
Symbiotic CPS Design-Space Exploration through Iterated
Optimization

Sheng-Jung Yu
1
, Inigo Incer

1
, Valmik Prabhu

1
, Anwesha Chattoraj

2
, Eric Vin

3
, Daniel Fremont

3
,

Ankur Mehta
2
, Alberto Sangiovanni-Vincentelli

1
, Shankar Sastry

1
, and Sanjit Seshia

1
,

1
Univeristy of California, Berkeley,

2
University of California, Los Angeles,

3
University of California, Santa Cruz

{shengjungyu, inigo, valmik, alberto, shankar_sastry, sseshia}@berkeley.edu

{anwchatto, mehtank}@ucla.edu

{evin, dfremont}@ucsc.edu

ABSTRACT
Cyber-physical systems (CPSs) are complex systems comprised of

computational processes, communication networks, and elements

interacting with the physical world. The design of the CPSs in-

volves many domain-specific tools and design flows created by

engineers with diverse domain knowledge. As the scale of the sys-

tems increases, the heterogeneity nature of CPS design prolongs the

CPS design process, making exhaustive design-space exploration

infeasible. The symbiotic design methodology, in which the design-

ers interact with optimization tools during the design process, is

therefore promising to facilitate the design process by perform-

ing design exploration in a properly restricted design space. We

present a symbiotic design methodology, which explores the de-

sign space iteratively and optimizes the system by exploiting the

collaboration between designers and tools. The optimization tools

perform the design space exploration, while the human design-

ers use their expertise to guide the exploration by restricting the

design space. Experimental results based on a robot car configu-

ration problem and an unmanned aerial vehicle design problem

show that the methodology can efficiently and effectively discover

unconventional designs while optimizing the design objectives.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-
physical systems; • Human-centered computing→ User cen-
tered design.

ACM Reference Format:
Sheng-Jung Yu

1
, Inigo Incer

1
, Valmik Prabhu

1
, Anwesha Chattoraj

2
,

Eric Vin
3
, Daniel Fremont

3
, Ankur Mehta

2
, Alberto Sangiovanni-

Vincentelli
1
, Shankar Sastry

1
, and Sanjit Seshia

1
, . 2023. Symbiotic CPS

Design-Space Exploration through Iterated Optimization . In Cyber-Physical
Systems and Internet of Things Week 2023 (CPS-IoT Week Workshops ’23),
May 09–12, 2023, San Antonio, TX, USA. ACM, New York, NY, USA, 8 pages.

https://doi.org/10.1145/3576914.3587525

This work is licensed under a Creative Commons Attribution International

4.0 License.

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0049-1/23/05.

https://doi.org/10.1145/3576914.3587525

1 INTRODUCTION
Cyber-physical systems (CPSs) are complex systems comprised of

computational processes, communication networks, and elements

interacting with the physical world. The design of CPSs makes use

of techniques applied in various engineering fields, depending on

the application, e.g., a power distribution system, a space shuttle,

or a chemical plant. With such a diversity, CPS design meets with

various challenges, such as component heterogeneity and system

integration, as elaborated in [10, 12]. To cope with these challenges,

several CPS design methodologies have been proposed [2, 4, 8, 9,

13, 14].

One of the preliminary stages in CPS design is design-space ex-

ploration. At this stage, one wishes to generate multiple solutions to

a design problem and understand their trade-offs with respect to the

design objectives. Automated tools for CPS design have been devel-

oped to efficiently explore the design space. Finn et al. [5] developed

a CPS architecture exploration algorithm using a combination of

discrete and continuous optimization. Discrete methods are used

to connect and select components; continuous optimization is used

to size parameters. Bakakeu et al. [1] studied the design space of

the integration of analytic routines in a manufacturing process for

CPSs. For the case of unmanned aerial vehicle (UAV) design, Krish-

nan et al. [7] proposed Autopilot, a method to search the design

space of autonomy algorithms and their hardware accelerators for

various classes of UAVs. The designs provided by Autopilot were

reported to outperform industry-standard accelerators.

As the scale of the systems increases, the prohibitively large

design space caused by the complexity and heterogeneous nature

of CPS design prolongs the design process and even makes exhaus-

tive and fully automatic design exploration infeasible. In our view,

human designers and automated tools should be complementary

in CPS design space exploration. Experienced human designers,

leveraging their underlying domain knowledge and previous devel-

opment experience, can direct the tools to focus the exploration on

a restricted design space thus avoiding endless searches in inferior

design sub-spaces.

A symbiotic design methodology, in which the designer and

automated tools collaborate, is therefore a promising solutions to

streamline the design process. In this methodology:

• the automated tools explore designs, using provably-good

optimization and statistical learning algorithms, to suggest

promising designs for exploration in the restricted design

space provided by the designers.

92

https://doi.org/10.1145/3576914.3587525
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576914.3587525
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576914.3587525&domain=pdf&date_stamp=2023-05-09


CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Yu and Incer, et al.

• The designers use their domain knowledge to interpret the

current state of the exploration carried out by the tools, state

choices of optimization preferences, and impose restrictions

on the design space for additional exploration by the tools.

To this end, the Defense Advanced Research Projects Agency

launched a project for symbiotic design for CPS [3], aiming to

accelerate exploration of CPS via tight interaction of designers and

tools.

Fitzgerald et al. [6] proposed a SysML profile-based language

for the creation of design space exploration experiments. They

explore the use of genetic algorithms to carry out the actual search.

However, the interaction with automated tools is not explored

further and manual conversion from the language to an experiment

is still needed.

