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Abstract

Lactic acid bacteria (LAB) are well recognized beneficial host-associated members of the microbiota of humans and animals.
Yet LAB-associations of invertebrates have been poorly characterized and their functions remain obscure. Here we show
that honeybees possess an abundant, diverse and ancient LAB microbiota in their honey crop with beneficial effects for bee
health, defending them against microbial threats. Our studies of LAB in all extant honeybee species plus related apid bees
reveal one of the largest collections of novel species from the genera Lactobacillus and Bifidobacterium ever discovered
within a single insect and suggest a long (.80 mya) history of association. Bee associated microbiotas highlight
Lactobacillus kunkeei as the dominant LAB member. Those showing potent antimicrobial properties are acquired by callow
honey bee workers from nestmates and maintained within the crop in biofilms, though beekeeping management practices
can negatively impact this microbiota. Prophylactic practices that enhance LAB, or supplementary feeding of LAB, may serve
in integrated approaches to sustainable pollinator service provision. We anticipate this microbiota will become central to
studies on honeybee health, including colony collapse disorder, and act as an exemplar case of insect-microbe symbiosis.
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Introduction

Symbiosis is common in nature, in which symbionts as

commensals or mutualists evolved to benefit each other. Culture-

independent studies of the human microbiota identified recently a

complex symbiotic environment with more than 1,000 bacterial

phylotypes representing more than 7,000 strains [1]. The

composition of this microbiota has been suggested to be a result

of a highly coevolved symbiosis and commensalism influenced by

nutrition, physiology and immunological factors [2,3].

The insect gut has been described as the greatest unexplored

reservoir of microbiological diversity [4]. Ryu and colleagues [5]

established the importance of the normal flora in the fruit fly gut in

order to sustain health. This small microbiota was sufficient to

suppress growth of pathogens. While insects harbour a smaller

number of symbionts compared to humans they may be even

more important [6]. Studies have shown that symbiosis between

social insects and microbial species are often highly coevolved [7]

and that these symbionts are evolutionary shaped distinctly from

the forces acting upon symbionts of solitary organisms, which

normally lack a homeostatic fortress environment [8].

Lactic acid bacteria (LAB) are found as commensals within

humans, insects and animals [9]. They confer an important

bacterial group for the food industry and the fermentation of dairy

products. In addition, strains within LAB are also generally

recognized as safe (GRAS) food grade microorganisms and

employed as probiotics bestowing human health [10,11]. Genera

within LAB are functionally related by phenotypic characteristics

[12] and considered as beneficial organisms commonly found as

both exogenous and endogenous microbes in healthy individuals.

LAB found within humans and animals as commensals are known

to protect their hosts via antimicrobial metabolites and modulation

of host immune response [13,14]. One of the most important

genus within LAB is Lactobacillus, which is continuously under

taxonomic discussion and includes at present 175 listed species

[15].

We have discovered a rather special symbiotic lactic acid

bacterial (LAB) microbiota within the honey crop of the Western

honeybee Apis mellifera [16]. The crop is a central organ in the

honeybee’s food production between the oesophagus and

ventriculus, used for collection and transport of nectar to hive.

The crop microbiota of A. mellifera is composed of 13 bacterial

species within the genera Lactobacillus and Bifidobacterium [16,17,18]

and it plays a key role in the production of honey [16] and bee-

bread [19], long term stored food for both adult honeybees and

larvae. Our recent studies on the subspecies of A. mellifera have also
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demonstrated that the LAB microbiota is consistent across its

native and introduced range [17].

Metagenomics has been used to identify a rich diversity of

microbes within honeybees afflicted by Colony Collapse Disorder

(CCD) [20], including emergent pathogens (i.e. Nosema ceranae and

viruses) [21], while recent studies have picked up novel bacterial

genera within the intestinal tract of bees by culture independent

methods [20,22,23]. Some of these may comprise important

symbionts for the maintenance of bee health; however, these

descriptive methods do not inform on the functional role or

importance of the bee crop microbiota or of individual symbionts

within this niche.

We have demonstrated by both in vitro and in vivo studies that the

LAB microbiota in A. mellifera inhibit one important honeybee

pathogen, the bacterial brood pathogen Paenibacillus larvae that is

the cause of the brood disease American foulbrood (AFB) [24]. In

the current study we investigate if the LAB microbiota is consistent

in all nine recognized honeybee (Apini) species plus stingless bee

species (Meliponini), a phylogenetically close taxon that, like

honeybees, are eusocial, live in colonies comprising one queen and

100’s to 10,000’s of workers, store large quantities of honey and

bee bread and are managed commercially or exploited by ethnic

groups across the tropics.

