
 Open access  Journal Article  DOI:10.1016/J.TREE.2017.07.013

Symbiotic dinoflagellate functional diversity mediates coral survival under
ecological crisis — Source link 

David J. Suggett, Mark E. Warner, William Leggat

Institutions: University of Technology, Sydney, University of Delaware, James Cook University

Published on: 01 Oct 2017 - Trends in Ecology and Evolution (Elsevier)

Topics: Symbiodinium, Coral reef and Reef

Related papers:

 Systematic Revision of Symbiodiniaceae Highlights the Antiquity and Diversity of Coral Endosymbionts.

 Cell Biology of Cnidarian-Dinoflagellate Symbiosis

 Global warming and recurrent mass bleaching of corals

 Spatial and temporal patterns of mass bleaching of corals in the Anthropocene.

 Flexibility and Specificity in Coral-Algal Symbiosis: Diversity, Ecology, and Biogeography of Symbiodinium

Share this paper:    

View more about this paper here: https://typeset.io/papers/symbiotic-dinoflagellate-functional-diversity-mediates-coral-
27f2i4g8p0

https://typeset.io/
https://www.doi.org/10.1016/J.TREE.2017.07.013
https://typeset.io/papers/symbiotic-dinoflagellate-functional-diversity-mediates-coral-27f2i4g8p0
https://typeset.io/authors/david-j-suggett-53wj8orn70
https://typeset.io/authors/mark-e-warner-2qk52dgsua
https://typeset.io/authors/william-leggat-251gtu29yj
https://typeset.io/institutions/university-of-technology-sydney-1con6eja
https://typeset.io/institutions/university-of-delaware-2qwbnd86
https://typeset.io/institutions/james-cook-university-1d88v00g
https://typeset.io/journals/trends-in-ecology-and-evolution-6if6fthh
https://typeset.io/topics/symbiodinium-123yskv8
https://typeset.io/topics/coral-reef-3q5sfjxi
https://typeset.io/topics/reef-xulwib45
https://typeset.io/papers/systematic-revision-of-symbiodiniaceae-highlights-the-1yma1gjir7
https://typeset.io/papers/cell-biology-of-cnidarian-dinoflagellate-symbiosis-owo1011trx
https://typeset.io/papers/global-warming-and-recurrent-mass-bleaching-of-corals-12037m88aj
https://typeset.io/papers/spatial-and-temporal-patterns-of-mass-bleaching-of-corals-in-1x3nxs3916
https://typeset.io/papers/flexibility-and-specificity-in-coral-algal-symbiosis-300ft7fq8u
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/symbiotic-dinoflagellate-functional-diversity-mediates-coral-27f2i4g8p0
https://twitter.com/intent/tweet?text=Symbiotic%20dinoflagellate%20functional%20diversity%20mediates%20coral%20survival%20under%20ecological%20crisis&url=https://typeset.io/papers/symbiotic-dinoflagellate-functional-diversity-mediates-coral-27f2i4g8p0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/symbiotic-dinoflagellate-functional-diversity-mediates-coral-27f2i4g8p0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/symbiotic-dinoflagellate-functional-diversity-mediates-coral-27f2i4g8p0
https://typeset.io/papers/symbiotic-dinoflagellate-functional-diversity-mediates-coral-27f2i4g8p0


Elsevier required licence: © <2017>. This manuscript version is made available 

under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-

nc-nd/4.0/ 
 

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Trends in Ecology and Evolution
 

Symbiotic dinoflagellate functional diversity mediates corals survival under ecological
crisis

--Manuscript Draft--

Manuscript Number: TREE-D-17-00108R2

Article Type: Opinion

Keywords: coral;  dinoflagellate;  Symbiodinium;  functional traits

Corresponding Author: Bill Leggat
James Cook University
Townsville, Qld AUSTRALIA

First Author: David J. Suggett, PhD

Order of Authors: David J. Suggett, PhD

Mark E. Warner, PhD

William Leggat, PhD

Abstract: Coral reefs have entered an era of "ecological crisis" as climate change drives
catastrophic reef loss worldwide. Coral growth and stress susceptibility are regulated
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Abstract 1 

Coral reefs have entered an era of “ecological crisis” as climate change drives 2 

catastrophic reef loss worldwide. Coral growth and stress susceptibility are 3 

regulated by their endosymbiotic dinoflagellates (genus Symbiodinium). 4 

Phylogenetic diversity of Symbiodinium frequently corresponds with patterns of 5 

coral health and survival, but knowledge of functional diversity is ultimately 6 

required to reconcile broader ecological success over space and time. Here we 7 

explore functional traits underpinning the complex biology of Symbiodinium that 8 

spans free-living alga to coral endosymbiont. In doing so, we propose a 9 

mechanistic framework integrating the primary traits of resource acquisition 10 

and utilisation as a means to explain Symbiodinium functional diversity, and 11 

resolve the role of Symbiodinium in driving the stability of coral reefs under an 12 

uncertain future.  13 

 14 

Global deterioration of reefs through coral bleaching 15 

Coral reefs have become a global ecological casualty of the Anthropocene Epoch. 16 