Motivated by the importance of symbiotic design methodology,

this paper proposes a design methodology for CPSs based on itera-

tive optimization. Our contributions are the following:

• We propose a symbiotic CPS design methodology which it-

eratively explores the design space with the collaboration of

the designers and the optimization tools. To the best of our

knowledge, this is the first paper that proposes a symbiotic

CPS design exploration methodology in which the design-

ers interact directly with automated tools without manual

conversions.

• We identify a set of design choices that the designers can

make to interact with the design tools for design space ex-

ploration. Compared with [6], no manual conversion from

the design choices to set the automated tools are required.

• We apply the methodology in two CPS design problems: the

design of UAVs and the design of robot configurations. The

results shows that the proposed methodology is effective for

restricting the design space to interesting sub-spaces and,

consequently, it produces results more efficiently.

• We present a integrated-circuit (IC) design inspired method-

ology for UAV design consisting of the following steps: com-
ponent selection; placement in free 3D space, and a routing
step which adds a frame to the UAV.

2 PRELIMINARIES
In this section, we introduce the CPS design space exploration

problem.

2.1 Elements in CPS Design Space Exploration
Problem

The elements in a CPS design exploration problem consist of a

library that includes the components available for composing a

design, parameters that change the behavior of a component, a

net-list that describes the connection between the components, a

set of rewards that are used to assess the quality of the design, and

an oracle that computes the rewards.

Components and Component Library. The components are in-

stances of the hardware and/or of the software for control algo-

rithms. Their composition forms a CPS design. The components

communicate through ports.A component Library, denoted by L,
is the set of components that are specified to construct candidate

implementations for a particular design problem. The component

types, which partition the library L, abstract the notion of com-

posability for components: components having the same type can

interact with other components through the same types of ports.

Each component in the same component type shares the same set

of parameters that affect their behaviors. Logic gates in cell-based

digital circuit design flow are an example of a components library.

In the case of UAV design, component types could be propellers,

electronic speed control circuits (ESCs), motors, etc. at various

levels of specificity.

Net-list. The net-list is an interconnection of component types.

A net-list T can be represented as a graph whose vertices are

component types and whose labeled edges tell which ports are

connected between the component types. To generate a design,

for every node in the net-list, the component type at the node is

replaced with a "real" component of the same type.

Design parametrization. Once a net-list is chosen, all the designs
having the same net-list can be described by a set of parameters

from all its parameters of the component types. The set of pa-

rameters, denoted 𝜙T , contains all candidate designs built out of
T . We further denote 𝑑T as the assignment of the value to the

parametrization 𝜙T . Each candidate design consists of selections of

components in each component type and assignments of the values

for the parameters.

Oracle. The oracle, denoted by 𝑂 , evaluates the performance

of a candidate design, potentially considering interactions among

components. The oracle for a design problem can be a simulator that

models the system and provides estimates of system performance, or

an experiment conducted on a prototype to measure performance in

the real world. The computational complexity and cost for running

an oracle increase the difficulty of design exploration given limited

design time and resources.

Rewards. The rewards are elements in a vector representing the

evaluation results of candidate designs mapped by the oracle as

shown in the following relation:

®𝑟 = 𝑂 (T , 𝑑T ), (1)

where T denotes the net-list, ®𝑟 denotes the reward, 𝑑T represents

an assignment of value to the parametrization 𝜙T . Each element in

the vector refers to an aspect of the design, such as cost, yield for

manufacturability, energy efficiency, and functionality metrics. For

ease of explanation, we can define each element in the rewards such

that the higher the value is, the more desirable the design is. The

optimization of the rewards is thus a multi-objective optimization

problem, which many algorithms, strategies, and automated tools

have been proposed to solve by finding its Pareto front or solving a

single objective optimization problem.

2.2 CPS Design Space Exploration Problem
Given the elements in the design space exploration problem, the

design space, denoted by D, is defined as all possible net-lists and

parameter assignments. The CPS design space exploration problem

then can be defined as follows: Given the component library, oracles,

and the rewards, find the net-list and assignment of parameters for

the design such that the rewards are optimized.

93



Symbiotic CPS Design-Space Exploration through Iterated Optimization CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

Show me the maximum traveled
distances of known designs vs. their
number of propellers.

Number of Propellers

D
is

ta
nc

e 
(k

m
)

2 4 6 8

1.5

3.0

4.5

Show me details about the chosen design.

Design summary
4 propellers. Prop1 = 11x8.5, Prop2=...,
Motor1= MT2208, Motor2=...

Reward 1

Reward 2
...

Reward k

Chosen design

Eng SW

Here they are:

Eng SW

...

Reward N

Figure 1: An initial interaction in which the engineer studies
the performance of existing designs.

In this paper, we assume that a net-list is provided by the hu-

man designers, and thus the design space is limited to that net-list.

Given the net-list, the assignment to the parametrization defines

the design space containing the net-list, as shown by the following

relation:

𝑑T ∈ DT , (2)

where T is the provided net-list, DT denotes the design space lim-

ited to the net-list, and 𝑑T is the assignment to the parametrization

𝜙T . We also refer to 𝑑T as a design candidate since an assignment

to the parameters uniquely determines a design.

3 THE SYMBIOTIC CPS DESIGN SPACE
EXPLORATION METHODOLOGY

Given a net-list T that defines a space of design parameters 𝜙 ,

the ideal design exploration solves the following multi-objective

optimization problem:

𝑑T ← argmax

𝜙T
®𝑟 = 𝑂 (T , 𝜙T ), (3)

where T denotes the net-list, 𝑑T is the design with the optimized

parameter values, 𝜙T is the parametrization of the design, and ®𝑟
indicates the evaluation of reward provided by the oracle 𝑂 .

