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Sequential decision tasks appear in many practical situations ranging from robot navigation

to stock market trading. Because of the complexity of such tasks, it is often di�cult to perceive

the direct consequences of individual decisions and even harder to generate examples of correct

behavior. Consequently, di�cult decision problems such as routing tra�c, autonomous control,

and resource allocation are often unautomated or are only semi-automated using \rule-of-thumb"

strategies or simple heuristics. This dissertation proposes a general methodology for automating

these tasks using techniques from machine learning. Speci�cally, this research studies the combina-

tion of evolutionary algorithms and arti�cial neural networks to learn and perform di�cult decision

tasks. Evolutionary algorithms provide an e�cient search engine for building decision strategies

and require only minimal reinforcement or direction from the environment. Neural networks pro-

vide an e�cient storage mechanism for the decision policy and can generalize experiences from

one situation to another. The learning system developed in this dissertation called SANE contains

an evolutionary algorithm speci�cally tailored to sequential decision learning. Populations evolve

faster than previous methods and rarely converge on suboptimal solutions. SANE is extensively

evaluated and compared to existing decision learning systems and other evolutionary algorithms.

SANE is shown to be signi�cantly faster, more robust, and more adaptive in almost every situa-

tion. Moreover, SANE's e�cient searches return more pro�table decision strategies. The 
exibility

and scope of SANE is demonstrated in two real-world applications. First, SANE signi�cantly im-

proves the play of a world champion Othello program. Second, SANE successfully forms neural

networks that guide a robot arm to target objects while avoiding randomly placed obstacles. The

contributions of this research are twofold: a novel integration of evolutionary algorithms and neural

networks and an e�cient system for learning decision strategies in complex problems.
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Chapter 1

Introduction

A chess player makes hundreds of moves during a single game. It is not until the �nal move,

however, that he learns whether his moves have been successful in winning the game. Which of his

moves are most responsible for the win? Which moves had no e�ect on the outcome? How can the

player apply the single reward from his entire sequence of moves to learn good individual moves?

These questions have intrigued arti�cial intelligence researchers since the pioneering work of Arthur

Samuel (1959). The crux of the problem is how to apportion credit to individual decisions based

on an evaluation of a sequence of decisions and has been termed the credit assignment problem

(Minsky 1963).

Game playing is just one example of the genre of problems that have been termed sequential

decision tasks (Barto et al. 1990; Grefenstette et al. 1990; Littman 1996). Put simply, a sequential

decision task is any task where a sequence of decisions must be made before their net e�ect can be

measured. Some examples of real world sequential decision problems include directing automobile

or air tra�c, controlling the 
ow of chemicals in a chemical reactor, and routing information on the

Internet. In each of these domains, the e�ect of a single decision is often not realized until some

time in the future, and even then it is often unclear which decisions were most responsible for the

outcome.

The fact that decisions often have both immediate and future consequences only contributes

to the arduous nature of sequential decision tasks. Often the best strategy is not to maximize each

immediate payo�, because some actions that produce high immediate payo�s may enter states from

which high future payo�s are impossible. In chess, a piece capture achieves an immediate payo� by

decreasing the opponent's piece count. However, the same capture could generate a negative future

payo� if the capturing piece leaves a key defensive position unguarded. The decision strategy must

consider both immediate and future payo�s of actions to optimize the total payo�.

The problem complexity has caused many decision tasks in real world situations to remain

unautomated or to be only partially automated through simple, \rule of thumb" strategies. These

policies are normally problem-general and do not take advantage of problem-speci�c knowledge

inherent in each domain. For example, in a communication network, packet routing is normally

decided by a shortest path strategy (Tanenbaum 1989), which is a problem-general policy. However,

Littman and Boyan (1993) showed that better routing policies can be achieved using more domain-

speci�c knowledge such as the speci�c network topology and tra�c patterns.

A learning mechanism to automatically generate decision strategies and tailor it to the

1



speci�c problem could greatly bene�t a wide range of decision tasks. Learning such strategies,

however, is often very di�cult for standard, supervised machine learning approaches that require

explicit examples of correct behavior. In many decision tasks, this knowledge is very costly to

obtain or simply not available. Robot navigation on a distant planet, dispatching elevators, and

game playing are all examples of decision tasks where correct behavior is not known a priori.

A more 
exible learning algorithm, capable of learning from simple and sparse reinforcements is

necessary.

This dissertation presents a new approach that combines evolutionary algorithms and neural

networks1 to form a general learning mechanism for sequential decision tasks. Neural networks have

proven very e�ective in pattern recognition and pattern association tasks and have been shown to

generalize well to unseen situations. Generalization is very important in sequential decision tasks,

because in large problems the learning system will be unable to explore every state of the system.

Instead, it must generalize decision strategies from observed states to unobserved states. Neural

networks provide an e�cient mechanism for generalizing such decisions.

Evolutionary algorithms provide a general training tool in which few assumptions about the

domain are necessary. Since evolutionary algorithms only require a single �tness evaluation over the

entire (possibly multi-step) task, they are able to learn in domains with very sparse reinforcement,

which makes them particularly well-suited for evaluating performance in sequential decision tasks.

No examples of correct behavior are necessary. The evolutionary algorithm searches for the most

productive decision strategies using only the infrequent rewards returned by the underlying system.

Together evolutionary algorithms and neural networks o�er a promising approach for learning and

applying e�ective decision strategies in many di�erent situations.

A novel neuro-evolution mechanism called SANE (Symbiotic, Adaptive Neuro-evolution)

is presented that is speci�cally designed for e�cient sequential decision learning. Unlike most

approaches, which operate on a population of neural networks, SANE applies genetic operators to

a population of neurons. Each neuron's task involves establishing connections with other neurons

in the population to form a functioning neural network (�gure 1). Since no one neuron can perform

well alone, they must specialize or optimize one aspect of the neural network and connect with

other neurons that optimize other aspects. SANE thus decomposes the search space, which creates

a much more e�cient genetic search. Moreover, because of the inherent diversity in the neuron

population, SANE can quickly revise its decision policy in response to shifts in the domain.

The contributions of this dissertation are in two areas: sequential decision making and

neuro-evolution. A system that can automatically construct e�ective domain-speci�c decision poli-

cies is signi�cant not only in the �eld of computer science, but also in �elds such as business

operations management, military science, and engineering control systems. The goal is thus to

create a powerful system for optimizing many types of decision tasks. SANE also presents a novel

evolutionary mechanism that could spawn additional empirical and theoretical research both as a

new neuro-evolutionary tool and as a new machine learning paradigm.

The body of this dissertation is organized as follows. The remainder of the introduction

gives a more formal de�nition of the sequential decision task and describes some features that

contribute to the complexity. Chapter 2 describes two di�erent approaches for learning decision

tasks through reinforcements, temporal di�erence learning and evolutionary reinforcement learning.

1Such combinations are often called neuro-evolutionary approaches or evolutionary neural networks.

2



Task Environment

Figure 1.1: An overview of SANE's neuron-level evolution. Subpopulations of neurons are selected
and used to build a neural network. The neural network is then evaluated in the task.

The similarities and di�erences between the two methods are discussed in the context of general

issues in reinforcement learning. In chapter 3, the SANE decision learning system is motivated

and described in detail. Chapter 4 presents an evaluation and in-depth experimental analysis of

SANE's symbiotic search mechanism through comparisons with more standard methods in neuro-

evolution. In chapter 5, SANE is compared to existing methods for sequential decision learning in

two benchmarks: pole balancing and mobile robot control. Chapter 6 presents successful applica-

tions of SANE in two real world decision problems: game playing and robot arm control. Chapter

7 discusses work related to SANE including other evolutionary reinforcement learning methods and

co-adaptive evolutionary algorithms. Chapter 8 describes other projects spawned by the research

in this dissertation and outlines important future research directions. The �nal section summarizes

the conclusions and underlines the signi�cance of this research.

1.1 Sequential Decision Tasks

To understand the motivation for the learning methods presented in this dissertation, it is important

to understand the di�culty and scope of the problems to be solved. Barto et al. (1990) and

Grefenstette et al. (1990) coined the term sequential decision task in reference to a common genre

of problems often encountered in arti�cial intelligence. This section gives a similar de�nition as

well as several examples demonstrating the ubiquitous nature of these tasks.

1.1.1 Examples of Sequential Decision Tasks

Elevator Dispatching. All modern o�ce buildings contain several elevators that transport indi-

viduals to and from di�erent 
oors. As anyone who has ridden in elevators can attest, the basic

movement strategy consists of movement in the same direction (either up or down), while stopping

at 
oors that need servicing in that direction. If no 
oor buttons are active, the elevator normally

remains in its current position.

If the goal of an elevator dispatching system is to minimize the average wait and ride time for

an individual, there are clearly more e�cient control strategies. For example, if it is the beginning

of the day, elevators should not wait at the top of the building but should return to the bottom,

since more people are likely to arrive than leave the building. Elevators should also skip 
oors with

3



pressed call buttons if they have several stops to make and there is an elevator with a lighter load

nearby.

An intelligent elevator dispatching strategy should consider the time of day, the position of

the elevators, and the speci�c 
oors that need servicing before moving or stopping an elevator. A

speci�c elevator movement may produce no obvious bene�ts, and in fact may lengthen the ride for

several customers. The long term bene�t, however, is to minimize the average wait and ride time

for all customers. Such bene�ts cannot normally be measured after a single elevator movement,

but must delay until several control decisions have been made.

Autonomous Robots. For decades researchers have studied the problems associated with build-

ing fully autonomous robots. A robot capable of maneuvering in unfamiliar environments and

performing arbitrary tasks must master a rich collection of sequential decision tasks at many dif-

ferent levels. For example, mapping the visual and sensory input into appropriate motor control is

often very di�cult to specify by hand. Learning such behaviors is also di�cult because examples of

correct behavior may not be easily attainable. In an unfamiliar situation, the robot must actively

explore its environment to discover the best course of behavior based on its input signals. Such

exploration involves several trial and error sequences that may jointly receive a performance reward

from the environment. Distributing credit from the single reward to individual behaviors is the

key element of sequential decision learning that makes robust, adaptive robot behaviors di�cult to

learn.

Tra�c Control. Rush hour tra�c in most large cities has become nothing short of an adventure.

Tra�c congestion often occurs in di�erent areas and at di�erent times each day. Tra�c signals

that control the 
ow of tra�c onto the highways and within the city can greatly a�ect the average

commute time for a motorist. An intelligent tra�c control system must make e�ective signal

decisions based on the current tra�c patterns and expected tra�c patterns. Each control decision

may have long reaching e�ects on the tra�c pattern that are not realized until several time steps

in the future.

Each of the above tasks is an instance of a sequential decision task. There are two common

threads that run between each. First, examples of correct behavior are di�cult to attain and

second, it is di�cult to perceive the direct consequences of individual decisions.

1.1.2 Problem De�nition

Russell and Norvig (1994) argue that all arti�cial intelligence problems can be formulated from

the perspective of an agent operating in an environment. Following their approach, I will de�ne a

sequential decision task from the perspective of a decision making agent. The agent in this case

is the system responsible for making the decisions. It is the elevator controller, the autonomous

robot controller, or the tra�c controller.

In a sequential decision task, an agent interacts with a dynamic system by making decisions

at speci�c time steps. The agent's decisions map directly or indirectly to actions that are performed

in the domain. Put simply, an action is an interpretation of a decision. In most approaches to

sequential decision learning the decision and action are synonymous, however, future systems may

sharpen the distinction by using the agent's decision as a basis to compute the appropriate action.

The agent's decision is based on the values returned by its sensors. Sensors provide a

4



view of the agent's current state and the state of the world. The input is normally a simpli�ed

representation of the environment and contains information pertinent to the future behavior of

the system. Once an action is performed, the system enters a new state and the agent must make

another decision. The state transition may be determined solely by the current state and the agent's

action or may also involve stochastic processes. The speci�c decision-selection strategy employed

by the agent is termed the agent's decision policy or simply its policy.

The agent receives reinforcement from the system in the form of payo�s that provide some

measure of performance. The objective is to select the sequence of decisions that returns the highest

total or cumulative payo�. Often the best strategy may not be to maximize each individual payo�,

because some actions may produce high immediate payo�s but may enter states from which high

later payo�s are impossible. The decision policy must take into account immediate and future

payo�s of decisions to optimize the total payo�.

1.1.3 Properties of Sequential Decision Tasks

The above de�nition is a very general description and de�nes a family of sequential decision tasks.

Each speci�c task contains additional properties that further classify it. It is important to un-

derstand these distinctions, because many decision policy learning methods are limited to only a

particular class of the general sequential decision tasks. Several task properties de�ned by Littman

(1996) are outlined below.

Finite vs. Continuous State Space. Is the number of possible states of the environment

�nite? In a �nite state space problem, there exists an enumerable collection of states in which the

environment can be. Chess is a �nite state space problem, since the number of possible states is

bounded by the number of possible board con�gurations. In a continuous state space problem, the

number of possible states is in�nite. Most control tasks that use real sensors to determine the state

of the environment are continuous state space problems. For example, the number of possible sonar

signals a mobile robot may receive to help avoid obstacles is, for all practical purposes, in�nite.2

This dissertation will consider both �nite and continuous state space tasks.

Finite vs. Continuous Decision Space. Are the agent's range of actions in�nite? Similar to

the state space property, the agent may select decisions from a discrete set or a continuous range.

Elevator control is a �nite decision space problem, since the agent selects from a set of three actions

(up, down, stop) for each elevator. Generating joint rotations in a robot arm is an example of a

continuous decision space problem, since there is an in�nite number of possible of rotations for each

joint. This dissertation will consider both �nite and continuous decision space tasks.

Accessible vs. Inaccessible. Are the agent's observations su�cient to describe the state of the

environment? In an accessible problem, the input to the agent represents all of the features relevant

to the current state. In an inaccessible problem, the agent must make decisions based upon only

a partial view of the state. Both accessible and inaccessible tasks are explored in this dissertation.

The Khepera task presented in chapter 4 and the OSCAR robot arm task presented in chapter 6

2Since computers only have �nite memory, the resolution of the sensory signals is limited and thus the number
of possible signals is actually �nite. However, even with limited resolution, the number of possible states is so large
that it can be considered in�nite.
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are examples of inaccessible tasks. Inaccessible tasks are also referred to as partially observable,

since the agent only receives partial state information.

Markovian vs. Non-Markovian Tasks. Does the path to the current state in
uence future

system behavior? The Markov assumption states that anything about a system's history is present

in the current description of its state. In other words, in a Markovian task the current state

description is su�cient to determine the future behavior of the system and the path to the current

state is irrelevant. In non-Markovian tasks, properties external to the state description in
uence

future state transitions. All of the tasks presented in this dissertation will be Markovian, although

they may appear non-Markovian to the agent because they are inaccessible.

Stationary vs. Non-stationary Environments. Can the agent's environment change? In a

stationary environment the state transition rules are always the same. They may be probabilistic,

but the probabilities remain constant. In a Non-Stationary environment, the transition rules may

change in response to time or possibly an agent's action. For example, if a robot's wheel falls o�

its movement decisions will no longer produce the same state transitions, since movement is much

more restricted. In chapter 4, the Khepera robot task is modi�ed to make it non-stationary.

I must make one more distinction in the type of problems to be studied in this dissertation.

This research focuses on problems with little existing domain knowledge. That is, there is no

domain model to analyze mathematically, nor is there a domain expert to provide examples of

correct behavior. Often in real world decision tasks, such domain information is very costly or

simply impossible to obtain. Consider the tra�c control problem. An accurate domain model

would require enormous e�ort to collect and analyze all of the data pertaining to the tra�c 
ows

and highway patterns. Once a model is built, even more e�ort is required to maintain the model to

ensure that it continues to re
ect the real tra�c situation. Thus, a learning system that does not

require a domain model, but instead forms e�ective decision policies through direct interactions

with the actual domain reduces the implementation e�ort considerably. Moreover, in many tasks

such a learning system may be the only feasible option. It is unlikely that an autonomous robot on

a distant planet will have access to an accurate model of the planetary environment and landscape.

To be e�ective, it must learn and adapt directly from it's experiences in the actual environment.

1.2 Concluding Remarks

This chapter has both motivated and de�ned the types of problems to be studied in this dissertation.

Sequential decision tasks are quite arduous in nature because the environment typically provides

only infrequent and many times very general feedback. The only concrete feedback a chess player

receives is the �nal outcome of the game. The central issue in solving sequential decision tasks is

how to apportion credit to individual decisions based on an evaluation of a sequence of decisions.

The next chapter describes two di�erent and somewhat opposing methods for accomplishing this

goal.
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Chapter 2

Learning Decision Strategies from

Reinforcements

As described in the previous chapter, the hallmark of di�cult decision problems is the credit

assignment problem coupled with minimal domain information. To learn e�ective decision strategies

in such tasks, a learning system must be capable of learning under very general and often infrequent

reinforcements. This type of learning has become known as reinforcement learning (Sutton 1988).

Kaelbling et al. (1996) identi�ed two main branches of research in reinforcement learning: methods

that search the space of behaviors and methods that search the space of value functions that assess

the utility of behaviors. The former is representative of an evolutionary algorithm (EA) approach,

and the latter a temporal di�erence (TD) approach.1 The method of choice in this dissertation is

an evolutionary algorithm.