Functional characterization of the endogenous crop microbiota

is essential in providing insights for the understanding of its role for

bee health and disease. Here we explore the diversity, mainte-

nance and dynamics of LAB in the honey crop and the pivotal role

that they play in bee health, with major implications for research

on bee decline and sustainable pollinator management.

Results

LAB diversity
All 9 Apis and the 3 Meliponini species studied possess a similar

microbiota, comprising together approximately 50 novel LAB

species in the genera Lactobacillus and Bifidobacterium (Figure 1),

using the threshold used to define a bacterial species based on

rRNA gene sequencing of ,97% similarity [25] (,98.5% is often

found to imply possibly novel species).

One particular LAB was common and dominated the

microbiota of Apis spp.: L. kunkeei (44% of 750 isolates were L.

kunkeei). However, many Lactobacillus and Bifidobacterium were found

to be common across bee species (Figure 1), including L. kunkeei in

stingless bees from Central America (M. beecheii) and Africa (M.

bocandei), though not in Trigona sp. from Borneo and Thailand,

where it is sympatric with five native Apis species. From our

previous studies [16,19] we know that bees add the LAB

microbiota to their honey and corbicular pollen. In this study,

we found the highest concentration of viable LAB (108 per gram

honey) in Nepalese honey of A. laboriosa and similar quantities in A.

mellifera honey from Africa (Table 1).

Ontogeny and maintenance of LAB
The results were clear-cut; at eclosion, crops were empty and

devoid of LAB; but within minutes post-eclosion the microbiota

builds up gradually by trophallactic exchange with nestmates

(Table 2). L. kunkeei was found to dominate the crop microbiota at

all sampling occasions. Only six honeybee crop LAB members

were found during the trial. Honeybees kept in solitary

confinement from eclosion (n= 10) retained sterile crops.

The LAB microbiota remains viable within bees and added in

high concentration to their food products (Table 1) as the

symbionts detach from their niche the honey crop. We observed

by in vitro and in vivo investigations of the LAB symbionts with SEM

and fluorescence microscopy that the microbiota form biofilms

and networks (Figure 2 and Figure 3; Video S1 and Video S2) by

which they attach to the wall of the crop using structures

resembling extracellular polymeric substances (EPS) (Figure 2).

Functional characterization
The microbial composition of 15 flowers frequently visited by A.

mellifera in Sweden was investigated (Table S1). In total sixty

transient microorganisms were isolated from flowers and identified

to the species level (Accession nr: JN167926-JN167985). We tested

the inhibition properties of all honey crop LAB grown individually

and together against the 55 bacterial strains and 5 yeast strains

isolated from flowers. There was a clear overall inhibition of all

transient flower microorganisms by single members of the LAB

microbiota in the honey crop (Table S1). L. kunkeei, the most

common species in all bees (Figure 1), was also the most potent,

inhibiting all tested microorganisms.

The LAB microbiota partly inhibited the bee pathogen M.

plutonius in vivo (Figure 4) and totally in vitro, L. kunkeei and the

thirteen LAB together showed the best inhibition properties. The

overall effect of adding the LAB mixture to bee larval food was a

significant reduction in the number of dead larvae (Figure 4,

X2
4=24.27, 2-tail P: ,0.001). The total mortality of the

uninfected control groups (with or without LAB supplement) was

,7% in both replicates. The results demonstrate that addition of

LAB to the food of young honeybee larvae exposed to M. plutonius

decreases the number of larvae succumbing to EFB infection.

LAB and antibiotics
In vitro culturing of the 13 individual LAB members with two

antibiotics (oxytetracycline and tylosin) used in apiculture to

control bacterial diseases AFB and EFB demonstrated high

sensitivity of all LAB members to Tylosin, the most recently

employed antibiotic within apicultural practices in the USA [26].

Nevertheless, strains L. kunkeei Fhon2 and Lactobacillus Fhon13,

Hma11, Hma8 and Hon2 showed resistance to oxytetracycline.

Accession numbers
The 16S rRNA gene sequences generated in this study are

available from GenBank under the accession numbers:

HM534742–HM534842, JN167926–JN167985 and JN689233.