However, solving (3) may be prohibitive, as 𝜙T will be large-

dimensional in complex CPSs. Therefore, in this section, we pro-

pose our symbiotic design space-exploration methodology. We ab-

stracted them asDesign Choice Step and Exploration Step. The design
choice step allows designers to restrict the design space to guide

the automated tools, and the exploration step is performed by the

automated tools to explore the design space. Our symbiotic design

space exploration is the continual process that alternates between

these two steps. First, a few designs are created through traditional

(manual) methods as seed designs. Designers then select an existing

seed design, an objective function, a subset of the parameters over

which to optimize, and constraints on the parameters to perform an

iteration of optimization; to make their selections, designers make

use of their experience that a design objective may be improved by

altering a subset of the parameters. After the design choice is made,

the designers invoke the automated tools to solve (5) and obtain all

results as the potential designs. The designers then review these

potential designs, make manual modifications at their discretion,

Design step

R
ew

ar
d 

k

0 1 ... n

Seed
design Design after n iterations

Reward 1

Reward 2
...

Reward k

Reward 1

Reward 2
...

Reward k

...

Reward N

...

Reward N

Design Path

Figure 2: A design step is a modification of an existing design
to produce a new one, which is added to the library of known
designs. A design path connects any known design to one of
the seed designs.

select new design choice and start the next iteration of optimiza-

tion. The process terminates when the designer is satisfied with

the performance of a design.

Thus, in this methodology, there is symbiotic interaction between
the human user and automated tool. Figure 1 illustrates a dialog in
which the engineer interrogates the software for a properties of

known designs. In this methodology, every known implementation

is obtained from an existing design. As a result, there is a unique

path connecting every known implementation to one of the original

seed designs. For each design step, we know exactly how the new

design obtained, as shown in Figure 2. This provides a high degree

of explainability to the design process. In the following, we detail

the Design Choice Step and Exploration Step.

3.1 Design Choice Step
The designer can make the design choice to guide the optimization

problem. Here we summarize the design choices that a designer

can make:

• Seed Design Setting: The designers can provide traditional

(manual) designs to the automated tool.

• Manual Modification: The designers make modifications, in-

cluding topology changes and parameters adjustment, to a

design provided by the automated tools and then sends it

back to the tools.

• Objective Function Setting: The designer can specify the com-

parison metrics for the rewards, such as partial ordering,

weighted sum, or priority of each element in the rewards.

The objective function is denoted by 𝐹 .

• Parameter Set Restriction: The designer can specify the subset
of the parameters 𝜙 ′T ⊆ 𝜙T for optimization.

• Parameter Constraint Setting: Besides the variable set, ad-

ditional constraints can be set on the parameter to further

restrict the design space, as shown by

𝑐𝑖 (𝜙T ) < 0, 𝑖 = 0 . . . 𝑁𝑐 , (4)

where 𝑐𝑖 denotes the 𝑖
𝑡ℎ

constraint functions and 𝑁𝑐 denotes

the number of constraints set by the designers.

• Incremental Optimization: The designers request the auto-
mated tool to solve the optimization problem with selected

global optimization with a certain design in the automated

tools as the initial point.

94



CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Yu and Incer, et al.

• Local optimization: Similar to the incremental optimization,

the designers request the automated tool to solve optimiza-

tion problem, while the solver only performs local optimiza-

tion.

3.2 Exploration Step
As introduced, the ideal exploration is prohibitive due to the large

design space. Therefore, the design space needs to be properly re-

stricted so that the exploration can be performed by the automated

tools and produce satisfying results. Given the restriction provided

by the designer, as introduced in Section 3.1, here we formulate the

exploration step as the following optimization problem:

𝑑′T ← argmax

𝜙T

𝐹 (𝑂 (T , 𝜙T )) (5)

s.t. 𝑐𝑖 (𝜙T ) < 0, 𝑖 = 0 . . . 𝑁𝑐 ,

𝑑′T𝑗 = 𝑑T𝑗 ,∀𝑗 𝜙
T
𝑗 ∉ 𝜙 ′T

where 𝜙T
𝑗
is the 𝑗𝑡ℎ parameter in 𝜙T , 𝑑T

𝑗
is the value of the 𝑗𝑡ℎ

parameter from the existing design, 𝑑′T is the value of the parame-

ters of the optimized design, 𝑑′T
𝑗

is the value of the 𝑗𝑡ℎ parameter

of the optimized design, and all the other symbols are as defined in

Section 2 and Section 3.1.

In this formulation of the problem, we perform optimization

only over the parameters 𝜙 ′T , and the multi-objective optimiza-

tion problem is also provided with the function 𝐹 to reduce the

number of rewards, prioritize the rewards, or even convert the

multi-dimensional rewards into a single objective function. Thus,

the optimization problem will in general be much more manageable

than (3). The inputs to the problem are a library of components, a

reward to be improved, a topology, a design to improve, and the al-

lowed design choices or modifications that the algorithm can effect

on the original design in order to improve the reward selected by

the user.

4 ILLUSTRATION: ROBOT CAR
CONFIGURATION OPTIMIZATION

To show the effectiveness of our proposed symbiotic design method-

ology on the CPS design exploration problem, we apply our design

methodology to two CPS design exploration problems. The first

design problem is a robot car configuration optimization problem,

through which we aim to demonstrate the interactions between de-

signers and automated tools on a simple design exploration problem

and the incremental improvement achieved by the methodology.

The second one is a UAV design problem, which serves as a com-

plex CPS design problem to show that the proposed symbiotic

methodology can generate unconventional design and optimize

performance.

In this section, we demonstrate how our symbiotic methodology

can be applied to the robot car configuration optimization problem.

The UAV design problem will be introduced in Section 5.

