
Symbiotic-Autonomous Service Robots for User-Requested Tasks in a
Multi-Floor Building

Manuela Veloso1, Joydeep Biswas2, Brian Coltin2, Stephanie Rosenthal1,
Susana Brandao3,4, Tekin Mericli5, and Rodrigo Ventura4

Abstract— Although since the days of the Shakey robot,
there have been a rich variety of mobile robots, we realize
that there were still no general autonomous, unsupervised
mobile robots servicing users in our buildings. In this paper,
we contribute the algorithms and results of our successful
deployment of a service mobile robot agent, CoBot, in our
multi-floor office environment. CoBot accepts requests from
users, autonomously navigates between floors of the building,
and asks for help when needed in a symbiotic relationship with
the humans in its environment. We present the details of such
challenging deployment, in particular the effective real-time
depth-camera based localization and navigation algorithms, the
symbiotic human-robot interaction approach, and the multi-
task dynamic planning and scheduling algorithm. We conclude
with a comprehensive analysis of the extensive results of the
last two weeks of daily CoBot runs for a total of more than 8.7
km, performing a large varied set of user requests.

I. INTRODUCTION

We have been pursuing the goal of deploying multiple
autonomous mobile robots capable of performing tasks as
requested by users in our multi-floor building. There are
several sub-problems to address:

1) Localizing and navigating autonomously and safely
2) Providing an intuitive interface for users to schedule

tasks for the robot
3) Scheduling conflict-free task plans for each robot
4) Interacting with humans
5) Overcoming robot limitations to perform tasks

There has been considerable work in the robotics community
to solve each of these sub-problems individually as well as
combinations of these problems. However, rarely are all of
these goals addressed simultaneously on a single platform.
The robots Shakey [1], Xavier [2], and museum tour guide
robots [3], [4], [5] have addressed some of these problems
to varying degrees of success. Additionally, we have been
inspired by the contributions of RoboCup@Home [6], a
competition for autonomous indoor service robots with a
wide scope of human-interaction challenges.

1M. Veloso and S. Rosenthal are with the Computer Science De-
partment, Carnegie Mellon University, USA mmv, srosenth at
cs.cmu.edu

2J. Biswas and B. Coltin are with The Robotics Institute, Carnegie Mellon
University, USA bcoltin, joydeepb at cs.cmu.edu

3S. Brandao is with the ECE Department, Carnegie Mellon University,
USA sbrandao at ece.cmu.edu

4S. Brandao and R. Ventura are with the ECE Department, In-
stituto Superior Tecnico, Lisbon, Portugal rodrigo.ventura at
isr.ist.utl.pt

5T. Mericli is with Department of Computer Engineering, Bogazici
University, Istanbul, Turkey tekin.mericli at boun.edu.tr

Fig. 1. The deployed CoBot-2 service robot.

In this paper, we contribute a complete system that ad-
dresses all of these sub-goals to perform tasks requested by
the occupants of an office building. In addition to being
effective in work environments, such a system has ready
applications to assistive care in hospitals or nursing homes,
where it could help overburdened nurses and caregivers to
deliver items to bedridden patients.

We have developed two robots, CoBot-1 and CoBot-2. The
robots, agile in their navigation due to their omnidirectional
bases, purposefully include a modest variety of sensing
and computing devices, including a controllable camera, a
Microsoft Kinect depth-camera, a small Hokuyo LIDAR,
and a touch-screen tablet. The CoBots autonomously localize
and navigate in the building using depth-camera and LIDAR
based localization and navigation algorithms.

Recently, we have effectively deployed CoBot-2 (Figure 1)
to the occupants of our building for several hours each day.
Occupants can schedule the CoBot robots to perform four
different tasks: (i) go to a room, (ii) deliver a spoken message
to a room, (iii) transport an object from one room to another,
and (iv) escort a person from an elevator to a room. It has
been rewarding to witness the robot continuously moving in
our building among four floors without supervision. In this
paper, we contribute the underlying technical algorithms, as
well as the results of the robot’s deployment.