The purpose of this chapter is to describe both methods of reinforcement learning and

outline their similarities and di�erences. Because the temporal di�erence methods are much more

visible in the literature, it is important to understand how the EA methods relate. Additionally,

since EA approaches to reinforcement learning in the past can best be characterized as \every man

for himself", it is important to draw a single thread that characterizes the general EA approach.

In this chapter, I hope to provide the much needed generalization of the EA reinforcement learning

approach and de�ne the term evolutionary reinforcement learning (ERL).

The chapter begins with a characterization of reinforcement learning and contrasts it with

the more common supervised learning methods. The two prominent reinforcement learning methods

are then described in detail. The TD and ERL methods are compared and contrasted in the context

of general issues in reinforcement learning. The goal of this chapter is to familiarize the reader with

the somewhat opposing methods of reinforcement learning and to motivate the adoption of the

evolutionary algorithm approach.

1Excluded from this section are the methods of dynamic programming such as value iteration and policy iteration
(Bellman 1957; Bertsekas 1987; Puterman 1994). Dynamic programming is a model-based method that requires
complete domain information to form decision policies. Since extensive domain information is normally absent from
di�cult decision problems, this section focuses on reinforcement learning methods that are model-free.
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(a) (b)

Figure 2.1: A characterization of the domain information necessary for reinforcement learning (a)
and for supervised learning (b). The goal is to �nd the shortest path through the maze. The dots
represent a possible path and the black dots represent decision points. To �nd the shortest path
through the maze, a supervised learning method requires knowledge of all of the walls to decide
which decisions were good and which were bad. A reinforcement learning system learns using only
the total length of the path as a reward.

2.1 Reinforcement Learning vs. Supervised Learning

In reinforcement learning, the only response a decision making agent receives from the domain is

in the form of reinforcement signals. Such signals provide only a general measure of pro�ciency

in the task and do not explicitly direct the agent towards any course of action. This environment

di�ers greatly from those found in applications of the more common supervised learning methods

(Quinlan 1986). In supervised learning, the agent has access to examples of correct behavior and

learns from errors between its decisions and the correct decisions. In reinforcement learning, the

correct course of action is not known. The agent must learn good behavior through trial and error

by directly interacting with the domain.

Figure 2.1 illustrates the di�erence between little and complete domain information. Imag-

ine a robot learning the shortest path through a maze. Figure 2.1(a) characterizes the domain

information from a reinforcement learning perspective. The robot makes a series of movement

decisions and receives the total length of its path as its only reinforcement. Figure 2.1(b) char-

acterizes the domain information required by a supervised learning method. The robot computes

errors for each movement decision and must know the correct move at each decision point. Such

domain information requires a priori knowledge of the positions of all of the walls in the maze.

The problems discussed in this dissertation re
ect the �rst maze, because in many interesting and

important decision tasks very little domain information is available to the decision making agent.

2.2 Temporal Di�erence Reinforcement Learning

This section describes the temporal di�erence (TD) approach to reinforcement learning (Sutton

1988). TD learning is by far the most popular reinforcement learning method and has therefore

become a standard for which alternative methods must be compared. The general idea of temporal
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di�erence learning is �rst described followed by a description of its two most prominent implemen-

tations: the Adaptive Heuristic Critic (Barto et al. 1983) and Q-learning (Watkins 1989; Watkins

and Dayan 1992).

2.2.1 Learning Through Temporal Di�erences

In temporal di�erence learning (Sutton 1988), an evaluation or value function maintains predictions

of current and future rewards. More speci�cally, the value function predicts the expected return

from the environment given the current state of the world and the current decision policy. If the

value function is accurate, the agent can base all of its decisions on its predicted values of subsequent

states of the world. In other words, when selecting the next decision, the agent considers the e�ect

of that decision by examining the expected value of the state transition caused by the decision.

The optimal value function is achieved using a version of the TD(�) learning algorithm.

TD(�) uses observations of prediction di�erences from consecutive states to learn correct value

predictions. Suppose that two consecutive states i and j return payo� prediction values of 5 and 2,

respectively. The di�erence suggests that the payo� from state i may be overestimated and should

be reduced to agree with predictions from state j. Updates to the value function V are achieved

using the following update rule:

V (i) = V (i) + �((V (j) � V (i)) +R(i)) (2.1)

where � represents the learning rate and R any immediate reward. Thus, the di�erence in pre-

dictions (V (j) � V (i)) from consecutive states is used as a measure of prediction error. One can

imagine a long chain of value predictions V (0)::V (n) from consecutive state transitions with the last

state V (n) containing the true payo� from the environment. The values of each state are adjusted

so that they agree with their successors and eventually the true payo� in V (n). In other words,

the true payo� is propagated backwards through the chain of value predictions. The net result is

an accurate value function that can be used to assess the utility of decisions by comparing values

from subsequent state transitions.

2.2.2 The Adaptive Heuristic Critic

One of the earliest reinforcement learning methods that used TD learning is the Adaptive Heuris-

tic Critic (AHC). In the AHC, a TD value function called the \critic" is trained to predict the

performance of a second agent that is responsible for generating the decisions. Figure 2.2 gives a

block diagram of the interacting critic and decision agent. The critic uses equation 2.1 to learn

the accurate predictions given the state transitions caused by the decision agent. The decision

agent simultaneously updates its decision policy to maximize the value received from the critic.

For example, if the decision agent receives a low value from the critic after making a decision, it

should reduce the likelihood of making that decision in the same situation. Since the decision agent

receives constant feedback from the critic, policy modi�cations can be made through a number

of di�erent hill-climbing search methods. The most common approach is to use a variant of the

backpropagation (Rumelhart et al. 1986) method.
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Figure 2.2: An overview of the Adaptive Heuristic Critic. The critic learns to provide error signals
from which the action agent is trained.

2.2.3 Q-learning

Q-learning (Watkins 1989; Watkins and Dayan 1992) is closely related to the AHC and is currently

the most widely-studied reinforcement learning approach. Q-learning combines the critic and deci-

sion agents into a single function called the Q-function. The Q-function maps decisions and states

of the world into an expected reward estimate. In other words, the Q-function Q(d; i) represents

the utility of making a speci�c decision d in state i. Given accurate Q-function values, called Q

values, an optimal policy is one which selects for each state the decision with the highest associated

Q value (expected payo�).

The Q-function is learned through the following TD update equation:

Q(d; i) = Q(d; i) + �(R(i) + max
d0

Q(d0; i0)�Q(d; i)) (2.2)

where d0 is the next decision and i0 the next state. Essentially, this equation updates Q(d; i)

based on the current reward and the predicted reward if all future decisions are selected optimally.

Watkins and Dayan (1992) proved that if updates are performed in this fashion, the Q-function

will asymptotically converge to the optimal Q values. A reinforcement learning system can thus

use the Q values to evaluate each decision that is possible from a given state. The decision that

returns the highest Q-value is the optimal choice.

Q-learning has been shown to perform comparably to the AHC approach in terms of training

time in toy domains (Lin 1992) and preliminary research has been done to scale up Q-learning to

practical tasks (Lin 1993; Littman and Boyan 1993). However, there are several research issues like

perceptual aliasing and generalization that must be resolved before Q-learning can be considered

e�ective for large-scale tasks. Section 2.4 will outline some of these issues and relate them to the

evolutionary reinforcement learning method described in this dissertation.
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2.3 Evolutionary Reinforcement Learning

Evolutionary reinforcement learning provides an alternative to the temporal di�erence methods and

overcomes many of TD's limitations. This section describes the evolutionary algorithm approach

and gives some examples of how decision policies could be represented and operated on within an

EA. ERL methods are not restricted to a speci�c evolutionary algorithm. Methods from genetic

algorithms (Holland 1975; Goldberg 1989), evolutionary programming (Fogel et al. 1966), genetic

programming (Koza 1992), or evolutionary strategies (Rechenberg 1964) could all be used in this

framework to form e�ective decision-making agents. However, I do restrict ERL methods to those

implementations of evolutionary algorithms that solve reinforcement learning problems.

2.3.1 Overview

Evolutionary algorithms are global search techniques patterned after Darwin's theory of natural

evolution. Numerous potential solutions are encoded in structures called chromosomes. During each

iteration, the EA evaluates solutions and generates o�spring based on the �tness of each solution in

the task. Substructures, or genes, of the solutions are then modi�ed through genetic operators such

as mutation and recombination. The idea is that structures that led to good solutions in previous

evaluations can be mutated or combined to form even better solutions in subsequent evaluations.

In evolutionary reinforcement learning (ERL), the solutions take the form of decision mak-

ing agents that operate in dynamic environments. Agents are placed in the world where they

make decisions in response to environmental conditions. The EA selects agents based on their

performance in the task, and applies genetic operators to generate new types of agents. Since

evolutionary algorithms only require a single �tness evaluation over the agent's entire (normally

multi-step) task, they �nd e�ective solutions in domains that return only occasional reinforcement

over a sequence of actions. The only feedback that is required from the environment is a general

measure of pro�ciency for each agent.

Like TD methods, ERL is a model-free approach, because it does not require a simula-

tion model or knowledge of the state transition rules to form its policies. Many policy generation

methods from the operations research community require precise models of the state transition

probabilities in order to iterate through di�erent policies using dynamic programming. ERL meth-

ods can learn \online" through direct interaction with the underlying system. Online learning frees

the implementor from extracting expensive domain information to build an accurate model. More-

over, online learning is more adaptive since the agent observes changes immediately, rather than

after the model is updated. However, since many explorative control strategies move the system

in undesirable states, online learning can also be very costly and even dangerous. For this reason,

researchers in both ERL and TD learning often train in simulation and then apply the control

policy to the real system.

2.3.2 Policy Representations

In ERL, the decision policy normally maps sensor values directly to a decision. For example, a

decision policy in a mobile robot may map sonar sensors values to wheel rotations. This represen-

tation is quite di�erent from TD methods. In TD learning, the decision policy represents a value

function that maps sensor and decision pairs to a utility measure. For example, a TD policy may
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Figure 2.3: The input to output mapping of an evolutionary reinforcement learning policy compared
to the mapping of a temporal di�erence policy or Q function.
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Figure 2.4: A simple grid world sequential decision task. Agents move from one box to another
by selecting between four moves (up, down, left, or right). The number in each box represents the
reward the agent receives when it enters a box, and the agent's sensors can detect the actual box
that it is in. The goal of the agent it to maximize its rewards by moving into the best boxes.

map the sonar sensors and wheel rotations to an expected payo� estimate. Figure 2.3 illustrates

the di�erence. Whereas ERL methods search the space of behaviors directly and learn to generate

good decisions in response to speci�c state features, TD methods approach the problem indirectly

by learning to predict the value of decisions from states of the system.

To better understand the di�erent policy representations, consider the grid world shown in

�gure 2.4. The task of the agent is to move from box to box by selecting among four decisions

(left, right, up, down) and collect the most rewards. Figure 2.5 shows a possible value function

representation of a decision policy for this task. This table-based representation associates an

estimate of current and future rewards with each possible state of the system (i.e. each box). The

agent adjusts those estimates by experiencing di�erent states and rewards. Figure 2.6 shows a

possible policy representation using an evolutionary algorithm. Rather than value estimates, EA

policies associate speci�c decisions with each state.

It's important to note that ERL methods could employ a value function for policies. How-

ever, value functions are problematic for several reasons. First, only a �nite number of options can

be considered at each decision point. The decision space itself may be continuous, but because a

decision must be evaluated to be chosen, the number of options from any state is �nite. In other

words, each option must be passed through the value function before it can be chosen. Conse-
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Figure 2.5: A table-based value function representation of a decision policy for the grid world. A
value is estimated with each possible state (box) the agent can be in. The value represents the
expected return from that state and future states that will be reached from that state using the
current policy. The agents moves in the direction of the highest estimated values. For example, if
the agent is in box 0,0, it will move to state 0,1, because it has a higher estimated value than state
1,1. The values shown are not the optimal Q values.
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Figure 2.6: A simple policy representation for an evolutionary algorithm. A population of �ve
policies are shown. In each policy, the decision is speci�ed for each state of the world. A �tness
value is shown for each policy and was computed by placing the agent initially in the lower left
corner (box 0,4) and allowing 5 moves.

quently, the number of possible decisions is bounded by the number of options passed through the

function, which is �nite. If a mobile robot is controlled by generating rotations to its wheels, only

a �nite number of rotations can be considered at every step. In contrast, a direct mapping from

sensors to decisions does not restrict the number of options, and can consider an in�nite number of

rotations for the robot's wheels. Many ERL implementations of direct policy mappings, however,

do restrict the decision selections to �nite sets, but this is a product of the policy implementation

not the policy mapping.

A second potential disadvantage of the value function is that agents must expend more

CPU time than a direct policy mapping to compute their decision. A direct policy representation

requires only a single mapping from sensors to output to produce the appropriate decision. A value

function, however, requires an input to output mapping for each decision that is being considered.

If the decision choices are numerous, the CPU time required to cycle through each option could

become a liability to the agent.
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2.4 Issues in Reinforcement Learning

Evolutionary algorithms are traditionally viewed as function optimizers and have been analyzed

and described using speci�c terminology developed within the EA communities. However, it is

important to ground their application for reinforcement learning using terminology common in the

existing reinforcement learning literature. While the temporal di�erence community has developed

well-de�ned features and terminology among all TD approaches, the ERL approach has largely

been \every man for himself." This section endeavors to bridge the gap between ERL methods

and TD methods and draw some common threads between the two. Speci�cally, the section char-

acterizes the similarities and di�erences in ERL and TD methods by how they address six issues

in reinforcement learning: exploration vs. exploitation, the credit assignment problem, perceptual

aliasing, generalization, policy updates, adaptation, and memory.

The goals of this section are twofold. First, it familiarizes the reader with important learning-

related issues common to any reinforcement learning system. Second, it motivates evolutionary

algorithms as e�ective search methods for reinforcement learning by relating their features to and

describing advantages over the more common temporal di�erence approaches.

2.4.1 Exploration vs. Exploitation

In a sequential decision task, the sequence of policy decisions a�ects the states of the world that

are visited. To form an e�ective global policy, the agents must actively explore the environment to

discover the best states of the system. However, since the goal is to make decisions that return the

highest payo�s, there is also pressure to exploit sequences of decisions that return the best known

reward. Thus, there is a fundamental tradeo� between exploration and exploitation of the state

space. Too much exploration could result in lower average rewards and too little could prevent the

learning system from discovering the optimal policy.

In TD learning, there is normally a single agent with a single decision policy. TD methods

exploit the state space by choosing decisions that return the highest reward from the value function.

Exploration is normally achieved by interleaving random decisions with policy decisions. Typically,

the agent can control the frequency of random decisions through it's value function. For example,

a decision with a low Q-value may be more often replaced by a random decision than a decision

with a higher associated Q-value. Another popular strategy is to choose more decisions randomly

early in training to encourage initial exploration.

ERL methods blend exploration and exploitation of the solution space through the popu-

lation of di�erent strategies. Since multiple decision policies are represented, ERL methods auto-

matically sample various policy decisions and thus random decisions are unnecessary. Each agent

exploits it's own strategy, while the population as a whole explores alternative strategies. If di-

versity is maintained within the population, the agents' decision policies will di�er, allowing the

evolutionary algorithm to explore and compare di�erent areas of the state space. How to easily

maintain e�ective levels of diversity to promote exploration, however, is currently an open research

issue and is the primary motivation of the SANE system described in chapter 3.
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2.4.2 The Credit Assignment Problem

In a reinforcement learning problem, rewards often re
ect the goodness of a sequence of decisions

rather than each individual decision. A reward may be received after each decision, but it often

derives from several of the agent's previous decisions. For example, a robot may receive a very

high reward after a movement that places it in a \goal" position within a room. The robot's

reward, however, re
ects many of its previous movements leading it to that point. A di�cult credit

assignment problem therefore exists in reinforcement learning in how to apportion the rewards of

a sequence of decisions to each individual decision.

Both ERL and TD methods address the credit assignment problem, but in very di�erent

ways. The di�erence can best be described as explicit vs. implicit credit assignment to the indi-

vidual decisions. In TD approaches, credit from the reward signal is explicitly propagated to each

decision made by the agent. Credit is assigned based on the di�erence in the predicted reward

from each visited state and the actual �nal reward. In this manner, rewards are distributed and

associated with each individual state and decision pair.

In ERL, rewards are normally only associated with sequences of states and decisions, not

with individual decisions. Credit assignment for each individual decision is made implicitly, since

poor agents generally select poor individual decisions. Thus, which individual decisions are most

responsible for a good or poor decision policy is irrelevant to the evolutionary algorithm, because

by selecting against poor policies, evolution automatically selects against poor policy decisions.2

The implications of the di�erent credit assignment strategies are currently unclear. However,

the choice of strategy does a�ect how each method addresses other important issues in reinforcement

learning. The next section discusses one such issue: perceptual aliasing.

2.4.3 Perceptual Aliasing

Often in real world situations, the decision-making agent will not have access to complete informa-

tion on the state of its world. Its sensors are more likely to provide only a partial view that does

not disambiguate between many states. Consequently, the agent will often be unable to completely

distinguish its current state. This problem has been termed perceptual aliasing or hidden state.

Using the terminology from the �rst chapter, a domain with hidden states is inaccessible.