4.1 Design Problem Description
In the robot car configuration problem, the objective is to find

configurations of the robot car such that it can reach the target

with the minimized consumed energy and elapsed time in a testing

(a) (b)

Figure 3: The visualization extracted by the simulator in
the robot car configuration optimization problem (a) The
configuration of the car. (b) The environment for testing,
which contains yellow speed bumps and a red pole as the
target.

environment. The configuration of the robot car is specified by four

parameters: number of wheels, length, width, radius. The number

of wheels is a discrete parameter that determines the number of

wheels on one side of the robot car. The length and the width

determine the dimension of the robot car and affect the distance

between the wheels. The radius represents the size of the wheels.

Figure 3a shows an example of the robot car.

The testing environment contains speed bumps and a pole that

represents the target position, as shown in Figure 3b. The oracle

simulates the robot car in the environment and returns the elapsed

time and the consumed energy for reaching the goal as the rewards.

The execution time for the oracle to run one simulation takes about

2 minutes.

4.2 Design Methodology
Using our symbiotic design methodology, experienced designers

with domain knowledge can specify the parameters to optimize, set

constraints on the parameters, and provide an objective function

for the rewards. In this optimization problem, since the dimension

of the parameters are only four, we apply exploration on the con-

tinuous variable and let the designers determine the number of

wheels, the constraints, and the objective function.

The objective function is set as follows:

𝐹 (𝑒, 𝑡) = 𝑒 + 0.5𝑡, (6)

where 𝑒 denotes the energy consumption to complete the goal, 𝑡

is the time to complete goal, and 𝐹 (𝑒, 𝑡) is the objective function,
taking the rewards 𝑒 and 𝑡 as inputs.

In the exploration, the human designers determine the number

of wheels and set the constraints for the parameters as follows:

𝐿 ∈ (80, 200)
𝑊 ∈ (65, 200)
𝑅 ∈ (36, 200), (7)

where 𝐿 denotes the length,𝑊 represents the width, and 𝑅 is the

radius of the robot car. The underlying exploration algorithm is

simulated annealing and Bayesian optimization.

4.3 Results
Table 1 lists the design choice and the results at each iteration. In the

symbiotic design process, the designers first perform the optimiza-

tion with the number of wheels set to 4. Then the designers proceed

95



Symbiotic CPS Design-Space Exploration through Iterated Optimization CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

Iteration 𝑁𝑤 Optimization tools Result

1 4 Bayesian Optimization 412.485

2 4 Simulated Annealing 358.010

3 3 Bayesian Optimization 325.798

4 2 Bayesian Optimization 279.403

5 2 Simulated Annealing 277.839

Table 1: The design choice and results for each iteration of
the design space exploration on the robot car configuration
problem. 𝑁𝑤 denotes the number of wheels and the Result is
the objective function value.

with a different optimization tool and observe an improvement in

the objective function. In iterations 3 and 4, the designers try to

change the number of wheels to explore different design spaces. The

results of these two iterations show that the robot car has a better

performance on the objective function when the number of wheels

is set to 2. Finally, the designer performs the last optimization in the

design space with 2 wheels and improves the design further. The

process of the iterated design and the improved objective function

value shows that our symbiotic design methodology can effectively

handling optimization with the interaction between the designers

and the optimization tools.

5 ILLUSTRATION: UAV DESIGN
In this section, we illustrate the methodology in a UAV design

problem to show that the proposed methodology can be applied to

complex CPS design. Based on our symbiotic design methodology,

we propose an IC design inspired methodology for UAV design

consisting of the following steps: first, component selection; second
placement in free 3D space, and third, a routing step which adds a

frame to the UAV. The component selection chooses the component

type for a given topology of the UAV by optimizing the discrete

parameters determined by component type and continuous param-

eters that describe the behaviors of the components. The placement

optimizes the parameters for physical configuration and generates

the mechanical properties of the UAV. After the rewards are op-

timized, the routing connects the components to ensure that the

structure of the UAV is stable. In the following, we detail the UAV

design problem and describe each step.

5.1 Design Problem Description
The library of components for the UAV design include the com-

ponent types of propellers, motors, ESCs, flanges, central support,

mechanical connectors, and batteries. Models for the propellers

come from APC Propellers; we use the motor characteristics from

T-motor; our batteries are modeled after the offering of Turnigy;

our structural elements follow the parameters of DragonPlate’s

offering.

Propeller Motor Flange Mechanical
connector

Central
support

ESC

Battery

x4

Figure 4: The topology of the quadrotor. Each box denotes a
component type.

We have an initial quadrotor design, as shown in Figure 4. De-

signs are obtained by providing specific instances for each com-

ponent type together with any additional parameters needed to

place these components in free space. The parametrization of this

topology gives us the following design choices: positions and ori-

entations of the four propellers, positions of the four ESCs and

batteries, selection of all components, and control parameters for

an LQR controller. The parametrization thus consists of the cyber

aspect and the physical part of the design. As a result, The design

choices on the parameter is any subset of the parametrization with

at least 12 components and over 30 continuous parameters.

The rewards are computed using a flight simulator. The inputs

to this simulator are the performance files for the propellers and

their geometrical data, the electromechanical characteristics of the

motors, and descriptions of the batteries. In addition, the simulator

takes as inputs the mass properties of the UAV. We build assemblies

in PTC Creo
1
, a 3D CAD tool, and obtain from it these mass prop-

erties; to make programmatic calls to Creo, we used the python

library Creopyson. The simulator implements several tests, detailed

in our results section. Each of these tests generates rewards we

can use to assess the performance of candidate designs. The UAV

design challenge, together with the libraries of components, and

the simulator was provided by the authors of [15].

5.2 Overview of the Proposed UAV Design
Methodology

Algorithm 1 outlines our proposed IC design inspired methodology

for UAV design.

