
Fundamenta Informaticae XX (2016) 1–37 1

DOI 10.3233/FI-2015-0000

IOS Press

SyLVaaS: System Level Formal Verification as a Service∗

Toni Mancini C, Federico Mari, Annalisa Massini, Igor Melatti, Enrico Tronci

Computer Science Department, Sapienza University of Rome, Italy

Abstract. The goal of System Level Formal Verification is to show system correctness notwith-
standing uncontrollable events (disturbances), as for example faults, variations in system parame-
ters, external inputs, etc. This may be achieved with an exhaustive Hardware In the Loop Simulation
based approach, by considering all relevant scenarios in the System Under Verification (SUV) oper-
ational environment.

In this paper, we present SyLVaaS, a Web-based tool enabling Verification as a Service (VaaS).
SyLVaaS implements an assume-guarantee approach to (Hardware In the Loop Simulation based)
System Level Formal Verification.

SyLVaaS takes as input a finite state automaton defining the SUV operational environment and com-
putes, using parallel algorithms deployed in a cluster infrastructure, a set of highly optimised simula-

tion campaigns, which can be executed in an embarrassingly parallel fashion (i.e., with no commu-
nication among the parallel processes) on a set of Simulink instances, using a platform independent

Simulink driver downloadable from the SyLVaaS Web site.

As the actual simulation is carried out at the user premises (e.g., on a private cluster), SyLVaaS allows
full Intellectual Property protection of the SUV model as well as of the SyLVaaS user verification
flow.

The simulation campaigns computed by SyLVaaS randomise the verification order of operational
scenarios and this enables, at anytime during the parallel simulation activity, the estimation of the
completion time and the computation of an upper bound to the Omission Probability, i.e., the prob-
ability that there is a yet-to-be-simulated operational scenario which violates the property under
verification. This information supports graceful degradation in the verification activity.

We show effectiveness of the SyLVaaS algorithms and infrastructure by evaluating the system on case
studies consisting of input operational environments entailing up to 35 641 501 scenarios related to
the system level verification of models from the Simulink distribution (namely, Inverted Pendulum
on a Cart and Fuel Control System).

∗This is an extended and revised version of [1].
CCorresponding author

2 author / short title

Keywords: Verification as a Service; Model Checking; Hybrid Systems; System Level Formal
Verification; Distributed Multi-Core Hardware in the Loop Simulation.

author / short title 3

Contents

1 Introduction 4

1.1 Motivations . 4
1.2 Main Contributions . 5

2 Background 7

2.1 Modelling the SUV . 7
2.2 Modelling the Property to be Verified . 7
2.3 Modelling the SUV Operational Environment . 8
2.4 System Level Formal Verification . 9
2.5 Parallel HILS Based Anytime Random Exhaustive SLFV 10

3 System Level Formal Verification as a Service 10

3.1 Input . 10
3.2 Output . 11
3.3 Web Interface . 11
3.4 How to Use SyLVaaS Output . 13

4 Parallel Generation of Disturbance Traces 14

4.1 Algorithm Overview . 14
4.2 Distributed Trace Labelling . 15
4.3 Orchestrator . 16
4.4 Slaves . 16
4.5 Algorithm Correctness . 17

5 Experiments 21

5.1 SyLVaaS Experimental Deployment . 21
5.2 Case Studies . 21

5.2.1 Inverted Pendulum on a Cart (IPC) . 21
5.2.2 Fuel Control System (FCS) . 24

5.3 Experimental Results . 25
5.3.1 Parallel Disturbance Trace Generation . 25
5.3.2 SyLVaaS Complete Workflow . 27
5.3.3 Download of Simulation Campaigns . 27

6 Related Work 30

7 Conclusions 32

4 author / short title

1. Introduction

A Cyber-Physical System (CPS) consists of interconnected hardware and software subsystems. As a
result, the state of a CPS consists of continuous (e.g., stemming from analog devices) as well as discrete
(e.g., stemming from software or digital devices) components. Accordingly, CPSs are typically modelled
as Hybrid Systems (see, e.g., [2] and citations thereof).

System Level Verification of CPSs has the goal of verifying that the whole (i.e., software + hardware)
system meets the given specifications. Hardware In the Loop Simulation (HILS) is the main workhorse
for system level verification and is supported by Model Based Design tools like Simulink (http://www.
mathworks.com), Modelica (https://www.modelica.org) and VisSim (http://www.vissim.com). In HILS,
the CPS software components read/send values from/to mathematical models (simulation) of the CPS
physical subsystems (e.g., engines, analog circuits, etc.) they interact with. This allows designers to
simulate the whole CPS behaviour on a given simulation scenario (i.e., a sequence of exogenous stimuli,
such as faults, to the system).

Of course, in order to rule out the presence of design errors, one would like to consider all possible
simulation scenarios, thereby aiming for System Level Formal Verification (SLFV). Since CPSs can
be modelled as hybrid systems, one may think of using model checkers for hybrid systems in order to
address SLFV for CPSs. Unfortunately, no model checker for hybrid systems can handle SLFV of actual
CPSs. For this reason, currently HILS is basically the only approach used to carry out system level
verification of CPSs.

1.1. Motivations

System Level Formal Verification (SLFV) is an exhaustive HILS, where all relevant simulation scenarios
are considered. In [3, 4, 5, 6] a methodology has been presented which allows exhaustive HILS. Such a
methodology works as follows.

First, we note that the CPS to be verified (the System Under Verification (SUV)) can be regarded as
a hybrid system whose inputs belong to a finite set of uncontrollable events (disturbances), which model
failures in sensors or actuators, variations in the system parameters, etc.

Second, the SUV is a deterministic system (the typical case for control systems). Nondeterministic
behaviours (such as faults) are modelled with disturbances.

Third, sequences of inputs to the SUV are of bounded length, thus the problem addressed is indeed
bounded SLFV. Accordingly, a simulation scenario is a finite sequence of disturbances.

From the above, it follows that a system (namely, our SUV) is expected to withstand all disturbance
sequences that may arise in its operational environment. Correctness of a system (defined in terms of
safety properties) is thus defined with respect to such admissible disturbance sequences.

Given a high-level model defining the admissible disturbance sequences (disturbance model), the
approach in [3, 4, 5, 6]:

1. Generates the entire set of admissible disturbance sequences from the disturbance model;

2. Evenly splits such a set into k > 0 slices in order to enable parallel verification;

3. Computes (in parallel) an optimised simulation campaign from each slice;

http://www.mathworks.com
http://www.mathworks.com
https://www.modelica.org
http://www.vissim.com

author / short title 5

SyLVaaS cloudUser premises

User cluster

Disturbance model

Pass/Fail 

& omission prob.

…

…

Verification  

engineer

SyLVaaS Web service

Computation of

optimised parallel

simulation

campaigns

http

http

sim. campaigns

SyLVaaS cluster

SyLVaaS driver
driver

D
ri
v
e

r
SUV

simulator

p
ro

p
e

rt
y

D
ri
v
e

r

SUV

simulator

p
ro

p
e

rt
y

D
ri
v
e

r

SUV

simulator

p
ro

p
e

rt
y

Figure 1: SyLVaaS VaaS architecture.

4. Executes (in parallel) the generated simulation campaigns on a set of k independent simulators

(e.g., Simulink or Modelica instances).

A simulation campaign is a sequence of simulation instructions, which exploit the capabilities of
modern simulators to save and restore previously stored simulation states (much as in explicit model
checking). In particular, a simulation campaign consists of the following commands: save a simulation
state, restore a saved simulation state, inject a disturbance, advance the simulation for a given time
length.

As soon as one of the simulators (running the simulation campaign corresponding to a given slice)
finds an error, the whole parallel simulation activity stops, and the disturbance trace which triggered
the error is returned as a counterexample. Also, as the generated optimised simulation campaigns (one
per slice) randomise the verification order of the traces in the input slice, at anytime during the parallel
simulation activity it is possible to compute an upper bound to the Omission Probability (OP), i.e., the
probability that an error exists, but no error has been found so far, and to give a quite accurate estimation
of the completion time.

Algorithms for all the activities described above have been presented in the cited papers. However,
an off-the-shelf tool to effectively support companies working in the CPS business in their everyday SUV
verification activities is not available. To provide such a tool is exactly the purpose of this paper.

1.2. Main Contributions

We present SyLVaaS (see Figure 1), a Web-based service taking as input a disturbance model and effec-
tively computing the set of simulation campaigns to be used for a parallel HILS based SLFV. The main
features of SyLVaaS can be summarised as follows.

6 author / short title

Protection of the SUV Intellectual Property (IP)

HILS based SLFV takes as input three main artefacts: the SUV model, the definition of the property to be
verified and the definition of the SUV operational environment (in terms of a disturbance model). In an
industry setting, both the SUV model and the property to be verified are subject to IP protection, as they
represent the main assets of the company designing the CPS (hence the SUV model). On the other hand,
the definition of the operational environment does require IP protection, as it encodes the uncontrollable
inputs (exogenous stimuli) to the SUV.

SyLVaaS introduces the new Verification as a Service (VaaS) paradigm, allowing verification en-
gineers (SyLVaaS users) to use an external (Web) service (SyLVaaS) to compute the simulation cam-
paigns needed for their HILS based SLFV activities, by fully protecting IP of their models. In particular,
SyLVaaS does not require the SUV model nor the property to be verified, and takes as input only a distur-

bance model, defined as a CMurphi [7] model. Also, disturbances in the disturbance model are defined
in a way fully decoupled from the SUV model, e.g., by means of integers. The actual verification activity
is performed in parallel at the user premises (e.g., on a private cluster) running an arbitrarily large set of
Simulink simulators, using the optimised simulation campaigns computed by SyLVaaS and plugging-in a
Simulink driver downloadable from the SyLVaaS Web site. Before using such a driver, the user must de-
fine a suitable correspondence between the opaque values defining disturbances in the disturbance model
(e.g., integers) and actual assignments to parameters of the SUV. This further contributes to protect IP
of the SUV model, as also such correspondence is kept private.

Protection of the Verification Flow IP

SyLVaaS also protects the user verification flow IP to outsiders. In fact, in case an error is found during
the verification activity (at the user premises), a counterexample is generated. Such a counterexample
can then be used to revise the SUV, thereby producing a new SUV model. At this point, a new SLFV
activity can start. Given that the set of admissible operational scenarios (hence: the disturbance model)
has not changed, there is no need to interact with SyLVaaS again, as the previously computed simulation
campaigns can be reused.