Ecosystem services provided by coral reefs sustain nearly 10% of all people on Earth 17 

and support billion dollar industries in tourism and fisheries [1]. However, coral reefs 18 

worldwide have moved into an era of “ecological crisis” from accelerating over-19 

exploitation and persistent anthropogenic threats. Elevated seawater temperature from 20 

climate change poses the greatest threat, driving mass coral bleaching (see Glossary) 21 

and associated mortality across entire regions with increasing frequency and intensity 22 

[2].  23 

 24 



 4 

The ecological foundation of coral reefs rests on the symbiosis between reef-building 1 

corals and dinoflagellate microalgae (“zooxanthellae”) of the genus Symbiodinium 2 

(Dinophyceae, Suessiales). When surface seawater temperature (SST) exceeds the 3 

long-term maximum monthly mean for extended durations [3] this symbiosis 4 

disassociates leading to rapid loss of Symbiodinium cells and/or their pigmentation. 5 

Bleaching is defined by the conspicuous whitening of the coral tissue [4], and whilst 6 

there is a clear hierarchy of bleaching susceptibility among coral species [5] (e.g., Fig. 7 

1), the broad scale impacts of elevated SST on individual coral colonies are modified 8 

by a variety of physical and biological processes, including inherent properties of the 9 

coral host and Symbiodinium [6, 7]. Together these processes result in complex 10 

bleaching mosaics across reefs with distinct inter- and intra-specific responses (Fig. 1) 11 

that modify bleaching thresholds and hence the impact of heating. Consequently, 12 

mass bleaching manifests when ecologically dominant coral-Symbiodinium 13 

associations are exposed to temperatures above their thermal thresholds [2, 5] (Fig. 1).  14 

 15 

Heat stress induced coral bleaching characterises continual progression of the 16 

symbiosis disassociation that is governed by a variety of host and/or Symbiodinium 17 

responses (Fig. 1), but distilling this process into a generalised response for 18 

Symbiodinium is still particularly unresolved (Box 1). Unlike in higher plants where 19 

thermal stress primarily affects RuBisCO activase [8], the cellular target broadly 20 

underpinning Symbiodinium thermal stress susceptibility is still unknown. Various 21 

putative sites, including, light harvesting complexes, the reaction centre complex of 22 

photosystem II, thylakoid membranes, RuBisCO and carbon concentrating 23 

mechanisms (CCMs), have all been described as targets of heat stress [9-12], 24 

implying broad functional diversity with which cellular networks have evolved to 25 
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govern stress susceptibility across the genus [13]. However, potentially unifying traits 1 

that govern stress tolerance have still not been identified (Box 1), thereby highlighting 2 

that second-order traits governing stress tolerance may simply be poor metrics to 3 

represent the complex physiologies ultimately regulating broad ecological success. 4 

Instead we propose functional diversity underpinning stress susceptibility should be 5 

based on the key first-order traits that govern Symbiodinium metabolic functioning, 6 

and thus the growth and performance of their coral hosts, under both optimum and 7 

sub-optimum environmental conditions. 8 

 9 

Ecosystem stability from Symbiodinium diversity 10 

Molecular level markers have established exceptional phylogenetic diversity inherent 11 

within the genus Symbiodinium (Box 2), which plays a major role in whether and how 12 

coral reef ecosystems respond to environmental perturbations [26]. Molecular 13 

ecological-based studies have now repeatedly demonstrated that viability of the entire 14 

coral symbiosis over space and time [14, 27-29] often corresponds with the species 15 

(or genetic variant) of Symbiodinium present. Similarly, corals populating relatively 16 

unfavourable environments, such as hot-acidic lagoons [36] or hot-saline catchments 17 

[31], typically associate with specific Symbiodinium taxa (Box 2). Continued 18 

improvements to molecular tools have therefore unquestionably established a central 19 

role for Symbiodinium diversity in shaping environmental thresholds for coral 20 

productivity and ultimately reef growth.  21 

 22 

Basic evolutionary theory requires that the maintenance of phylogenetic diversity 23 

must be driven by functional differences in Symbiodinium. However, we now lag far 24 

behind molecular ecology with any comprehensive understanding of Symbiodinium 25 
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primary physiological attributes that determine coral ecological success given the 1 

alga’s immense phylogenetic diversity. This is clearly problematic where a change (or 2 

maintenance) in function does not reflect a parallel change to phylogenetic diversity. 3 