Algorithm 1 UAV Design step

Require: existing design 𝑑T with 4 propellers with orientations

𝜙𝑜 and positions 𝜙𝑝 (24 variables), 4 propeller choices 𝜙𝑝𝑐 , 4

motor choices 𝜙𝑚𝑐 , 4 ESC choices 𝜙𝑒𝑐 , 1 battery choice 𝜙𝑏𝑐 (we

let 𝜙T be all parameters), 4 control inputs 𝜙𝑐𝑛𝑡 , and the design

choice at iteration 𝑘 including the subset of the parametrization,

𝜙 ′T
𝑘

, constraints 𝐶𝑘 = {𝑐𝑖 |𝑖 = 0 . . . 𝑁𝑐 }, and objective function

𝐹𝑘 to improve.

1: 𝑑′T ← 𝑑T

2: while NotConverged do
3: 𝑑′T𝑝𝑐 , 𝑑

′T
𝑚𝑐 , 𝑑

′T
𝑒𝑐 , 𝑑

′T
𝑏𝑐
← UpdateComponents(𝜙 ′T

𝑘
,𝐶𝑘 , 𝐹𝑘 )

4: 𝑑′T𝑜 , 𝑑′T𝑝 ← UpdatePropellerGeometry(𝜙 ′T
𝑘
,𝐶𝑘 , 𝐹𝑘 )

5: 𝑑′T ← MapAndPlace(𝜙 ′T
𝑘
,𝐶𝑘 , 𝐹𝑘 )

6: 𝑑′T𝑐𝑛𝑡 ← UpdateControl(𝜙 ′T
𝑘
,𝐶𝑘 , 𝐹𝑘 )

7: ®𝑟 ← ComputeReward(𝐹𝑘 , 𝑑′T )
8: 𝑑′T ← RouteDesign(𝜙T )
9: return improved design 𝑑′T

Lines 2–7 carry out the optimization problem (5). The conver-

gence of the algorithm is dictated by our optimization method,

which is simulated annealing. UpdateComponents carries out

component selection for those components allowed by the design

choice on the parametrization 𝜙 ′T
𝑘

. UpdatePropellerGeometry,

which updates the geometry, make changes to those positions and

1
https://www.ptc.com/en/products/creo

96

https://www.ptc.com/en/products/creo


CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Yu and Incer, et al.

orientations of the input UAV 𝑑T , where T is the given topology of

the UAV. UpdateControl operates similarly, updating the weights

of the LQR controller. For example,𝜙 ′T
𝑘

may contain the parameters

for the propellers but not for the batteries, thus allowing the pro-

pellers be optimized while fixing the battery.MapAndPlace builds

a 3D CAD assembly for the candidate implementation using PTC

Creo and extracts the mass properties of the UAV. These mass prop-

erties are used in the computation of the reward chosen by the user.

The candidate implementation generated in the optimization loop

only carries out component selection and component placement in

free space. The output of this step goes through another step, which

we call routing. Routing adds tubes and connectors to the design in

order for the UAV to have mechanical integrity as it operates. We

now discuss the specific techniques used in component selection

and routing.

5.3 Component selection
In Algorithm 1, 𝜙𝑚𝑐 represents the choice of motors. We have four

motors, yielding four objects to decide in 𝜙𝑚𝑐 . In other words, this

parameter has datatype L×4𝑚 , where𝑚 stands for the motor com-

ponent type. If we perform a design step to improve reward 𝑟𝑘 by

allowing 𝐶 to choose one of the motors, the component selection

algorithm can proceed in three ways. (i) If the number of potential

motors in the library is not large, we could test all motors and pick

the one that maximizes the reward. (ii) We could cluster motors

into similar groups and make a decision hierarchically. (iii) We

could treat the parameters that define a specific motor as continu-

ous quantities, optimize for those quantities, and pick the library

element which is closest to the optimal values.

The third approach deserves further discussion. Many types

of components are summarized by few parameters. For example,

for our simulator, a motor is summarized by approximately five

numbers. It is thus feasible to allow our optimizer to find a good

value for the parameters; if the number of values that characterize

a component is large, we allow the user to specify which subset

of the parameters of the component should be used to make the

choice of the component. Our component-selection optimization

constantly takes steps that improve a reward based on changes to

the parameters specified by the user; as there are other component

parameters affected when a specific component is chosen, our al-

gorithm often updates the values of those parameters according to

the design choice made by the parameters being optimized.

When components are represented by a small set of numbers, the

approach just described is suitable for an implementation. There are

some component types, though, such as propellers, which are often

characterized by large performance files. In that case, one could say

that the number of parameters defining a component is very large.

Optimizing over such large parameter space is unfeasible. As a

result, we learn sparse representations of the performance files and

carry out the optimization in the reduced parameter space. More

specifically, we use the geometric data of the propellers as inputs

to a neural network that is trained to generate performance met-

rics for the propellers. This neural network enables us to generate

performance files for arbitrary propellers.

5.4 Routing
The optimization loop that chooses and places components in Al-

gorithm 1 outputs a design with no frame to keep the UAV together.

It is the role of routing to add tubes and connectors to the UAV.

The goal is a solid (connected) frame that is as light as possible

without deflecting overmuch during flight. While this step could

perhaps be achieved more optimally by using a process like gener-

ative design [11], we made the design decision to restrict the frame

to a collection of tubes and consider only static flight forces, which

enabled significantly simpler calculations and a large reduction in

design time.

By representing the mounting point of each motor and the bat-

tery as nodes and connecting tubes as edges, we can parametrize

this problem as a topology optimization on a graph. Thus, we want

to minimize total edge weight while ensuring graph connectedness

and satisfying deflection constraints.

We define the position of each node 𝑝𝑖 ∈ R3, and their displace-

ments 𝑑𝑝𝑖 ∈ R3. The first 𝑙 nodes are "fixed" nodes, which are fixed

in space during the optimization (𝑑
1·𝑙 = 0) and assumed to be al-

ready connected together. These represent the "main body" of the

UAV, and would be secured to a fixture during a frame stiffness test.