Fast Response Time via Parallel Computation

The operational scenario generation algorithm in [3] is a sequential algorithm, taking about half an hour
(on a desktop PC) to generate a few millions of simulation scenarios. Although this time is negligible
with respect to the whole HILS based SLFV activity (which can take weeks of computation), it becomes
a major bottleneck in a VaaS context, as the one provided by SyLVaaS, since scenario generation is the
most intensive part of the computation carried out on the SyLVaaS side (i.e., generation of optimised
simulation campaigns for parallel HILS, see Figure 1, right).

In order to achieve a fast response time in SyLVaaS, in this paper we present a new parallel algorithm

for the generation of operational scenarios from a disturbance model, and discuss its distributed multi-

core implementation explicitly designed to operate efficiently on a cluster of possibly heterogeneous
machines.

Our new operational scenario generation algorithm consists of an Orchestrator process which gov-
erns the exploration of the (state space of the finite state automaton defined by the) disturbance model
provided by the user, splitting and delegating the work to a battery of available Slaves, whose work load

author / short title 7

is dynamically balanced. Slave processes are independent from each other and communicate only with
the Orchestrator. This minimises coordination overhead.

Experimental Evaluation

We present experimental results on using our parallel algorithm on case studies consisting of disturbance
models for two SUVs (namely, the Inverted Pendulum on a Cart (IPC) and the Fuel Control System (FCS)
in the Simulink distribution) entailing a number of operational scenarios up to 35 641 501.

Our results show that our new parallel algorithm for operational scenario generation scales well with
the number of Slaves. As the operational scenario generation is the most computationally intensive
task in the SyLVaaS workflow, and given that the other steps performed by SyLVaaS (computation of
optimised simulation campaigns) already exploit an embarrassingly parallel algorithm (i.e., an algorithm
with no communication among the processes) from [4], with our new parallel disturbance trace generator
the entire SyLVaaS workflow can benefit of a cluster of machines at the SyLVaaS cloud infrastructure.

2. Background

In this section we give some background notions. Unless otherwise stated, all definitions are based on
[8] and [3, 4, 5, 6] to which we refer the reader for more in-depth details.

In the following, we denote with R, R≥0, R+ and N
+ the sets of, respectively, all real, non-negative

real, strictly positive real, and strictly positive natural numbers, and with Bool = {0, 1} the set of Boolean
values (where 0 means ‘false’ and 1 means ‘true’).

2.1. Modelling the SUV

A System Under Verification (SUV) is modelled as a Discrete Event System (DES), namely a continuous
time Input-State-Output deterministic dynamical system [8] whose inputs are discrete event sequences.
A discrete event sequence is a function u(t) associating to each (continuous) time instant t ∈ R

+ a
disturbance event (or, simply, disturbance). Disturbances, encoded by integers in the interval [0, d] (for
a given d ∈ N

+), represent uncontrollable events (e.g., faults). We use event 0 to represent the event
carrying no disturbance. As no system can withstand an infinite number of disturbances within a finite
time, we require that, in any time interval of finite length, a discrete event sequence u(t) differs from 0
only in a finite number of time points (Figure 2a).

2.2. Modelling the Property to be Verified

The property to be verified is modelled as a continuous time monitor embedded in the SUV (see Fig-
ure 2b), which observes the state of the system and checks whether the property under verification is
satisfied. The output of the monitor (see Figure 2c) is 0 as long as the property under verification is
satisfied and becomes and stays 1 (sustain) as soon as the property fails, thus ensuring that we never miss
a property failure report, even when sampling the monitor output only at discrete time points. The use
of monitors gives us a flexible approach to model the property to be verified. In particular, it is easy to
model bounded safety and bounded liveness properties as monitors.

8 author / short title

SUV
1

0
monitor
outputM

o
n
it
o
r

0

1

2

3

u(t)

t

u(t)

t
(a) (b) (c)

Figure 2: (a) A discrete event sequence (d = 3); (b) Our SUV embedding a monitor; (c) The SUV
monitor output.

2.3. Modelling the SUV Operational Environment

System level verification follows an assume-guarantee approach aimed at showing that the SUV meets
its specification (guarantee) as long as the SUV operational environment behaves as expected (assume).
As we focus on bounded system level verification, we model (Definition 2.2) the SUV operational envi-
ronment as the sequence of disturbances our SUV is expected to withstand within a finite time horizon.
We also bound the time quantum between two consecutive disturbances.

As it is typically infeasible to define the SUV operational environment by explicitly listing all the
admissible disturbance traces, we define it by means of a disturbance model, which is in turn defined as
the language accepted by a suitable automaton, called Disturbance Generator (DG) (see Definition 2.1
and Figure 3a–c).

Definition 2.1. (Disturbance Generator)

A Disturbance Generator (DG) is a tuple D = (Z, d, dist, adm, ZI , ZF) where:

• Z is a finite set of states;

• ZI ⊆ Z and ZF ⊆ Z are the set of, respectively, initial and final states;

• d ∈ N
+ defines the set of disturbance events represented (without loss of generality) with integers

in [0, d], where value 0 represents the event carrying no disturbance;

• dist : Z × [0, d] → Z is a (deterministic transition) function mapping each state/disturbance pair
(z, e) to a next state dist(z, e);

• adm : Z × [0, d] → Bool is a (guard) function defining (the characteristic function of) the set of
disturbances admissible (i.e., that may occur) in a given state. �

Note that we model simultaneous disturbances as one single event (i.e., one disturbance).
Definition 2.2 defines disturbance traces (simulation scenarios) as paths from initial to final states in

a DG.

Definition 2.2. (Disturbance Trace)

Let D = (Z, d, dist, adm, ZI , ZF) be a DG.

(a) A disturbance path of length h for D is a computation path in D with h disturbances (transitions).
Formally, it is a sequence z0, d0, z1, d1, . . . , zh−1, dh−1, zh, where z0 ∈ ZI , zh ∈ ZF and, for all
0 ≤ i < h, zi ∈ Z, di ∈ [0, d], adm(zi, di) = 1, and zi+1 = dist(zi, di).

author / short title 9

0

1

2

3
Disturbance

Generator

Disturbance

Model

disturb. traces

0 2 1 0 0 1

0 2 1 0 3 0

0 2 3 0 1 0

…

…

…

…
τ

t(a) (b) (c) (d)

Figure 3: (a) Disturbance model; (b) Disturbance generator; (c) Generated sequence of disturbance traces
(d = 3, h = 6); (d) The discrete event sequence associated to the trace in the black rectangle in part (c),
given time quantum τ .

(b) A disturbance trace of length h for D is a sequence δ = d0, . . . , dh−1 of h disturbances such that
there exists a disturbance path z0, d0, z1, d1, . . . , zh−1, dh−1, zh for D. We denote with δ(j) the
j-th disturbance occurring in trace δ (0 ≤ j < h). �

Given τ ∈ R
+ (time quantum), to a disturbance trace δ for D we can univocally associate a discrete

event sequence uτδ , defined as follows: for all t ∈ R
≥0, if there exists j ∈ [0, h− 1] such that t = τj then

uτδ (t) = δ(j), else uτδ (t) = 0 (no disturbance).
Thus a disturbance trace δ defines an operational scenario (namely, uτδ) for our SUV. Figure 3d

shows the discrete event sequence associated to a disturbance trace. We represent our SUV operational

environment as a finite set of disturbance traces ∆ = {δ0, . . . , δn−1} for D, since U τ
∆ = {uτδ0 , . . . ,

uτδn−1
} (for a given τ ∈ R

+) defines the operational scenarios our SUV should withstand. Note that, by
taking h large enough (as in Bounded Model Checking (BMC)) and τ small enough (to faithfully model
our SUV operational scenarios), we can achieve any desired precision. On such considerations rests the
effectiveness of the approach.

2.4. System Level Formal Verification

Definition 2.3 formalises our bounded System Level Formal Verification problem.

Definition 2.3. A System Level Formal Verification (SLFV) problem is a tuple (H,D, τ, h) where: H is
a DES with an embedded monitor modelling our SUV, D is a DG modelling a set of disturbance traces
∆ over horizon h ∈ N

+, and τ ∈ R
+ is a time quantum.

The answer to SLFV problem is FAIL if there exists a disturbance trace δ in ∆ such that the SUV
monitor output at time τh is 1, when H is given uτδ (the discrete event sequence associated to δ given
time quantum τ) as input, and PASS otherwise. In case of FAIL , the disturbance trace raising the error
is returned as a counterexample. �

Note that, notwithstanding the fact that the number of states of our SUV is infinite and we are in a
continuous time setting, to answer a SLFV problem we only need to check a finite number of disturbance
traces. This is because we are bounding: (a) our time horizon to T = τh, and (b) the set of time points
at which disturbances can take place, by taking τ as the time quantum among disturbance events.

10 author / short title

2.5. Parallel HILS Based Anytime Random Exhaustive SLFV

We follow a black-box parallel approach to SLFV, where the DESH defining our SUV (plus the property
to be verified) is defined using the modelling language of a suitable simulator (namely, MatLab and
Stateflow for Simulink). We compute the answer to a SLFV problem (H,D, τ, h) by simulating each

disturbance trace δ in the operational environment ∆, thus performing an exhaustive (with respect to ∆)
Hardware In the Loop Simulation (HILS).

In order to enable parallel simulation over k ∈ N
+ machines available in the (private) user cluster,

we evenly partition the sequence of disturbance traces ∆ into k ∈ N
+ sequences of disturbance traces

∆0, . . . , ∆k−1. We then use such k slices to compute, in parallel on the SyLVaaS cluster, k highly
optimised simulation campaigns, which can be executed in parallel using k independent simulators,
each one running (on a different core of the user cluster) a model for H. The answer to the SLFV
problem is FAIL if one of the simulation campaigns raises the simulator output function to 1 (in this
case the disturbance trace δ which raised the error is returned as a counterexample). The answer is PASS

otherwise.
Each simulator accepts four basic commands: store, load, free, run. Command store(l) stores in

memory the current state of the simulator and labels with l such a state. Command load(l) loads into the
simulator the stored state labelled with l. Command free(l) removes from the memory the state labelled
with l. Command run(e, t) (with e ∈ [0, d] and t ∈ R

+) injects disturbance e and then advances the
simulation of time t. A simulation campaign is thus a sequence of simulator commands.

Using commands store and load we can avoid revisiting simulation states (much as in explicit model
checking). Using command free we can remove from the memory states that will never be needed in the
remaining part of the simulation campaign. This is important, since each state may require many KB of
memory (150–300 KB in the case studies presented in this paper).

Also, as each computed simulation campaign verifies the disturbance traces in the input slice in a
random order, it is possible to compute at anytime during the simulation process (along the lines of [6]),
an estimation of the simulation completion time and an upper bound to the Omission Probability (OP),
i.e., the probability that there is a yet-to-be-simulated disturbance trace which violates the property under
verification. This information enables the verification engineer to evaluate if it is worth to continue the
simulation activity, or instead stop it since the degree of assurance attained can be considered adequate
for the application at hand (graceful degradation).