The deployed CoBot-2 follows a symbiotic autonomy
approach [7] given that it has limitations in its perception,
cognition, and action. The robot proactively assesses that it
needs help and asks humans to help resolve its limitations,
particularly the physical ones. For example, the CoBot robots

do not have arms, and therefore they ask for help for
manipulating objects and pressing elevator buttons.

CoBot-2 is deployed to perform tasks requested by occu-
pants of the building known as “task solicitors”, and gets help
from other humans around the robot known as “task helpers”.
Figure 2 illustrates the multiple components of our symbiotic
CoBot robot. Task solicitors can request tasks on an online
web server which are then processed by a scheduler, which
determines their execution time. The scheduler sends these
tasks to the task planner and executor that divides tasks into
autonomous actions and symbiotic interactions to request
help to ride the elevator and to manipulate objects.

Fig. 2. Connections between web server, CoBot and humans.

In this paper, we present our approach to long-term task-
centered robot deployment and extensive results from our
own CoBot robots. In particular, we contribute:

1) A web based scheduler that accepts users requests and
generates a conflict-free schedule for the robot (Section
2)

2) A task execution framework that allows the robot
to overcome its limitations by asking for help from
humans (Section 3)

3) A complete autonomous robot system capable of per-
forming its scheduled tasks (Section 4)

4) A set of results from deployment of the robot to the
occupants of the building (Section 5)

II. SCHEDULING USER-REQUESTED TASKS

Users request tasks over the web for CoBot-2 to perform.
From CoBot-2’s website, registered users can book a new
task, view a list of their own scheduled tasks and completed
tasks, cancel scheduled tasks, and see the current position of
the robot.

When scheduling a task, users choose:
• Task Type. The task request. The options include 1) go

to a room, 2) deliver a spoken message, 3) transport
an object from one location to another, and 4) escort a
visitor from the elevator to an office.

• Task Parameters. Task-specific options. This includes
the destination location(s) for each task. Other options
could include a spoken message to deliver or the name
of an object to transport.

• Time Constraints. When the task should be executed.
The user can specify “as soon as possible”, a specific
time, or a window of time.

Each request submitted by the user is sent to the scheduler,
which may either accept or reject it. If the scheduler rejects
a request, it proposes alternative times when the robot is
available. The scheduler must fit the requested tasks into a
schedule, a mapping of tasks to execution times. To plan
the schedule, we represent each task request Ti as a tuple
Ti =< s, e, ls, le, d >. Task Ti must begin execution within
the time interval [s, e] where s and e are times in seconds (all
time constraints are converted internally to windows of time).
The task Ti is expected to take d seconds to complete from
start to finish. The task duration d does not include the time
taken to travel from the ending location of one task to the
starting location of the next, this is estimated by a function
c(l1, l2) which estimates the time taken to travel between
two locations. The task begins at the location ls ∈ L and
ends at the location le ∈ L, where L is the set of all named
locations CoBot-2 can travel to, including offices, kitchens
and lounges.

A. Estimating Task Times

To effectively produce a schedule of tasks for the robot to
execute, we must estimate both how long each task will take
and how long it will take CoBot-2 to travel from one task to
the next. This is the role of the Task Time Estimator. There
are three components of the task duration d to consider:
• tnav - Navigation Time. The time spent moving from

one location to another. This is computed from the
distance planned from CoBot-2’s navigation graph and
its velocity. It does not include use of the elevators.

• televator - Elevator Transportation Time. The time spent
waiting for and using the elevator.

• ttask - Task Specific Time. The time specific to the task.
For example, when delivering a spoken message, ttask
includes the time taken to recite the message.

The expected task execution time is the sum

d = tnav + televator + ttask.

Similarly, the expected time, or cost, to travel between two
locations includes the same components, except for ttask.

c(l1, l2) = tnav + televator

This cost is an estimate, and the actual time to execute a
task may be either longer or shorter. CoBot-2 will adjust its
schedule accordingly during execution.

B. Forming a Schedule

Based on the estimated execution and travel times, the
scheduler fits all of the tasks into a schedule, a mapping of
tasks to planned execution times. This is a variant of the
Dynamic Vehicle Routing Problem with time windows, in
which a fleet of vehicles must visit a set of locations, each
within a certain time interval [8]. In the batch problem, the
scheduler is given a list T of n task requests that the robot
must fulfill by finding a set of starting times ti so that no two
tasks overlap and each task is fulfilled within the requested
time window [si, ei]. Each task has an estimated duration
di which does not include travel time between tasks, since

this depends on the tasks’ ordering. The function c gives the
estimated cost to travel between two locations, as computed
by the waypoint path planner.