The next𝑚 nodes represent "body" nodes, the motor assemblies

and other components that will be secured by the frame. And the

next 𝑛 nodes represent any additional "designer" nodes the designer

may include, in order to allow for additional design topologies, such

as the H-frame. Each node has an associated external force vector

𝐹𝑖 ∈ R3 representing the weight of the component and the expected

force of the associated propeller in flight, if present. Note that these

are only predefined for "body" nodes, and must be nonzero. The

external forces on fixed nodes are free variables, representing fix-

turing forces during a test, while the external force on "designer"

nodes is zero. We define each potential tube 𝑖 𝑗 to have variable

outer radius 𝑟𝑖 𝑗 ∈ R, and constant thickness 𝑡 (a tube is considered

not present if 𝑟𝑖 𝑗 = 0). We assume that each tube is composed of an

isotropic material with Young’s modulus 𝐸. To facilitate more read-

able equations we can define initial tube vector 𝐿𝑖 𝑗 = 𝑝 𝑗 − 𝑝𝑖 ∈ R3
and final tube vector 𝐿∗

𝑖 𝑗
= 𝑝 𝑗 + 𝑑𝑝 𝑗 − 𝑝𝑖 − 𝑑𝑝𝑖 ∈ R3. We assume

that the deflection constraints 𝛿𝑖 ∈ R, where ∥𝑑𝑝𝑖 ∥ < 𝛿𝑖 are rea-

sonably chosen such that the frame is stiffness-limited rather than

stress-limited, and that deflections will be small with respect to tube

lengths (∥𝐿∗
𝑖 𝑗
∥ − ∥𝐿𝑖 𝑗 ∥ ≪ ∥𝐿𝑖 𝑗 ∥). The tubes thus have independent

longitudinal stiffness 𝐾𝑙𝑜𝑛𝑔𝑖 𝑗 ∈ R lateral stiffness 𝐾𝑙𝑎𝑡𝑖 𝑗 ∈ R, where

𝐾𝑙𝑜𝑛𝑔𝑖 𝑗 =
2𝜋𝑟𝑖 𝑗 𝑡𝐸

∥𝐿𝑖 𝑗 ∥
and 𝐾𝑙𝑎𝑡𝑖 𝑗 =

3𝐸𝜋 (𝑟4
𝑖 𝑗
− (𝑟𝑖 𝑗 − 𝑡)4)

4∥𝐿𝑖 𝑗 ∥3
.

We can now define the force through each tube 𝐹𝑖 𝑗 = −𝐹 𝑗𝑖 , ∈ R3 as

𝐹𝑖 𝑗 = 𝐾𝑙𝑜𝑛𝑔𝑖 𝑗

((
𝐿∗𝑖 𝑗 ·

𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥
𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥

)
− 𝐿𝑖 𝑗

)
+𝐾𝑙𝑎𝑡𝑖 𝑗

(
𝐿∗𝑖 𝑗 −

(
𝐿∗𝑖 𝑗 ·

𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥
𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥

))
Using these, we can define a nonlinear optimization problem.

min

𝑟𝑖 𝑗 ,𝑑𝑝𝑖 ,𝐹1· · ·𝑙

∑︁
𝑟𝑖 𝑗𝐿𝑖 𝑗

such that 𝐹𝑖 +
∑︁
𝑗

𝐹𝑖 𝑗 = 0

𝑑𝑝𝑖 < 𝛿𝑖

0 ≤ 𝑟𝑖 𝑗 ≤ 𝑟𝑖 𝑗𝑚𝑎𝑥

97



Symbiotic CPS Design-Space Exploration through Iterated Optimization CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

The free variables here are the tube radii, the node displacements,

and the fixturing forces. The force balance constraint is quartic

(linear in 𝑑𝑝 and cubic in 𝑟𝑖 𝑗 ), but since the lateral stiffness is mono-

tonic in 𝑟𝑖 𝑗 , it tends to perform relatively well in practice. The cost

function and other constraints are linear. Multiple force configura-

tions may be applied in a single test by duplicating the force and

displacement constraints, with fixed nodes changeable between

configurations. Note that by allowing the tube radii to continuously

vary from zero to some maximum, we bypass the mixed integer

program that would otherwise be required to ensure graph con-

nectedness. If a "body" node is not connected to a fixed node, the

force balance will fail or the displacement will go to infinity. On

the other hand, a "designer" node does not need to be connected,

allowing the user to try things without forcing the optimizer to

choose a suboptimal frame. Of course, tubes cannot be made with

arbitrarily small radii, so all nonzero tubes will have to be increased

to some minimum radius 𝑟𝑚𝑖𝑛 in a post-processing step.

5.5 Results
We demonstrate the application of our iterated optimization

methodology for the exploration of UAVs that perform well on

various tests and which have unusual geometries. First we discuss

the tests which our simulator performs on each design. We discuss

our methodology and obtained designs afterwards.

Our flight simulator implements four tests: hover, straight-line,

circle, and oval. The hover test verifies whether the UAV can rise

from the ground to a height of 150 m at 2 m/s. The test provides a

score equal to the amount of time during which the UAV can rise

and hover, capped at both 200 s and 400 s. The straight line test

verifies that the UAV can travel horizontally, following a straight

line; the test provides a score equal to the distance traveled in

meters divided by 10. The minimum score is 200 and the maximum

is 400. The circle test requires the UAV to complete a circular course

of 1 km diameter; completing the course yields 300 points. Finally,

the oval test requires the UAV to complete a path of two straight

lines connected by two semicircles; the total length of the path is

3.38 km. Completing the path yields 200 points; points are added

by completing it faster. Points are subtracted if the designs deviate

from the path they are to follow.