3. System Level Formal Verification as a Service

In this section we describe SyLVaaS in terms of input and output, and describe how to use the system
output.

3.1. Input

SyLVaaS requires two inputs:

1. An integer k > 0 describing the number of computational cores available on the user side for
parallel execution of simulation campaigns (hence, for parallel verification);

author / short title 11

2. A disturbance model defining the operational environment, i.e., the set of disturbance traces the
System Under Verification (SUV) should withstand, along with a bounded horizon h.

As it is typically infeasible for a verification engineer to define a SUV operational environment
by explicitly listing all its disturbance traces, SyLVaaS takes as input a disturbance model defining a
Disturbance Generator (DG) written in the high-level language accepted by the CMurphi [7] model
checker. The following example clarifies this point.

Example 3.1. Assume that a SyLVaaS user wants to verify a SUV with two sensors, A and B, which
may fail (without repair) at times multiple of 1 second. Fault of any sensor might occur only if the other
one did not fail, or failed more than 2 seconds before. The CMurphi description for the DG modelling
such operational environment is shown in Figure 4, where the verification time horizon is 7 seconds. �

3.2. Output

From the value of k and the input disturbance model, SyLVaaS produces k simulation campaigns, which
can be executed in parallel on the user premises over k independent simulators, in an embarrassing

parallel fashion (i.e., with no communication among processes).
Each simulation campaign verifies, in a highly optimised way, a disjoint and equally-sized portion

of the disturbance traces entailed by the input disturbance model. Conversely, all disturbance traces
entailed by the disturbance model are covered by exactly one simulation campaign. This guarantees
that the System Level Formal Verification (SLFV) process is both exhaustive (with respect to the set of
disturbance traces entailed by the disturbance model) and non-redundant. Also, the verification order
of the disturbance traces covered by each simulation campaign is randomised. This, according to [6],
enables the computation of an upper bound to the Omission Probability (OP) at anytime during the
parallel simulation.

The k simulation campaigns are returned to the user via the Web interface, together with an abstract

Simulink driver. Such a driver is a MatLab script that reads and executes a SyLVaaS-generated simulation
campaign, by sending simulation commands to Simulink. It is “abstract” as it must be plugged into the
SUV Simulink model and configured at the user premises (see Figure 1 and Section 3.4).

3.3. Web Interface

The Web interface of SyLVaaS is hosted at http://mclab.di.uniroma1.it/sylvaas. It consists of four main
pages:

1. A standard login page.

2. A user console page (accessible after login, see Figure 5) showing all current, pending, running and
completed user jobs. For each job, the console shows the job unique id, the corresponding input
and its the status (pending, running, completed or deleted). By selecting a job id, it is possible to
see and download the corresponding input. If the job is completed, it is also possible to download
the final k simulation campaigns.

3. A page to create a new job request, where the user must fill a form with the required input: the
disturbance model, the horizon for the disturbance model and the number of computational cores
available on the user side for parallel execution of simulation campaigns (see Section 3.1).

http://mclab.di.uniroma1.it/sylvaas

12 author / short title

const h : 7; −− horizon

const A : 1; −− id of sensor A

const B : 2; −− id of sensor B

−− Global variables

var

t : 1 .. h + 1; −− time

d : array [A .. B] of 0 .. h; −− disturbance times

−− Initial state (only one in this example)

startstate

begin

t := 1;
d[A] := 0;
d[B] := 0;

end;

−− Rules: if the rule guard is true in the current state, then modify the current state as specified

−− in the rule body. Rules are fired nondeterministically.

rule "ok" −− rule for no disturbance

t <= h ==> −− it is always possible to have no disturbances

t := t + 1; −− time is incremented

rule "A fails" −− rule for failing of A

−− this encodes the conditions in Example 3.1
t <= h & d[A] = 0 & (d[B] = 0 | (t−d[B] > 2)) ==>

begin

d[A] := t; −− failing of A has occurred at time t

t := t + 1;
end;

rule "B fails"
... −− omitted, as it is similar to the rule above

−− The last state of each trace must fulfil this condition

finalstate (t = h + 1);

Figure 4: CMurphi code for the DG described in Example 3.1.

author / short title 13

Figure 5: SyLVaaS user console page.

4. A tools page, where the generic driver can be downloaded, together with examples showing how
to customise “abstract” Simulink drivers.

When a job is completed, the user is warned by an email. He can then proceed to the download of
the simulation campaigns.

3.4. How to Use SyLVaaS Output

Given the output downloaded by SyLVaaS, the verification engineer, in order to actually verify the SUV
via exhaustive Hardware In the Loop Simulation (HILS), customises and plugs the abstract Simulink
driver into the SUV Simulink model. This task is very easy and consists in properly filling the template

files received by SyLVaaS as part of the abstract driver. Such files define: the SUV model, the SUV
property to be verified (as a monitor module), the interface between the driver and the SUV, and the
mapping between each disturbance (in the CMurphi disturbance model) and its counterpart in the SUV
model.

At this point, the k downloaded simulation campaigns can be executed in parallel on k independent
simulators. Given the randomisation of the verification order of the disturbance traces within each sim-
ulation campaign, at anytime during the simulation process, when ratios done1, done2, . . . , donek (with
donei ∈ [0, 1] for all i) of the traces covered by each simulation campaign have been verified successfully
(i.e., no error has been raised so far), the Omission Probability (OP), i.e., the probability that a future
simulation command raises an error, is upper bounded by: 1−mini∈[1,k] (donei) (see [6]).

14 author / short title

disturbance trace 

parallel  

generation

orchestrator
disturbance

model

sim. campaign

comp. & opt.
slice 1 sim. campaign 1

embarrassing parallelism  

scheduled on all avail. cores
slave S-1

slave S

slave 1

slave 2

s
lic

in
g

…

sim. campaign

comp. & opt.
slice k sim. campaign k

trace

files

ordered

store

76
5

4
3

2
1

overall S+1 cores

Figure 6: SyLVaaS workflow and deployment.

4. Parallel Generation of Disturbance Traces

As reported in [3], the most computationally intensive step of the workflow for the computation of
simulation campaigns is disturbance trace generation starting from the user disturbance model. This
task is performed in [3] using a modified version of the CMurphi model checker. As reported there, on
a disturbance model entailing about 4 million traces (the same referred to as D1

FCS in Section 5), trace
generation takes about 30 minutes, while the subsequent step (i.e., computation of simulation campaigns)
takes about 1 minute, as it can be massively parallelised [5]. The time to generate disturbance traces is
anyway negligible if we consider also the time to carry out (in parallel) the actual simulation, which may
take days.

However, in a Verification as a Service (VaaS) context as that of SyLVaaS, the simulation campaigns
are actually executed at the user premises, and disturbance trace generation from the user disturbance
model would become the most time-dominant step in the SyLVaaS workflow.

To this end, to achieve fast response time in SyLVaaS, here we present a new parallel algorithm

for distributed trace generation. As a result, with this new algorithm the whole SyLVaaS workflow
(i.e., generation of disturbance traces and computation of optimised simulation campaigns) can now take
benefit from the availability of a cluster in the SyLVaaS cloud infrastructure (see Figure 6).

4.1. Algorithm Overview

Our new parallel algorithm for trace generation has been explicitly designed to operate efficiently on a
cluster of possibly heterogeneous machines, and consists on a single Orchestrator process and a number
S ∈ N

+ of Slaves. The Orchestrator governs the exploration of the state space of the Disturbance
Generator (DG) defined by the disturbance model provided by the user, splitting and delegating the work
to the Slaves. To avoid communication as well as data structures shared among the Slaves, the DG state
space is regarded as a set of trees, one for each DG initial state. This does not pose any termination
problem, as we are looking for disturbance traces of bounded length h.

The Orchestrator performs a Depth-First Search (DFS) up to bounded level (depth) L < h and
delegates the exploration of the subtrees rooted at each node at depth L to an idle slave, see Figure 7.
The exploration of each subtree by a Slave s ∈ [1, S] is again carried out by DFS, and is called a
computation bunch. Each computation bunch b executed from Slave s gives as output a sequence of
traces which is appended to the sequence of traces ∆s generated by s. Sequence ∆s contains a subset

author / short title 15

level 0

level h

level L

o
rc

h
e
st

ra
to

r
sl

a
ve

s
computation bunches

Figure 7: Parallel trace generation.

of the disturbance traces entailed by the model. The sets (∆1, . . . ,∆S) of traces produced by all Slaves
form a partition of the entire set of admissible disturbance traces ∆.

The simplicity of the algorithm minimises network communication and coordination among pro-
cesses. In particular, Slave processes are independent from each other and communicate only with the
Orchestrator.

4.2. Distributed Trace Labelling

Both the Orchestrator and the Slaves work in DFS mode, and hence each computation bunch produces a
sequence of disturbance traces in lexicographic order. Each disturbance trace prefix identifies a simulator
state, and we associate a unique label to all prefixes of disturbance traces (Definition 4.1).

Definition 4.1. (Labelling of Disturbance Traces)

Let D be a DG defining d ∈ N
+ disturbances, and Λ be a countably infinite set of labels. A labelling

function over [0, d] is an injective map λ from finite sequences of values in [0, d] (including the empty
sequence) to labels in Λ.

Let δ = d0, . . . , dh−1 be a disturbance trace for D. The labelling of δ (according to λ) is δλ =
l0, d0, . . . , lh−1, dh−1, lh where, for all 0 ≤ i ≤ h, li = λ(d0, . . . , di−1). �

As a consequence of Definition 4.1, prefixes of disturbance sequences (d̂0, . . . , d̂p−1) common to
multiple disturbance traces are followed by the same label l̂p = λ(d̂0, . . . , d̂p−1). Labels identifying
prefixes common to multiple disturbance traces are essential in the efficient computation of highly opti-
mised simulation campaigns, as they represent the only simulator states which might be worth storing,
as they may be needed later (see, for more details, the optimiser in [4]). Note that, given that both the
Orchestrator and the Slaves run in DFS mode, disturbance traces can be labelled at no additional compu-

tational cost during generation. In particular, the Orchestrator labels trace prefixes up to level L, while
Slaves label trace prefixes longer than L.