Unfortunately, both ERL and TD methods operate under the assumption that the agent's

sensors accurately identify the state of its world. If this is not the case, both methods degrade and

can produce suboptimal policies. Consider the inaccessible situation in �gure 2.7, where an agent

must act without complete state information. Circles represent the states of the world, and the

colors represent the sensor information the agent receives in the state. Square nodes represent goal

states with the corresponding reward shown inside. In each state, the agent has a choice of two

actions (L or R). For this example, assume that the transitions are deterministic, and the agent is

equally likely to start in either the state with the red or green sensors.

In this example, there are two di�erent states that return a sensor reading of blue, and

the agent is unable to distinguish between them. Moreover, the actions for each blue state return

very di�erent rewards. A Q function applied to this problem treats the sensor reading of blue as

2Some ERL implementations such as SAMUEL (section 7.1.1) actually do use local credit assignment for individual
states or decisions. However, this credit assignment is normally used for small re�nements, while the EA remains the
primary search engine.
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Figure 2.7: An environment with incomplete state information. The circles represent the states of
the world and the colors represent the agent's sensory input.

one observable state, and the rewards for each action are averaged over both blue states. Thus,

Q(blue; L) andQ(blue;R) will converge to -0.5 and 1, respectively. Since the reward fromQ(blue;R)

is higher than the alternatives from observable states red and green, the agent's policy will choose

to enter observable state blue each time. The �nal decision policy is shown in table 2.1. This table

also shows the optimal policy with respect to the agent's limited (Markovian) view of its world.

In other words, the policy re
ects the optimal choices if the agent cannot distinguish the two blue

states.

Value Function Policy Markovian Optimal Policy

Red R R
Green L R
Blue R L

Expected Reward 1.0 1.875

Table 2.1: The policy and expected reward returned by a converged Q function compared to the
optimal policy given the same sensory information.

By associating values with individual observable states, the TD methods are very vulnerable

to hidden state problems. In this example, the ambiguous state information misleads the TD

method, and it mistakenly combines the rewards from two di�erent states of the system (the

two blue states). By mixing information from multiple states, TD methods fail to recognize the

advantages of actions from speci�c states. In this example, the TD method does not recognize that

choosing action L from the top blue state achieves a very high reward.

While ERL methods are also vulnerable to hidden state problems, their credit assignment

strategy makes them more robust than the TD approaches. Since ERL methods associate values

with entire state and decision sequences, they can implicitly disambiguate sensor information by

considering the path the agent takes to each observable state. In this example, the evolutionary

algorithm can recognize the disparity in rewards from the di�erent blue states and evolve agents

that enter the good blue state and avoid the bad one. The agent itself remains unable to distinguish
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the two blue states, but the evolutionary algorithm recognizes the distinction and compensates by

redirecting the agent.

An ERL method can achieve the optimal policy in the previous example given the existing

state information. Agents that start in the red state and choose the action sequence R,L achieve

the highest levels of �tness. Such agents are selected for reproduction by the EA, and the next

generation contains more agents that generate this sequence from the red state. If these agents

are placed in the green state and select action L, they receive the lowest �tness score, since their

subsequent action, L from the blue sensors, returns a negative reward. Thus, many of the individuals

that achieve high �tness when started in the red state are selected against when they choose L

from the green state. Since the EA will continue to promote individuals that select R,L from the

red state, to survive individuals will learn to select R from the green state to minimize their �tness

penalty.

Kaelbling et al. (1996) describe several solutions to the hidden state problem, where addi-

tional features such as the agent's previous decisions and observations are automatically generated

and included in the agent's sensory information (Chrisman 1992; Lin and Mitchell 1992; McCallum

1995; Ring 1994). These methods have been e�ective at disambiguating states in initial work. An

important future research question is whether similar methods can resolve all of the hidden states

in a large, real-world application.

It is important to note that solutions to the hidden state problem are not exclusive to TD

approaches, but should bene�t ERL as well. While ERL appears more robust in the presence of

hidden states, their performance is nevertheless a�ected. In the previous example, the ERL agents

should achieve a better average reward than the TD method, but they are unable to procure both

the 3.0 and 1.0 rewards from the two blue states. These rewards could be realized, however, if the

agent could separate the two blue states. Thus, any method that generates additional features to

disambiguate states presents an important asset to ERL. Such combinations suggest an important

bridge between the two research communities.

2.4.4 Generalization

As reinforcement learning scales up, the number of possible states of the world normally grows

exponentially with the size of the task. In large state spaces, agents cannot observe every state and

must apply action decisions learned in observed states to unobserved states. Researchers in both

ERL and TD learning have thus turned to generalization tools such as arti�cial neural networks3

and rule bases to represent the decision policy. Such methods do not represent each state explicitly,

but rather represent the decision policy as a function that maps sets of states to decisions. For

example, in the grid world example from �gure 2.4, a very general rule that a�ects many situations

is the following: \if the agent is in a column greater than 2, move left." This rule is very useful

because most of the high rewards are located on the left side of the world. Instead of learning the

left action for each right side box, the controller learns one rule to cover them all. Thus by learning

the mapping from features of states to decisions, the agent generalizes it's control policy from a

few observed states to the numerous unobserved states.

In TD learning, the use of generalization tools is often called function approximation, since

the value function or Q function is approximated rather than represented explicitly in a table of

3A background on neural networks is presented in appendix A.
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values. The most common form of function approximation is a neural network that represents a

Q function. Rather than representing each table value explicitly, the values are represented in a

distributed fashion in the weights of the neural network. Thus, policy updates no longer modify

single table values, but instead modify all of the weights in the neural network. Consequently, an

update from a single state observation in
uences all other policy decisions and e�ectively generalizes

actions in observed states to unobserved states. Network weights are normally updated using a

gradient descent algorithm such as backpropagation (Rumelhart et al. 1986).

Similarly, ERL methods often employ techniques such as neural networks to generalize

the control policy. One di�erence, however, is that ERL methods do not use gradient descent

algorithms, but rather allow the evolutionary algorithm to search for useful weights. In addition

to neural networks, ERL decision policies have been successfully represented in symbolic rule sets

(Grefenstette et al. 1990) and as Lisp S-expressions (Koza 1992). Each of these representations

represents the decision policy as a function that maps features of states to actions, and updates

based on single state observations in
uences many state and action mappings.

2.4.5 Policy Revisions

As agents experience di�erent state and decision sequences, they must revise their current decision

policy to account for the rewards returned by the environment. The question of how much reinforce-

ment or how many rewards are necessary to revise the policy is an important one in reinforcement

learning and one where the TD and ERL methods di�er.

In a TD approach, the policy is normally revised after every decision. The revisions are

small, since they are based only on a single reinforcement signal. An ERL approach normally

makes revisions only after one or several agents have been completely evaluated over a sequence

of decisions. The revisions are typically larger, since they are based on all of the reinforcement

collected over the sequence of actions or only based on a single reward over the entire task.

Frequent policy updates based on local information can adversely a�ect generalization.

Boyan and Moore (1995) describe experiments where the error in a function approximator ap-

plied to Q-learning actually diverges and becomes arbitrarily large. Boyan and Moore speculate

that the updates based on a single state and decision pair in one situation can cause state and

decision pairs in other situations to be under or overestimated. Such behavior occurs because up-

dates to a function approximator normally a�ect policy decisions for many other states. If a single

update is based only on a single observation, that observation can bias the global decision policy.

In several examples, Boyan and Moore show how this phenomena can actually lead to convergence

on the least optimal solution.

In ERL, policy changes are normally based on more global information. By updating less

frequently and from information collected from several states and actions, it is more di�cult for

a reward from a single decision to signi�cantly bias the decision policy. On the other hand, less

frequent updates may cause the system to adapt slower to changes in the agent's environment.

Adaptation is an important reinforcement learning issue in itself and is explored in the next section.
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2.4.6 Adaptation

In many non-stationary environments, an agent must adapt its current decision policy in response

to changes that occur in its world. Faulty sensors and e�ectors, new obstructions, and the presence

of other adaptive agents are all examples of situations where the agent must revise many of its

policy decisions. Policy revisions should occur quickly to avoid the costly e�ects of an outdated

control policy. For example, if an agent makes packet routing decisions in a local area network and

a network node goes down, packets that are routed through the down node will be delayed or lost.

A new routing policy should be promptly established that avoids the faulty node. Neither �eld

of reinforcement learning has directed signi�cant attention on adaptation issues, however, it will

likely become a central concern in future real world applications.

Because TD learning makes constant updates to the decision policy in response to each

environmental signal, it should recognize domain changes as soon as they occur. Since ERL ap-

proaches do not normally realize the change in environment until an individual or a population of

individuals have been completely evaluated over several actions, the adaptive policy revisions are

delayed. However, since TD methods normally employ small learning rates to ensure convergence,

it is unclear whether the immediate, but small responses will complete the adaptive revisions faster

than a delayed, but larger changes.

In some situations, however, the revision delay in ERLmethods may incur unacceptable costs

or allow the system to enter states from which recovery is di�cult. For example, in automobile

tra�c control an accident at a busy interchange necessitates immediate rerouting of tra�c to

prevent the problem from snowballing into an unmanageable mess. For ERL methods to handle

such problems, e�cient mechanisms for adaptive behavior based on immediate rewards need to be

developed.

Several researchers have investigated the use of local learning after each action in an evo-

lutionary algorithm (Grefenstette 1991; Gruau and Whitley 1993; Littman 1995; Nol� and Parisi

1995). Such approaches have been termed Lamarckian if the local revisions are written back to

the genetic chromosomes or Baldwinian if the revisions are not persevered. Local learning a�ords

the evolutionary algorithm a quicker response to environmental shifts, however, it has not yet been

applied to di�cult sequential decision tasks.

2.4.7 Memory

The abstract goal of a reinforcement learning agent is to explore its world, gather statistics about

states and decisions, and build an e�ective decision policy. So far, all of the described research issues

have dealt with how the agent builds a decision policy. This section contrasts how the methods

collect and maintain statistics about the agent's environment. Speci�cally, the memory or record

of observed states and actions di�ers greatly between TD and ERL methods.

Temporal di�erence methods normally maintain a constant record of the reinforcement

received from every state and decision pair. As states are revisited, the new reinforcement is

combined with the previous value. New values thus supplement previous values, and the information

content of the agent's reinforcement model increases during exploration. In this manner, TD

methods sustain knowledge of both good and bad state and decision pairs.

In ERL, normally only the statistics of good states and decisions are maintained. The record
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is kept implicitly in the population of di�erent policies. Knowledge of bad decisions is not preserved,

since agents that make such decisions are removed from the population. Thus, a snapshot of the

population reveals an implicit distribution of the pro�table decisions from state descriptions. The

most pro�table decision from a given state description can be found by polling each policy in the

population and returning the most popular choice. The second most pro�table decision is the

second most popular choice. More concretely, the selection rate of a decision from a given state

description across a population of policies is proportional to its pro�tability.

In sharp contrast to the TD methods, the information content of ERL populations actu-

ally decreases as the population evolves. Evolutionary algorithms normally converge genes in the

population to their presumably optimal values. In a sequential decision task, this often re
ects

convergence on a speci�c decision from a speci�c state description. For example in chess, the EA

may recognize that it is very good to capture the opponent's queen whenever possible. Through

selection and recombination, the EA will propagate this knowledge to each policy in the population

and eventually every policy will take the queen whenever possible. In other words, as the EA �nds

the perceived best decision from a state, it often loses the statistics on other decisions from that

state, because it removes individuals that make those decisions. In the chess example, since all

policies capture the queen, nothing is maintained about the other legal moves in those situations.

The statistics that were present before, in the form of a distribution of policy decisions from the

queen capture state, are lost.

This memory degradation in ERL methods can produce poor performance if unexpected

state transitions place the agent in a less frequented state. For example, in a game playing situation

the opponent may make an unexpected move that transfers the game into an unfamiliar state. Since

ERL methods converge policy decisions around expected state transitions, statistics on actions

from less-frequented states are often lost. This places a heavier burden on the assumption that the

agent's training environment accurately re
ects the target environment. Since TD methods record

and store all observances, they should retain knowledge of all experienced states and therefore

be more robust in less frequented states. However, a function approximator, such as a neural

network, applied to a TD method also su�ers from memory lapses over rare states. As described

in section 2.4.4, updates to a neural network representation of a decision policy a�ect many policy

decisions. Since less frequented states produce fewer policy updates, their policy decisions may be

overwritten or \averaged out" by the updates from the frequented states.

The practical implications of memory loss are largely unclear and are almost certainly an

empirical question for each domain. While a complete memory method may ensure better behavior

in less frequented states, the complexity costs of maintaining and searching every observance may

outweigh any robustness gain. Future work is needed to examine this tradeo� and possibly discover

a practical middle ground between robustness and e�ciency.

2.5 Concluding Remarks

Researchers in ERL and TD learning are studying very di�erent methods for solving sequential

decision tasks. Both methods assume limited knowledge of the underlying system and both learn

decision strategies by experimenting with di�erent state and decision sequences. Both methods can

learn from small amounts of reinforcement that provide some measure of pro�ciency in the task.
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Neither require a precise mathematical model of the domain, and both may learn through direct

interactions with the actual system.

An important advantage of ERL methods over TD methods, however, is a more robust credit

assignment strategy. In situations where the sensory information does not completely describe the

state of the system, ERL methods can implicitly disambiguate states. Since decisions are evaluated

in a sequence, the EA can discover di�erences in states by considering the path to each state. TD

methods evaluate decisions independently of the path and thus are more often misled by ambiguous

states. This phenomena will be demonstrated in chapter 5 in a mobile robot task where knowledge

of the path is essential to generate good behavior. Two ERL methods form e�ective decision

policies, while a TD method fails.

Despite the di�erent learning strategies, ERL and TD methods share many learning-related

concerns. Speci�cally, state space generalization and hidden state identi�cation are viewed by both

communities as essential for large-scale applications. In this regard, practical tools for addressing

these concerns should not be isolated to one method, but should bene�t both. By pointing out

the shared goals and concerns, I hope to motivate evolutionary algorithms for sequential decision

learning in this dissertation as well as future work in ERL. Moreover, I hope these comparisons will

promote further collaboration between the two communities.
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Chapter 3

Symbiotic, Adaptive Neuro-Evolution

This chapter presents a new reinforcement learning method called SANE (Symbiotic, Adaptive

Neuro-Evolution) that uses an evolutionary algorithm as its primary search engine. The chapter

begins with motivation for a neural network representation of a decision policy followed by a

description of how evolutionary algorithms and neural networks can be integrated to create a

powerful approach to sequential decision learning. Several important research issues are outlined

and subsequently addressed in the description of the SANE method. The goal of this chapter is to

familiarize the reader with neuro-evolution and to present the neuro-evolution system developed in

this dissertation to solve di�cult sequential decision tasks. Portions of this chapter are taken from

(Moriarty and Miikkulainen 1996a, 1996c).

3.1 Neural Computation for Sequential Decision Tasks

Research in arti�cial neural networks (ANN) and their applications has exploded in the past decade.

The scope of ANNs has extended far beyond arti�cial intelligence or even computer science. Re-

searchers in psychology, physics, and business �nance, to name a few, have turned to ANN methods

to solve problems and/or provide new models of behavior. Despite the overwhelming support for

neural networks in many di�erent problems and in many di�erent �elds, their adoption nonetheless

must be well motivated. Speci�c to this dissertation, it is important to understand why neural

networks present an attractive mechanism for representing a decision policy. The neural represen-

tation is motivated through three important attributes: compact and constant storage, constant

computational time, and generalization.

The �rst advantage neural networks present is an e�cient storage mechanism for the decision

policy. Since the neural network performs the sensory to decision mapping, the actual decision

policy is represented in a distributed fashion in the network's connections and weights. As more

states and actions are observed, the new information is distributed and e�ectively merged with the

old information in the weights. The size of the decision policy therefore does not grow unmanageably

large with the agent's experiences, but remains constant. The neural network thus provides compact

storage for a decision policy that may cover a very large space of input situations.

In addition to constant storage, neural networks provide constant computational time. The

computational complexity is bounded by the number of neurons and connections within the network.
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Since these components remain constant1, the computation time also remains constant. This

feature is very important in real time decision tasks when time spent generating the decision can

decrease the performance of the system. Also, since neural networks are made up of many separate

computational elements, they can be easily parallelized to further speed up the computation.

Perhaps the most important advantage of a neural network representation is e�ective gener-

alization of the decision policy. Since policy decisions are globally distributed among the weights,

single weight changes a�ect many subsequent policy decisions. Thus, a policy modi�cation in one

situation will automatically generalize to other situations. Moreover, since the storage space is �nite

the neural network must consolidate space by forming general policies based on features or ranges

in the input space rather than exact input values. Generalization is important in large state spaces

where the agent cannot realistically expect to experience every domain situation during training.

By generalizing the decision policy, the neural network can apply decisions to unexperienced states

based on common features with experienced states.

While the advantages are attractive, it is also important to consider the disadvantages of

a neural network decision policy. First, there are numerous parameters that must be set a priori

to ensure good behavior. The network architecture, the number of neurons, and the activation

function, are three examples of parameters for which optimal values are not well understood.

Implementation often involves several trial and error experiments to generate e�ective parameter

settings. Second, since the decision policy is represented in the connections and weights, it is very

di�cult to extract the policy in a more readable and understandable form. A lucid representation

may be necessary because it is to be implemented in some other manner or it is to be used to

better understand the underlying system. Traditionally, implementors of neural networks must

accept satisfaction solely from the outward behavior of the neural network, since the reasoning

behind it is indecipherable. However, it is the position of this dissertation that the advantages of

neural networks far outweigh the disadvantages.