We solve for the variables ti with a mixed integer program
(MIP). Our first set of constraints states that each time ti
must fall within the start and end times of the window:
∀i si ≤ ti ≤ ei. Next, we add constraints to ensure that
no two tasks overlap, handling both the case that task i
comes before task j and the reverse order. We introduce
helper indicator variables prei,j which indicate whether task
i occurs before task j.

∀i, j ti + di + c(lei , l
s
j)− tj ≤ |ei − sj |(1− prei,j)

∀i, j tj + dj + c(lej , l
s
i)− ti ≤ |ej − si|prei,j

We minimize the sum of the starting times
∑
i ti to ensure

that user tasks are completed as soon as possible.
Solving an MIP is NP-hard; however, for smaller problem

instances it can be done relatively quickly. We generated
a thousand problem instances of fifteen tasks with two
minutes to a half hour duration, with randomly generated
time windows over the course of a four hour period. We
expect CoBot to receive similar patterns of requests in the
real world. The scheduler solved over 99% of the problems
in under two seconds on a laptop computer. In the few cases
where a solution is not found in two seconds, we can reject
the user’s request and ask them to modify their time window.

In practice, the task requests are not processed in a batch,
but come in an online-fashion over the web. We reschedule
everything whenever a new request is made. If a schedule
cannot be found, the user’s request is rejected and the user
has an opportunity to relax their constraints.

After a schedule is formed, it is sent to the robot’s task
planner to execute. The task planner provides continuous
feedback regarding the state of execution, and informs the
scheduler when the task has been completed.

III. PLANNING AND EXECUTING TASKS

CoBot-2 is capable of autonomous localization and navi-
gation, but cannot manipulate objects and has a limited abil-
ity to perceive the elevators. However, users can request tasks
such as transporting objects, that require these capabilities.
Task executor divides each task into autonomous actions and
symbiotic interactions to seek help with actions it cannot
perform autonomously.

The task executor first plans symbiotic interactions with
its task solicitors at the start and end of the task to place
and remove objects and confirm task completion. The task
solicitors are expected to be willing to help because they
requested the task to be performed and therefore want it
to succeed. Then, the executor uses waypoint path planning
to determine the lowest cost path to travel to rooms au-
tonomously and identifies locations where the robot will need
to ask for help to successfully navigate to its destinations. In
particular, CoBot-2 needs help pressing the up/down buttons
outside the elevator, determining which elevator to enter, and
holding the elevator door open before it can navigate into
the elevator. Once inside the elevator, it needs help pressing

the destination floor button and may sometimes need help
determining when it is on the correct destination floor before
leaving the elevator. CoBot-2 depends on building occupants
who are also taking the elevator to be task helpers. These
task helpers are already performing the actions themselves
and therefore have low cost to help the robot as well.

A. Symbiotic Interaction with Task Solicitors

While other robots have asked for help from passers-by
in the environment [9], [10], CoBot-2 must interact with
task solicitors who requested the task and/or occupy the
destination locations in order to manipulate objects and
confirm task completion. We divide these interactions into
those that happen at the start and at the end of a task.

Transport and Escort tasks both require start interactions.
In order to transport an object or escort a person, CoBot-2
asks to acquire the object or find the person at the pickup
location, saying “Hello, I’m here to take [object/person]
to [room]. Press ‘Done’ when you are ready to go” and
displays a button on the user interface. This interaction gives
occupants time to find the object and arrange it on the
robot or visitors time to finish conversations prior to being
escorted. Additionally, the confirmation is a signal to begin
navigating to the destination without having to actively sense
each potential object or person.

At the end of each task, CoBot-2 also interacts with task
solicitors. At the end of deliver message tasks, the robot
asks “Hello. I have a message from [task solicitor]. Are you
ready to hear it?”. Then, after CoBot-2 speaks the message,
it asks “Would you like me to repeat myself, or can I leave?”
and displays a “Repeat” and a “Done” button. For all other
tasks, CoBot-2 only confirms it has completed its task, saying
“Please press ‘Done when I can leave.”