Our parallel algorithm uses the following labelling schema, which results in an overall injective map
λ for disturbance prefix labels while avoiding communication among the processes. Let S ∈ N

+ be
the number of available Slaves. We set Λ = N

+. The Orchestrator associates, to each new disturbance

16 author / short title

prefix, a label extracted from the set {l | l ∈ N
+, l = j(S + 1) + 1, j ≥ 0}, according to their natural

order. Analogously, each Slave s ∈ [1, S] associates, to each new disturbance prefix, a label extracted
from the set {l | l ∈ N

+, l = j(S + 1) + s + 1, j ≥ 0}, So, for example, if S = 2, the Orchestrator
uses labels from set {1, 4, 7, . . .}, Slave 1 uses labels from {2, 5, 8, . . .}, and Slave 2 uses labels from
{3, 6, 9, . . .}. Note that, as these sets of labels are disjoint, the resulting overall map is injective.

4.3. Orchestrator

The Orchestrator process, whose pseudocode is shown as Algorithm 1, governs the exploration of the
DG state space, by performing a DFS up to a bounded depth (level) 1 ≤ L ≤ h− 1 (whose initial value
is given as a parameter), also assigning unique labels (see variable λ) to disturbance trace prefixes. When
level L is reached, the Orchestrator delegates the exploration of the subtree rooted at the current state to
an idle Slave, forwarding to it the (labelled) prefix (containing exactly L disturbances) of the disturbance
trace computed so far. Each such delegated task (computation bunch) is assigned a sequential id (see
variable b). As the exploration is done by the Orchestrator using DFS, the disturbance sequences passed
to the Slaves are generated in lexicographic order.

In order to keep a high efficiency of the whole parallel process, the value of L is dynamically and
adaptively adjusted by the Orchestrator during exploration, depending on how much the Orchestrator is
waiting to find an idle slave. Let w be the time the Orchestrator had to wait, in the last iteration, be-
fore finding an idle Slave, and let t be the overall time spent by the Orchestrator in the last iteration. If
w
t
> maxW (value of maxW is given as a parameter), the Orchestrator increases value of L by one.

This means that, from now on, the Orchestrator will perform DFS one level deeper and will delegate to
the Slaves smaller computation bunches (i.e., the exploration of smaller subtrees), as it had evidence that
Slaves are overloaded. Conversely, if w

t
< minW (value of minW is given as a parameter), the Orches-

trator decreases value of L by one, hence starts delegating to the Slaves larger computation bunches (i.e.,
the exploration of larger subtrees), as it has evidence that Slaves are, on average, underloaded.

Together with the fact that the faster Slaves will, on average, execute a higher number of computation
bunches than slower Slaves, the above described dynamic and adaptive adjustment of value L provides
a simple yet very effective load balancing mechanism among the Orchestrator and the Slaves, which
avoids any communication overhead: the communication among the processes is minimal and consists
only of the set of one-way messages that the Orchestrator sends to the Slaves to delegate computation
bunches to them.

4.4. Slaves

Slave processes follow Algorithm 2. Each Slave waits for an Orchestrator request to perform a compu-
tation bunch. Each such request consists in tuple (z0, b, δ

λ|lL), where z0 ∈ ZI is one of the initial states
of D, b is the computation bunch id, and δλ|lL is a labelled prefix of disturbance traces (containing L
disturbances), as computed by the Orchestrator.

Upon reception of (z0, b, δλ|lL), a Slave s ∈ [1, S]: (i) reaches the root of the subtree which is in
charge to explore by following δλ|lL , (ii) starts its own DFS from there, hence limiting its attention to
that subtree.

Admissible (complete) disturbance traces found (which have δλ|lL as a prefix) are appended to the
output file ∆s of Slave s and annotated with the id b of the current computation bunch. During ex-

author / short title 17

ploration, each Slave also carries out trace labelling using its own (disjoint) set of labels (see variable
λ).

4.5. Algorithm Correctness

Theorem 4.2 shows correctness of our parallel algorithm for generation of disturbance traces.

Theorem 4.2. (Algorithm Correctness)

LetD be a DG, h, S ∈ N
+, and λ be a labelling function according to Definition 4.1. Let ∆ be the entire

set of disturbance traces forD with horizon h, and let ∆s be the (ordered) sequence of disturbance traces
generated by Slave process s ∈ [1, S] of our algorithm. The following holds:

(a) (∆1, . . . ,∆S) form a partition of ∆ (when ignoring the trace order within each ∆s and the anno-
tations regarding the computation bunch ids);

(b) for all s ∈ [1, S], disturbance traces in ∆s are lexicographically ordered (when ignoring their
associated computation bunch ids);

(c) for all s, s′ ∈ [1, S] and for all b, b′ ∈ N
+ such that b < b′, each trace in ∆s generated during (hence

annotated with) computation bunch b is lexicographically less than all traces in ∆s′ generated
during (hence annotated with) b′. �

Proof:

To prove (a), let us temporarily ignore the dynamic and adaptive adjustment of value L (lines 28–30 of
Algorithm 1). In this case, the Orchestrator expands the computation path tree of DG D using a standard
Depth-First Search (DFS) approach up to (fixed) depth level L (storing in stack the search frontier).
From level L the DFS expansion of each subtree (and the relevant frontier) is delegated to a Slave. As
L < h, every disturbance trace in ∆ (which is an admissible sequence of h disturbances) is generated by
exactly one Slave. Thus, (∆1, . . . ,∆S) form a partition of ∆.

This fact is preserved under the dynamic and adaptive adjustment of value L (between 1 and h− 1).
To see why, assume that at some iteration, the Orchestrator pops-out from stack record (z, d̂, j). If, at
line 28, adjL 6= 0, we must have that adm(z, d̂) is true and j + 1 = L, i.e., the Orchestrator has just
delegated the expansion of the subtree rooted at ẑ = dist(z, d̂) to a Slave. Also, note that if adjL 6= 0,
then adjL = ±1.

When adjL > 0 (and, hence, 1), L is incremented by one. This does not have any impact on the
completeness of the algorithm: at the next iteration of the algorithm, when another record is popped
out from the stack, the Orchestrator will simply go one more level deeper in the tree before delegating
subtrees to the slaves.

On the other hand, decrementing L could in principle make a disturbance trace being generated in two
different computation bunches. However, when adjL < 0 (and, hence, −1), the Orchestrator decrements
L by one (i.e., sets it to value j) only if d̂ = d (see line 28 of Algorithm 1), i.e., only if the Orchestrator
has processed the last disturbance possibly applicable to state z. This implies that all records in stack

will be of the form (z′, d′, j′), such that if adm(z′, d′), then dist(z′, d′) (the state reached by applying
disturbance d′ to z′) is different from and not an ancestor nor a descendant of z. This impedes that two
subtrees whose exploration is delegated to the Slaves have a common disturbance sequence.

18 author / short title

Proof of (b) follows directly from the observation that both the Orchestrator and the Slaves apply,
to each state, disturbances in lexicographic order, as both algorithms push them into the stack in reverse

lexicographic order.
Proof of (c) follows from the previous point and from the observation that sequence of values of the

Orchestrator variable b (holding the computation bunch ids) is monotonically increasing. ⊓⊔

Theorem 4.2 shows that, from ∆1, . . . ,∆S , we can easily produce k ∈ N
+ lexicographically ordered

slices (slice1, . . . , slicek) of the same length (where k ∈ N
+ is the number of parallel cores available at

the user side for parallel simulation), as required by [5].
Once the k slices have been produced, they are independently given to k instances of the optimiser

of [3], which are responsible to generate k output simulation campaigns for them, also randomising the
trace verification order, along the lines of [6]. This enables Omission Probability (OP) computation at
anytime during the simulation activity at the user premises (see Section 2) as well as completion time
estimation. As already shown in [5], the generation of the k simulation campaigns can be scheduled on
all the cores available to SyLVaaS in an embarrassingly parallel fashion.

author / short title 19

1 function Orchestrator(D, h, L, S,minW ,maxW)
Input: D = (Z, d, dist, adm, ZI , ZF), a DG
Input: h, bounded length for disturbance traces
Input: L, level of the search tree below which exploration is delegated to slaves
Input: S, number of available slaves
Input: minW , minimum percentage of wall-clock time to be spent in waiting for a slave
Input: maxW , maximum percentage of wall-clock time to be spent in waiting for a slave

2 b← 1; // id of the next comp. bunch

3 let δλ be an array of variables l0, d0, l1, d1, . . . , lh;
4 adjL← 0;
5 λ← 1; // next label to be used

6 foreach z0 ∈ ZI do

7 stack← empty stack;
8 for d′ from d downto 0 do

9 push(stack, (z0, d′, 0)); // (state, dist. to try, depth)

10 l0 ← λ; λ← λ+ S + 1;
11 while stack is not empty do

12 (z, d̂, j)← pop(stack);

13 if adm(z, d̂) then

14 ẑ ← dist(z, d̂); // ẑ is at depth j + 1

15 dj ← d̂;
16 lj+1 ← λ; λ← λ+ S + 1;
17 if j + 1 < L then

18 for d′ from d downto 0 do push(stack, (ẑ, d′, j + 1)) ;
19 else

// delegate computation bunch

20 wait for an idle slave s;
21 w ← time elapsed while waiting;
22 t← time elapsed in the last iteration;
23 if w

t
> maxW and adjL ≤ 0 then adjL++ ;

24 else if w
t
< minW and adjL = 0 then adjL-- ;

25 let δλ|lL be the prefix of δλ up to label lL;
26 send (z0, b, δ

λ|lL) to slave s;
27 b++;

// Possibly adjust value of L

28 if adjL > 0 or (adjL < 0 and d̂ = d) then

29 L← max(1, min(h− 1, L+ adjL));
30 adjL← 0;
31 wait until all slaves become idle

Algorithm 1: Orchestrator.

20 author / short title

1 function Slave(D, h, L, S, s)
Input: D = (Z, d, dist, adm, ZI , ZF), a DG
Input: h, bounded length for disturbance traces
Input: L, level of the search tree below which exploration is delegated to slaves
Input: S, number of available slaves
Input: s ∈ [1, S], id of this slave

2 λ← s+ 1; // next label to be used

3 ∆s ← empty sequence; // output disturbance traces

4 while true do

// slave is idle

5 wait for a message (z0, b, δ
λ|lL) from Orchestrator;

// δλ|lL = l0, d0, l1, d1, . . . , lL
6 let δ̃λ be an array of variables l̃0, d̃0, l̃1, d̃1, . . . , l̃L, d̃L, . . . , l̃h;

// start computation bunch b
7 stack← empty stack;
8 z ← z0;

// follow δλ|lL to reach root of requested subtree & copy it into δ̃λ

9 for j ← 0 to L− 1 do

10 l̃j ← lj ; d̃j ← dj ; z ← dist(z, d̃j);

11 l̃L ← lL;
// start DFS from there

12 for d′ from d downto 0 do

13 push(stack, (z, d′,L))
14 while stack is not empty do

15 (z, d̂, j)← pop(stack);

16 if adm(z, d̂) then

17 ẑ ← dist(z, d̂); // ẑ is at depth j + 1

18 d̃j ← d̂;

19 l̃j+1 ← λ; λ← λ+ S + 1;
20 if j < h then

21 for d′ from d downto 0 do push(stack, (ẑ, d′, j + 1)) ;

22 else if z ∈ ZF then append (b, δ̃λ) to ∆s ;

Algorithm 2: Slave.

author / short title 21

5. Experiments

In this section we experimentally evaluate SyLVaaS, and in particular our new parallel disturbance gen-
eration algorithm of Section 4 and the cloud deployment of the overall Verification as a Service (VaaS)
infrastructure.