3.2 Evolving Neural Networks

Recently there has been much interest in combining evolutionary algorithms and arti�cial neural

networks (Kitano 1990; Koza and Rice 1991; Liu and Yao 1996; Moriarty and Miikkulainen 1994b;

Scha�er et al. 1992; Whitley et al. 1990; Yao and Liu 1996). GA/NN combinations o�er many

important advantages over the more traditional neural network learning methods like backpropa-

gation (Rumelhart et al. 1986) and cascade correlation (Fahlman and Lebiere 1990). This section

describes and motivates the evolutionary approach for forming e�ective neural networks. The sec-

tion also describes several important research issues in neuro-evolution that are addressed in this

dissertation.

3.2.1 Overview

In neuro-evolution, an evolutionary algorithm is used to search for e�ective connections and/or

connection weights within a neural network. The dynamic components (i.e. weights and/or archi-

1There are many neural network learning algorithms that do increase the number of neurons and connections
during training and thus do not maintain constant complexity. The neural networks in this dissertation, however,
have a �xed number of neurons and connections.
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tecture) of the neural networks are encoded in structures that form the genetic chromosomes. A

basic encoding method is to simply concatenate all of the connection weights on a single string.

The string of weights becomes the genetic description of the neural network and is essentially the

working material for evolution.

In most applications of neuro-evolution, a population of neural networks is maintained and

evolved. Each neural network is evaluated and assigned a �tness score based on its performance

in the task. The evolutionary algorithm then recombines and/or mutates structures of the best

neural networks in the population to create new and hopefully better neural networks.

3.2.2 Why Evolve Neural Networks?

Evolutionary algorithms o�er a much more 
exible alternative to the traditional hill-climbing search

methods. EAs are applicable to a much broader range of network architectures and do not require

examples of correct behavior. Most current learning methods calculate errors in network output to

serve as gradients for a hill-climbing search (e.g. backpropagation). Such methods require smooth,

continuous activation functions from which gradient information can be easily derived. Since evo-

lutionary algorithms do not use derivatives for credit assignment, other activation functions such

as linear thresholds, splines, or product units may be used just as easily. In more complex architec-

tures such as networks with recurrent connections, computing the gradient information necessary

for hill-climbing is very costly (Williams and Zipser 1989). Since evolutionary algorithms do not

rely on backpropagating error signals, evolving recurrent networks requires no extra computation

over networks with no recurrent connections.

The primary motivation for neuro-evolution over the more standard techniques like back-

propagation, however, is the ability to train under sparse reinforcement. In many domains, com-

puting gradient information after every network output is infeasible because reinforcement from the

system is infrequent. For example, in sequential decision tasks, a reinforcement signal may be given

only after a sequence of decisions has been made. Training a neural network using backpropagation

or other supervised learning methods in such a task requires credit assignment to each individual

network output. As described in chapter 1, such assignments are very di�cult to make based on

an overall performance metric, because it is not always obvious how individual decisions a�ect

the outcome. Since evolutionary algorithms do not require explicit credit assignment to individual

network outputs, they can tackle a much wider range of problems including sparse reinforcement

problems.

Recent research has shown neuro-evolution to be competitive in training time with standard

gradient descent training of neural networks. Montana and Davis (1989) ran several experiments

comparing evolutionary neural networks to standard backpropagation networks in the task of clas-

sifying passive sonar data from arrays of underwater acoustic receivers. Two di�erent implementa-

tions of neuro-evolution were used: one where the weights of a feed-forward network were evolved

using an evolutionary algorithm alone, and one where an evolutionary algorithm was implemented

together with backpropagation in a hybrid approach. Montana and Davis report no clear advantage

using the hybrid approach over the evolutionary algorithm alone and report superior results in the

number of training iterations using the evolutionary algorithm over backpropagation.

Potter (1992) used an evolutionary algorithm in place of the quickprop learning method

(Fahlman 1988) in the cascade correlation architecture (Fahlman and Lebiere 1990), which is one
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of the fastest known neural network training algorithms. The genetic form of cascade correlation

required fewer epochs in the two-spirals benchmark and slightly more epochs in the eight-bit parity

problem than the standard quickprop cascade correlation. Potter points out that the results are

encouraging since the genetic cascade correlation performed comparably in a domain where gradient

information was readily available. In domains with more sparse reinforcement, genetic cascade

correlation should continue to form good networks, whereas standard cascade correlation may be

unable to form e�ective targets from the sparse reinforcement signals.

3.2.3 Research Issues

The results discussed above are very encouraging and motivate further applications of neuro-

evolution. However, several improvements can be made in current neuro-evolution techniques to

allow them to scale well to much harder problems. Two important issues are outlined here that are

directly addressed in the SANE neuro-evolution system.

Network Encoding

The �rst issue concerns the representation or encoding of the networks in chromosomes. Most

neuro-evolution approaches �x the architecture to be evolved and the chromosome merely re
ects

the concatenation of the network's weights (Belew et al. 1991; Je�erson et al. 1991; Werner and

Dyer 1991; Whitley et al. 1990). Fixing the architecture and forcing weights to correspond directly

to their chromosome location or locus inhibits much of the 
exibility of the evolutionary algorithm

approach. For example, it is very di�cult to build structures of highly-�t weights if the weights

are located in distant regions of the chromosome. By �xing the weights to a speci�c locus, a bias

is introduced regarding which weights will be combined in useful building blocks: the weights that

lie in close proximity to each other. Such a bias restricts the freedom of the evolutionary algorithm

to explore many di�erent useful building blocks and can signi�cantly increase the search time.

Convergence

The second research issue in neuro-evolution concerns convergence of the population. Because evolu-

tionary algorithms continually select and breed the best individuals in the population, populations

normally lose diversity and eventually converge around a single \type" of individual (Goldberg

1989). Such convergence is undesirable for two reasons: (1) populations often converge on subop-

timal peaks and (2) converged populations cannot adapt well to changes in the task environment.

While these two problems may have limited e�ect in standard function optimization, they have

very large consequences when evolving decision strategies in complex and dynamic domains.

The importance of population diversity throughout evolution cannot be overemphasized. Di-

versity promotes quick exploration of the solution space. An evolutionary algorithm in a converged

population can normally only proceed by randomly mutating the single solution representation,

which produces a very slow and ine�cient search. A genetic search with a diverse population,

however, can continue to utilize recombination to generate new structures and make larger traver-

sals of the solution space in shorter periods of time. In many complex problems, search e�ciency

is paramount for generating e�ective decision policies in a timely manner. Such an advantage is
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equally important when changes occur in the domain. Often in decision tasks in dynamic or un-

stable environments, policies must be quickly revised to avoid costly e�ects. A diverse population

can more adeptly make the modi�cations necessary to compensate for the domain changes.

3.2.4 Maintaining Population Diversity

It is clear that a convergent evolutionary algorithm is the wrong kind of search strategy for rein-

forcement learning. Maintaining diverse populations, however, is very di�cult and remains an open

research issue in the evolutionary algorithms community. The most common method for maintain-

ing diversity is to use a less aggressive genetic selection strategy or a high rate of mutation. Weak

selection strategies do not ensure diversity, but rather slow evolution and delay the convergence of

the population. Slower evolution can help prevent premature convergence, but often at the expense

of slower searches. Chapter 4 will present experiments that demonstrate this phenomenon. The

second strategy, increasing the mutation rate, only arti�cially injects diversity into the population

through noise. Despite their obvious disadvantages, these two methods generally produce better

search behavior than an aggressive, convergent EA, and their adoption has unfortunately become

commonplace. The system developed in this dissertation will demonstrate that aggressive selection

and recombination strategies can work well if tempered with e�ective diversity pressures.

Several more intelligent methods have been developed to enforce population diversity, in-

cluding �tness sharing (Goldberg and Richardson 1987), crowding (De Jong 1975), and local mating

(Collins and Je�erson 1991). Each of these techniques relies on external genetic functions that pre-

vent convergence of the genetic material. The diversity assurances, however, are achieved through

very expensive operations. For example, in Goldberg's �tness sharing model, similar individuals

are forced to share a large portion of a single �tness value from the shared solution point. Sharing

decreases the �tness of similar individuals and causes evolution to select against individuals in

overpopulated niches. While �tness sharing is e�ective at maintaining diversity, it incurs a heavy

computational expense. Sharing requires O(n2) similarity comparisons each generation, where n

is the size of the population. In large populations with large chromosomes, comparison-based di-

versity methods such as sharing, crowding, and local mating are simply not practical (Smith et al.

1993).

A more recent technique for ensuring diversity has been termed implicit �tness sharing

(Horn et al. 1994; Smith et al. 1993). In implicit �tness sharing, no comparisons are made be-

tween individuals. Instead, diversity pressures are built into the task through cooperative behavior

among the individuals in the population. The important feature of implicit �tness sharing is that

individuals no longer represent complete solutions to the problem. Individuals represent only par-

tial solutions and must cooperate with other individuals to form a full solution. By reducing the

capacity of individuals and coevolving them together, evolution searches for several di�erent types

of individuals that together solve the problem. Implicit �tness sharing also presents a very nice

side e�ect. While evolution searches for individuals that optimize di�erent aspects of the problem,

it e�ectively performs several parallel searches in decompositions of the solution space, which can

greatly speed up evolution.

The core evolutionary strategy of the SANE neuro-evolution system, presented in the next

section, borrows many ideas from the implicit �tness sharing model. Speci�cally, the notion of

cooperating individuals that represent only partial solutions is incorporated in SANE to promote
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Figure 3.1: An individual in SANE's population and the hidden neuron it de�nes. Hidden neurons
are de�ned by a series of weighted connections to be made from the input layer or to the output
layer. For example, the �rst gene speci�es a connection to the �rst output unit with a weight of
0.4. The encoding shown is a simpli�ed form of SANE's actual neuron encoding, which is described
in section 3.3.3.

diversity and search e�ciency. Several changes, however, were necessary to tailor implicit �tness

sharing to neuro-evolution. These changes are highlighted in the next section and in the related

work chapter.

3.3 The SANE Approach

The endeavor of this dissertation is to study evolutionary algorithms and neural networks as meth-

ods for learning and performing di�cult decision tasks. This section presents the main experimental

vehicle called SANE developed for this purpose. SANE is designed as a sophisticated methodology

for evolving decision-making neural networks in di�cult problems. The description of SANE is

divided into two main sections. Since SANE is quite di�erent from most approaches to neuro-

evolution, an overview is �rst presented along with proper motivation. The second section provides

a more detailed description of the speci�c neural and genetic mechanisms.

3.3.1 Evolving Symbiotic Neurons

SANE's greatest departure from standard neuro-evolution is perhaps its most important contri-

bution. In almost all approaches to neuro-evolution, each individual in the genetic population

represents a complete neural network that is evaluated independently of other networks in the

population (Belew et al. 1991; Koza and Rice 1991; Nol� and Parisi 1992; Whitley et al. 1993). As

described in section 3.2.3, by treating each member as a separate, full solution, the evolutionary

algorithm focuses the search towards a single dominant individual. Such concentration can greatly

impede search progress in both complex and dynamic tasks. In contrast, the SANE method restricts

the scope of each individual to a single neuron. More speci�cally, each individual represents a hid-

den neuron in a 2-layer neural network (�gure 3.1). In SANE, complete neural networks are built by

combining several neurons. Figure 3.2 illustrates the di�erence between standard neuro-evolution

and the neuro-evolution performed in SANE.

Since no single neuron can perform the whole task alone, the neurons must optimize one

aspect of the neural network and connect with other neurons that optimize other aspects. Evolu-
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Figure 3.2: An illustration of the neuro-evolution performed in SANE compared to the standard
approach to neuro-evolution. The standard approach maintains a population of neural networks
and evaluates each independently. SANE maintains a population of neurons and evaluates each in
conjunction with other neurons. Step 1 (the evaluation step) in SANE is broken into three substeps.
Neurons are continually combined with each other and the resulting networks are evaluated in the
task. Each neuron receives a normalized �tness based on the performance the networks in which it
participates.

tionary pressures therefore exist to evolve several di�erent types or specializations of neurons.2 In

this way, the neurons will form a symbiotic relationship. It follows that the evolution performed

in SANE can be characterized as symbiotic evolution. I de�ne symbiotic evolution as a type of co-

evolution where individuals explicitly cooperate with each other and rely on the presence of other

individuals for survival. Symbiotic evolution is distinct from most coevolutionary methods, where

individuals compete rather than cooperate to survive. A more detailed discussion of the relationship

between symbiotic and competitive coevolution is presented in the related work chapter.

The advantages of symbiotic evolution are twofold. First, the neuron specializations ensure

diversity which discourages convergence of the population. A single neuron cannot \take over" a

population since to achieve high �tness values, there must be other specializations present. If a

specialization becomes too prevalent, its members will not always be combined with other special-

izations in the population. Thus, redundant partial solutions do not always receive the bene�t of

other specializations and will incur lower �tness evaluations. Evolutionary pressures are therefore

present to select against members of dominant specializations. This is quite di�erent from standard

evolutionary approaches, which always converge the population, hopefully at the global optimum,

but often at a local one. In symbiotic evolution, solutions are found in diverse, unconverged popula-

2I chose the term specialization rather than species since each neuron does not represent a full solution to the
problem.
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tions. By maintaining diverse populations, SANE can continue to use its recombination operators

to build e�ective neural structures.

In addition to maintaining diverse populations, evolution at the neuron level more accurately

evaluates the genetic building blocks. In a network-level evolution, each neuron is implemented only

with the other neurons encoded on the same chromosome (e.g. �gure 3.2). With such a represen-

tation, a very good neuron may exist on a chromosome but be subsequently lost because the other

neurons on the chromosome are poor. In a neuron-level evolution, neurons are continually recom-

bined with many di�erent neurons in the population, which produces a more accurate evaluation

of the neural network building blocks.

Essentially, a neuron-level evolution takes advantage of the a priori knowledge that indi-

vidual neurons constitute basic components of neural networks. A neuron-level evolution explicitly

promotes genetic building blocks in the population that may be useful in building other networks.

A network-level evolution does so only implicitly, along with various other sub- and superstructures

(Goldberg 1989). In other words, by evolving at the neuron level the evolutionary algorithm is no

longer relied upon to identify neurons as important building blocks, since neurons are the object

of evolution.

3.3.2 Maintaining E�ective Neuron Collections

The neuron evolution alone, however, is not su�ciently powerful to generate the complex networks

necessary in di�cult tasks. Knowledge of the useful combinations of neurons must be maintained

and exploited. Combining neurons without such intelligent direction is undesirable for two reasons.

First, the neurons may not be combined with neurons that work well together. Thus, a very good

neuron may be lost, because it was ine�ectively combined during a generation. The second problem

is that the quality of the networks varies greatly throughout evolution. In early generations this

works as an advantage, since the search produces many di�erent types of networks to �nd the most

e�ective neurons. However, in later generations, when the search should focus on the best networks,

the inconsistent networks often stall the search and prevent the global optima from being located.

An outer loop mechanism is necessary to maintain knowledge of the good neuron com-

binations. Many di�erent approaches could perform the necessary record keeping ranging from

maintaining complex tables which record the �tness of each neuron when combined with other neu-

rons to simply remembering the top neuron combinations of the previous generation. Clearly, the

memory requirements of the �rst method make it impractical. For example, if 8 neurons were used

to build a network from a population of 800 neurons, a complete record of all neuron combinations

would contain 8008 entries. Conversely, the second method maintains very little information of the

history of each neuron and may provide only limited bene�t. A solution in between the two seems

appropriate.

The current method of maintaining useful neuron combinations in SANE is to evolve a layer

of neural network records or blueprints on top of the neuron evolution. The blueprint population

maintains a record of the most e�ective neuron combinations found with the current population of

neurons and uses this knowledge as the basis to form the neural networks in the next generation.

Figure 3.3 shows the relationship between the blueprint and neuron populations. Each blueprint

speci�es a collection of neurons that have performed well together. SANE uses genetic selection

and recombination to exploit this knowledge and hopefully form even better collections of neurons
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Figure 3.3: An overview of the network blueprint population in relation to the neuron population.
Each member of the neuron population speci�es a series of connections (labels and weights) to
be made from the input layer or to the output layer within a neural network. Each member of
the blueprint population speci�es a series of pointers to speci�c neurons which are used to build a
neural network. The neuron population searches for e�ective partial networks, while the blueprint
population searches for e�ective combinations of partial networks.

in subsequent generations.

Maintaining network blueprints produces more accurate neuron evaluations and concentrates

the search on the best neural networks. Since neurons are connected systematically based on past

performance, they are more consistently combined with other neurons that perform well together.

Additionally, better-performing neurons garner more pointers from the blueprint population and

thus participate in a greater number of networks. Biasing the neuron participation towards the

historically better-performing neurons provides more accurate evaluations of the top neurons. The

sacri�ce, however, is that newer neurons may not receive enough trials to be accurately evaluated.

In practice, allocating more trials to the top neurons produces a signi�cant improvement over

uniform neuron participation.