Discussion

Our results reveal one of the largest collections of novel species

from the genera Lactobacillus and Bifidobacterium ever discovered

within a single insect. A detection of ca. 50 novel species within

these bacterial genera will make a huge impact in their current

taxonomy. The findings of L. kunkeei as common symbionts with

Apis and stingless bees highlight the importance of this organism.

We have previously shown the consistent presence and dominance

of this lactobacilli, in our studies of A. mellifera (25% of 158 isolates

in Sweden [16,17,19]; 40% of 42 isolates in USA [18]; 28% of 50

isolates in Africa [17], and now in all Apis spp. and in the stingless

bees. The most recent common ancestor to honeybees and

stingless bees has been dated to .80 million years ago [27],

suggesting that the L. kunkeei-dominated LAB flora is an ancient

apine bee association. But invariance in L. kunkeei 16S rRNA gene

sequences across host species and geographic locality (Figure 1)

suggest possible horizontal transfer of LAB members between host

species. However, in Borneo the five sympatric Apis spp. forage

together with Trigona spp. on the same flowers but L. kunkeei was

not found in any Trigona spp. investigated, arguing against

horizontal transfer.

Symbiosis between LAB and Honeybees
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Our investigation shows how this microbiota is acquired

(Table 2) and maintained within bees (Figure 2 and Figure 3;

Video S1 and Video S2). Interestingly, LAB builds up gradually by

trophallactic exchange with nestmates and L. kunkeei Fhon2 was

found to dominate the crop microbiota at all sampling occasions

again reflecting its importance (Table 2). However, that only six

honeybee crop LAB members were found during the trial may

reflect either the disadvantage for bacterial counting of using

viable counts that display the dominant bacteria or the numerical

variation across seasons. We know from our previous studies that

the LAB members in the crop vary numerically across seasons with

the flowers visited by bees and with the health status of bees [16].

On the other hand, we know that the microbiota is also rather

consistent across Apis species. At first sight, it is surprising how this

microbiota is maintained within the honey crop, with the extensive

ebbing and flowing of sugars, enzymes, water and the constant

invasion of foreign microbes following ingestion of flower nectar

during foraging. Visualization of the crop and attached LAB

reveals how this microbiota is conserved (Figure 2 and Figure 3;

Video S1 and Video S2) in networks and biofilms. The property of

biofilm formation is known in LAB species that resides in the

human gut and vagina [28,29,30]. In addition to the well-

described characteristic of LAB to produce exopolysaccharides,

other likely mechanisms in biofilm formation and adhesion include

the production of proteins, carbohydrates, enzymes, nucleic acids,

lipids or membrane bound receptors. Exopolysaccharides are the

main component in extracellular polymeric substances (EPS) and

when, secreted into the environment, provide protection to

bacteria; they are also involved in host colonization and cellular

recognition [31]. It has been suggested that exopolysaccharides

produced by food grade organisms (GRAS), in particular LAB,

may confer health benefits in humans [32,33,34]; the same may be

true for honeybees. The complexity of attachment and biofilm

formation by this symbiotic community comprise yet unknown

mechanisms of action. These may include membrane properties of

the symbionts to avoid rejection by their host, as well as the

production of potent antimicrobial substances.

During foraging, foreign microbes are introduced into bees and

to their colony through their honey crop, with collected nectar,

and through pollen (Table S1). When a flower blooms for the first

time, its nectar and pollen are sterile but eventually become

invaded by airborne microorganisms and microbes from insects.

The composition and numbers of this transient microbiota may

vary with time but also with flower type, visiting insects,

temperature and the nutritional composition of the pollen and

nectar. LAB members in the crop vary numerically [16] but are

consistent within the same Apis species [17]. LAB diversity could

be explained by variation in nutrient content of different nectars

and pollen and also by variation in the microbes to which flowers

are exposed. Transient floral microbes may trigger the growth of

resident LAB microbiota in bees and their production of

antimicrobial substances, a mechanism known for LAB strains in

other niches (e.g. Lactobacillus reuteri when producing reuterin

[35,36,37].