B. Waypoint Path Planning for Navigation

CoBot-2 also plans the autonomous and symbiotic inter-
actions to navigate between rooms. Since CoBot-2 navigates
in a multi-floor building with many occupants, it takes into
account their preferences for traveling by their offices and
the need to use the elevator. For each destination, the task
executor calls the waypoint path planner to generate a low-
cost path. The waypoint path planner keeps a room graph

GR = 〈VR, ER〉,
VR = {vi = (xi, yi)}i=1:|VR| ,

ER = {ei = (vi1, vi2) : vi1, vi2 ∈ VR}i=1:|ER| .

The vertices Vi ∈ VR indicate the locations of offices and
other important landmarks such as elevators and kitchens.
The edges ei = (vi1, vi2) ∈ E indicate that the vertices vi1
and vi2 are connected by a navigable path. The cost function
c(ei) of the edge is based on the length of the edge, the time
to travel the edge, the capability of the robot to navigate there
autonomously, and the cost to humans of traversing the edge.
For example, the robot may lower the cost of an edge in
order to favor particular edges if the building occupants in
offices near that stretch of hallway enjoy watching CoBot-

2 go by. The waypoint path planner uses Dijkstra’s shortest
path algorithm with edge weights c(ei) and returns a path of
waypoint locations

~ld = 〈l0d = vstart, l
1
d, l

2
d, . . . , l

k
d = vend〉

for the robot to navigate to get from vstart to vend. Note
that the path isn’t necessarily the shortest distance path, but
is rather the lowest cost path.

Given a set of waypoints, the path planner then classifies
them into one of two categories: those to direct the robot
towards more preferable paths and stops for help. If CoBot-
2 determines that it is not capable of traversing an edge
between two consecutive waypoint locations autonomously,
it labels the first of the two waypoints in the path as a stop.
There are three elevator stop locations:
• The location outside the elevator on the starting floor.

CoBot-2 needs help pressing the up/down buttons and
determining which elevator to enter.

• The location inside the elevator on the starting floor.
CoBot-2 needs help pressing the floor number buttons
inside the elevator.

• The location inside the elevator on the destination
floor. CoBot-2 needs help identifying when it is on the
destination floor and can exit the elevator.

All other waypoints in the path are direct to indicate that the
robot can navigate between them autonomously.

C. Symbiotic Interaction with Task Helpers: Riding the El-
evator

One of the most important contributions of the current
successful deployment of CoBot-2 is the fact that the robot
takes the elevator by itself, as our building has multiple
floors. CoBot-2, in its symbiotic-autonomy depends on task
helpers who are already using the elevator to help it too.

We view four robot states in riding the elevator, namely
waiting, entering, inside, and exiting the elevator. Each of
these states involves interaction with a human helper and
corresponds to one of the three stops in the waypoint path
planner’s path. In the waiting state, the robot is outside of
the elevator and asks to “Please push the up/down button”
and to identify the arriving elevator as “Which elevator is
going up/down” and displays the choices of two possible
elevators (see elevators in Figure 1 behind the robot) on a
touch screen. Given the human input, before the robot starts
moving to position itself in front of the correct elevator, it
requests “Please hold the elevator door.” and then enters the
elevator autonomously.

When inside the elevator, the robot can asks for help about
its destination floor “Can you please push [the destination
floor] button and tell me when we get to that floor.” At
the destination floor, the task executor expects a response
to its request and at that time will wait for the doors to
open and autonomously navigate out. If a person tells the
robot incorrectly that it is on the destination floor, as soon
as CoBot-2 exits the elevator, it can localize itself and
autonomously detect that it is on the wrong floor. At that

time, the task executor replans its path to the destination,
asking for help to enter the elevator again.