5.1. SyLVaaS Experimental Deployment

We deployed SyLVaaS on a cluster of Linux heterogeneous machines, whose configurations are shown
in Table 1. We used a maximum number of 89 CPU cores (7 out of the 8 available cores for machines
of categories A and B, 15 out of the 16 available cores for machines of category C, and 1 out of the 2
available cores for the machine of category Z). The single Orchestrator process was always run on the
single used core of the single machine of category Z.

The SyLVaaS web interface application resides on a yet another host (a tiny virtual machine), external
to the cluster and directly connected to the Internet.

5.2. Case Studies

We experiment with case studies consisting of disturbance models related to the System Level Formal
Verification (SLFV) of two system models included in the Simulink distribution, namely the Inverted
Pendulum on a Cart (IPC) and the Fuel Control System (FCS). For each system model, we define two
disturbance models, whose properties are summarised in Table 2.

5.2.1. Inverted Pendulum on a Cart (IPC)

The IPC is a control loop system where the controlled system is an inverted pendulum installed on a cart
(see Figure 8)

The IPC controller (actually a control software) senses the angular position θ of the pendulum, and
computes the force F to be applied to the cart to move it left or right along the x axis. The goal is to
keep the pendulum in its upright (vertical) unstable position. The physical constraint between the cart
and the pendulum gives that both the cart and the pendulum have one degree of freedom each (x and θ,
respectively).

The controlled system consists of the cart and the pendulum, whereas the controller consists of the
control software computing F from the plant outputs (x and θ). Accordingly, our overall System Under
Verification (SUV) model consists of the controlled system and the controller, whose Simulink block
diagram is shown in the upper box of Figure 9. Overall, the Simulink block diagram consists of 52
blocks.

The system level property that we verify is that after 2 seconds the pendulum is in upright position,
i.e., angle θ is always between [−0.1, 0.1]. The monitor checking for this property is shown in the lower
box of Figure 9.

We introduce disturbances by injecting irregularities in the cart rail. We model such irregularities
with a modification on the cart weight m with respect to its nominal value of 0.455 kg. For this, we
define three disturbances representing normal rail operation (m = 0.455 kg), abnormal rail operation
(m = 1.455 kg), and stressed rail operation (m = 2.455 kg).

22 author / short title

machine Type and num. CPUs total num. overall machine

id of CPUs frequency of cores RAM category

0 1 × Intel(R) Celeron(R) 2.27 GHz 2 4 GB Z

1 2 × Intel(R) Xeon(R) 2.83 GHz 8 8 GB A

2 2 × Intel(R) Xeon(R) 2.83 GHz 8 8 GB A

3 2 × Intel(R) Xeon(R) 2.66 GHz 8 32 GB B

4 2 × Intel(R) Xeon(R) 2.66 GHz 8 32 GB B

5 2 × Intel(R) Xeon(R) 2.27 GHz 16 24 GB C

6 2 × Intel(R) Xeon(R) 2.27 GHz 16 24 GB C

7 2 × Intel(R) Xeon(R) 2.27 GHz 16 24 GB C

8 2 × Intel(R) Xeon(R) 2.27 GHz 16 24 GB C

Table 1: Configuration of our cluster machines.

Figure 8: Inverted Pendulum on a Cart (IPC) (from mathworks.com).

mathworks.com

author / short title 23

Inverted Pendulum on a Cart

Monitor for property "After 2 seconds angle is in [-0.1, 0.1]"

Figure 9: Simulink block diagram for Inverted Pendulum on a Cart (from mathworks.com) with an
embedded property monitor.

mathworks.com

24 author / short title

We consider two disturbance models for the IPC, D1
IPC and D2

IPC. Model D1
IPC has a horizon of

h = 90 and defines 3 208 276 disturbance traces. Model D2
IPC is defined extending D1

IPC with more
complex operational scenarios and defines 35 641 501 disturbance traces over a horizon of h = 200. For
both models we set τ (quantum between disturbances) to 0.1 sec.

Relevant properties of disturbance models D1
IPC and D2

IPC are shown in Table 2. A more detailed
description of such models is not relevant for the evaluation of our experiments below. We only point
out that defining such disturbance models and encoding them in the language offered by CMurphi (and
taken as input by SyLVaaS) would take about 1 or 2 days of an average verification engineer with some
knowledge in formal methods.

5.2.2. Fuel Control System (FCS)

The FCS is a controller for a fault tolerant gasoline engine, which has also been used as a case study
in [9, 10, 11, 12, 3, 5]).

The FCS has four sensors: throttle angle, speed, EGO (measuring the residual oxygen present in
the exhaust gas) and MAP (manifold absolute pressure). The goal of the control system is to maintain
the air-fuel ratio (the ratio between the air mass flow rate pumped from the intake manifold and the fuel
mass flow rate injected at the valves) close to the stoichiometric ratio of 14.6, which represents a good
compromise between power, fuel economy, and emissions.

From the sensor measurements, the FCS estimates the mixture ratio and provides feedback to the
closed-loop control, yielding an increase or a decrease of the fuel rate.

The FCS sensors are subject to faults (disturbances), and the whole control system can tolerate single
sensor faults. In particular, if a sensor fault is detected, the FCS changes its control law by operating the
engine with a higher fuel rate to compensate. In case two or more sensors fail, the FCS shuts down the
engine, as the air-fuel ratio cannot be controlled.

The control logic of the FCS is implemented by six automata, each one with a number of states
ranging from two to five. The signal flow is further subdivided into three subsystems, which exhibit
several different Simulink block types, involving arithmetic, lookup tables, integrators, filters and inter-
polation [13]. Overall, the Simulink block diagram consists of 246 blocks.

We verify one of the system level specifications for such a model, namely: the fuel_air model variable
is never 0 for more than one second. Accordingly, our SUV consists of the Simulink FCS model along
with a monitor for the property under verification (such a model is shown as Figure 10).

We consider two disturbance models for the FCS, D1
FCS and D2

FCS. Model D1
FCS has a horizon of

h = 100 and defines 4 023 955 disturbance traces. Model D2
FCS is defined extending D1

FCS with more
complex operational scenarios and defines 12 948 712 disturbance traces over a horizon of h = 200. For
both models we set τ (quantum between disturbances) to 1 sec.

Relevant properties of disturbance models D1
FCS and D2

FCS are shown in Table 2. A more detailed
description of such models is not relevant for the evaluation of our experiments below and can be found
in [3]. Again, we point out that defining such disturbance models and encoding them in the language
offered by CMurphi (and taken as input by SyLVaaS) would take about 1 or 2 days of an average verifi-
cation engineer with some knowledge in formal methods.

author / short title 25

Figure 10: Simulink/Stateflow representation of the Fuel Control System (from mathworks.com) with an
embedded property monitor.

5.3. Experimental Results

In this section we outline our experimental results on the four disturbance models presented in Sec-
tion 5.2.

5.3.1. Parallel Disturbance Trace Generation

Table 4 shows the time needed by SyLVaaS to generate the disturbance traces entailed by our four dis-
turbance models, when using a varying number S of parallel Slaves.

As specified in Section 4.3, the Orchestrator algorithm requires in input the following items:

• The disturbance model D and the horizon h. We use all four disturbance models listed in Table 2,
with the corresponding horizons.

• The starting value for the level (depth) L to which the Orchestrator bounds its search and triggers
a Slave. We set this value to h

2 after preliminary experiments.

• The number of Slaves S. We set this value so that our cluster is used to the 33%, 66% and 100%
of its total available number of cores. To neutralise biases due to the heterogeneity of our cluster
machines, we kept fixed the ratios between the different types of cores listed in Table 1. The

mathworks.com

26 author / short title

SUV dist. model time quantum (τ) horizon (h) #traces

IPC D1
IPC 0.1 sec 90 3 208 276

IPC D2
IPC 0.05 sec 200 35 641 501

FCS D1
FCS 1 sec 100 4 023 955

FCS D2
FCS 1 sec 200 12 948 712

Table 2: Disturbance models.

Slaves (S) # cores per category

A B C

1 – weighted average –

23 4 4 15

51 8 8 35

88 14 14 60

Table 3: Allocation of the Slaves among our cluster computational cores.

chosen allocation of the Slaves on the available cores for the various experimental deployments is
shown in Table 3.

• minW ,maxW as the minimum and maximum percentage of wall-clock time to be spent waiting
for a Slave. After preliminary experiments, we set these values to 1% and 60% respectively.

In order evaluate the scalability of our parallel disturbance trace generation algorithm with the num-
ber S of Slaves, we have also run the algorithm with only one Slave (sequential algorithm, S = 1). In
order to neutralise biases due to the heterogeneity of our cluster machines, we have performed 3 runs of
the sequential algorithm, with the single Slave running on a core of a machine of category A, B and C.
We then computed the sequential time as the weighted average of these three running times, where the
weights are the ratios of the number of cores available for the execution of a Slave on machines of each
category. Namely: ∑

c∈{A,B,C}

ratio(c)× seq_time(c)

where ratio(c) is the ratio of the overall cores of category c ∈ {A,B,C} available for Slaves execution on
machines of category c (i.e., 14/88, 14/88 and 60/88 for categories A, B and C respectively –remember
that we use up to n− 1 cores on a machine with n cores), and seq_time(c) is the time of our sequential
algorithm in which the single Slave was run on a core of a machine of category c (the Orchestrator always
runs on the single available core of category Z).

author / short title 27

For each disturbance model and each value for S, Table 4 reports the overall time for generating the
whole set of disturbance traces (columns “time”), the number of computation bunches executed by the
algorithm as well as speedup and efficiency with respect to the execution time of the sequential algorithm
(the rows in Table 4 referring to S = 1).

As usual in the evaluation of parallel algorithms, for each value of S, the speedup is defined as t1/tS ,
where t1 and tS are, respectively, the execution times of our disturbance trace generation algorithm when
using 1 (sequential algorithm) and S parallel Slaves. For each value of S, the efficiency is computed as
the ratio between the speedup and S.