The primary advantage of evolving network blueprints, however, is the exploitation of the

best networks found during evolution. SANE maintains the pro�cient collections of neurons in

the blueprint chromosomes and ensures that the best networks are reconstructed. By evolving

the blueprint population, the best neuron combinations are also recombined to form new, poten-

tially better, collections of neurons. The blueprint level evolution thus provides a very exploitive

search that can build upon the best networks found during evolution and focus the search in later

generations.
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Figure 3.4: Forming an 8 input, 3 hidden, 5 output unit neural network from three hidden neuron
de�nitions. The chromosomes of the hidden neurons are shown to the left and the corresponding
network to the right. In this example, each hidden neuron has 3 connections.

3.3.3 SANE Implementation

This section provides the implementation details of the SANE system.3 SANE maintains and

evolves two populations: a population of neurons and a population of network blueprints. Each

individual in the neuron population speci�es a set of connections to be made within a neural

network. Each individual in the network blueprint population speci�es a set of neurons to include

in a neural network. Conjunctively, the neuron evolution searches for e�ective partial networks,

while the blueprint evolution searches for e�ective combinations of the partial networks.

Each individual in the neuron population represents a hidden neuron in a 2-layer feedforward

network. Neurons are de�ned in bitwise chromosomes that encode a series of connection de�nitions,

each consisting of an 8-bit label �eld and a 16-bit weight �eld. The absolute value of the label

determines where the connection is to be made. The neurons only connect to the input and the

output layer. If the decimal value of the label, D, is greater than 127, then the connection is made

to output unit D mod O, where O is the total number of output units. Similarly, if D is less than

or equal to 127, then the connection is made to input unit D mod I, where I is the total number of

input units. The weight �eld encodes a 
oating point weight for the connection. Figure 3.4 shows

how a neural network is formed from three sample hidden neuron de�nitions.

Each individual in the blueprint population contains a series of neuron pointers. More

speci�cally, a blueprint chromosome is an array, of size �, of address pointers to neuron structures.

Figure 3.3 illustrates how the blueprint population is integrated with the neuron population. Ini-

tially, the chromosome pointers are randomly assigned to neurons in the neuron population. During

the neuron evaluation stage, subpopulations of neurons are selected based on each blueprint's array

of pointers.

Since SANE operates on bit strings and uses both mutation and recombination, its search

strategy fall under the genetic algorithm (Holland 1975; Goldberg 1989) method of evolutionary

computation. The basic steps in one generation of SANE are as follows (listed table 3.1): during the

evaluation stage, each blueprint is used to select neuron subpopulations of size � to form a neural

network. Each blueprint receives the �tness evaluation of the resulting network and each neuron

3The source code can be obtained from the UTCS Neural Networks' home page:
http://www.cs.utexas.edu/users/nn/
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1. Clear �tness value of each neuron and blueprint.
2. Select � neurons from the population using a blueprint.
3. Create a neural network from the selected neurons.
4. Evaluate the network in the given task.
5. Assign the blueprint the evaluation of the network as its �tness.
5. Repeat steps 2-4 for each individual in the blueprint population.
7. Assign each neuron the evaluation of the best 5 networks in which it participated.
8. Perform crossover and mutation operations on the both populations.

Table 3.1: The basic steps in one generation of SANE.

Parent 1

Offspring 2

Offspring 1

Crossover

Parent 2

Figure 3.5: A one-point crossover operation. In SANE, only one of the children (chosen at random)
enter the population. The other is thrown away.

receives the summed �tness evaluations of the best �ve networks in which it participated. Calcu-

lating �tness from the best �ve networks, as opposed to all of the neuron's networks, discourages

selection against neurons that are crucial in the best networks, but ine�ective in poor networks.

For example in a robot arm manipulation task, a neuron that specializes in small movements near

the target would be e�ective in networks that position the arm close to the target, but useless

in networks that do not get anywhere near the target. Such neurons are very important to the

population and should not be penalized for the poor networks that they cannot help.

After the evaluation stage, the neuron population is ranked based on the �tness values.

For each neuron in the top 25% of the population, a mate is selected randomly among the top

25%. Each mating operation creates two o�spring: a child created through a one-point crossover

operation and a copy of one of the parent chromosomes. Figure 3.5 illustrates how the one-point

crossover operation recombines structures from two parent chromosomes to create two o�spring

chromosomes. In SANE, one of the o�spring produced by crossover is chosen at random to enter the

population. Copying one of the parents as the second o�spring reduces the e�ect of adverse neuron

mutation on the blueprint-level evolution. This e�ect will be further explained in the context of the

blueprint evolution later in this section. The two o�spring replace the worst-performing neurons

(according to rank) in the population. Mutation at the rate of 0.1% per bit position is performed

on the entire population as the last step in each generation. Such an aggressive, elitist breeding

strategy is not normally used in evolutionary applications, since it leads to quick convergence of

the population. SANE's neuron evolution, however, performs quite well with such an aggressive

selection strategy, since it contains strong evolutionary pressures against convergence.

In the blueprint population, since the chromosomes are made up of address pointers instead
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of bits, crossover only occurs between pointers. The new o�spring receive the same address pointers

that the parent chromosomes contained. In other words, if a parent chromosome contains a pointer

to a speci�c neuron, one of its o�spring will point to that same neuron (barring mutation). The

current evolutionary algorithm on the blueprint level is identical to the aggressive strategy used at

the neuron level, however the similarity is not essential and a more-standard evolutionary algorithm

or other methods of evolutionary computation could be used. Empirically, the aggressive strategy

at the blueprint level coupled with the strong mutation strategy described below, has outperformed

many of the more-standard evolutionary algorithms.

To avoid convergence problems at the blueprint level, a two-component mutation strategy is

employed. First, a pointer in each o�spring blueprint is randomly reassigned to another member of

the neuron population at a rate of 1%. This strategy promotes participation of neurons other than

the top neurons in subsequent networks. Thus, a neuron that does not participate in any networks

can acquire a pointer and participate in the next generation. Since the mutation only occurs in the

blueprint o�spring, the neuron pointers in the top blueprints are always preserved.

The second mutation component is a selective strategy designed to take advantage of the new

structures created by the neuron evolution. Recall that a breeding neuron produces two o�spring:

a copy of itself and the result of a crossover operation with another breeding neuron. Each neuron

o�spring is thus similar to and potentially better than its parent neurons. The blueprint evolution

can use this knowledge by occasionally replacing pointers to breeding neurons with pointers to

o�spring neurons. In the experiments described in this paper, pointers are switched from breeding

neurons to one of their o�spring with a 50% probability. Again, this mutation is only performed

in the o�spring blueprints, and the pointers in the top blueprints are preserved.

The selective mutation mechanism described above has two advantages. First, because

pointers are reassigned to neuron o�spring that are the result of crossover, the blueprint evolution

can explore new neuron structures. Second, because pointers are also reassigned to o�spring that

were formed by copying the parent, the blueprints become more resilient to adverse mutation in

the neuron evolution. If pointers were not reassigned to copies, many blueprints would point to the

same exact neuron, and any mutation to that neuron would a�ect every blueprint pointing to it.

When pointers are occasionally reassigned to copies, however, such mutation is limited to only a

few blueprints. The e�ect is similar to schema promotion in standard evolutionary algorithms. As

the population evolves, highly �t schema (i.e. neurons in this case) become more prevalent in the

population, and mutations to one copy of the schema do not a�ect other copies in the population.

The advantages of selective mutation will be demonstrated in section 4.4.

3.4 Concluding Remarks

The SANE neuro-evolution system is speci�cally designed to tackle di�cult sequential decision

tasks. SANE contains a very aggressive evolutionary algorithm that forms neural network rep-

resentations of decision policies e�ciently and with little domain information. SANE produces

e�ective diversity pressure and searches decompositions of the neural network space, which further

reduces training time. In summary, SANE is an e�cient decision learning method applicable to

many di�cult problems. The remainder of this dissertation will extensively test this hypothe-

sis through analysis of SANE's evolution, benchmark comparisons, and application to previously
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unoptimized decision problems.
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Chapter 4

Evaluation and Analysis

The evolutionary search in SANE is quite di�erent from those of standard neuro-evolution, and it

is important to understand how the individual neurons work together to form a global solution.

This chapter examines the internal mechanisms of SANE through comparisons with more standard

neuro-evolutionary approaches and empirical analysis of the developing neuron populations. The

�rst experiments show some of the advantages of SANE's symbiotic search strategy in terms of

search e�ciency, diversity, and adaptability. The second experiments illustrate the specializations

within SANE's population and uncover some of the di�erent roles that the neurons assume in the

networks.

4.1 The Khepera Robot Simulator

The domain chosen for initial evaluation of the SANE method was mobile robotics, or more speci�-

cally, controlling the Khepera mobile robot (Mondada et al.1993).1 Robotics is a natural application

for SANE. Many robot tasks such as navigation, sensory mapping, and kinematics approximation

are very di�cult to learn because the domain knowledge is normally not su�cient to provide tar-

gets for each action. By casting these problems as sequential decision tasks, SANE can form neural

networks to control a wide range of robot behaviors.

A full discussion of SANE's contribution to robotics is deferred to chapter 7, where an

application of SANE to the OSCAR-6 robot arm is presented. Similarly, comparisons of related

work and alternate methods of reinforcement learning in the Khepera task are postponed until

chapter 6. For the purposes of this chapter, the Khepera robot task is strictly viewed as a tool to

understand SANE's symbiotic search mechanism.

Michel (1995) has developed a simulator of the Khepera robot, which contains useful X

window utilities for visualizing neural network controllers. Network architectures and activations

can be viewed during the simulation along with the activation of the robot's sensors and motors.

These utilities, along with the real world sensory input and motor output, make the Khepera

simulator an excellent utility to evaluate many of the features and components of SANE

Khepera is a tiny robot (5 cm diameter) designed for research and teaching purposes. Khep-

era contains both infrared and light sensors positioned around its circumference. Figure 4.1 shows

1Information on Khepera as well as the Khepera simulator can be found at http://wwwi3s.unice.fr/ om/khep-
sim.html.
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Figure 4.1: A picture of the actual Khepera robot (left) and Khepera simulation. The pictures were
reproduced with permission from Olivier Michel.

a picture of an actual Khepera robot and the simulated robot. Despite its size, the robot is not

easy to control. Khepera provides real world sensory information and requires a strong grounding

to the motor outputs to e�ectively maneuver the robot (Mondada et al. 1993).

The I/O resources of the simulator were designed to accurately re
ect those of the real

robot. The eight infrared sensors detect the proximity of objects by light re
ection and return

values between 0 and 1023 depending on the color level. A value of 0 indicates that no object is

sensed, and a value of 1023 indicates an object almost touching the sensor. Khepera's light sensors

measure the amount of ambient light around the object, however, these values were not used in the

experiments. Khepera has two wheels, controlled by two separate motors, which can receive speed

ranges from -10 to 10. If the two motors output equal speeds, the robot will move in a straight

line. Otherwise, the robot will rotate.

Figure 4.2 shows a snapshot of the simulator window and the layout of Khepera's world.2

The Khepera robot was placed in the world with the following goal: within a speci�c allotted

time, move as far away (in Euclidean distance) from your starting position as possible without

colliding with obstacles. Thus, an e�ective controller must accurately translate the infrared sensory

information into speci�c motor outputs to both move the robot forward (or backward) and maneuver

the robot around obstacles. The controller must balance aggressive acceleration with careful sensory

processing. Driving the robot's motors in high gear may achieve great distances on wide open

straightaways, but will perform poorly in tight enclosers. Conversely, a controller too conservative

may make the tight corners, but will not generate enough speed to achieve a great distance in the

allotted time. The best controllers must vary their speed depending on the value of the sensors.

The Khepera robot and task provide an e�ective domain for initial evaluation and analysis

of SANE. The sensors and actuators re
ect real world resources, and the task requires a complex

balance of control. The remainder of this chapter will focus on the speci�c evaluation experiments

performed with Khepera to foster a deeper understanding of SANE and its search mechanism.

2The speci�c world that was used was the lab0.world from the Khepera 1.0 simulator package.
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Figure 4.2: The interface to the Khepera 1.0 simulator (Michel 1995). The window shows a view
of Khepera and the con�guration of its arti�cial world.

4.2 Evaluation of Symbiotic Evolution

The �rst experiments were designed to evaluate the merits of symbiotic evolution. Comparisons

were run against more standard neuro-evolution techniques using the same neural network encoding

strategy as SANE. The experiments were designed to test the following hypotheses:

� SANE's symbiotic search is more e�cient than standard genetic algorithms in neuro-evolution.

� SANE maintains diverse populations throughout evolution.

� SANE is more adaptive than standard neuro-evolution.

4.2.1 Experimental Setup

Four evolutionary approaches were tested in the Khepera simulator: SANE, a standard neuro-

evolution approach using the same aggressive selection strategy as SANE, a standard neuro-

evolution approach using a less aggressive tournament selection strategy, and a version of SANE

without the network blueprint population.

The standard neuro-evolution approaches evolve a population of neural networks. Each

individual's chromosome consisted of 8 concatenated neurons, which are encoded in the same fashion

as SANE's neurons. The di�erence in the two standard approaches is in the underlying genetic

selection strategies. The �rst approach, which will be called Standard Elite, uses the same aggressive

selection strategy used in SANE (described in section 3.3.3). Thus, the only di�erence between

SANE and standard elite is the level of evolution. SANE performs evolution on the neuron level

and the standard elite approach on the network level. The neuron encoding and genetic algorithm

are identical. Comparisons of SANE to the standard elite approach demonstrate how the diversity

pressures in the neuron evolution allow for very aggressive searches that perform very poorly in

normal genetic algorithms because of premature convergence.
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SANE Neuron SANE Standard Elite Standard Tournament
Neuron Population 800 200 - -
Network Population 100 - 100 100

Table 4.1: Implementation parameters for each method.

The second standard neuro-evolution approach uses a less aggressive tournament selection

strategy and will be called Standard Tournament. In a binary tournament selection, two random

random members are selected from the population, and the member with a higher �tness is used

for recombination. The standard tournament approach uses a binary tournament to select each

parent in the population for recombination. Tournament selection creates a selection bias towards

the top individuals but does not preclude recombination of poor individuals. Contrasted with

SANE's elitist approach, where the top 10% of the population participates in over half of the

recombination operations, binary tournament selection is much less aggressive. Recent research

has shown tournament selection to be the preferred method of genetic selection in terms of its

growth ratios for discouraging premature convergence (Goldberg and Deb 1991). Comparisons of

SANE to the standard tournament neuro-evolution approach demonstrate the performance of the

symbiotic search relative to a more \state of the art" genetic search strategy.

The fourth evolutionary approach is a symbiotic search without the higher-level blueprint

evolution. This approach is called Neuron SANE. Instead of using a population of network

blueprints to form the neural networks, Neuron SANE forms networks by randomly selecting sub-

populations of neurons. Comparisons of SANE to Neuron SANE can thus e�ectively gauge the

contribution of the blueprint-level evolution.

To focus the comparison on the di�erent strategies of neuro-evolution, rather than the choice

of parameter settings, several preliminary experiments were run to discover e�ective parameter

values for each approach. Table 4.1 summarizes the parameter choices for each method. With

the standard approaches, a population size of 100 networks was found to be more e�ective than

populations of 50 or 200. Keeping the number of network evaluations per generation constant across

each approach, a neuron population size of 800 for SANE and 200 for Neuron SANE performed

well. A 0.1% mutation rate was used for all four approaches.

Neuron SANE requires a smaller population than SANE because its neurons are evaluated

through random combinations. The population must be small enough to allow neurons to par-

ticipate in several networks per generation. For example, randomly selecting 8 neurons for 100

networks in a 200 neuron population gives each neuron an expected network participation rate

of 4 networks per generation. In SANE, the neuron population is not as restricted, since neuron

participation is dictated by the network blueprints. SANE skews the participation rate towards the

best neurons and leaves many neurons unevaluated in each generation. An unevaluated neuron is

normally garbage, since no blueprint uses it to build a network.

Three experiments were run to compare the four approaches: a performance analysis, a

diversity analysis, and an adaptive analysis. The results of each of the experiments were averaged

over 20 simulations.
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> 100 > 150 > 200 > 250 > 300

SANE 1 6 14 26 41
Neuron SANE 1 8 14 34 64
Standard Elite 3 13 37 65 -

Standard Tournament 2 10 21 40 79

Table 4.2: The average number of generations to reach the desired level of distance over the 50
position test set. For example, SANE required 26 generations on average to generate a network
that averaged over 250 cm of distance on the test set. SANE's evolution was the most e�cient
requiring half of the evaluations of the standard approaches to reach the top level of performance.

4.2.2 Performance Analysis

The �rst experiment tested the learning speed and solution quality of each evolutionary approach.

Populations were evolved in the Khepera simulator for 80 generations. During each network eval-

uation, the robot was placed in a random position in the Khepera world, and the network was

allowed to move the robot until it hit an obstacle or the maximum number of moves, 200, was

exhausted. The �tness of each network was the maximum Euclidean distance the robot moved

from its starting position.

Since each network was evaluated over a single trial, the evaluation may be inherently noisy.

A good network may receive a poor evaluation simply because the robot started in a tight encloser.

On the other hand, allocating more trials per evaluation delays recombination and mutation opera-

tions which slows the search. In practice, I have found that it is more e�cient to allocate fewer trials

per evaluation and thereby increase the frequency of this genetic operations. This methodology is

adopted for all of the simulations presented in this dissertation.

