, M. Weeks, et al. Toward an easy programming environment
for implementing mobile applications: A fleet application case study using SyD
middleware. In IEEE Intl Workshop on Web Based Systems and Applications, at
27th Annual Intl. Computational Software and Applications Conf. (COMPSAC),
pages 696 – 703, Dallas, Nov 3-6, 2003.

24. Helen Wang et al. Iceberg: An internet-core network architecture for integrated
communications. In IEEE Personal Communications : Special Issue on IP-based
Mobile Telecommunication Networks, pages 10–19, 2000.

25. Wanxia Xie and S. B. Navathe. Transaction adaptation in system on mobile de-
vices (SyD): Techniques and languages. In Symposium of Database Management
in Wireless Network Environments in the 58th IEEE Vehicular Technology Conf.
(VTC), Orlando, Oct 7-10, 2003.

26. Wanxia Xie, Shamkant B. Navathe, and Sushil K. Prasad. Supporting QoS-aware
transaction in the middleware for a system of mobile devices (SyD). In 1st Intl.
Workshop on Mobile Distributed Computing held in conjunction with The 23rd Intl.
Conf. on Distributed Computing Systems (ICDCS), pages 498–502, Providence,
May 19-22, 2003.