As a result, efficiency is never below 75%, and it is often above 80%, showing that our parallel
disturbance trace generation algorithm scales well with the number of available Slaves. The observed
lack of efficiency, mostly due to network delays, is typical in a cluster setting. To this end, we note that
high-performance parallel simulation typically has efficiency values in the range 40%–80% (see, e.g.,
[14]). Accordingly, an efficiency of about 75%–80% is to be considered state-of-the-art.

Finally, Figure 11 shows how value of L (delegation level, i.e., the depth of the computation path tree
at which the Orchestrator delegates the exploration to an available Slave) evolves for our case studies.
Namely, such plots show how L/h (on the y-axis) varies as a function of the completion time percentage
(on the x-axis), for each of the possible values of S. As a result, we have that L, in our case studies, tends
to decrease as the completion time increases. This is due to the fact that, on average, our disturbance
models are “left-unbalanced”, in that admissible disturbance traces lie more frequently in the left part of
the computation path tree.

Hence, in our case studies, the average time spent by a Slave in completing a computation bunch de-
creases during time due to pruning. To this end we remind that the exploration is done in lexicographic

order, as this simplifies trace labelling and the forthcoming computation of optimised simulation cam-
paigns, see [5].

Of course, the actual time evolution of value L strongly depends on the structure of the disturbance
model at hand. What is important here is that the Orchestrator effectively mitigates any bias during
exploration by quickly reacting to any observed unbalanced workload among Slaves.

5.3.2. SyLVaaS Complete Workflow

Table 5 reports the overall SyLVaaS response time (summing up trace generation, splitting, and simula-
tion campaign optimisation times, column “overall time”), for each disturbance model and each value
for k. Results in Table 5 have been obtained using S = 88 Slaves during trace generation and 89 cores
to compute the k simulation campaigns (thus, on average, each core computed k/89 campaigns).

5.3.3. Download of Simulation Campaigns

SyLVaaS stores simulation campaigns computed as above in .zip archives which are then downloaded by
the user. In our experiments, the size of such files is up to the order of a few Gigabytes. Hence, their
download into the user cluster can be done seamlessly over a standard broad-band Internet connection.

28 author / short title

Slaves (S) time (h:m:s) speedup efficiency

1 0:10:35 1.00 × 100.00%

23 0:0:32 19.37 × 84.00%

51 0:0:14 45.01 × 88.00%

88 0:0:9 70.25 × 80.00%

(a) Inverted Pendulum on a Cart (IPC), disturbance model D1
IPC

Slaves (S) time (h:m:s) speedup efficiency

1 4:25:52 1.00 × 100.00%

23 0:14:14 18.67 × 81.00%

51 0:6:5 43.68 × 86.00%

88 0:4:0 66.22 × 75.00%

(b) Inverted Pendulum on a Cart (IPC), disturbance model D2
IPC

Slaves (S) time (h:m:s) speedup efficiency

1 0:33:14 1.00 × 100.00%

23 0:1:34 21.06 × 92.00%

51 0:0:41 48.64 × 95.00%

88 0:0:26 75.39 × 86.00%

(c) Fuel Control System (FCS), disturbance model D1
FCS

Slaves (S) time (h:m:s) speedup efficiency

1 4:33:24 1.00 × 100.00%

23 0:13:13 20.68 × 90.00%

51 0:5:52 46.57 × 91.00%

88 0:4:7 66.23 × 75.00%

(d) Fuel Control System (FCS), disturbance model D2
FCS

Table 4: Parallel generation of disturbance traces: completion time, speedup and efficiency.

author / short title 29

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

De
le

ga
tio

n
le

ve
l p

er
ce

nt
ag

e

Completion time percentage

23 slaves
51 slaves
88 slaves

(a) Disturbance model D1
IPC

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

De
le

ga
tio

n
le

ve
l p

er
ce

nt
ag

e

Completion time percentage

23 slaves
51 slaves
88 slaves

(b) Disturbance model D2
IPC

Inverted Pendulum on a Cart (IPC)

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

De
le

ga
tio

n
le

ve
l p

er
ce

nt
ag

e

Completion time percentage

23 slaves
51 slaves
88 slaves

(c) Disturbance model D1
FCS

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

De
le

ga
tio

n
le

ve
l p

er
ce

nt
ag

e

Completion time percentage

23 slaves
51 slaves
88 slaves

(d) Disturbance model D2
FCS

Fuel Control System (FCS)

Figure 11: Parallel generation of disturbance traces: time evolution of delegation level L.

30 author / short title

slices (k) overall time (h:m:s)

128 0:8:0

256 0:12:53

512 0:21:42

(a) IPC, disturbance model D1
IPC

slices (k) overall time (h:m:s)

128 7:9:52

256 6:6:18

512 7:25:17

(b) IPC, disturbance model D2
IPC

slices (k) overall time (h:m:s)

128 0:11:55

256 0:15:37

512 0:24:45

(c) FCS, disturbance model D1
FCS

slices (k) overall time (h:m:s)

128 1:30:41

256 2:8:2

512 3:59:46

(d) FCS, disturbance model D2
FCS

Table 5: SyLVaaS time of the entire workflow.

6. Related Work

The papers closest to ours are [3, 4, 5, 6], where the algorithms underlying SyLVaaS workflow are pre-
sented. The work in [3, 4, 5, 6] presents a parallel approach to System Level Formal Verification (SLFV)
for Cyber-Physical Systems (CPSs) (i.e., for the class of hybrid systems handled by a simulator like
Simulink). This is done by effectively decoupling the computation of the set of system runs (operational
scenarios) to be exercised during the Hardware In the Loop Simulation (HILS) based SLFV from their
actual simulation. In this paper we complement such results by focusing on parallelising the most inten-
sive computation step within the SyLVaaS workflow, namely the generation of the set of all operational
scenarios.

System Verification as a Service (also known as Model Checking in the Cloud) is still in its infancy.
In [15], it is argued that ideas may be borrowed from workflow modelling, management and analysis of
business processes. In [16] a Map-Reduce algorithm for verification of CTL formulas on a cloud system
is proposed. Moreover, panels to discuss on how to set up a reliable Verification as a Service (VaaS) tool
are ongoing in major conferences (see, e.g., recent proceedings of the International Conference on Formal
Methods in Computer-Aided Design, FMCAD). However, none of such works propose an implemented
and available tool, with the features described in Section 1.2. We also point out that “verification as a
service” is sometimes used to refer to a consulting service, where a company rents formal verification
experts to another company in order to carry out a certain verification activity. Of course this is not
our meaning for VaaS and we note that such a consultant based approach does not provide the same
level of Intellectual Property (IP) protection as our SyLVaaS based approach. Furthermore, our proposed
approach is fully automatic and does not require formal verification experts. Thus, to the best of our
knowledge, SyLVaaS is the first tool providing a genuine Verification as a Service (VaaS) approach.

HILS-based SLFV has been addressed in [17]. However the approach presented in [17] rests on

author / short title 31

closely coupling a simulator (SIMSAT) with a model checker (CMurphi, [7]). Accordingly, such an
approach cannot be directly used to develop the VaaS approach described here.

Formal verification of Simulink models has been widely investigated, examples are in [18, 19, 20].
Such methods however focus on discrete time models (e.g., Stateflow or Simulink restricted to discrete
time operators) with small domain variables. Therefore they are well suited to analyse critical subsys-
tems, but cannot handle complex system level verification tasks (e.g., our case studies). This is indeed
the motivation for the development of statistical model checking methods as those in [9, 10], as well as
for the exhaustive HILS based approach in [3]. Simulation based best-effort falsification methods able
to handle any Simulink/Stateflow model have been investigated in [21, 22]. Annotated Stateflow mod-
els comprising both discrete and continuous variables can be analysed with simulation based tools like
C2E2 [23]. We differ from C2E2 by providing a black-box approach that, furthermore, does not require
model annotations.

Symbolic approaches (typically based on polyhedra or SMT solving) to hybrid system verification
have also been widely investigated. Although they are not black-box approaches, for sake of complete-
ness we provide a glimpse on some of the available tools in such a context. Timed automata (i.e., hybrid
systems whose continuous variables have time derivative equal to 1) can be analysed with UPPAAL [24].
Linear hybrid automata (see, e.g., [25]) can be analysed with HyTech [26]. Piecewise affine hybrid sys-
tems can be analysed with symbolic model checkers like PHAVer [27] and SpaceEx [28, 29, 30]. A
symbolic model checker capable of handling nonlinear hybrid systems is presented in [31]. Currently,
with respect to our proposed approach, the main limitations of symbolic approaches are: (i) they are not
black-box, and (ii) they can handle only hybrid systems of moderate size (whereas our approach does not
depend on the size of the system to be verified). Finally, within such a symbolic context, we note that,
while we use automata to define the set of scenarios to be simulated, temporal logic could also be used
to that end. An example is in [32].

Random model checking is a formal verification approach closely related to our setting. A random
model checker provides, at any time during the verification process, an upper bound to the Omission
Probability (OP). Upon detection of an error, a random model checker stops returning a counterexample.
Random model checking algorithms have been investigated, e.g., in [33, 34, 35, 36]. The main differ-
ences with respect to our approach are the following. (i) All random model checkers generate simulation
scenarios using a sort of Monte-Carlo based random walk. As a result, unlike our algorithm, none of
them is exhaustive (within a finite time horizon). (ii) Random model checkers (see, e.g., [34]) assume
availability of a lower bound to the probability of selecting (with a random-walk) an error trace. Of
course, being exhaustive, we do not have any such assumption.

Probabilistic (see, e.g., [37, 38]) and, more specifically, simulation-based statistical model checking

approaches (see, e.g., [39, 40, 41, 33, 42, 10, 9, 43, 44, 45]) are closely related to our work. In particular,
[10] addresses statistical model checking of Simulink models and presents experimental results on the
Simulink Fuel Control System we use here. The main differences between such approaches and ours are
the following. (i) Probabilistic model checking is a white-box approach (a model is available), whereas
we are in a black-box setting (only a simulator is available). Thus, only simulation-based statistical
model checking approaches can be used in our context. (ii) Statistical model checking is not exhaustive
(within a finite time horizon), whereas we are. (iii) Both probabilistic and statistical model checking use
a stochastic model for the System Under Verification (SUV), whereas in our setting the SUV is determin-
istic and disturbances are nondeterministic (i.e., we are looking for the worst case scenario). (iv) None
of the available simulation-based statistical model checking approaches addresses the problem of the op-

32 author / short title

timisation of the simulation campaigns, which is an essential step to make our parallel exhaustive HILS
based model checking viable.