We have also developed an approach to allow the robot
to autonomously read the floor numbers displayed inside the
elevator to identify when it is on the destination floor, rather
than wait for a response to the request on the correct floor.
The floor numbers are in a dedicated LED panel, which the
robot can a) detect and b) classify using its vision camera.
The detection algorithm uses the localization information
of the robot inside the elevator, controls the camera pan to
search for the known location of the LED number display in
each elevator, tilts the camera as needed in its search, and
zooms on the number. When the robot finds the LED number,
it holds its camera to its position, and invokes the classifier.
We trained an SVM, using a linear kernel and features given
by histograms of gradient on the V channel of the HSV
images. We trained one SVM per floor number using a one
versus all approach. While the elevator is moving, CoBot-2
sees a small number of images (4-5) of each floor number.
By using majority consensus over the last three images,
CoBot-2 is able to identify the floor number with high
accuracy without running the risk of missing floor transitions.
Figure 3 shows examples of different elevator numbers and
views obtained from the robot perspective. The numbers are
zoomed, pre-processed, and classified.

(a) Robot view (b) Zoomed view (c) Pre-processing

(d) Six (e) Seven (f) Eight (g) Nine

Fig. 3. Elevator floor numbers as processed by CoBot-2.

The detection and classification algorithm falls back to
the default behavior of asking a human for help if it reaches
preset autonomous number reading thresholds. We tested this
autonomous elevator number detection, and it is now being
incorporated into the deployed CoBot-2.

IV. LOCALIZATION AND NAVIGATION

Although CoBot-2 is symbiotic and relies on humans for
help, it localizes and navigates fully autonomously.

A. Localization
CoBot-2 localizes with the Corrective Gradient Refine-

ment (CGR) localization algorithm [11], using the laser
range-finder and the plane filtered point cloud [12] from the
Kinect sensor, along with wheel odometry. CGR localizes
using a vector map M of the building extracted from the
architectural plans. This map consists of a set of lines li ∈M
representing the building walls.

CGR localization uses an observation model where points
observed by the laser rangefinder and the Kinect sensor
are associated with lines on the map, and the probability
of the observation is computed as the joint probability of
the observed points arising from the associated lines on the
vector map. Let the set of 2D points observed by the laser
rangefinder be denoted by P = {pi}i=1:n and the pose of
the robot by x = {xl, xθ} where xl is the 2D location
of the robot and xθ its orientation angle. For every point
pi ∈ P , line li ∈ M is found by ray casting such that
the ray in the direction of pi − xl and originating from xl
intersects li before any other line. The perpendicular distance
di of pi from the (extended) line li is computed. The total
(non-normalized) observation likelihood p(P |x) is then given
by p(P |x) =

∏n
i=1 exp

[
− d2i

2fσ2

]
. Here, σ is the standard

deviation of the distance measurements of a single ray, and
f (where f > 1) is a discounting factor to discount for
the correlation between rays. This observation model is also
used to analytically compute the state space gradients of the
observation model, which are used for the “refinement” step
in CGR.

CGR localization using the Kinect depth camera [12] is
based on the assumption that only large planar features
observed in the Kinect depth image correspond to lines
(walls) in the vector map. Using Fast Sampling Plane Fil-
tering (FSPF) [12], the depth image is used to generate a
“plane filtered point cloud” P = {pi, ri}i=i:n consisting
of n points pi and normals ri corresponding to planes
observed by the robot. Sampled points that did not fit the
detected planes are added to the “outlier point cloud”. The
plane filtered points and their corresponding plane normal
estimates are then projected into 2D to yield the set of points
P ′ = {p′i, r′i}i=1:n′ where p′i are the projected 2D points,
and r′i the corresponding 2D normals. The projected points
in P ′ are then used to compute the observation likelihood
using the same observation model as is used for the laser
rangefinder. The plane filtered points, as well as the outlier
3D points, are used to compute obstacle avoidance margins
for the robot. CGR localization (using the laser rangefinder
and Kinect sensors) thus provides the estimated pose (x, y, θ)
of CoBot-2 on a particular floor of the building.

To detect when CoBot-2 has entered a new floor (using
the elevator), we use the StarGazer sensor. The StarGazer
sensor is an off-the-shelf sensor which has a ceiling-facing
infrared camera and infrared LEDs. Retroreflective markers,
consisting of patterns of dots, reflect the light from the
infrared LEDs and are read by the infrared camera. The
StarGazer sensor provides the unique identification code of
the marker and the robot’s pose relative to the marker. Thus,
by placing unique StarGazer markers outside the elevator
doors on every floor, CoBot-2 can immediately identify
which floor it is on after exiting the elevator.