We raised the hypothesis that honeybee LAB possess antimi-

crobial properties against microorganisms present in nectars and

on pollen in order to defend their niche (the honey crop) and

prevent spoilage of honey and bee bread during their production,

which may take from days to weeks. Our results show a

preliminary overall inhibition of transient environmental microbes

Figure 1. Phylogenetic tree of LAB in bee crops. Phylogenetic tree based on a distance matrix of positions 56–1470 (Escherichia coli numbering)
in the 16S rRNA gene of Lactobacillus and Bifidobacterium spp. bacteria from Apis species (red) and the stingless bees Melipona beechii (turquoise),
Meliponula bocandeii (green) and Trigona sp (blue). Previously characterized bacterial phylotypes from Apis mellifera are in bold print (red). Bacterial
type strains are in bold characters (black). Phylotypes in the framework (right) represent different clusters belonging to a characterised or possibly
novel species. Bifidobacterium group is the out-group. Bar: 5 base pair changes. 16S rRNA gene sequences deposited in GenBank HM534742–
HM534842 (in parenthesis).
doi:10.1371/journal.pone.0033188.g001

Table 1. Lactic acid bacterial counts in social bees.

Bee species honey crop honey (g21) bee pollen (g21) bee bread (g21)

Apis melliferaab 106 107 108 106

Apis nuluensisb 106 NDc 106 NDc

Apis nigrocinctab 107 105 109 105

Apis koschevnikovi 105 106 NDc 105

Apis cerana 106 105 106 105

Apis andreniformisb 103 104 106 104

Apis floreab 106 102 106 NDc

Apis laboriosab 106 108 NDc 109

Apis dorsatab 105 NDc 106 NDc

Melipona beecheiib 107 105 106 106

Meliponula bocandeib 107 103 106 107

Trigona sp.b 105 104 107 104

aApis mellifera bees collected in Kenya from the subspecies A. m. scutellata and A. m. monticola.
bWild colonies.
cND=Not determined.
Legend.

Viable counts in colony forming units (cfu) of lactic acid bacteria cultivated from honey crops, fresh honey, bee pollen and bee bread. All samples were cultivated on
LAB selective media immediately after sampling or after chilled transportation.
doi:10.1371/journal.pone.0033188.t001
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found in flowers (Table S1). Once again, L. kunkeei, the most

common species in all Apis bees (Figure 1), was highlighted as the

most potent, inhibiting all tested microorganisms. This bacterium

was originally described as a wine-spoiling organism since it

inhibited yeast in wine production [38,39]. Interestingly, the

extent of inhibition by single LAB members varied considerably

with test microbes. Yet the LAB microbiota seems to work in a

synergistic matter [24] (Table S1); they produce antimicrobial

agents including common organic acids, proteins, peptides,

enzymes, and bacteriocins that we are currently characterising.

The LAB microbiota of the A. mellifera honey crop is added by

bees to their brood food and corbicular pollen and is important in

the production of honey and bee-bread [16,19]. It is well known that

species within Lactobacillus and Bifidobacterium inhibit pathogens; they

have been used for centuries in food preservation to prevent

microbial spoilage [40]. Commercial probiotic products for human

consumption with viable LAB contain about the same quantity (108)

of mostly one single LAB g21 product [41,42]. We hypothesise that

the resident strains of Lactobacillus and Bifidobacterium in honey could

function in a similar way as LAB for food preservation or as a

defence against microorganisms invading humans.

Table 2. Presence of LAB in callows.

LAB At eclosiona 1 h 24 h 3 days 1 week 2 weeks

Bma5 - - - 1 2 3

Hma8 - 1 - - - 1

Biut2 - - - - - -

Hma2 - - - - - -

Hma11 - - - - - -

Hon2 - - - - - 1

Bin4 - - - - - -

Fhon13 - - - - - -

Fhon2 - 17 6 16 13 9

Bma6 - - - - - -

Bin7 - - - - - -

Hma3 - - 1 - - 1

Bin2 - - - 1 1 -

aDisplayed numbers represent randomly picked isolates.
Legend.

Ten to 30 colonies were randomly picked from agar plates containing 30–300
colonies each, and re-cultivated for purity (isolates). The re-cultivation and
identification of LAB were performed as previously described [16].
doi:10.1371/journal.pone.0033188.t002

Figure 2. In vitro visualization of lactobacilli. In vitro visualization of lactobacilli attached to the wall of a honeybee crop using SEM. A, B and C
show different areas of a honey crop at similar magnification with visible attachment structures resembling extracellular polymeric substances (EPS).
D shows a larger part of the crop with attached bacteria. Photographer Lennart Nilsson.
doi:10.1371/journal.pone.0033188.g002