Notably, convergent evolution across bioregions such as the Caribbean (dominated by 4 

clades A, B) versus Indo-Pacific (dominated by clades C, D), to common 5 

environmental histories selecting for the same functional responses, e.g. high versus 6 

low light “ecotypes” [37] that are genetically distinct. Conversely, divergent evolution 7 

due to local scale environmental differences select amongst closely related genotypes 8 

and/or populations. [33-34]. The net outcome is that clades, species and even 9 

genotypes differ in their functional responses to changes in key resources, such as 10 

light [37] and CO2 [38], but also temperature stress [39]. Phylogeny thus cannot 11 

provide an exclusive currency with which to resolve Symbiodinium diversity with 12 

ecological function.  13 

 14 

Disciplines ranging from oceanography [40-41] to plant ecology [42] have overcome 15 

such difficulties linking diversity to ecological functioning, by turning to the inherent 16 

traits (“emergent properties” of individual organisms) that ultimately govern the 17 

processes defining ecosystem health. Functional traits provide a standardised measure 18 

of the biogeochemical role organisms play, e.g. photosynthetic rate or nutrient 19 

turnover, but also capture fundamental trade-offs with fitness such as investing energy 20 

into cellular maintenance versus growth or nutritional mode [40-43]. Functional traits 21 

thus define the ecological success of species, and hence overcome the uncertainties 22 

associated with phylogenetic resolution and how it is applied to reconcile ecological 23 

success. The central concept of functional diversity is not new to coral ecology, and 24 

has in fact been recently considered a likely key operational unit driving ecological 25 
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success of corals [44] and coral-Symbiodinium associations [45]. Coral reef 1 

management is increasingly turning to knowledge of key traits that regulate (or are 2 

indicative of) coral health for innovative management practices [46], whilst state-of-3 

the-art ecological models that can evaluate winners and losers under complex 4 

environmental conditions rely on knowledge of quantifiable traits governing 5 

competitive ability [43, 47]. However, fundamentally, the ‘choice’ of trait(s) that best 6 

defines Symbiodinium functional diversity still remains largely unexplored.  7 

 8 

Symbiodinium spp. fitness traits and trade-offs 9 

Understanding the functional roles that underpin the ecological success of 10 

Symbiodinium spp. within the holobiont landscape (“what makes a good 11 

endosymbiont”?) demands knowledge of resource acquisition and utilisation. Algal 12 

[41] and plant [42] trait-based models commonly rest on end-to-end tracking of 13 

resources that govern growth and cellular maintenance, and thus provide a logical 14 

conceptual framework. Symbiodinium spp. genetic variants have clearly adapted to 15 

thrive across a broad range of habitats and host associations, where resource 16 

availability will differ (Fig. 2). Such diversity of ecological niche exploitation and 17 

optimisation would suggest major selection pressure for trade-offs amongst key traits 18 

[43, 47]; for example, broad ecological success of phytoplankton can generally be 19 

explained via an evolved continuum of “r vs k” strategies [48, 49], whereby cell size 20 

operates as a “master trait” governing allometric scaling rules for light harvesting [47] 21 

and inorganic nutrient assimilation [43, 50]. Symbiodinium spp. genetic variants in 22 

fact exist across a cell size continuum, albeit in a relatively narrow range (ca. 7-23 

14m), that appears to explain variation in light harvesting but not utilisation 24 



 8 

capability [32, 37]; however, whether this central principle similarly applies to 1 

inorganic nutrient acquisition is as yet unexplored.  2 

 3 

Dinoflagellates have particularly acquired a broad spectrum of physiological and life 4 

history traits that have enabled ecological diversification beyond boundaries set by 5 

allometric scaling rules (“dirty tricks”, sensu [51]). An array of strategies associated 6 

with light harvesting and photoprotection [52-53] have been relatively well described 7 

for Symbiodinum spp.. However, partitioning Symbiodinium spp. genetic variants 8 

according to differences in light harvesting and utilisation actually results in few 9 

functional groups [13, 37] suggesting trade-offs associated with nutrient acquisition 10 

and allocation strategies may in fact be pivotal in explaining their diverse niche 11 

exploitation [54] (Fig. 2). Such strategies in other microalgae include plasticity of: (i) 12 

the number of inorganic nutrient uptake (“porter”) sites [50, 55], which in the case of 13 

inorganic carbon is further complicated by the nature of CCMs and RuBisCO affinity 14 