Synergies between simulation and formal methods have been also widely investigated in digital hard-
ware verification. Examples are in [46, 47, 48, 49] and citations thereof. The main differences between
the above approaches and ours are: (i) they focus on finite state systems whereas we focus on infi-
nite state systems (namely, hybrid systems); (ii) they are white-box (requiring availability of the system
model) whereas we are black-box. As for hybrid systems, synergies between explicit and symbolic model
checking methods have been investigated in [50, 51, 52, 53, 54, 55, 56, 57] in the context of automatic
synthesis of controllers for discrete time linear hybrid systems.

Parallel algorithms for explicit state exploration have been widely investigated. Examples are in
[58, 59, 60, 61, 62, 63]. The main difference with our approach is that all the above works focus on
parallelising the state space exploration engine by devising techniques to minimise locking of the visited
state hash table. Conversely, we leave unchanged the state space exploration engine (the simulator in
our context), split the set of simulation scenarios into equal size subsets to be simulated on different
processors, and stop verification as soon as one of such processors finds an error, thereby enabling an
embarrassing parallel approach.

7. Conclusions

We have presented SyLVaaS, a Web-based software-as-a-service tool for HILS-based System Level For-
mal Verification (SLFV). Such a tool allows verification engineers to obtain from a Web service the most
important part of their HILS campaigns, i.e. a set of simulation campaigns to exercise the System Under
Verification (SUV) on all the relevant operational scenarios (disturbance traces).

As the simulation campaigns are executed at the user premises, SyLVaaS provides full Intellectual
Property (IP) protection for both the SUV model, the property to be verified, and the user verification
flow. The simulation may be carried out in parallel on a user cluster whose machines have Simulink
installed.

To achieve a short response time and increase the quality of service provided by SyLVaaS, we also
proposed a new algorithm to parallelise the most computationally intensive part of the SyLVaaS work-
flow, i.e., the generation of disturbance traces. As the other step performed by SyLVaaS (computation
of optimised simulation campaigns) already exploits an embarrassingly parallel algorithm, with our new
parallel disturbance trace generator the entire SyLVaaS workflow can benefit of a cluster of machines at
the SyLVaaS cloud infrastructure.

To the best of our knowledge, SyLVaaS is the first Web-based software-as-a-service tool for HILS-
based SLFV.

Acknowledgements

This research has received funding from the EU Seventh Framework Programme (FP7/2007-2013) under
grant agreements n. 317761 (SmartHG) and n. 600773 (PAEON).

author / short title 33

References

[1] Mancini T, Mari F, Massini A, Melatti I, Tronci E. SyLVaaS: System Level Formal Verification as a Service.
In: Proceedings of 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP 2015). IEEE; 2015. p. 476–483.

[2] Alur R. Formal Verification of Hybrid Systems. In: Proceedings of 11th International Conference on Em-
bedded Software (EMSOFT 2011). ACM; 2011. p. 273–278. doi:10.1145/2038642.2038685.

[3] Mancini T, Mari F, Massini A, Melatti I, Merli F, Tronci E. System Level Formal Verification via Model
Checking Driven Simulation. In: Proceedings of 25th International Conference on Computer Aided Ver-
ification (CAV 2013). vol. 8044 of Lecture Notes in Computer Science. Springer; 2013. p. 296–312.
doi:10.1007/978-3-642-39799-8_21.

[4] Mancini T, Mari F, Massini A, Melatti I, Tronci E. Anytime System Level Verification via Random Exhaus-
tive Hardware In The Loop Simulation. In: Proceedings of 17th Euromicro Conference on Digital System
Design (DSD 2014). IEEE; 2014. p. 236–245.

[5] Mancini T, Mari F, Massini A, Melatti I, Tronci E. System Level Formal Verification via Distributed
Multi-Core Hardware in the Loop Simulation. In: Proceedings of 22nd Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP 2014). IEEE; 2014. p. 734–742.
doi:10.1109/PDP.2014.32.

[6] Mancini T, Mari F, Massini A, Melatti I, Tronci E. Anytime System Level Verification via Parallel Ran-
dom Exhaustive Hardware in the Loop Simulation. Microprocessors and Microsystems. 2016;41:12–28.
doi:10.1016/j.micpro.2015.10.010.

[7] Della Penna G, Intrigila B, Melatti I, Tronci E, Venturini Zilli M. Exploiting Transition Locality in Automatic
Verification of Finite State Concurrent Systems. International Journal on Software Tools for Technology
Transfer. 2004;6(4):320–341. doi:10.1007/s10009-004-0149-6.

[8] Sontag ED. Mathematical Control Theory: Deterministic Finite Dimensional Systems (2nd Ed.). Springer;
1998.

[9] Clarke EM, Donzé A, Legay A. On Simulation-Based Probabilistic Model Checking of Mixed-Analog Cir-
cuits. Formal Methods in System Design. 2010;36(2):97–113. doi:10.1007/s10703-009-0076-y.

[10] Zuliani P, Platzer A, Clarke EM. Bayesian Statistical Model Checking with Application to Stateflow/Simulink
Verification. Formal Methods in System Design. 2013;43(2):338–367. doi:10.1007/s10703-013-0195-3.

[11] Kim YJ, Kim M. Hybrid Statistical Model Checking Technique for Reliable Safety Critical Systems. In:
Proceedings of 23rd IEEE International Symposium on Software Reliability Engineering. IEEE; 2012. p.
51–60.

[12] Kim YJ, Choi O, Kim M, Baik J, Kim TH. Validating Software Reliability Early through Statistical Model
Checking. IEEE Software. 2013;30(3):35–41. doi:10.1109/MS.2013.24.

[13] Schrammel P, Kroening D, Brain M, Martins R, Teige T, Bienmüller T. Incremental Bounded Model Check-
ing for Embedded Software (Extended Version). CoRR. 2014;abs/1409.5872.

[14] Phillips JC, Sun Y, Jain N, Bohm EJ, Kalé LV. Mapping to Irregular Torus Topologies and Other Techniques
for Petascale Biomolecular Simulation. In: Proceedings of International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2014). IEEE; 2014. p. 81–91.

[15] Schaefer I, Sauer T. Towards Verification as a Service. In: Eternal Systems. vol. 255 of Communications in
Computer and Information Science. Springer; 2012. p. 16–24. doi:10.1007/978-3-642-28033-7_2.

34 author / short title

[16] Bellettini C, Camilli M, Capra L, Monga M. Distributed CTL Model Checking in the Cloud. CoRR.
2013;abs/1310.6670.

[17] Verzino G, Cavaliere F, Mari F, Melatti I, Minei G, Salvo I, et al. Model Checking Driven Simula-
tion of Sat Procedures. In: 12th International Conference on Space Operations (SpaceOps 2012); 2012.
doi:10.2514/6.2012-1275611.

[18] Tripakis S, Sofronis C, Caspi P, Curic A. Translating Discrete-Time Simulink to Lustre. ACM Transactions
on Embedded Computing Systems. 2005;4(4):779–818. doi:10.1145/1113830.1113834.

[19] Meenakshi B, Bhatnagar A, Roy S. Tool for Translating Simulink Models into Input Language of a Model
Checker. In: Proceedings of 8th International Conference on Formal Engineering Methods (ICFEM 2006).
Springer; 2006. p. 606–620. doi:10.1007/11901433_33.

[20] Whalen MW, Cofer DD, Miller SP, Krogh BH, Storm W. Integration of Formal Analysis into a Model-Based
Software Development Process. In: Proceedings of 12th International Workshop on Formal Methods for
Industrial Critical Systems (FMICS 2007). vol. 4916 of Lecture Notes in Computer Science. Springer; 2007.
p. 68–84. doi:10.1007/978-3-540-79707-4_7.

[21] Abbas H, Fainekos G, Sankaranarayanan S, Ivančić F, Gupta A. Probabilistic Temporal Logic Falsification
of Cyber-Physical Systems. ACM Transactions on Embedded Computing Systems. 2013;12(2s):95:1–95:30.
doi:10.1145/2465787.2465797.

[22] Zutshi A, Sankaranarayanan S, Deshmukh JV, Jin X. Symbolic-Numeric Reachability Analysis of Closed-
Loop Control Software. In: Proceedings of 19th ACM International Conference on Hybrid Systems: Com-
putation and Control (HSCC 2016). ACM; 2016. p. 135–144.

[23] Duggirala PS, Mitra S, Viswanathan M, Potok M. C2E2: A Verification Tool for Stateflow Models. In:
Proceedings of 21st International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2015). vol. 9035 of Lecture Notes in Computer Science. Springer; 2015. p. 68–82.
doi:10.1007/978-3-662-46681-0_5.

[24] Bengtsson J, Larsen K, Larsson F, Pettersson P, Yi W. UPPAAL — A Tool Suite for Automatic Verification
of Real-Time Systems. In: Proceedings of Hybrid Systems III: Verification and Control. vol. 1066 of Lecture
Notes in Computer Science. Springer; 1996. p. 232–243. doi:10.1007/BFb0020949.

[25] Alur R, Courcoubetis C, Halbwachs N, Henzinger TA, Ho PH, Nicollin X, et al. The Algorithmic Analysis
of Hybrid Systems. Theoretical Computer Science. 1995;138(1):3–34. doi:10.1016/0304-3975(94)00202-T.

[26] Henzinger TA, Ho PH, Wong-toi H. HyTech: A Model Checker for Hybrid Systems. International Journal
on Software Tools for Technology Transfer. 1997;1:460–463.

[27] Frehse G. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. International Journal on
Software Tools for Technology Transfer. 2008;10(3):263–279. doi:10.1007/s10009-007-0062-x.

[28] Frehse G, Le Guernic C, Donzé A, Cotton S, Ray R, Lebeltel O, et al. SpaceEx: Scalable Verification of Hy-
brid Systems. In: Proceedings of 23rd International Conference on Computer Aided Verification (CAV 2011).
vol. 6806 of Lecture Notes in Computer Science. Springer; 2011. p. 379–395.

[29] Cimatti A, Mover S, Tonetta S. SMT-Based Scenario Verification for Hybrid Systems. Formal Methods in
System Design. 2013;42(1):46–66. doi:10.1007/s10703-012-0158-0.

[30] Cimatti A, Griggio A, Mover S, Tonetta S. HyComp: An SMT-Based Model Checker for Hybrid Systems.
In: Proceedings of 21st International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2015). vol. 9035 of Lecture Notes in Computer Science. Springer; 2015. p. 52–67.
doi:10.1007/978-3-662-46681-0_4.

author / short title 35

[31] Bak S, Bogomolov S, Henzinger TA, Johnson TT, Prakash P. Scalable Static Hybridization Methods for
Analysis of Nonlinear Systems. In: Proceedings of 19th ACM International Conference on Hybrid Systems:
Computation and Control (HSCC 2016). ACM; 2016. p. 155–164. doi:10.1145/2883817.2883837.