Figure 3. In vivo visualization of LAB biofilm. The red fluorescence
shows live-stained bacteria in a LAB biofilm attached to a honey crop.
The green fluorescence shows the nuclei of the honeybee crop cells.
The visualized tissue shows a projection of 112 confocal z-sections
(through a 37.6 mm z-depth, covering a xy-area of 2466246 mm).
doi:10.1371/journal.pone.0033188.g003
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Honey collected from managed or wild colonies of Apis spp. or

stingless bees has been independently regarded as a therapeutic

agent by many cultures throughout history, from the Maya in

Mexico to the Pharaohs in Egypt [43], possibly reflecting

beneficial effects of the viable honeybee microbiota when

consumed or applied on wounds. It is feasible to believe that

fresh honey represents a naturally occurring probiotic product,

one with a great diversity and concentration of LAB species

(Table 1) that may reflect a myriad of beneficial properties of every

specific LAB member in the honey crop.

We believe that LAB antimicrobial mechanisms have evolved in

synergy with bees to defend themselves and their hosts from

environmental threats such as microbes found in nectars and

pollen, and possibly for defence against specific honeybee

pathogens. This ancient symbiotic relationship between LAB

and bees seems to be of great benefit for bees and may be referred

to as colonization resistance. The same phenomenon described for

the normal flora in the fruit fly gut [6]. Honeybee brood are fed

bee-bread containing viable LAB and their antimicrobial sub-

stances. Thus, our results strongly suggest that LAB linked to the

honeybee crop have important implications for honeybee

pathology, particularly for bacterial brood diseases such as AFB

and EFB. Honeybees are considered to have only about a third of

the innate immune genes compared to other insects [44,45]. In

addition to social defences that accrue to social insects [46],

individual honeybees may also benefit from their LAB symbionts,

which are probably of great importance in pathogen defence,

possibly further reducing dependency on the innate immune

system.

In order to secure honeybee pollination services, A. mellifera

beekeepers replace harvested honey by feeding sugar solutions,

occasionally mixed with antibiotics for prophylactic control of

honeybee-specific bacterial diseases of bee brood such as AFB and

microsporidia [47]. It is known that LAB antibiotic susceptibility

varies [48,49]. In vitro culturing of the 13 Apis individual LAB

members with two antibiotics used in apiculture (oxytetracycline

and tylosin) demonstrated high sensitivity of all to Tylosin, the

most recently employed antibiotic within apicultural practices in

the USA [26]. Nevertheless, strains L. kunkeei Fhon2 and

Lactobacillus Fhon13, Hma11, Hma8 and Hon2 showed resistance

to oxytetracycline that may reflect the extended use of this

antibiotic in apiculture or their long-term exposure to environ-

mental microbes from the surrounding environment that produce

similar substances. The negative effects on honeybee health from

damaging the honey crop microbiota by the use of these antibiotics

need to be investigated further.

Perspectives
The economic value of commercial honeybee pollination is

estimated at over US $14 billion in the USA alone and over US

$220 billion worldwide [50]. Yet ongoing colony losses in the USA

and Europe defy causal explanation despite intensive research

effort [51,52] and identification of emergent and exotic pathogens

[20]. Our discovery of a diverse and novel honey crop LAB

microbiota common to all recognized honeybee species plus 3

stingless bee species may be the missing link in this worldwide

problem. Since related microbiotas are found across bee species, it

strongly suggests a close evolutionary relationship between

Figure 4. LAB rescue of honeybee larvae from European Foulbrood. Proportion dead larvae in both replicates (total number dead after 21
days). Data presented as a mean for the three groups fed M. plutonius (107, 106 and105 bacteria ml21), and the 3 groups fed M. plutonius and LAB.
Irrespective of infectious dose, the overall effect from the LAB supplement was a significantly reduced mortality in the treated groups. Mortality in the
uninfected control groups was ,7%.
doi:10.1371/journal.pone.0033188.g004

Symbiosis between LAB and Honeybees

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33188



bacteria and hosts, as well as underscoring the importance of LAB

symbionts for bees. Not only are LAB symbionts involved in

honeybee food production and preservation, they are also of

importance in host defence against pathogen and transient

microbes intercepted during foraging. The importance of this

crop microbiota for honeybees is additionally strengthened by the

fact that it is immediately transferred to the sterile crop of newly

emerged bees by trophallactic exchange with nestmates.