(including Symbiodinium spp., [38]); (ii) minimum cellular requirements for different 15 

inorganic macro and micro nutrients [56], reflecting both pool size (active and stored) 16 

and turnover of key constituents that support cellular growth vs maintenance; and (iii) 17 

supplementing cellular energy (ATP) production through heterotrophy. Symbiodinium 18 

spp. are notably active mixotrophs that can supplement their phototrophic metabolism 19 

by feeding on bacteria [57] and simple sugars [58].  20 

 21 

Accounting for these various factors associated with resource acquisition and 22 

utilisation introduces immense functional complexity, but it is possible to initially 23 

distil this complexity to several first-order measurable traits, as commonly employed 24 

for Dynamic Energy Budget (DEB) modelling [59]; specifically, nutrient uptake 25 
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kinetics, and cellular nutrient content relative to growth rate and cell size (see Fig. 2), 1 

which together describe nutrient competitive ability [43]. Algae can preferentially 2 

trade-off these resources into opportunistic growth versus persistent maintenance (a 3 

classical view of r vs k selection; e.g. [42]); however, Symbiodinium, as with many 4 

other dinoflagellates [20], can potentially short-circuit this trade-off through 5 

additional secondary traits that likely disproportionately alter their competitive fitness. 6 

Examples of such secondary traits include the extent to which fixed inorganic 7 

nutrients are either excreted as dissolved organics [60], including by pathways such as 8 

photorespiration that effectively aid photoprotection, or stored as particulate organics 9 

for mobilisation during transient resource limitation [55-56]. Whilst differences in the 10 

biochemical foundation for cellular fitness can be established from knowledge of 11 

cellular nutrient (elemental) stoichiometry [56] and hence first-order traits, allocation 12 

to specific constituents that enhance fitness are arguably secondary traits of interest. 13 

For example, Symbiodinium spp. tolerance to stressors that promote bleaching is 14 

enhanced by increasing protein pools that dissipate reactive oxygen species, ROS 15 

(Box 1), but also through production of biogenic volatile signalling molecules [20]. 16 

 17 

Metabolic coupling of coral-Symbiodinium associations 18 

Functional traits of interest need to span the complex life history dynamics of 19 

Symbiodiunium, where environmental constraints on fitness posed by life in symbiosis 20 

are very different from those for free-living algal cells. A defining characteristic to 21 

consider initially is the degree of specificity between certain Symbiodinium species 22 

and their coral hosts, as well as mode of symbiont acquisition (vertical vs horizontal 23 

transmission). Most coral species as adults associate with a single Symbiodinium type 24 

(or share a few closely related types) [26], although some exceptional coral species 25 
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may host as many as 5–7 distinct types, as co-dominant [61] or rare [62] populations. 1 

Consequently, genetically unique Symbiodinium populations may fluctuate in certain 2 

coral species or persist across others [26]. Even so, types that contribute minimally to 3 

the total population pool may ultimately yield a low net metabolic contribution to 4 

their host [63]. Coral species that do harbour multiple Symbiodinium types in 5 

abundance within a single colony appear to reflect complex algal-derived niche 6 

partitioning (e.g., photoacclimation to different light levels) [62]. Similarly, for coral 7 

species with shifts in dominant Symbiodinium type, ‘shuffling’ is best described in the 8 

context of environmental history, e.g. the thermal trends driving bleaching and 9 

subsequent recovery [54, 64-65], or complex multivariate interactions of several 10 

physical-chemical (temperature, light, nutrient availability) and biological factors 11 

acting in tandem [66] that are rarely fully characterised. Unique Symbiodinium 12 

populations, especially within horizontally transmitted systems, may further represent 13 

true localized adaptive radiations to specific in hospite environmental conditions [26, 14 

31, 34]. Thus trait-based characterisation of Symbiodinium functional performance is 15 

equally appropriate to best describe their realised niche space when in hospite as for 16 

cells that are free-living.  17 

 18 

Metabolic coupling within the coral-Symbiodinium relationship is exceptionally 19 

complex and likely extends further to the milieu of constituents representing the true 20 

holobiont (i.e., bacteria, archaea, fungi and viruses) [67]. Historically, efforts to 21 

understand this coupling have focussed on photosynthetically derived carbon 22 

translocation from Symbiodinium to coral, in the context of host 'control' over algal 23 

populations via nitrogen and metabolite (“host release factor”) exchange (see [68] for 24 

an extensive review; [69]) (Fig. 2). Much of this work has originated from other 25 
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symbioses (e.g., Hydra and the green alga Chlorella sp. or in anemone-Symbiodinium 1 

systems) but provides important evidence for host-controlled nitrogen limitation as a 2 

source of slower algal mitotic division [68]. First principles would suggest N-3 

limitation to cause an imbalance in the carbon-nitrogen ratio (and hence C:N:P [56]) 4 

and in turn reduced symbiont growth yet continued translocation of photosynthetically 5 

fixed carbon [69]. However, exposure to inorganic nutrient supplements intriguingly 6 