To generate a learning curve, the best network of each generation (according to �tness) was

tested on a 50 start-position test set. The average distance on the test set de�nes the performance

of that generation. For each generation, the learning curve plots the best performance found at or

before that generation. The learning curve thus shows the quality of solution that can be expected

by each generation.

Figure 4.3 shows the learning curve from the performance analysis and table 4.2 shows the

average number of generations to reach the speci�c levels of distance over the test set. As expected,

the standard approach with the elite, aggressive selection strategy performed poorly. The search

was inconsistent; it either found very good networks or stalled with very poor networks, which

is characteristic of an aggressive, convergent search. If the search converged on a good network,

it could often tweak it with mutation into a great network. Otherwise, it remained stuck with a

suboptimal solution. These experiments con�rmed that for a network level evolution, tournament

selection is a better selection strategy.

SANE performed the most e�cient search, �nding networks that averaged 300 cm of distance

in half as many generations as the standard tournament search and less than half of the generations

of the standard elite search. Unlike the standard elite approach, SANE's aggressive searches were

very consistent. Only one of the SANE simulations out of the 20 returned a �nal network that

averaged less than 300 cm. SANE's neuron-based searches, thus, do not appear as susceptible to

premature convergence as an aggressive evolutionary algorithm operating on a population of neural

networks.
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Figure 4.3: Comparison of the learning speeds of the di�erent evolutionary approaches. The dis-
tance refers to the average distance over a 50 position test set for the best network found at or
before each generation. The distances are averaged over 20 simulations. Simulations were run for
80 generations, because at that point the standard approaches began to plateau. The learning
curve demonstrates the e�ciency gain from the neuron and blueprint populations.

The neuron-only version of SANE was as e�cient as SANE in early generations, but was

unable to maintain the same e�ciency in later generations. Without a mechanism to propagate

knowledge of the good networks that are formed, it is di�cult for Neuron SANE to build upon the

best networks. The poor late performance gives strong evidence to this problem and e�ectively

shows the contribution of the network blueprint evolution. Neuron SANE performed comparably

to the standard tournament approach.

4.2.3 Diversity Analysis

The second experiment tested the diversity level of the populations throughout evolution. Popu-

lations were evolved for 80 generations as in the �rst experiment, but after each generation, the

population diversity was measured. A diversity metric, �, can be generated by taking the average

Hamming distance between every two chromosomes, divided by the length of the chromosome:

� =
2
Pn

i=1

Pn
j=i+1Hi;j

n(n� 1)l
;

where n is the population size, l is the length of each chromosome, andHi;j is the Hamming distance

between chromosomes i and j. The value � represents the probability that a given bit at a speci�c

position on one chromosome is di�erent from a bit at the same position on a di�erent chromosome.

Thus, a random population would have � = 0:5 since there is a 50% probability that any two bits

in the same position di�er.
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Figure 4.4: The population diversity for each simulation. The neuron-based approaches maintain
very high levels of diversity, while the network-based approaches converge to a single solution.

Figure 4.4 shows the average diversity levels at each generation. The convergence of the

standard elite approach is quite dramatic. Within 10 generations, 95% of the bit positions were

identical. It is this phenomenon that leads most evolutionary algorithm implementors away from

aggressive selection strategies and towards more conservative approaches like tournament selection.

The tournament standard approach did converge much slower, but after 60 generations 90% of its bit

positions were identical as well. Both SANE and Neuron SANE maintained very diverse populations

throughout evolution, which con�rms my hypothesis that SANE can perform a very aggressive

search while maintaining a high level of diversity. Aggression balanced with diversity is the core

of SANE's search strategy and is what sets it apart from current neuro-evolution approaches.

Diversity allows SANE to improve its networks in later generations and, as demonstrated in the

next experiment, adapt in changing environments.

4.2.4 Adaptive Analysis

The third experiment tested the ability of each approach to adapt to changes in the domain.

Populations were evolved for 80 generations as in the �rst experiment. After 80 generations, the

right back sensor of the khepera robot was \damaged", and the populations were evolved for 40

more generations. The sensor was set to a constant value of 1.0, which gives the illusion of an

immediate obstacle to the rear of the robot. To adapt, the populations must learn to ignore the

malfunctioning sensor and rely on the other back sensor. This experiment was designed to give a

realistic situation for which adaptive behavior is necessary.

Figure 4.5 plots a learning curve for the simulations in the adaptive analysis. The y axis

represents the di�erence in performance relative to the performance level achieved before the mal-
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Figure 4.5: Adaptive comparisons. After evolving for 80 generations, a back sensor is �xed at
1.0. The graph plots the di�erence in performance from the best performance in the previous 80
generations.

functioning sensor. The horizontal line at 0 on the y axis represents the point where the search

achieves the same performance as before the domain change. The relative distance is plotted rather

than the absolute distance because each approach achieves a di�erent level of performance after 80

generations.

As expected, the converged populations were much less adaptive than the diverse popu-

lations. After the sensor malfunctioned, each of the approaches lost about the same amount of

performance, approximately 120 cm of distance on average. SANE quickly matched and surpassed

its previous performance in an average of 15 generations. Neuron SANE required 25 generations to

fully adapt. On average, neither of the standard approaches were able to achieve the performance

level they had reached with the correct sensor within 40 generations. The performance of SANE

and Neuron SANE demonstrates the importance of diversity in adapting populations. In addition,

the performance di�erence between SANE and Neuron SANE further illustrates the contribution

of the blueprint level evolution. SANE's ability to focus on the best neuron combinations allows it

to continue to improve even in later generations.

The experiments in this section e�ectively demonstrate the advantages of SANE's symbiotic

evolution. SANE found better solutions in less time than the more standard network-based ap-

proaches. Additionally, SANE maintained a high level of population diversity, which allowed it to

adapt much easier to domain 
uctuations. SANE's e�cient search and adaptability make it more

e�ective than standard neuro-evolution for solving di�cult sequential decision tasks.
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4.3 Analysis of Symbiotic Neurons

The next battery of tests were designed to study the di�erent specializations that are formed

within SANE's populations. In chapter 3, I hypothesized that SANE's neurons will not converge

to a single type, but will instead form several subpopulations that each �ll an important role in a

neural network. The experiments described in this section illustrate this process and, in the context

of the Khepera simulator, describe how and why certain neuron specializations emerge.

4.3.1 Principal Component Analysis

Principal component analysis (PCA) (see e.g. (Jolli�e 1986)) is a useful tool for visualizing the

relative distances between high-dimensional vectors. PCA performs a coordinate transformation

on a set of data points. The �rst dimension is chosen along the direction with the most variance in

the data. The second is chosen perpendicular to the �rst, accounting for as much data variance as

possible. Each new dimension or principal component is chosen in a similar fashion. The net result

is a new coordinate system that is ordered in the directions of maximum data variance.

PCA can be used to perform a dimensionality reduction on high-dimensional data. To reduce

the data points to M dimensions, PCA is run to determine the dimensions of maximum variance.

The data points are then plotted along the �rst M coordinates. Since the coordinates are ordered,

the resulting plot accounts for as much of the data variance as possible in M dimensions.

PCA can reduce the high-dimensional genetic chromosomes into two or three dimensions,

which are easily plotted. Through PCA, similar chromosomes will reduce to similar two-dimensional

representations and appear close together in the corresponding PCA plot. At �rst glance, this

approach appears e�ective for studying the neuron specializations that are believed to evolve. There

are several problems, however, in directly transforming the 240-bit chromosomes into 2-dimensional

representations. The �rst problem is that the variance within the 240-dimensional space is too large

for a 2-dimensional PCA reduction to accurately capture. In other words, in any dimensionality

reduction there is a loss of information. When transforming from 240 dimensions to 2 dimensions

the loss of information is so great that vectors with similar 2-dimensional representations may

still vary greatly. In PCA reductions on several 240-dimensional vector populations, the �rst two

principal components were only able to capture 60% of the data variance. More components are

needed to accurately represent all of the data variance, but anything over 3 dimensions cannot be

plotted.

The second problem is that a PCA plot of the raw genetic chromosomes may not re
ect the

true functionality dispersement of the population. This method assumes that similar genotypes

(chromosomes) produce similar phenotypes (neural network hidden units). While this may be true

in many cases, it is not an absolute. For example, two neurons may have identical bits in their

weight alleles, but a few di�ering bit positions in their label alleles can create vastly di�erent network

architectures. A plot based on the chromosomes of these two neurons would place them close to

each other, when they actually function quite di�erently. Thus, a plot based on the genotype does

not ensure accurate representation of the relative function of each neuron.

A more e�ective strategy is to compute a function vector for each neuron in the population

that describes its role in a neural network. The function vector can then be reduced using a PCA

and plotted, resulting in a more accurate visualization of the di�erent neuron roles. To generate
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1. Initialize the function vector to nil.
2. Build a neural network with the neuron as the only hidden unit.
3. For each input unit i:

a. Set input i to 1.0 and all others to 0.0
b. Propagate the activation through the output layer
c. Append the output layer activations to the function vector

Table 4.3: The steps to compute a functional representation of a neuron. The function vector
represents the actual function the neuron performs within the neural neural network.

such a vector, a neuron is implemented as the only hidden unit in a network and the network's

output layer activations are recorded. The steps to compute a function vector for a given neuron

are shown in table 4.3.

By cycling through the input units, the function vector captures the neuron's responses to each

input unit activation. Thus, unlike the basic chromosome vector, the function vector encodes the

direct behavior of each neuron when implemented in a neural network.

The function vector can be postprocessed to produce an even closer functional represen-

tation by interpreting the output layer activations for the appropriate task. For example, in the

Khepera task the output layer activations are interpreted through the corresponding motor acti-

vations. Using the output layer interpretation described in section 4.1, output layer activations of

[0:4; 1:0; 0:6; 0:2] can be translated into motor activations of [2;�8]3. Postprocessing the function

vector in this way creates a more accurate representation of the e�ect each neuron has on the robot.

The �nal function vector consists of only 18 dimensions which can be reduced to 2 dimensions while

preserving 95% of the data variance.

Figures 4.6 plots the two-dimensional functional representations of the neuron populations

from a simulation in the Khepera task. PCA plots of two other simulations are presented in ap-

pendix B. Snapshots of the populations were taken at generations 0, 10, 20, 40, and 80. Generation

0 shows a fairly uniform distribution of the neurons re
ective of the random populations. As the

populations evolve, neurons begin to clump together and form subpopulations or specializations.

In the �nal generation, the specializations become very distinct. The last graph plots the neurons

that were included in the top three networks of the last generation. The graphs show that the best

networks utilized neurons from several di�erent subpopulations. This diversity demonstrates that

each of the specializations plays an active role in the best neural networks.

In addition to the subpopulations, each plot contains several examples of neurons that are

in between the clumps and isolated from other neurons. These neurons are created by inter-

breeding two members of di�erent specializations and thus contain some of the functionality of

each. The isolated neurons in the PCA, demonstrates how SANE can build new neuron roles

through inter-breeding existing roles. In other words, these neurons are the explorers or pioneers

that search out di�erent neuron roles. If an e�ective role is found, a new subpopulation of neurons

will form around the isolated neuron. An example of this phenomenon can be seen in �gure 4.6.

In generation 10, a single neuron exists around the point 27,2. As the population evolves, more

3For each motor (left and right) take the di�erence in the positive and negative direction and multiply by the
maximum motor activation: (0:6� 0:4)� 10 = 2; (0:2� 1:0)� 10 = �8
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Figure 4.6: PCA of simulation 1.
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and more neurons begin to clump around this area, which leads to the conclusion that the original

neuron discovered a valuable neuron role. It should be noted, that the position on one PCA graph

does not necessarily correspond to the same position on another PCA graph because dimensions

are determined separately in each plot. However in these experiments, this has in general held true.

Thus, the neurons around point 25,2 in generation 10 are similar in function to the neurons around

point 25,2 in generation 80.

The PCA analysis con�rms the hypothesis that SANE evolves several di�erent types of

neurons in a single population. As the populations evolve, neurons merge into several di�erent

specializations that optimize di�erent aspects of the neural networks. Moreover, the specializations

provide su�cient diversity to form new neural structures by inter-breeding between specializations.

This phenomena is quite unique in evolutionary algorithms, since most approaches to co-evolution

evolve separate species in segregated subpopulations or islands. In contrast, SANE forms its spe-

cializations naturally in a single population and takes advantage of the inherent diversity to produce

a more explorative search.

4.3.2 Lesion Studies

While the emergence of the specializations is clear from the PCA studies, the function of each and

the overall division of labor is not. To better understand the role of each specialization in the neural

networks, simulated lesion studies were conducted. Lesions are used in biological neural networks

to identify functions or functional areas of the brain. If a lesion results in a loss of a brain function,

it can be concluded that the lesioned area was involved in carrying out that function. Similar

experiments can be performed in arti�cial neural networks, by removing neurons and observing the

behavior of the modi�ed network.

Figure 4.7 shows a close up of the �nal PCA of the population for the �rst simulation.

The specializations that are represented in the best network of the �nal generation are labeled A

through E. While other groupings of neurons are also present, the current lesion experiments are

only interested in the specializations included in the top neural network.

Two types of lesion experiments were conducted for a speci�c neuron or specialization: a

neuron capability test and a neuron necessity test. In the capability test, a neuron is implemented

alone and thus forms the entire hidden layer. Such experiments are designed to show how functional

each neuron is without aid from other neurons in the population. The capability test will e�ectively

demonstrate that a single neuron can not perform the entire task on its own. The second test is

a necessity test, where a neuron in a functioning neural network is removed. The necessity test

shows how crucial a speci�c neuron is in the performance of a neural network.

Table 4.4 shows the neurons included in the �nal network (numbered by �tness rank), their

corresponding specializations, and the performance in the two lesion tests. The network contains

two neurons from specialization B and two from E. Neuron number 1, which is represented by the

single point at (19,11) in �gure 4.7, does not appear to be a member of a well-de�ned specialization

and is therefore not given a specialization label.

As expected, no neuron formed an e�ective hidden layer by itself. In the capability test,

the highest scoring neuron only achieved a performance level of 64.5 (average Euclidean distance in

the Khepera task), which is 1/6 of the performance of the entire network of neurons. The neurons

generally spun the robot rapidly in either direction. Neurons 48 and 40, however, did not spin the
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Figure 4.7: The principle components analysis (PCA) of the neuron population in the �nal gener-
ation. The specializations that are included in the top network are labeled A through E.

robot, but rather moved in a straight line. Unfortunately, these two neurons also moved straight

into the nearest wall. The capability test numbers clearly illustrate the symbiotic nature of SANE's

neuron population. The specializations that each represent cannot function without the presence

of the other neurons in the hidden layer.

The necessity tests show the importance of each neuron to the network. Each neuron lesion

caused a performance drop, in some cases as much as 25%. This consistent drop demonstrates

that each neuron serves an important role. Interestingly, neurons of similar specializations did not

exhibit similar performance degradations when lesioned. For example, neurons 11 and 38 are both

members of specialization E. When lesioned from the network, the resulting performances are 402.6

without neuron 11 and 293.0 without neuron 38.

An explanation for this disparity is that neuron 39 encompasses neuron 11's function and

that neuron 11 is a weak member of specialization E. To con�rm this hypothesis, experiments were

conducted where entire specializations were lesioned from the network. Figure 4.5 summarizes the

performance numbers of the specialization lesion experiments. When both members of specializa-

tion E were lesioned, the network experienced a dramatic performance drop. The di�erence between

the performance when both members are lesioned (145.3) and the performance when only neuron

39 is lesioned (293), con�rms that neuron 11 does provide some of the function of specialization E.

However, given the results of the previous necessity test, the function is not enough to compensate

for the loss of neuron 39. Thus, neuron 11 does appear to be a weak member of specialization E.

To better understand the actual function of each neuron, the motor outputs, in response to

speci�c sensory input, were analyzed. Table 4.6 shows the motor responses of each neuron given

sensor activations on the left, in front, on the right, and behind the robot. The motor outputs
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Neuron Rank Specialization Capability Necessity

48 C 64.5 382.9
16 A 6.0 305.7
11 E 11.8 402.6
46 B 12.3 341.6
1 - 10.8 294.6
38 E 12.3 326.0
40 D 44.2 381.4
39 B 13.3 293.0

Table 4.4: Lesion results from simulation 1. Each of the neurons in the top network are implemented
alone (Capability) and lesioned from the network (Necessity). The resulting network is tested in
the Khepera task. The complete (non-lesioned) network achieved a performance level of 409.5. The
capability test shows that no neuron can perform the entire task alone. The necessity test shows
that while the network is quite robust to damage, each neuron plays an important role.

Lesioned Specialization Performance

A 305.7
B 207.0
C 382.9
D 381.4
E 145.3

Table 4.5: Specialization Lesions. All members of a specialization are removed from the network.
The resulting network is tested in the Khepera task. The complete (non-lesioned) network achieved
a performance level of 409.5. Each specialization is crucial to achieve the network's top performance.

given no activation are also shown. The two output numbers represent the activation of each of

the robot's motors.

Each neuron appears to give attention to a single sensor direction and change its output

only when that particular sensor becomes active. For example, neuron 48 produces a consistent

motor activation of +3 for both the left and right motors, except when the left sensors are active.

Such output changes are very illustrative of the neuron's function, because they demonstrate the

sensors to which the neuron responds and the type of response that is elicited.