To show the effectiveness of our methodology on design space

exploration, we implemented an optimization tool for performing

the UAV design steps discussed in Section 5.2, and conducted a

series of experiments to find UAVs with unusual geometries, but

still displaying acceptable performance in all tests. Our optimization

tool is implemented in python, using the dual-annealing algorithm

in the SciPy library as the underlying optimization mechanism. The

optimization tool is capable of returning all designs that are local

minima for the specified reward during design exploration. The

flight simulator is relied upon as the ground tool for the design

process, i.e., the tool can automatically detect whether a design is

valid or not. After the tool provides a set of results, human designers

can pick a set of solutions for further design steps.

Now we discuss the iterated design steps we followed to obtain

geometrically interesting designs that perform well in all tests.

We will specify the reward that is being improved and the design

decisions passed as input to the optimization tool at each design

step. Table 2 summarizes the design steps we carried out in our

Step Design decision Test Reward

1 Battery type Hover 𝑡

2 Propeller positions and orientations Straight-line 𝑑/10 − 10𝑒

Table 2: Design steps for obtaining geometrically-interesting
designs. In the reward column, 𝑡 denotes the flight time, 𝑑
represents the flight distance, and 𝑒 is the maximum lateral
error from the designated path.

Su
m

 o
f s

co
re

s f
or

 
H

ov
er

, S
tra

ig
ht

-li
ne

, 
an

d 
C

irc
le

 T
es

ts

1100

S

2.11/2.1 2.3 2.2

200 268 3720
0

Oval Test Score

Figure 5: Design path of sample UAV design. The node 𝑆 is
the seed design, and the numbers on each node indicate the
design step in which the node is obtained.

search for geometrically-interesting and well-performing designs.

For each design step, we use as the reward a metric that indicates

the performance of the UAV in one of the tests. To have better

optimization results, the reward function in each design step is not

necessarily the score of the chosen test, even though the objective of

each design step is to maximize the score for the chosen test. Some

score functions do not provide local information of the function,

as they are not continuous and clip the output between zero and

the full score, and thus using the score as a reward may affect

optimization efficiency, make it difficult for the tool to find local

minima. We use modified rewards in some design steps to facilitate

the optimization process.

The seed design for our first design step is a symmetric quad-

copter, similar to the seed design shown in Figure 2. In the first

design step, we perform battery selection by exhaustively search-

ing for a battery that optimizes the reward of hovering time in

the hovering test. After this, we perform propeller placement and

orientation. The reward used in this case if the distance traveled by

the UAV in a straight line. We look attentively at local minima in

this optimization step in order to obtain geometrically-interesting

designs.

Figure 5 shows the resulting design path of our optimization

process, together with the scores obtained at each step. The battery

selection returns a design that can pass all tests with scores of 400

on the straight-line test, 300 on the circle test, 400 on the hover

test, and 200 on the oval test. By optimizing straight-line flight over

the placement and orientation of the propellers, we obtain three

geometrically-interesting designs, as shown in Figure 6. The first

design differs from the seed design by the position of one propeller;

this design obtains scores of 400 on the straight-line test, 300 on

the circle test, 400 on the hover test, and 200 on the oval test. The

second design is asymmetric, with two propellers far away from

the center of the UAV. This design achieves 396 on the straight-line

test, 300 on the circle test, 400 on the hover test, and 372 on the

oval test. The third design has a propeller above the center plate

that holds the battery. It obtains scores of 400 on the straight-line

test, 300 on the circle test, 400 on the hover test, and 268 on the

oval test.

98



CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Yu and Incer, et al.

(a) (b) (c)

Figure 6: Three interesting design geometries obtained in
design step 2.

The designer may choose the second design as the final result

due to its interesting geometry, better overall performance, and the

potential to be a successful design for real implementation. In terms

of geometry, the first design is not too geometrically interesting, as

it only differs in the position of one propeller when compared with

the seed design. Regarding performance, the second design indeed

outperforms all three designs, as it achieves a higher score on the

oval test and almost full scores for all the other tests. The third de-

sign has a potential difficulty regarding a physical implementation

since the propeller which is placed close to the center could exert

a force on the center place. Our simulator does not consider such

interaction between components. This point reinforces the notion

that the interaction between designers and design tools is crucial.

The designer with domain knowledge knows the limitation of the

oracle and can foresee the possible failure of the design, while the

design tools are able to explore vast regions of the design space,

sometimes yielding surprising designs. Through the interaction

between designer and the optimization tools, we can reject some

design that an expert could consider problematic but which the

simulator accepts, and then prioritize the exploration effort for

promising designs.

6 CONCLUSIONS
We introduced a symbiotic methodology for the design-space ex-

ploration of CPS design. To the best of our knowledge, this is the

first work on the design methodology that allows direct interaction

between the designers and the automated tools. With the close

interaction between designers and automated tools, the design ex-

ploration is iteratively guided by the domain knowledge of the

designers. The design choice allows the designer to guide the explo-

ration to discover unconventional designs and optimize the system

performance. We illustrate the methodology by applying it to a

robot car configuration optimization problem and a UAV design

problem. The results show that our symbiotic methodology can

efficiently and effectively discover unconventional design and opti-

mize the objective for the design problem, and thus is promising

for reducing the design cycle for complex CPS design.

ACKNOWLEDGMENTS
This work is supported by the DARPA LOGiCS project under con-

tract FA8750-20-C-0156.

REFERENCES
[1] J. Bakakeu, J. Fuchs, T. Javied, M. Brossog, J. Franke, H. Klos, W. Eberlein, S.