leads to a rebalance in symbiont C:N ratios toward nutrient sufficiency but sustained 7 

algal growth arrest [70-71]. External eutrophication events can drive elevated 8 

Symbiodinium N:P ratios as a result of direct inorganic N stimulation of the alga [71] 9 

or fuelling the corals’ nitrogen fixing bacterial community via indirect DOC 10 

enrichment [72]. Such N enrichment drives P-starvation (higher N:P) to result in 11 

significant Symbiodinium photoinhibition that exacerbates thermally-induced coral 12 

bleaching [71]. Conversely, host feeding post “starvation” re-establishes 13 

Symbiodinium nutrient quotas and algal growth [70] and substantially ameliorates 14 

photoinhibition and coral bleaching during thermal stress [73].  15 

 16 

Existing evidence of changes to Symbiodinium physiological performance from 17 

altered nutrient availability would suggest that cellular nutrient content relative to cell 18 

size could provide a first-order measurable trait to consider Symbiodinium functional 19 

diversity and competitive ability in hospite, and hence importantly a direct 20 

comparison currency with cells that are free-living (Fig. 2). Bulk elemental 21 

stoichiometries could not only encapsulate how growth environment regulates 22 

resource availability relative to inherent requirements across different Symbiodinium, 23 

but also overcome the challenge in balancing symbiont type versus population size 24 

(cell size and number of a single genetic variant) to fulfil overall translocation 25 
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demands [74-75]. Corals that maintain flexibility in association with more than one 1 

Symbiodinium type [Kemp], would require different population sizes to offset any 2 

differences in nutrient uptake and/or release across types to ensure translocation 3 

output is sustained.  4 

 5 

Host corals regulate both light [4, 76] and CO2 (dissolved inorganic carbon, DIC) [77] 6 

availability for Symbiodinium photosynthesis. In fact, the host may regulate DIC 7 

delivery more heavily than N or P. When Symbiodinium are present, numerous 8 

symbiotic anthozoans show substantial transcriptional upregulation for carbonic 9 

anhydrase (CA), the enzyme responsible for interconverting CO2 and HCO3
- and 10 

providing DIC for photosynthesis as well as calcification. Recent work has confirmed 11 

both external as well as internal CA activity in several corals [78-79], and corals 12 

harness a sharp proton gradient to significantly lower the pH (down to ~ 4.0) 13 

surrounding the symbiont sitting within the host-derived membrane, or 14 

“symbiosome”, via a vacuolar H+-ATPase [77]. Hence substantial energetic 15 

investment by the host supports the DIC demands of photosynthesis [79]. Whilst the 16 

dynamics describing the light dependency of Symbiodinium photosynthesis in hospite 17 

are generally well described [76], those describing DIC (indeed other dissolved 18 

inorganic nutrients, e.g. N, P) dependency are not; clearly these therefore also 19 

represent promising first order traits with which to define Symbiodinium functional 20 

performance and how it alters over space and time (Fig. 2).  21 

 22 

Fundamentally, we have sparse knowledge regarding cellular nutrient quotas and 23 

uptake kinetics for Symbiodinuium; however, as has been repeatedly demonstrated 24 

across other microalgae [40, 43], these traits inherently modulate the physiological 25 



 13 

and competitive response of cells. Clearly this represents an area ripe to explore the 1 

ever-widening gap in knowledge between diversity and ecological success for 2 

Symbiodinium, which in hospite likely drive metabolic trade-offs for the host coral. 3 

Inherent nutrient supply, along with in hospite light and thermal conditions, may be 4 

key attributes in determining the interspecific competitive outcome among different 5 

yet compatible symbionts. Thus, “shuffling” of compatible symbionts may have less 6 

to do with specific host ‘control’ but rather reflect an outcome of shifting host 7 

metabolic processes [67], and hence a function of trade-offs amongst first-order algal 8 

traits (e.g., cell size, macro and micro nutrient/elemental quotas, and strategies for 9 

light-temperature acclimation) [54]. Variation in the first-order traits that determine 10 

the cellular energy budget drives broad niche exploitation [59] and hence the scope 11 

for functional diversity across Symbiodinium genetic variants. However, the exact 12 

first-order trait profile will determine the ecological success of any given symbiont; 13 

specifically: how, when, and to what extent Symbiodinium-coral associations are 14 

sustained and the capacity for Symbiodinium to thrive ex-hospite. In focussing on 15 

second-order traits of interest e.g. ROS production (Box 1), for some time as key 16 

factors influencing Symbiodinium-coral fitness, we have in fact overlooked the first-17 

order traits that functionally connect Symbiodinium to their surrounding environments 18 