As described in the capability test, neurons 40 and 48 cause the robot to move in a straight

line when implemented alone. This behavior is represented in their motor output activations in

table 4.6. Both neurons provide consistent positive activations to both motors, which causes the

robot to move forward. The di�erence between the two neurons, which constitutes the di�erence

between specialization C and D, is that they are sensitive to di�erent sensory input. Neuron 40

reduces its positive motor activations when a left sensor is activated and neuron 48 does so when

a forward sensor is activated. The elicited response of both neurons is to slow the robot when the

sensor is activated. These two neurons provide the thrust of the robot on long straightaways and

then slow the robot when obstacles are present. Neither of the neurons provide actual obstacle

avoidance behavior; they are merely responsible for slowing the robot. Another specialization

performs the turning.

Neurons 11 and 38, members of specialization E, and neuron 1 provide strong positive

48



Motor Activation from Speci�c Sensors
Neuron Rank Specialization None Left Forward Right Rear

48 C +3,+3 0,0 +3,+3 +3,+3 +3,+3
16 A -10,+8 -4,+2 -10,+8 -10,+8 -10,+8
11 E +9,-5 +9,-5 +5,-3 +1,-1 +9,-5
46 B -5,+8 -5,-6 -5,+8 -5,+8 -5,+8
1 - +4,-7 +4,-9 +4,-9 +1,-4 +4,-8
38 E +9,-5 +9,-5 +9,-5 0,-1 +9,-5
40 D +9,+4 +9,+4 0,0 +5,+2 +9,+4
39 B -5,+8 -3,+3 -5,+8 -5,+9 -5,+9

Table 4.6: Individual neuron responses to speci�c sensory inputs. The output numbers refer to the
speed at which the neuron drives the left and right motors. For example, when neuron 11 receives
input from its front sensors, it generates motor outputs of +5 and -3.

impulses to the left motor and strong negative impulses to the right motor. Naturally, these

activations cause the robot to spin very fast in a clockwise direction. Specialization E, however,

has evolved a symbiotic relationship with specializations A, B, and D, which spin the robot in

a counterclockwise direction. The net result is a robot that does not spin. The balance that is

attained between all of the motor activations explains the performance drop o� when any one

neuron is excluded.

Specialization E responds to activations of the front and right sensors by reducing the left

motor and increasing the right motor. Such activations reduce the clockwise spin impulse and the

robot begins to turn in a counterclockwise direction. The e�ect of specialization E is thus to veer

the robot to the left to avoid objects in front of and to the right. Specialization A is a mirror of

specialization E, veering the robot to the right to avoid objects on the left.

Neuron 1 was not placed in a speci�c specialization, because in the PCA graph it was not

plotted in a distinct subgroup. Its proximity to specialization E on the PCA, however, is exhibited

in its motor responses. Like specialization E, it reduces its normal clockwise spin impulse when the

right sensors are active. The normal spin impulse and modi�ed spin impulse of neuron 1, however,

are not nearly as strong as specialization E. Neuron 1 was likely a mutant of specialization E that

has increased the spin impulses just enough to make the robot make right turns in response to

objects on the left. As shown in the necessity test, the network performs poorly when neuron 1 is

removed.

Specialization B has a similar relationship to specialization A as neuron 1 does to specializa-

tion E. Like specialization A, B neurons spin the robot in a counter clockwise direction and reduce

the spin impulse when a left sensor is active. The magnitude of the spin reduction, however, is

much less than specialization A and appears to be more of a �ne tuning of the right turn.

In summary, the roles of the neurons in the top network are:
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48 Provides forward activations and slows down when object is sensed

on the left.

16 Veers the robot right to avoid objects to the left.

11 Veers the robot left to avoid objects to the right.

46 Provides small right impulse when objects are sensed to the left.

1 Provides additional spin impulses for specialization E.

38 Veers the robot left to avoid objects to the right.

40 Provides forward activations and balances the spin caused by

the other neurons. Slows robot when an object is sensed in

front and to right.

39 Veers the robot right to avoid objects to the left.

Lesion studies conducted in other Khepera simulations produced very similar results. In

almost all cases, separate specializations evolved to control the forward thrust, right turns, and left

turns. At least one simulation evolved a neuron specialization that produced a 0,0 motor activation

across all sensory inputs. These \no-op" neurons have no e�ect on the network behavior and may

have evolved as �llers, since the existing specializations were su�cient for solving the task.

It's also important to note that neuron roles were often redundant across several special-

izations and within the neural networks. For example, specializations A and B both maneuver

around objects to the left of the robot, and members of both are included in the �nal network.

This suggests that SANE does not develop a minimal set of behaviors, but instead distributes im-

portant functions across several neurons and multiple specializations. This produces a much more

robust controller, since damage to a single neuron can be overcome by the redundant function of

the other neurons. As shown in table 4.4, the loss of one neuron does not result in a dramatic drop

in performance.

The lesion studies demonstrate the symbiotic nature of SANE's neurons. No neuron could

perform well alone, and every neuron was necessary to achieve the network's top performance level.

The studies also con�rm the hypothesis that SANE performs a parallel search in several di�erent

subgroups of its neuron population. Analysis of the roles of the di�erent specializations show a

clear division of labor with the largest division between forward motor neurons, left turn neurons,

and right turn neurons. Several subpopulations within specializations appear to be re�nements of

the major roles, which allow SANE to continue to improve each specialization. It is this parallel

search that sets SANE apart from existing neuro-evolution approaches and should allow SANE to

more e�ciently solve di�cult problems.

4.4 Analysis of the Blueprint Population

The analysis of the blueprint population is less complicated than the neuron population, because it

uses the standard evolutionary algorithm strategy of searching for a single �t individual to solve the

task. Thus, while specialization may emerge in the blueprint population, it is not essential because

we are only interested in a single type of individual: the one that can perform the entire task. The

task in this case is to include a group of neurons that together form the necessary input/output
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Figure 4.8: The number of network participations for each neuron in the neuron population. The
neurons are ranked based on their �tness. The blueprint population biases the rate of participation
towards the best neurons.

connections to produce a highly �t neural network. However, it is still important to examine the

blueprint chromosomes to determine the rate of participation of the neurons and to understand the

dispersement of neurons within the top blueprints.

As described in chapter 3, one of the advantages of the blueprint evolution is that neuron

participation is biased towards the top performing neurons. In other words, the best neurons will

participate in more networks than the newer or poorer neurons. Figure 4.8 shows the typical

rate of participation in the neuron population in the last generation of the Khepera simulations.

The data was collected from a single simulation, however, other simulations exhibited very similar

behavior. Of the 800 opportunities for participation,4 40% were �lled by neurons ranked in the

top 6% of the population and 78% by neurons in the top 25%. Neurons ranked from 300 to 800

did not participate in any networks. This participation bias causes the better-performing neurons

to be more extensively evaluated, resulting in more accurate �tness estimates. As shown in the

comparisons with Neuron SANE in section 4.2.2, the biased participation produces more e�cient

search behavior in later generations than the uniform participation.

Figure 4.9 shows the neurons of the top 20 network blueprints during the last generation of

a single simulation. The neuron pointer numbers refer to the rank of that neuron in the population

after the �tness had been distributed. In other words, the rankings re
ect that the neurons par-

ticipated in these top blueprints. For example, the top blueprint included the 48th ranked neuron,

the 16th ranked neuron, the top ranked neuron, and so on. The �rst conclusion from the table is

that the blueprint population is quite diverse. Blueprints 16 and 19 are the most similar, but they

4100 networks are formed per generation, each with 8 neurons.
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Figure 4.9: The neurons in the top 20 network blueprints in the last generation of a simulation.
The neuron numbers refer to their rank in the population after their �tness was calculated. The
�gure shows a very diverse collection of neurons and several examples of o�spring neurons present
in the best networks.

only share 5 out of the 8 neuron pointers. Thus the mutation strategy presented in section 3.3.3

appears to provide su�cient diversity, allowing the blueprint population to sample many di�erent

combinations of neuron pointers.

Figure 4.9 also shows that many neurons ranked in the 100-150 range are included in the

top networks. Interestingly, these neurons only participate in 1 or 2 networks per generation

(�gure 4.8). Closer inspection reveals that the majority of these neurons are new o�spring neurons

generated during the previous generation. From the prevalent use of these neurons in the top

blueprints, it can be concluded that the blueprint evolution is making e�ective use of the new

neural structures created by the neuron evolution. This behavior illustrates how the blueprint

population immediately capitalizes on the new solutions created in the neuron population and

demonstrates the e�ective integration of the two genetic searches.

Recall that the blueprint evolution uses a selective mutation strategy to switch pointers

from breeding neurons to their o�spring. To evaluate this strategy ten simulations were run with

this feature removed from SANE. Figure 4.10 shows the performance of the searches with and

without the selective mutation strategy. The searches are comparable in early generations, but

diverge after generation 20. Without selective mutation, the blueprints converge, and there is little

variance in the types of networks that are created. Consequently, the neuron evolution cannot

evaluate new neuron combinations and the search stalls. With selective mutation, the blueprint

population remains diverse (�gure 4.9), o�spring neurons participate in new networks, and the

search continues to improve.
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Figure 4.10: An evaluation of the selective mutation strategy of the blueprint evolution. When
pointers are not switched from breeding neurons to o�spring, the search stalls in later generations.
The results are averaged over 10 simulations in the Khepera task.

4.5 Evaluation of Neuron Encoding

The SANE system makes two contributions to neuro-evolution. The �rst, symbiotic evolution,

was illustrated in the previous experiments. The second contribution of SANE is a more e�ective

neural encoding strategy. As described in chapter 3, the straightforward network encoding most

researchers use is problematic. Simply concatenating the weights of a �xed-architecture network is

not conducive to an evolutionary algorithm.

To demonstrate the merits of SANE's encoding, an experiment was conducted to compare

SANE with a version of SANE that used the concatenation of weights strategy (Belew et al. 1991;

Whitley et al. 1993). Such strategies �x the architecture of the neural network (normally feed-

forward and fully connected) and decode the weights sequentially from the chromosome. In the

Khepera task, the chromosome of a neuron using the concatenation strategy consists of 13 16-bit

weight genes, which equals the number of input and output units. The total number of bits in the

concatenated encoding is thus 208, compared to 240 bits for SANE's normal encoding.

The experimental setup was identical to the performance experiment in section 4.2.2. Popu-

lations were evolved for 80 generations with fully functioning sensors. Figure 4.11 plots the learning

curve averaged over the 20 simulations. The curve shows a clear advantage to the SANE encoding.

Using the concatenation approach, SANE could only achieve a 325 cm performance level on average

compared to 358 cm with its normal encoding.

A key advantage of SANE's encoding is the freedom to modify the architecture of the

network along with the weights. This 
exibility may allow SANE to master more di�cult tasks

than the more rigid, �xed-architecture approaches. For example, if some of the network inputs are
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Figure 4.11: Encoding Comparison. SANE was implemented with its normal encoding (SANE En-
coding) and the more standard concatenation encoding. The graph illustrates the search e�ciency
gain from SANE's encoding.

irrelevant and only create noise in the network, SANE can easily adjust the architecture so that no

hidden units form connections to them. A �xed, fully-connected architecture, however, is forced to

connect to all units and would have to set all of the weights to 0 to ignore input from these units.

Since evolutionary algorithms do not normally make small systematic weight changes, it is very

di�cult to set a weight to such an exact value.

Freedom to modify the architecture, however, comes with a price: a much larger search

space. The disparity in search spaces between SANE with and without a �xed architecture only

makes the di�erences presented in �gure 4.11 more signi�cant. SANE with its normal encoding �nds

better solutions faster, while searching a larger space of solutions. As described in section 3.2.3, the

missing attribute in the concatenation strategy is position independence of the genes. In the SANE

encoding, the e�ective network connections are not restricted to speci�c positions, but may form

anywhere on the chromosome. This freedom allows SANE to realize good connections wherever

they initially appear, resulting in a faster manifestation of useful neural structures.

4.6 Concluding Remarks

The experiments in this chapter illustrate how SANE works by comparing its search behavior to

other methods of neuro-evolution and empirically analyzing its solutions. Compared to two stan-

dard neuro-evolutionary approaches, SANE formed solutions faster, maintained a much higher level

of population diversity, and was more adaptive in domain shifts. Additionally, SANE's blueprint

evolution was shown e�ective in maintaining and exploiting good combinations of neurons. The
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principal component analysis and lesion studies illustrated the unique dynamics in SANE's pop-

ulation. As hypothesized, SANE's neurons specialize within the single population and �ll several

di�erent roles. This specialization is the heart of SANE's search e�ciency. By reducing the solution

space for each individual, SANE searches in parallel decompositions of the complete neural network

space.

Another contribution of SANE is demonstrated through comparisons of its neuron encod-

ing strategy to the very common \concatenation" encoding. The position-independent feature of

SANE's genes allows the evolutionary algorithm more freedom to realize and build useful structures,

which increases the overall search e�ciency. In summary, this chapter has shown the contribution

of the primary features of SANE's neuro-evolutionary search. Conjunctively, these features produce

an e�cient approach to both neuro-evolution and reinforcement learning.
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Chapter 5

Performance Comparisons

The preceding chapters have described the SANE method of neuro-evolution and evaluated many

of the components that contribute to its e�ciency. The purpose of this chapter is to compare the

performance SANE directly to existing approaches for sequential decision learning. Comparisons

were carried out with four other methods, 1 and 2 layer AHC, Q-learning, and GENITOR in two

benchmarks. The �rst benchmark of balancing a pole on a cart has become a standard benchmark

within the reinforcement learning community. The second benchmark uses the Khepera simulator

and the task described in the previous chapter. The comparisons were designed to test the following

hypotheses:

1. SANE is more e�ective in terms of network evaluations and CPU time required to both stan-

dard neural network reinforcement learning techniques and more aggressive neuro-evolution

approaches.

2. SANE outperforms existing approaches with noisy evaluations and sparse reinforcement.

3. The generalization of networks formed through SANE is comparable to the generalization of

networks formed through other reinforcement learning techniques.

4. SANE can form higher quality solutions in di�cult problems.

5. SANE is more robust than temporal di�erence approaches in problems with hidden state

information.

5.1 Pole Balancing Benchmark

The inverted pendulum or pole-balancing problem is a classic control problem that has received

much attention in the reinforcement learning literature (Anderson 1989; Barto et al. 1983; Michie

and Chambers 1968; Whitley et al.1993). Since almost every RL method to date has been evaluated

in pole balancing, there exists a rich collection of methods to benchmark against. Moreover, many

RL researchers have publicly distributed the simulation code of their methods solving this problem.

Pole balancing thus contains several methods that can be taken \o� the shelf" and run without

implementation bias. The goal of these comparisons is to evaluate SANE with respect to existing

methods in a well known problem. The speci�c experiments compare learning speed, generalization,
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Figure 5.1: The cart-and-pole system in the inverted pendulum problem. The cart is pushed either
left or right until it reaches a track boundary or the pole falls below 12 degrees.

and resilience to evaluation noise during. All learning-related parameters were selected by the

corresponding authors and in most cases each method was run from the original code written by

the authors.

5.1.1 The Pole Balancing Task

In the pole balancing problem, a single pole is centered on a cart (�gure 5.1), which may move left

or right on a horizontal track. Naturally, any movements to the cart tend to unbalance the pole.

The objective is to push the cart either left or right with a �xed-magnitude force such that the

pole remains balanced and the track boundaries are avoided. The controller receives reinforcement

only after the pole has fallen, which makes this task a challenging credit assignment problem for a

reinforcement learning system.

The controller is a�orded the following state information: the position of the cart (�), the

velocity of the cart ( _�), the angle of the pole (�), and the angular velocity of the pole ( _�). At each

time step, the controller must resolve which direction the cart is to be pushed. The cart and pole

system can be described with the following second order equations of motion:

��t =
mg sin�t � cos�t[Ft +mpl _�

2
t sin�t]

(4=3)ml �mpl cos2�t
; ��t =

Ft +mpl[ _�
2
t sin�t �

��t cos�t]

m
;
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where

�: The position of the cart.

_�: The velocity of the cart.

�: The angle of the pole.
_�: The angular velocity of the pole.

l: The length of the pole = 0.5 m.

mp: The mass of the pole = 0.1 kg.

m: The mass of the pole and cart = 1.1 kg.

F : The magnitude of force = 10 N.

g: The acceleration due to gravity = 9.8.

Through Euler's method of numerical approximation, the cart and pole system can be

simulated using discrete-time equations of the form �(t+ 1) = �(t) + � _�(t), with the discrete time

step � normally set at 0.02 seconds. Once the pole falls past 12 degrees or the cart reaches the

boundary of the 4.8 meter track, the trial ends and a reinforcement signal is generated. The

performance of the controller is measured by the number of time steps in which the pole remains

balanced. The above parameters are identical to those used by Barto et al.(1983), Anderson (1987),

and Whitley et al. (1993) in this problem, and presumably the architectures were optimized to work

well under these parameters.

5.1.2 Controller Implementations

Five di�erent reinforcement learning methods were implemented to form a control strategy for the

pole-balancing problem: SANE, the single-layer Adaptive Heuristic Critic (AHC) of Barto et al.

(1983), the two-layer AHC of Anderson (1987), Anderson (1989), the Q-learning method of Watkins

and Dayan (1992), and the GENITOR system of Whitley et al. (1993). The original programs

written by Sutton and Anderson were used for the AHC implementations, and the simulation code

developed by Pendrith (1994) was used for the Q-learning implementation. For GENITOR, the

system was reimplemented as described in (Whitley et al. 1993). A control strategy was deemed

successful if it could balance a pole for 120,000 time steps.