B. Navigation

CoBot-2 uses a graph based navigation planner [13]
to plan paths between locations on the same
floor of the building. The navigation graph G,

distinct from GR presented previously, is denoted
by G = 〈V,E〉, V = {vi = (xi, yi)}i=:nV

,
E = {ei = (vi1, vi2) : vi1, vi2 ∈ V }i=:nE

. The set of
vertices V consists of nV vertices vi = (xi, yi) that
represent the location of the ends and intersections of
hallways. The set of edges E consists of nE edges
ei = (vi1, vi2) that represent navigable paths between
vertices vi1 and vi2.

Given a destination location ld = (xd, yd, θd), the navi-
gation planner first finds the projected destination location
l′d = (x′d, y

′
d, θd) that lies on one of the edges in the graph.

This projected destination location is then used to compute
a topological policy using Dijkstra’s algorithm for the entire
graph. The navigation planner projects the current location
l = (x, y, θ) onto the graph and then executes the topological
policy until the robot reaches the edge on which l′d lies, and
then drives straight to the location ld. Thus, the navigation
planner navigates between start and end rooms ∈ GR given
by the task executor, irrespective of whether or not they
actually lie on the graph.

While executing the navigation plan, CoBot-2 performs
obstacle avoidance based on the obstacles detected by the
laser rangefinder and Kinect sensors. This is done by com-
puting open path lengths available to the robot for different
angular directions. Obstacle checks are performed using the
2D points detected by the laser rangefinder, and the down-
projected points in the plane filtered and outlier point clouds
generated by FSPF from the latest Kinect depth image.

V. DEPLOYMENT RESULTS

We deployed CoBot-2 on the upper four floors of an office
building for a two week period. CoBot-2 was deployed for
two hours every weekday and made available to the building
occupants. Occupants were alerted of CoBot-2’s availability
through email and physical signs posted on bulletin boards
and on the robot itself. The deployment times varied each
day, and were announced beforehand on CoBot-2’s website.

The response to CoBot-2’s deployment was positive: over
one hundred building occupants registered to use CoBot-2 on
the website. Users found creative ways to exploit the robot’s
capabilities, including, but not limited to:

• Sending messages to friends.
• Reminding occupants of meetings.
• Escorting visitors between offices.
• Delivering printouts, inter-office mail, USB sticks,

snacks, owed money, and beverages to other building
occupants.

TABLE I
TOTAL NUMBER OF TASK REQUESTS PER TASK TYPE AND THE

RESPECTIVE NUMBER THAT USED THE ELEVATOR.

Task Type Total Requests # Multi-floor
Escort 3 2
GoToRoom 52 22
DeliverMessage 56 20
Transport 29 22

Fig. 4. Execution times for, from left to right, Deliver Message tasks, Go to Room tasks, and Transport tasks. The breakdown includes 1) waiting for
help to start the task, 2) riding the elevator, 3) navigating (not including time blocked by obstacles), 4) waiting blocked by an obstacle, and 5) waiting for
help to end the task.

Particularly in the first couple days of deployment, we found
building occupants following the robot around to see where
it was going and how it worked.

We found that occupants scheduled the robot to transport
objects between multiple floors of the building more often
than they used the multi-floor functionality for other tasks
(see Table I). In particular, the transport task saved the task
solicitors time because they did not have to travel between
floors themselves. However, even the other scheduled tasks
utilized the elevator 40% of the time.

In fulfillment of the user requested tasks, CoBot-2 trav-
elled a total of 8.7 km, which covered most of the building.
CoBot-2 spent
• 6 hours and 17 minutes navigating this distance,
• 36 minutes with a blocked path waiting for a person to

move out of its way,
• 1 hour and 2 minutes waiting for help with the elevator,
• 1 hour and 18 minutes waiting for task solicitor help to

complete its tasks.
Figure 4 shows how much time CoBot-2 took to execute each
task, and how that time was apportioned. A total of 140 tasks
were completed during the two week deployment, which took
9 hours and 13 minutes. Based on these times, we find that
task solicitors quickly responded to the robot’s request for
help at the start and end of tasks. Building occupants (even
those that had never scheduled a task) were willing and able
to help the robot in and out of the elevator. This finding
supports our model of symbiotic autonomy— humans are
willing to help a robot complete its tasks so that the robot is
available and capable of performing tasks for them as well.