Tolksdorf, J. Peschke, and L. Jahn. 2018. Multi-Objective Design Space Exploration

for the Integration of Advanced Analytics in Cyber-Physical Production Systems.

In 2018 IEEE International Conference on Industrial Engineering and Engineering
Management (IEEM). 1866–1873. https://doi.org/10.1109/IEEM.2018.8607483

[2] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-

Baptiste Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner

Damm, Thomas A. Henzinger, and Kim G. Larsen. 2018. Contracts for System

Design. Foundations and Trends in Electronic Design Automation 12, 2-3 (2018),

124–400. https://doi.org/10.1561/1000000053

[3] DARPA [n. d.]. Symbiotic Design for Cyber Physical Systems. https://www.

darpa.mil/program/symbiotic-design-for-cyber-physical-systems. Accessed:

2022-05-20.

[4] Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Törngren. 2013.

Cyber-Physical System Design Contracts. In Proceedings of the ACM/IEEE 4th
International Conference on Cyber-Physical Systems (Philadelphia, Pennsylvania)
(ICCPS ’13). Association for Computing Machinery, New York, NY, USA, 109–118.

https://doi.org/10.1145/2502524.2502540

[5] John Finn, Pierluigi Nuzzo, and Alberto Sangiovanni-Vincentelli. 2015. A mixed

discrete-continuous optimization scheme for Cyber-Physical System architecture

exploration. In 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). 216–223. https://doi.org/10.1109/ICCAD.2015.7372573

[6] John Fitzgerald, Carl Gamble, Richard Payne, and Benjamin Lam. 2017. Ex-

ploring the Cyber-Physical Design Space. INCOSE International Sympo-
sium 27, 1 (2017), 371–385. https://doi.org/10.1002/j.2334-5837.2017.00366.x

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2017.00366.x

[7] Srivatsan Krishnan, ZishenWan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra

Faust, Sabrina Neuman, Gu-YeonWei, David Brooks, and Vijay Janapa Reddi. 2021.

AutoPilot: Automating SoC Design Space Exploration for SWaP Constrained

Autonomous UAVs. arXiv:2102.02988 [cs.RO]

[8] Edward A. Lee. 2015. The Past, Present and Future of Cyber-Physical Systems:

A Focus on Models. Sensors 15, 3 (2015), 4837–4869. https://doi.org/10.3390/

s150304837

[9] Edward A. Lee. 2016. Fundamental Limits of Cyber-Physical Systems Modeling.

ACM Trans. Cyber-Phys. Syst. 1, 1, Article 3 (Nov. 2016), 26 pages. https://doi.

org/10.1145/2912149

[10] Azad M. Madni and Michael Sievers. 2014. Systems Integra-

tion: Key Perspectives, Experiences, and Challenges. Systems En-
gineering 17, 1 (2014), 37–51. https://doi.org/10.1002/sys.21249

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sys.21249

[11] Sangeun Oh, Yongsu Jung, Seongsin Kim, Ikjin Lee, and Namwoo Kang. 2019.

Deep generative design: Integration of topology optimization and generative

models. Journal of Mechanical Design 141, 11 (2019).

[12] Alberto Sangiovanni-Vincentelli. 2007. Quo Vadis, SLD? Reasoning About the

Trends and Challenges of System Level Design. Proc. IEEE 95, 3 (2007), 467–506.

https://doi.org/10.1109/JPROC.2006.890107

[13] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. 2012.

Taming Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems*.

European Journal of Control 18, 3 (2012), 217–238. https://doi.org/10.3166/ejc.18.

217-238

[14] Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Nicholas Kottenstette,

Panos Antsaklis, Vijay Gupta, Bill Goodwine, John Baras, and Shige Wang. 2012.

Toward a Science of Cyber–Physical System Integration. Proc. IEEE 100, 1 (2012),

29–44. https://doi.org/10.1109/JPROC.2011.2161529

[15] James D. Walker, F. Michael Heim, Bapiraju Surampudi, Pablo Bueno, Alexander

Carpenter, Sidney Chocron, Jon Cutshall, Richard Lammons, Theodore Bapty,

Brian Swenson, and Sydney Whittington. 2022. A Flight Dynamics Model for

Exploring the Distributed Electrical eVTOL Cyber Physical Design Space. In

2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION). 7–12.
https://doi.org/10.1109/DESTION56136.2022.00008

99

https://doi.org/10.1109/IEEM.2018.8607483
https://doi.org/10.1561/1000000053
https://www.darpa.mil/program/symbiotic-design-for-cyber-physical-systems
https://www.darpa.mil/program/symbiotic-design-for-cyber-physical-systems
https://doi.org/10.1145/2502524.2502540
https://doi.org/10.1109/ICCAD.2015.7372573
https://doi.org/10.1002/j.2334-5837.2017.00366.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2017.00366.x
https://arxiv.org/abs/2102.02988
https://doi.org/10.3390/s150304837
https://doi.org/10.3390/s150304837
https://doi.org/10.1145/2912149
https://doi.org/10.1145/2912149
https://doi.org/10.1002/sys.21249
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sys.21249
https://doi.org/10.1109/JPROC.2006.890107
https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1109/DESTION56136.2022.00008

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Elements in CPS Design Space Exploration Problem
	2.2 CPS Design Space Exploration Problem

	3 The Symbiotic CPS Design Space Exploration Methodology
	3.1 Design Choice Step
	3.2 Exploration Step

	4 Illustration: Robot Car Configuration Optimization
	4.1 Design Problem Description
	4.2 Design Methodology
	4.3 Results

	5 Illustration: UAV design
	5.1 Design Problem Description
	5.2 Overview of the Proposed UAV Design Methodology
	5.3 Component selection
	5.4 Routing
	5.5 Results

	6 Conclusions
	Acknowledgments
	References