Any beneficial effect from this microbiota may be undermined

where prophylactic use of antibiotics is practiced (e.g. USA) or

where their natural foodstuffs, honey and pollen, are supplement-

ed by the beekeeper with synthetic sugars and pollen substitutes

lacking LAB or their beneficial substances. The absence of LAB is

especially problematic when the bees attempt to produce and

preserve food for themselves and their brood, when feeding their

brood with pollen lacking LAB or LAB derived antimicrobial

substances, when nestmates establish a LAB microbiota in callows

by trophallactic exchange, or when pathogens invade their hive.

Emphasis now needs to be given to discovering the mechanisms of

action of LAB against pathogens and food spoiling microbes, and

how they can be used to resolve ongoing honeybee colony losses,

in which LAB may be the important missing link. Altered

beekeeping husbandry practices that enhance LAB are needed, or

direct manipulation by supplementary feeding of individual or

composite LAB members and their products could help alleviate

CCD. Further functional analysis of LAB in bees will certainly

enrich our understanding of insect-microbe symbioses and their

evolutionary dynamics within complex eusocial insect societies.

Materials and Methods

Ethics
No specific permits were required for the described field studies.

Local colleagues (described in the acknowledgments) collected

samples where permission was not required i.e. not from nature

reserves or privately-owned locations. The field studies did not

involve endangered or protected species.

LAB diversity in bees
We sampled the honey crop LAB microbiota of all 9 well

recognized honeybee (Apini) species plus 3 stingless bee species

(Meliponini). Apis andreniformis (n = 3 colonies), Apis cerana (n = 2

colonies), Apis koschevnikovi (n = 3 colonies), Apis nuluensis (n = 1

colony) and Apis dorsata (n = 1 colony) were collected from Borneo

(Malaysia), Apis laboriosa (n = 2 colonies) from Nepal, Apis florea

(n = 1 colony) from Thailand, Apis nigrocincta (n = 1 colony) from

Indonesia, and A. mellifera (n = 25 colonies) from Sweden and

Kenya. Samples of the stingless bee genera Trigona were collected

from Thailand (n = 1 colony) and Borneo (n= 1 colony) (Malaysia),

Meliponula bocandeei (n = 2 colony) from Kenya, and Melipona beecheii

(n = 2 colonies) from Mexico. For each bee species, the honey crop

LAB content of 10–20 bees was analysed. For A. nuluensis and A.

dorsata we only analysed the honey crop content and the corbicular

pollen from field collected bees as we were unable to sample

colonies of these free-living bees. Isolation of LAB from honey

crops, fresh honey, corbicular bee pollen and bee bread was

performed as previously described [16,19]. PCR-amplification of

isolates for 16S rRNA gene sequencing, identification and

phylogenetic analysis were performed according to Olofsson and

Vásquez [16]. Additionally, the 16S rRNA gene sequences were

also checked against the software RDP (Ribosomal Database

Project II), accessible from the homepage (http://rdp.cme.msu.

edu/). A total of 750 lactic acid bacterial isolates were retrieved in

this study.

Ontogeny of LAB
To determine how the crop microbiota is acquired, we marked

Western honeybees (A. mellifera) at eclosion from their wax brood

cells (n = 30), returned them to the hive, collected them at different

ages, cultivated the contents of their crops and identified the LAB

(cultivation and identification as described previously [16]).

Maintenance of the honey crop microbiota
We performed in vitro and in vivo investigations of the symbionts

with SEM and fluorescence microscopy. The SEM samples were

prepared by freeze drying [53] and pictures were taken by

Photographer Lennart Nilsson (Sweden).

The preparation and confocal fluorescence microscopy of

bacteria in the honey crop was achieved as follows. Honeybees

were fed with a mixture of honey and water containing (SytoxH,

Green dye and BacLightTM, Red bacterial stain, Molecular

Probes) to discriminate the cells of the bee from the living bacteria.

Following an incubation of approx. 15 min, the honey crop was

dissected at room temperature. The crop was opened with a single

longitudinal cut. To prevent the contraction of the muscles of the

crop wall, the crop was rinsed in phosphate buffered saline (PBS)

supplemented with 1 mM EDTA and mounted on a glass slide.

Slides were examined using a TCS SP5 laser confocal microscope

equipped with continuous spectrum white laser (Leica, Mannheim

Germany). The images were captured using a 636 oil immersion

objective (NA 1.4 HCX PL APO CS) with filter setup adapted to

FITC and Texas Red dual colour illumination. The raw images

were processed in ImageJ (NIH, Bethesda, USA) using median

filtering. The Z-stacks was visualized using the ImageJ plugin 3D-

viewer. The 3D-Movies (Video S1 and Video S2) show a

projection of 90 confocal z-sections through a z-depth of

45.3 mm, covering an area of 2466246 mm in the xy-direction.