Although CoBot-2 could be required to wait for human
help indefinitely, the task execution times are limited. In
general, little more than five minutes per task was spent in
the elevator. This is because if CoBot-2 spends more than
five minutes waiting for human help, it sends an email to
our research group asking for assistance. Typically, however,
occupants helped CoBot-2 and there was no need to do
so. Furthermore, if at the end of a task no human pressed
the button to indicate that the task was complete, CoBot-2
marked the task as complete and moved on to the next task.

VI. CONCLUSION

We have successfully deployed an autonomous robot to
service users in a multi-floor building. We have presented

how users request tasks dynamically on a web server, and
how requests are scheduled via a mixed integer program. Our
task planner and executor divides each task into autonomous
navigation actions, and interactions with humans which re-
quire help. Our robots are symbiotic, helping occupants of
the building by fulfilling their requests, while also receiving
help from humans to complete tasks and to use the elevators.
The robots are also fully autonomous; they navigate and
localize on their own. CoBot-2 has traveled over 100km
throughout its lifetime, and we present results of 8.7km for
public deployment.

REFERENCES

[1] N. J. Nilsson, “Shakey the robot,” SRI International, Tech. Rep. 323,
1984.

[2] R. Simmons, R. Goodwin, K. Z. Haigh, S. Koenig, and J. O’Sullivan,
“A layered architecture for office delivery robots,” in Proceedings of
the first international conference on Autonomous agents (AGENTS’97),
1997, pp. 245–252.

[3] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer,
D. Schulz, W. Steiner, and S. Thrun, “Experiences with an interactive
museum tour-guide robot,” Artificial Intelligence, vol. 114, pp. 3–55,
October 1999.

[4] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially
interactive robots,” Robotics and Autonomous Systems, vol. 42, pp.
143–166, 2003.

[5] S. Thrun et al., “Probabilistic algorithms and the interactive museum
tour-guide robot minerva,” The International Journal of Robotics
Research, vol. 19, no. 11, pp. 972–999, 2000.

[6] U. Visser and H.-D. Burkhard, “RoboCup: 10 years of achievements
and future challenges,” AI Magazine, vol. 28, no. 2, pp. 115–132,
Summer 2007.

[7] S. Rosenthal, J. Biswas, and M. Veloso, “An effective personal
mobile robot agent through a symbiotic human-robot interaction,” in
International Joint Conference on Autonomous Agents and Multiagent
Systems, 2010, pp. 915–922.

[8] A. Larsen and O. Madsen, “The dynamic vehicle routing problem,”
Ph.D. dissertation, Technical University of Denmark, Department of
Informatics and Mathematical Modeling, 2000.

[9] H. Hüttenrauch and S. Eklundh, “To help or not to help a service robot:
Bystander intervention as a resource in human-robot collaboration,”
Interaction Studies, vol. 7, no. 3, pp. 455–477, 2006.

[10] A. Weiss, J. Igelsböck, M. Tscheligi, A. Bauer, K. Kühnlenz, D. Woll-
herr, and M. Buss, “Robots asking for directions: the willingness of
passers-by to support robots,” in HRI ’10, 2010, pp. 23–30.

[11] J. Biswas, B. Coltin, and M. Veloso, “Corrective gradient refinement
for mobile robot localization,” in Intelligent Robots and Systems
(IROS), 2011 IEEE International Conference on. IEEE, 2011.

[12] J. Biswas and M. Veloso, “Depth camera based indoor mobile robot
localization and navigation,” in 2012 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2012.

[13] B. Coltin, J. Biswas, D. Pomerleau, and M. Veloso, “Effective semi-
autonomous telepresence,” Proceedings of the RoboCup Symposium,
pp. 289–300, July 2011.