[32] Cimatti A, Roveri M, Tonetta S. HRELTL. Information and Computation. 2015;245(C):54–71.
doi:10.1016/j.ic.2015.06.006.

[33] Sen K, Viswanathan M, Agha G. On Statistical Model Checking of Stochastic Systems. In: Proceedings of
17th International Conference on Computer Aided Verification (CAV 2005). vol. 3576 of Lecture Notes in
Computer Science. Springer; 2005. p. 266–280.

[34] Grosu R, Smolka SA. Monte Carlo Model Checking. In: Proceedings of 11th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS 2005). vol. 3440 of Lecture
Notes in Computer Science. Springer; 2005. p. 271–286. doi:10.1007/978-3-540-31980-1_18.

[35] Tronci E, Della Penna G, Intrigila B, Venturini Zilli M. A Probabilistic Approach to Automatic Verification of
Concurrent Systems. In: Proceedings of 8th Asia-Pacific Software Engineering Conference (APSEC 2001).
IEEE; 2001. p. 317–324. doi:10.1109/APSEC.2001.991495.

[36] Sivaraj H, Gopalakrishnan G. Random Walk Based Heuristic Algorithms for Distributed Memory Model
Checking. Electronic Notes in Theoretical Computer Science. 2003;89(1):51–67. doi:10.1016/S1571-
0661(05)80096-9.

[37] Della Penna G, Intrigila B, Melatti I, Tronci E, Venturini Zilli M. Finite Horizon Analysis of Markov Chains
with the Murphi Verifier. International Journal on Software Tools for Technology Transfer. 2006;8(4–5):397–
409. doi:10.1007/s10009-005-0216-7.

[38] Jansen DN, Katoen JP, Oldenkamp M, Stoelinga MIA, Zapreev IS. How Fast and Fat Is Your Probabilistic
Model Checker? An Experimental Performance Comparison. In: Proceedings of Hardware and Software:
Verification and Testing, 3rd International Haifa Verification Conference (HVC 2007). vol. 4899 of Lecture
Notes in Computer Science. Springer; 2008. p. 69–85.

[39] Younes HLS, Simmons RG. Probabilistic Verification of Discrete Event Systems Using Acceptance Sam-
pling. In: Proceedings of 14th International Conference on Computer Aided Verification (CAV 2002). vol.
2404 of Lecture Notes in Computer Science. Springer; 2002. p. 223–235. doi:10.1007/3-540-45657-0_17.

[40] Younes HLS. Ymer: A Statistical Model Checker. In: Proceedings of 17th International Conference on
Computer Aided Verification (CAV 2005). vol. 3576 of Lecture Notes in Computer Science. Springer; 2005.
p. 429–433. doi:10.1007/11513988_43.

[41] Younes HLS. Probabilistic Verification for “Black-Box” Systems. In: Proceedings of 17th International
Conference on Computer Aided Verification (CAV 2005). vol. 3576 of Lecture Notes in Computer Science.
Springer; 2005. p. 253–265. doi:10.1007/11513988_25.

[42] Younes HLS, Kwiatkowska MZ, Norman G, Parker D. Numerical vs. Statistical Probabilistic Model
Checking. International Journal on Software Tools for Technology Transfer. 2006;8(3):216–228.
doi:10.1007/s10009-005-0187-8.

[43] David A, Larsen KG, Legay A, Mikučionis M, Wang Z. Time for Statistical Model Checking of Real-Time
Systems. In: Proceedings of 23rd International Conference on Computer Aided Verification (CAV 2011).
vol. 6806 of Lecture Notes in Computer Science. Springer; 2011. p. 349–355.

[44] Tronci E, Mancini T, Salvo I, Sinisi S, Mari F, Melatti I, et al. Patient-Specific Models from Inter-Patient Bi-
ological Models and Clinical Records. In: Proceedings of 14th International Conference on Formal Methods
in Computer-Aided Design (FMCAD 2014). IEEE; 2014. p. 207–214.

36 author / short title

[45] Mancini T, Mari F, Melatti I, Salvo I, Tronci E, Gruber J, et al. Demand-Aware Price Policy Synthesis and
Verification Services for Smart Grids. In: Proceedings of 2014 IEEE International Conference on Smart Grid
Communications (SmartGridComm 2014). IEEE; 2014. p. 794–799.

[46] Yang CH, Dill DL. Validation with Guided Search of the State Space. In: Proceedings of 35th Conference
on Design Automation (DAC 1998). ACM; 1998. p. 599–604. doi:10.1145/277044.277201.

[47] Ho PH, Shiple T, Harer K, Kukula J, Damiano R, Bertacco V, et al. Smart Simulation using Collaborative
Formal and Simulation Engines. In: Proceedings of 2000 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD 2000). IEEE; 2000. p. 120–126.

[48] Nanshi K, Somenzi F. Guiding Simulation with Increasingly Refined Abstract Traces. In: Proceedings of 43rd
Conference on Design Automation (DAC 2006). ACM; 2006. p. 737–742. doi:10.1145/1146909.1147097.

[49] De Paula FM, Hu AJ. An Effective Guidance Strategy for Abstraction-Guided Simulation. In: Proceedings of
44th Conference on Design Automation (DAC 2007). ACM; 2007. p. 63–68. doi:10.1145/1278480.1278498.

[50] Mari F, Melatti I, Salvo I, Tronci E. Model Based Synthesis of Control Software from System Level Formal
Specifications. ACM Transactions on Software Engineering and Methodology. 2014;23(1):1–42.

[51] Mari F, Melatti I, Salvo I, Tronci E. Undecidability of Quantized State Feedback Control for Discrete
Time Linear Hybrid Systems. In: Proceedings of 9th International Colloquium on Theoretical Aspects of
Computing (ICTAC 2012). vol. 7521 of Lecture Notes in Computer Science. Springer; 2012. p. 243–258.
doi:10.1007/978-3-642-32943-2_19.

[52] Alimguzhin V, Mari F, Melatti I, Salvo I, Tronci E. On Model Based Synthesis of Embedded Control Soft-
ware. In: Proceedings of 12th International Conference on Embedded Software (EMSOFT 2012). ACM;
2012. p. 227–236. doi:10.1145/2380356.2380398.

[53] Alimguzhin V, Mari F, Melatti I, Salvo I, Tronci E. Automatic Control Software Synthesis for Quantized Dis-
crete Time Hybrid Systems. In: Proceedings of 51th IEEE Conference on Decision and Control (CDC 2012).
IEEE; 2012. p. 6120–6125. doi:10.1109/CDC.2012.6426260.

[54] Alimguzhin V, Mari F, Melatti I, Salvo I, Tronci E. On-the-Fly Control Software Synthesis. In: Proceedings
of 20th International SPIN Symposium on Model Checking of Software (SPIN 2013). vol. 7976 of Lecture
Notes in Computer Science. Springer; 2013. p. 61–80. doi:10.1007/978-3-642-39176-7_5.

[55] Alimguzhin V, Mari F, Melatti I, Salvo I, Tronci E. A Map-Reduce Parallel Approach to Automatic Synthesis
of Control Software. In: Proceedings of 20th International SPIN Symposium on Model Checking of Software
(SPIN 2013). vol. 7976 of Lecture Notes in Computer Science. Springer; 2013. p. 43–60. doi:10.1007/978-
3-642-39176-7_4.

[56] Mari F, Melatti I, Salvo I, Tronci E. Synthesis of Quantized Feedback Control Software for Discrete Time
Linear Hybrid Systems. In: Proceedings of 22nd International Conference on Computer Aided Verification
(CAV 2010). vol. 6174 of Lecture Notes in Computer Science. Springer; 2010. p. 180–195. doi:10.1007/978-
3-642-14295-6_20.

[57] Della Penna G, Intrigila B, Tronci E, Venturini Zilli M. Synchronized Regular Expressions. Acta Informatica.
2003;39(1):31–70.

[58] Stern U, Dill DL. Parallelizing the Murphi Verifier. Formal Methods in System Design. 2001;18(2):117–129.
doi:10.1023/A:1008771324652.

[59] Barnat J, Brim L, Černá I, Moravec P, Ročkai P, Šimeček P. DiVinE: a Tool for Distributed Verification.
In: Proceedings of 18th International Conference on Computer Aided Verification (CAV 2006). vol. 4144 of
Lecture Notes in Computer Science. Springer; 2006. p. 278–281. doi:10.1007/11817963_26.

author / short title 37

[60] Melatti I, Palmer R, Sawaya G, Yang Y, Kirby RM, Gopalakrishnan G. Parallel and Distributed Model
Checking in Eddy. International Journal on Software Tools for Technology Transfer. 2009;11(1):13–25.
doi:10.1007/s10009-008-0094-x.

[61] Bingham B, Bingham J, De Paula FM, Erickson J, Singh G, Reitblatt M. Industrial Strength Distributed
Explicit State Model Checking. In: Proceedings of 9th International Workshop on Parallel and Distributed
Methods in Verification and 2nd International Workshop on High Performance Computational Systems Biol-
ogy (PDMC-HIBI 2010). IEEE; 2010. p. 28–36. doi:10.1109/PDMC-HiBi.2010.13.

[62] Laarman A, van de Pol J, Weber M. Boosting Multi-Core Reachability Performance with Shared Hash
Tables. In: Proceedings of 10th International Conference on Formal Methods in Computer-Aided Design
(FMCAD 2010). IEEE; 2010. p. 247–255.

[63] Holzmann GJ. Parallelizing the SPIN Model Checker. In: Proceedings of 19th International SPIN Sym-
posium on Model Checking of Software (SPIN 2012). vol. 7385 of Lecture Notes in Computer Science.
Springer; 2012. p. 155–171. doi:10.1007/978-3-642-31759-0_12.

	Introduction
	Motivations
	Main Contributions

	Background
	Modelling the SUV
	Modelling the Property to be Verified
	Modelling the SUV Operational Environment
	System Level Formal Verification
	Parallel HILS Based Anytime Random Exhaustive SLFV

	System Level Formal Verification as a Service
	Input
	Output
	Web Interface
	How to Use SyLVaaS Output

	Parallel Generation of Disturbance Traces
	Algorithm Overview
	Distributed Trace Labelling
	Orchestrator
	Slaves
	Algorithm Correctness

	Experiments
	SyLVaaS Experimental Deployment
	Case Studies
	Inverted Pendulum on a Cart (IPC)
	Fuel Control System (FCS)

	Experimental Results
	Parallel Disturbance Trace Generation
	SyLVaaS Complete Workflow
	Download of Simulation Campaigns

	Related Work
	Conclusions