(Fig. 2). 19 

 20 

Concluding Remarks 21 

Understanding how Symbiodinium spp. are optimised to function across different host 22 

corals and reef environments is more critical than ever as reefs face global “ecological 23 

crisis”. Functional diversity theoretically mediates the response of Symbiodinium to 24 

changing environmental conditions, and provides a means to reconcile (and 25 
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complement) the growing wealth of knowledge aligning Symbiodinium phylogenetic 1 

diversity with coral ecological success. In evaluating key traits that govern cellular 2 

growth and physiology, we have proposed a mechanistic physiological framework 3 

(Fig. 2) that directly complements the rapid uptake of molecular-based descriptors of 4 

both Symbiodinium phylogeny and function. Trait-based models provide a means to 5 

evaluate this physiological framework against ecological success but only through 6 

measuring the key first-order traits. We therefore call for renewed focus into resource 7 

acquisition and utilisation as a fundamental regulator of competitive ability (see 8 

Outstanding Questions), as a first step to resolve Symbiodinium spp. niche boundaries 9 

across habitats and specific host-symbiont associations, and hence the role of 10 

Symbiodinium in driving productive and diverse coral reefs as they enter an uncertain 11 

future.  12 

 13 
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Text Box 1: Symbiodinium as cellular sources of coral stress 1 

Coral host-specific responses that operate to effectively increase thermal tolerance [7] 2 

have become increasingly well described; notably reduced oxidative stress via 3 

mitochondrial excitation pressure that produces reactive oxygen species (ROS) (e.g. 4 

fluorescent proteins, tentacular retraction [15]), increased production of ROS 5 

detoxifying proteins and organelle stability (e.g. mitochondria [16]) or silencing of 6 

ROS-triggered caspases that in turn induce apoptosis [17]. ROS is produced by the 7 

coral’s microbial community, in particular by Symbiodinium photosynthetic 8 

dysfunction and associated bacterial metabolism, as well as host mitochondria [18]. 9 

However, how physiological dysfunction initiates and progresses to drive ROS 10 

emissions remains unresolved (but see [19]); in the case of Symbiodinium this has 11 

reflected challenges in utilising genomics to unlock the inherent cellular networks and 12 

how they are regulated.   13 

 14 

Dinoflagellates as a group have a variety of unique characteristics [20], including 15 

permanently condensed chromosomes, extremely large genomes and a significantly 16 

higher reliance on post-translational regulation, in contrast to transcriptional 17 

regulation, compared to other organisms. Therefore, while the magnitude of gene 18 

expression changes is generally less than 2-fold, up to 30% of the transcriptome can 19 

alter [21, 22], making it difficult to identify specific responses at this scale. Even so, 20 

such tools have begun to highlight parallels with how the host responds to heat stress; 21 

notably, a major re-organisation of the ROS antioxidant network in heat tolerant 22 

Symbiodinium [21-23], which clearly reflects simultaneous physiological observations 23 

of reduced ROS emissions for more heat tolerant Symbiodinium [12, 13, 21]. 24 

Enhancing ROS detoxification capability in fact appears a key mechanism with which 25 
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heat tolerance can be acquired trans-generationally in Symbiodinium populations [24]. 1 

Such responses may thus be core and hence impose cellular trade-offs to processes 2 

that are secondary in affording thermal tolerance; for example, under stress clear 3 

upregulation in heat shock proteins (HSPs) is noted for the coral host (>32 fold) 4 

whereas Symbiodinium may [25] or may not [23] downregulate HSPs. Therefore, 5 

whilst the “source” of stress is becoming well documented, understanding how this is 6 

driven by (or feeds back to) a unifying target regulating Symbiodinium cellular 7 

dysfunction remains unknown [9-13].  8 
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Text Box 2: Species diversity amongst the genus Symbiodinium 1 

Molecular tools continue to unlock the immense phylogenetic diversity inherent to the 2 

genus Symbiodinium [26-29]. At the broadest scale Symbiodinium spp. is divided into 3 

9 distinct evolutionary lineages (i.e. clades, A-I) via divergence of the small 4 

ribosomal subunit RNA (SSU). More variable DNA regions, including the internal 5 

transcribed spacer regions (ITS), chloroplast large subunit (cp23S) and cytochrome 6 

oxidase b (cob) have subsequently resolved immense subcladal diversity [27] 7 

typically classified alpha-numerically (e.g. C1, C3z). Of these, ITS2 has been most 8 

widely adopted, but requires consideration alongside additional rapidly evolving 9 

regions (e.g. psbAncr) to resolve evolutionarily distinct species (multilocus barcoding, 10 