Melissococcus plutonius bioassay
We investigated possible inhibitory effects on European

foulbrood (EFB), a major bacterial pathogen of larval honeybees,

from the LAB microbiota using both in vitro and in vivo tests, as

previously described [24]. As adult honeybee workers feed larvae

with crop contents, this represents a typical means by which

larval food acquires LAB. Bacterial suspensions of Melissococcus

plutonius (provided by Dr. Jean-Daniel Charrière, Agaroscope,

Switzerland, Accession nr: JN689233) were prepared fresh for

each experiment and diluted in larval food for final concentra-

tions of 107,106 and 105 bacteria per ml. A mixture of the

thirteen previously described honeybee LAB [16,17,18] in

approximately equal proportions was diluted in larval food for

a final, total concentration of 107 LAB per ml. A. mellifera worker

larvae were grafted and reared in vitro [24]. Briefly, first instar

worker larvae were transferred to the surface of the larval diet of

the different treatments. i) control group provided with

uninfected diet, ii) control group initially fed uninfected diet but

LAB supplemented food after 48 hours onwards and iii)

experimental groups provided larval diet spiked with defined

amounts of M. plutonius (107,106 and 105 bacteria ml21). Twenty-

four hours post exposure; larvae were transferred to wells

containing uninfected diet and LAB supplemented food 48 hours

post-infection onwards. The experiment was finished 21 days

post-infection and larval mortality was monitored daily. A total of

420 larvae were used in two replicate experiments. The PoloPlus

Probit and Logit Analysis program (version 2.0, LeOra software)

was used to compare mortality rates between the experimental

groups in the exposure bioassay.
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Flowers, nectar, pollen and microorganisms
We analysed the microbial composition of 15 flowers frequently

visited by A. mellifera in Sweden (Table S1). Flowers were collected

aseptically in Kullaberg, Sweden. The flowers were then shaken in

sterile buffer (PBS) and immediately transported to the Laboratory

at Lund University. Dilutions were made with sterile peptone

water (0.2% w/v), spread on MRS (Oxoid), APT (Oxoid) and TSB

(Oxoid) agar plates incubated anaerobically at 35uC (MRS and

APT agar plates) and aerobically at 22uC (TSB agar plates) during

5 days. Identification of the microbial isolates was achieved by

sequencing the 16S rRNA genes (for bacteria) [16] and the D1-D2

regions of the LSU 26S rRNA genes (for yeasts) [54].

Dual-culture overlay assay
We analysed the inhibition properties of all honey crop LAB

grown individually and together against the pathogen M. plutonius

and also against the 55 bacterial strains and 5 yeast strains isolated

from flowers. The assays were performed as earlier described [55]

with the following modifications. LAB were inoculated on MRS

agar plates (Oxoid, supplemented with 0.1% L-cysteine and 2.0%

fructose) during 12 hours. We used the medium previously

described for cultivation of M. plutonius [56,57] and the same

media as for the isolation of microbes from flowers for the over

layer of soft agar. After an incubation of 2–4 days depending on

growth rates the zone of inhibition was measured.

LAB and antibiotics
Honey crop LAB were tested for susceptibility to oxytetracycline

and tylosin by disc diffusion on MRS agar (Oxoid, supplemented

with 0.1% L-Cysteine and 2.0% fructose).

Supporting Information

Table S1 Themicrobial composition of the flowers of 15

Angiosperma (left column) frequently visited by Apis

mellifera bees in Sweden. Fifty five different species of

bacteria and 5 yeast species from the flowers were analysed in vitro

against all 13 honey crop LAB from A. mellifera grown individually

and together (right column). Inhibition zones are displayed as

diameter in millimetres. Zero indicates no inhibition and (-)

indicates no result.

(DOC)

Video S1 A biofilm formed by the LAB microbiota is

seen as a red carpet and the confocal z-stack reveals that

the bacteria are located in crypts all through the z-depth

of the crop wall.

(AVI)

Video S2 A 3D-view of a typical biofilm is shown in a

360 degree rotation of a projection of 90 confocal z-

sections through a z-depth of 45.3 mm.

(AVI)
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