[30-31]). Integration of barcoding-based phylogeny with fundamental biological (e.g. 11 

morphology, physiology) and ecological (e.g. host specificity) patterns has provided 12 

the core framework for novel Symbiodinium species descriptions [31-33]. Molecular 13 

platforms have recently transitioned to high throughput pyrosequencing for barcode 14 

retrieval, and added further depth to phylogenetic differentiation through more 15 

accurate detection of low-abundance background Symbiodinium [28-29, 34]. Here, 16 

phylogeny is considered within an operational taxonomic unit (OTU) framework to 17 

identify ecologically discrete entities [29, 34], including the role of intra-genomic 18 

variability, to resolve taxonomic sub-groups [35].  19 

 20 

Analysis of genetic recombination has become an important complimentary tool to 21 

examine Symbiodinium species level diversity [36]. Using the biological species 22 

concept, populations that exchange alleles through sexual recombination are the same 23 

species, and hence population genetics based on allele frequency similarity across 24 

multiple loci delimit species over space and time. Such delimitation of species based 25 
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on this ‘incompatible breeding’ may be complicated where populations frequently 1 

reproduce asexually but only very rarely sexually and/or conspecific populations that 2 

previously diverged in isolation of one another become mixed [34]. Even so, the 3 

approach has proved powerful for establishing novel Symbiodinium species 4 

boundaries that persist over broad geographic regions [26]. 5 

 6 

Molecular based technical advances thus continue to highlight immense phylogenetic 7 

variation and speciation. ITS2 variation alone suggests existence of 10s-100s of 8 

Symbiodinium species, but this is likely an underestimate. Multi-locus and high 9 

throughput techniques would suggest 100s-1000s of putative species, which are 10 

particularly changing our ecological view of Symbiodinium ITS2 types previously 11 

considered to be widespread generalist species, e.g. ITS2 type C3 harboured by many 12 

highly stress sensitive coral species of Acropora [31, 35].  13 

  14 
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Glossary Box 1 

 2 

Coral bleaching: Process with which corals pale (whiten) from loss of Symbiodinium 3 

cells and/or pigmentation from host coral tissues. 4 

 5 

Fitness: Capacity of an organism to pass its genes to successive generations, as 6 

determined by the ability to survive and reproduce by inherent competitive traits.  7 

 8 

Photosystem II (PSII): Protein complex that generates electrons for photosynthesis 9 

by oxidizing water in algae. Dysfunction of PSII activity is a common assay of heat 10 

stress sensitivity in Symbiodinium.  11 

 12 

Reactive Oxygen Species (ROS): Chemically active molecules containing oxygen 13 

(“free radicals”) produced via mitochondria and/or chloroplast metabolic pathways; 14 

notably, singlet oxygen, superoxide, and hydrogen peroxide. 15 

 16 

RuBisCo: Ribulose-1,5-bisphosphate carboxylase/oxygenase is the enzyme involved 17 

in the first step of CO2 fixation, and considered the most abundant enzyme on Earth. 18 

It is modulated by the catalytic chaperone RuBisCo activase.  19 

 20 

Secondary metabolites: Organic compounds that are not directly required for growth 21 

and reproduction; for example, toxins and volatiles that negatively affect fitness of 22 

competitors.   23 

 24 
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Traits: Measureable characteristics of an organism that are inherited or 1 

environmentally controlled. Can encompass cellular, physiological, morphological 2 

and life history characteristics. 3 

 4 

First- vs second-order traits: Traits that form the foundations for functioning are 5 

considered “central” (first-order) whereas other traits that arise from operation of 6 

first-order traits (or only under certain environmental conditions) are considered 7 

second-order.  8 

 9 

Vertical vs horizontal transmission: In corals the process where larvae retain 10 

Symbiodinium cells from parent colonies (vertical transmission or “closed symbiosis”) 11 

versus uptake from the surrounding environment (horizontal transmission or “open 12 

symbiosis”). 13 

 14 

  15 
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Figure Legends 1 

 2 

Figure 1. Generalised scheme of coral-Symbiodinium functional trait responses to 3 

thermal stress-induced bleaching. (A) Increased temperatures over-time induce a 4 

cascade of responses (Box 1) as the coral-Symbiodinium association is pushed 5 

towards the upper thermal thresholds for symbiosis viability (“point of no return”). 6 

These responses are either common to both coral and symbiont (upregulation of ROS 7 

detoxification networks, reduction to light harvesting through increased host 8 

fluorescence protein expression or decreased symbiont light harvesting complex 9 

(LHC) pigments, and induction of apoptosis), or specific to coral or symbiont 10 

(preferential alteration of heat shock proteins, HSPs; mitochondrial versus thylakoid 11 

stabilisation for host and symbiont, respectively). Sustained heating at or beyond the 12 

threshold causes mortality or requires acclimation or adaptation by selecting for 13 

upregulation of the various traits driving heat stress tolerance (in which case the upper 14 

threshold temperature alters by changing how traits providing thermal tolerance are 15 

expressed). Cooling can initiate recovery. How these processes operate across host-16 

Symbiodinium associations in reef systems is highly dynamic and can manifest as 17 

different severities of bleaching at intra-species (e.g. (B) Porites lutea colonies) [34] 18 

and inter-species (e.g. (C) Alternate species within the same genus of Acropora; (D) 19 

Alternate genera, bleaching sensitive plating Montipora sp. vs species of Acropora) 20 

[2, 5] levels within any given reef area. Mono-specific host-Symbiodinium sp. 21 

associations manifest as mass bleaching (e.g. (E) Acropora muricata beds hosting 22 

Symbiodinium ITS2 type C3 in the Seychelles). Photographs (B-E) are courtesy of 23 

Emma Camp, University of Technology Sydney. 24 

 25 
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Figure 2. Generalised scheme of resource acquisition and utilisation 1 

underpinning Symbiodinium competitive fitness. External light and dissolved 2 

inorganic (DIC, DIN, DIP, S, Fe, etc.) and/or organic (POC, DOC) nutrient uptake 3 

drive cellular functioning, as well as determine the competitive outcome of 4 

phytoplankton in general [48]. Generation of energy (ATP) and reductant (NADP(H)) 5 

in Symbiodinium cell chloroplasts and mitochondria sustains active uptake and 6 

assimilation of nutrients into organic compounds. In turn these compounds are stored, 7 

drive formation of primary metabolites (e.g. formation of key carbon “skeletons”; 8 

lipids, carbohydrates and proteins) and secondary metabolites that may also act in 9 

signalling. According to theory developed for phytoplankton [40, 43] trade-offs in 10 

how these resources are acquired and utilised can explain ecological competitiveness, 11 

and generally accounted for using several key terms, highlighted in blue: Extent of 12 

light absorption (), maximum photosynthesis rate (Pmax); the maximum uptake rate 13 

(Vmax), half saturation constant (KN), and minimum quota (Qmin) for any one nutrient; 14 

quantity and hence stoichiometry of cellular particulate (POC:PON:POP:etc…), and 15 

excreted dissolved (DOC:DON:DOP:etc…) nutrients; as well as cell volume (V). 16 

Together these terms govern maintenance versus division, and hence the net 17 

achievable growth rate (), to reflect first order traits of competitive fitness. Such 18 

terms are governed by the growth environment and thus will be regulated when cells 19 

are in hospite (indicated by red lines and arrows) as well as free-living: Host corals 20 

also acquire external nutrients from both feeding and their broader microbial 21 

associations. Hosts modify the inherent light field [15] for Symbiodinium and have 22 

been suggested to excrete specific dissolved compounds [60] (signalling markers) that 23 

control delivery of inorganic nutrients back to the symbiont, i.e. distinct metabolites 24 

(“host release factors”, [68]). Again, the net outcome is regulation of the net 25 
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achievable growth (), but in hospite will be relative to the overall population size 1 

required to meet host metabolic demands (Symbiodinium cell number, n). All 2 

aforementioned processes play a central role in the trade-off between cellular 3 

maintenance in the alga vs. the direct release of translocated material to the host coral.  4 
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Highlights 

 

Coral ecosystem health is strongly influenced by Symbiodinium diversity. 

 

Ecological success of Symbiodinium cannot be resolved from phylogenetic diversity alone.  

 

Traits describing resource acquisition and incorporation capture Symbiodinium functional 

diversity.  

 

Symbiodinium species shifts reflect changing metabolic requirements of the host. 

 

Functional diversity will determine the resilience of coral reefs to environmental change.  

 

Trends Box
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Outstanding Questions 

 

Can first-order traits (e.g. cellular uptake and allocation) alone explain niche breadth, 

including anomalous stress tolerance, or must they be considered alongside second order-

traits (e.g. capacity to upregulate ROS detoxification pathways)? 

 

How diverse are micro- (trace) relative to macro- (C, N, P, S) nutrient uptake and utilization 

properties in describing Symbiodinium ‘functional types’? 

 

Does ecological resilience through “symbiont shuffling” reflect match/mis-match between 

changing host metabolic requirements and Symbiodinium consortia with alternate metabolic 

(nutrient uptake and allocation) profiles? 

 

What is the extent of metabolic and resource trade-offs required to persist across alternate life 

history stages? Does Symbiodinium require “host resource surrogates” as a free-living alga 

(e.g. obligate associations with other microbes)? 

 

How important are heterotrophic strategies for supporting Symbiodinium nutritional and/or 

metabolic requirements? Can Symbiodinium feed on host as well as microbial metabolites?  

 

To what extent does functional diversity of nutrient strategy reflect evolutionary radiation 

(and/or potentially support phylogenetic re-constructions) of the genus Symbiodinium? 

Outstanding Questions
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