SANE

SANE was implemented to evolve a 2-layer network with 5 input, 8 hidden, and 2 output units.

Each hidden neuron speci�ed 5 connections giving each network a total of 40 connections. The

number of hidden neurons was chosen so that the total number of connections was compatible

with the 2-layer network implementations of the AHC and GENITOR. Several trial simulations

were run to discover e�ective population sizes for SANE. Since there is a high solution density in

the pole balancing problem and solutions are found often within 1000 network evaluations, small

population sizes of 100 and 50 for the neuron and network levels were the most e�ective. Each

network evaluation consisted of a single balance attempt where a sequence of control decisions were

made until the pole fell or the track boundaries were reached. The �tness was determined by the

number of steps the pole remained balanced. The input to the network consisted of the 4 state

variables (�; _�; �; _�), normalized between 0 and 1 over the following ranges:
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1-AHC 2-AHC QL GENITOR SANE
Action Learning Rate (�): 1.0 1.0 Population Size: 100 100,50
Critic Learning Rate (�): 0.5 0.2 0.2 Mutation Rate: Adaptive 0.1%
TD Discount Factor (
): 0.95 0.9 0.95 Chrom. Length: 35 (
oats) 120 (bits)

Decay Rate (�): 0.9 0 Subpopulation (�): 8

Table 5.1: Implementation parameters for each method.

�: (�2:4; 2:4)

_�: (�1:5; 1:5)

�: (�12�; 12�)
_�: (�60�; 60�)

To make the network input compatible with the implementations of Whitley et al. (1993) and

Anderson (1987), an additional bias input unit that is always set to 0.5 was included.

Each of the two output units corresponded directly with a control choice (left or right).

The output unit with the greatest activation determined which control action was to be performed.

The output layer, thus, represented a ranking of the possible choices. This approach di�ers from

most neuro-control architectures like those in these comparisons, where the activation of an output

unit represents a probability of that action being performed (Anderson, 1987; Barto et al., 1983;

Whitley et al., 1993). For example, a decision of \move right" with activation 0.9 would move right

only 90% of the time. Probabilistic output units allow the network to visit more of the state space

during training, and thus incorporate a more global view of the problem into the control policy

(Whitley et al. 1993). In the SANE implementation, however, randomness is unnecessary in the

decision process since there is a large amount of state space sampling through multiple combinations

of neurons.

AHC

Two di�erent AHC implementations were tested: A single-layer version (Barto et al. 1983) and a

two-layer version (Anderson 1987). Table 5.1 lists the parameters for each method. Both imple-

mentations were run directly from simulation code written by Sutton and Anderson, respectively.

The learning parameters, network architectures, and control strategy were thus chosen by Sutton

and Anderson and presumably re
ect parameters that have been found e�ective.

Since the state evaluation function to be learned is non-monotonic (Anderson 1989) and

single-layer networks can only learn linearly-separable tasks, Barto et al. (1983) discretized the

input space into 162 nonoverlapping regions or \boxes" for the single-layer AHC. This approach

was �rst introduced by Michie and Chambers (1968), and it allows the state evaluation to be a

linear function of the input, which allows single layer networks to be used. Both the value and

action network consist of one unit with a single weight connected to each input box. The output of

the unit is the inner product of the input vector and the unit's weight vector, however, since only

one input box will be active at one time, the output reduces to the weight corresponding to the

active input box.

In the two-layer AHC, discretization of the input space is not necessary since additional

hidden units allow the network to represent any non-linear discriminant function. Therefore, the

same continuous input that was used for SANE was also used for the two-layer AHC. Each network
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(evaluation and action) in Anderson's implementation consists of 5 input units (4 input variables

and one bias unit set at 0.5), 5 hidden units, and one output unit. Each input unit is connected

to every hidden unit and to the single output unit. The two-layer networks are trained using a

variant of backpropagation (Anderson 1989). The output of the action network is interpreted as

the probability of choosing that action (push left or right) in both the single and two-layer AHC

implementations.

Q-learning

The Q-learning simulations were run using the simulation code developed by Pendrith (1994), which

employs one-step updates as described by Watkins and Dayan (1992). In this implementation, the

Q-function is a look-up table that receives the same discretized input that Barto et al. created for

the single-layer AHC. Actions on even-numbered steps are determined using the stochastic action

selector described by Lin (1992). The action on odd-numbered steps is chosen deterministically

according to the highest associated Q-value. Pendrith found that such interleaved exploration and

exploitation greatly improves Q-learning in the pole-balancing domain. My experiences con�rmed

this result: when interleaving was disabled, Q-learning was incapable of learning the pole-balancing

task.

GENITOR

GENITOR is an advanced evolutionary algorithm method that includes external functions for

ensuring population diversity. Diversity is maintained through adaptive mutation, which raises

the mutation rate as the population converges (section 7.1). The motivation for comparing SANE

to GENITOR is twofold. Comparisons between GENITOR's and SANE's search e�ciency thus

test the hypothesis that the symbiotic evolution produces an e�cient search without reliance on

additional randomness. Since GENITOR has been shown to be e�ective in evolving neural networks

for the inverted pendulum problem (Whitley et al. 1993), it also provides a state-of-the-art neuro-

evolution comparison.

GENITOR was implemented as detailed by Whitley et al. (1993) to evolve the weights in

a fully-connected 2-layer network, with additional connections from each input unit to the output

layer. The network architecture is identical to the two-layer AHC with 5 input units, 5 hidden

units and 1 output unit. The input to the network consists of the same normalized state variables

as in SANE, and the activation of the output unit is interpreted as a probabilistic choice as in the

AHC.

5.1.3 Learning-Speed Comparisons

The �rst experiments compared the time required by each algorithm to develop a successful network

(one that can balance the pole for 120,000 time steps). Both the number of pole-balance attempts

required and the CPU time expended were measured and averaged over 50 simulations. The number

of balance attempts re
ects the number of training episodes required. The CPU time was included

because the number of balance attempts does not describe the amount of overhead each algorithm

incurs. The CPU times should be treated as ballpark estimates because they are sensitive to the

implementation details. However, the CPU time di�erences found in these experiments are large
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Pole Balance Attempts CPU Time

Method Mean Best Worst SD Mean Best Worst SD Failures

1-layer AHC 430 80 7373 1071 49.4 14 250 52.6 3
2-layer AHC 12513 3458 45922 9338 83.8 13 311 61.6 14
Q-learning 2402 426 10056 1903 12.2 4 41 7.8 0
GENITOR 2578 415 12964 2092 9.8 4 54 7.9 0
SANE 900 101 2502 598 7.7 4 17 2.9 0

Table 5.2: The number of pole balance attempts and CPU time required to �nd a successful network.
The number of pole balance attempts refers to the number of training episodes or \starts" necessary.
The numbers are computed over 50 simulations for each method. A training failure was said to
occur if no successful network was found after 50,000 attempts.

enough to indicate real di�erences in training time among the algorithms. Each implementation was

written in C and compiled using the cc compiler on an IBM RS6000 25T workstation with the -O2

optimization 
ag. Otherwise, no special e�ort was made to optimize any of the implementations

for speed.

The comparison (table 5.2), was based on the random start state approach of Anderson

(1987), Anderson (1989) and Whitley et al. (1993). The cart and pole were both started from

random positions with random initial velocity. The positions and velocities were selected from the

same ranges that were used to normalize the input variables, and could specify a state from which

pole balancing was impossible. Following Anderson (1987) and Whitley et al. (1993), a network

was considered successful if it could balance the pole from any single start state.

Results

The results show the AHCs to require signi�cantly more CPU time than the other approaches

to discover e�ective solutions. While the single-layer AHC needed the lowest number of balance

attempts on average, its long CPU times overshadow its e�cient learning. Typically, it took over

two minutes for the single-layer AHC to �nd a successful network. This overhead is particularly

large when compared to the evolutionary algorithm approaches, which took only �ve to ten seconds.

The two-layer AHC performed the poorest, exhausting large amounts of CPU time and requiring

at least 5, but often 10 to 20, times more balance attempts on average than the other approaches.

The experiments con�rmed Whitley's observation that the AHC trains inconsistently when

started from random initial states. Out of the 50 simulations, the single-layer AHC failed to train

in 3 and the two-layer AHC failed in 14. Each unsuccessful simulation was allowed to train for

50,000 pole balance attempts before it was declared a failure. The results presented for the AHC

in table 5.2 are averaged over the successful simulations only, excluding the failures.

Q-learning and GENITOR were comparable across both tests in terms of mean CPU time

and average number of balance attempts required. The di�erences in CPU times between the two

approaches are not statistically signi�cant and thus are not large enough to discount implementation

details. Both Q-learning and GENITOR were close to an order of magnitude faster than the AHCs

and incurred no training failures.

SANE required 1/3 as many balance attempts as Q-learning and GENITOR on average and

1/12 as many as the two-layer AHC. Like Q-learning and GENITOR, SANE found solutions in

every simulation. The additional overhead of SANE's two populations, compared to GENITOR's
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one, caused the CPU disparity to be less than the di�erence in evaluations, however, SANE still

found solutions in 80% of the time required by GENITOR. Furthermore, the time required to learn

the task varied the least in the SANE simulations. 90% of the CPU times (in seconds) fall in the

following ranges:

1-layer AHC: [17; 136]

2-layer AHC: [17; 124]

Q-learning: [4; 20]

GENITOR: [4; 17]

SANE: [4; 10]

Thus, while the AHC can vary as much as 2 minutes among simulations and Q-learning and

GENITOR about 15 seconds, SANE consistently �nds solutions in 4 to 10 seconds of CPU time,

making it the fastest and most consistent of the learning methods tested in this task. The results

therefore con�rm the hypothesis that in the standard reinforcement benchmark, SANE is faster

and more e�cient than existing methods.

Discussion

The large CPU times of the AHC are caused by the many weight updates that they must per-

form after every action. Both the single and two-layer AHCs adjust every weight in the neural

networks after each activation. Since there are thousands of activations per balance attempt, the

time required for the weight updates can be substantial. The Q-learning implementation reduces

this overhead considerably by only updating a single table entry after every step, however, these

continuous updates still consume costly CPU cycles. Neither SANE nor GENITOR require weight

updates after each activation, and do not incur these high overhead costs.

Note that the Q-function can be represented e�ciently as a look-up table only when the

state space is small. In a real-world application, the enormous state space would make explicit

representation of each state impossible. Larger applications of Q-learning are likely to use neural

networks (Lin 1992), which can learn from continuous input values in an in�nite state space. Instead

of representing each state explicitly, neural networks form internal representations of the state space

through their connections and weights, which allows them to generalize well to unobserved states.

Like the AHC, a neural network implementation of Q-learning would require continuous updates

of all neural network weights, which would exhaust considerably more CPU time than the table

look-up implementation. Recent research has shown that that a neural network implementation of

Q-learning performs comparably to the two-layer AHC (Lin 1992; Pendrith 1994).

Both the single-layer AHC and Q-learning had the bene�t of a presegmented input space,

while the two-layer AHC, GENITOR, and SANE methods received only undi�erentiated real values

of the state variables. Barto et al. (1983) selected the input boxes according to prior knowledge

of the \useful regions" of the input variables and their compatibility with the single-layer AHC.

This information allowed the single-layer AHC to learn the task in the least number of balance

attempts. The input partitioning, however, did not extend well to the Q-learner, which required

as many pole-balance attempts as the methods receiving real-valued inputs.

Interestingly, the results achieved with GENITOR were better than those reported by Whit-

ley et al. (1993). This disparity is probably caused by the way the input variables were normalized.
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Pole Balance Attempts CPU Time

Method Mean Best Worst SD Mean Best Worst SD Failures

Neuron SANE 1691 46 4461 984 5.2 4 9 1.1 0

SANE 900 101 2502 598 7.7 4 17 2.9 0

Table 5.3: A comparison of SANE with an early version of SANE (called Neuron SANE) that
did not use the blueprint population to maintain knowledge of e�ective neuron combinations.
SANE's second population creates more overhead, but reduces the number of training evaluations
considerably. Even without the blueprint population, Neuron SANE solves the problem faster than
the other approaches.

Since it was unclear what ranges Whitley et al. (1993) used for normalization, the input vectors

could be quite di�erent. On average, my implementation of GENITOR required only half of the

attempts, which suggests that Whitley et al. may have normalized over an overly broad range.

The comparison between SANE and GENITOR con�rms the hypothesis that symbiotic

evolution can perform an e�cient genetic search without relying on high mutation rates. It appears

that in GENITOR, the high mutation rates brought on through adaptive mutation may be causing

many disruptions in highly-�t schemata (genetic building blocks), resulting in many more network

evaluations required to learn the task.

Previous results have shown that a version of SANE without the blueprint population is

quite e�ective in the pole balancing task (Moriarty and Miikkulainen 1996a). The neuron-only

version of SANE, however, was ine�ective when scaled up to more di�cult tasks, and the blueprint

population was added to focus the search on the best combination of neurons. Table 5.3 shows the

performance of SANE with and without a blueprint population.1 The addition of the blueprint

population creates more overhead (higher CPU time), but cuts the number of evaluations necessary

almost in half. In larger tasks, where evaluations are very expensive the e�ciency gain allows SANE

to scale much better than Neuron SANE.

5.1.4 Generalization Comparisons

The second test explores the generalization ability of the neural networks formed with each method.

Networks that generalize well can transfer concepts learned in a subset of the state space to the

rest of the space. Such behavior is of great bene�t in real-world tasks where the enormous state

spaces make explicit exploration of all states infeasible. In the pole balancing task, networks were

trained until a network could balance the pole from a single start state. How well these networks

could balance from other start states demonstrates their ability to generalize.

One hundred random start states were created as a test set for the �nal network of each

method. The network was said to successfully balance a start state if the pole did not fall below

12� within 1000 time steps. Table 5.4 shows the generalization performance over 50 simulations.

Since some initial states contained situations from which pole balancing was impossible, the best

networks were successful only 80% of the time.

Generalization was comparable across the AHCs and the genetic algorithm approaches. The

mean generalization of the Q-learning implementation, however, was signi�cantly lower than those

of the single-layer AHC, GENITOR, and SANE. This di�erence is likely due to the look-up table

1The method of neuron �tness is slightly di�erent between the two approaches and is described in section 4.2.1
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Method Mean Best Worst SD

1-layer AHC 50 76 2 16
2-layer AHC 44 76 5 20
Q-learning 41 61 13 11
GENITOR 48 81 2 23
SANE 48 82 1 24

Table 5.4: The generalization ability of the networks formed with each method. The numbers show
the percentage of random start states balanced for 1000 time steps by a fully-trained network. Fifty
networks were formed with each method. There is a statistically signi�cant di�erence (p < :01)
between the mean generalizations of Q-learning and those of the single-layer AHC, GENITOR, and
SANE. The other di�erences are not signi�cant.

employed by the Q-learner. In the single-layer AHC, which uses the same presegmented input space

as the Q-learner, all weights are updated after visiting a single state, allowing it to learn a smoother

approximation of the control function. In Q-learning, only the weight (i.e. the table value) of the

currently visited state is updated, preventing interpolation to unvisited states.

Whitley et al. (1993) speculated that an inverse relationship exists between learning speed

and generalization. In their experiments, solutions that were found in early generations tended to

have poorer performance on novel inputs. Sammut and Cribb (1990) also found that programs that

learn faster often result in very speci�c strategies that do not generalize well. This phenomenon,

however, was not observed in the SANE simulations. Figure 5.2 plots the number of network

evaluations incurred before a solution was found against its generalization ability for each of the 50

SANE simulations. As seen by the graph, no correlation appears to exist between learning speed

and generalization. These results suggest that further optimizations to SANE will not restrict

generalization.

5.1.5 Noisy Evaluation Comparisons

The �nal pole balancing experiment tested the ability of each approach to learn with increased

noise in the �tness or evaluation function. Noisy evaluation often occurs because the number of

evaluations does not provide su�cient coverage of the problem space. For example, in the inverted

pendulum problem the evaluation function consists of a single attempt to balance the pole from a

random start state. However, if the pole was in a di�cult start state the evaluation score might

not re
ect the actual ability of the network. Thus, noise exists between the evaluated �tness and

the true �tness of the network. Since evaluations in the large problem spaces of real world tasks

will often be very noisy, it is important to study the performance of each approach as the noise

level increases.

To increase the evaluation noise in the pole balancing problem the length of the pole was

extended beyond the standard 1.0 meters. With a longer pole, the angular acceleration of the pole
�� is increased, because the pole has more mass and the pole's center of mass is farther away from

the cart. As a result, some states that were previously recoverable no longer are. The controllers

experience more states from which pole balancing is impossible, and consequently require more

balance attempts to form an e�ective control policy.

Simulations were run using pole lengths of 1, 2, 3, 4, and 5 meters. Figure 5.3 plots the

number of successful simulations for each approach at each pole length. One of the more glaring
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Figure 5.2: A plot of the learning speed versus generalization for the �nal networks formed in
the 50 SANE simulations. The learning speed is measured by the number of network evaluations
(balance attempts) during the evolution of the network, and the generalization is measured by the
percentage of random start states balanced for 1000 time steps. The coe�cient of correlation is
0.2, which indicates very little correlation between learning speed and generalization.

results of these experiments is the performance of AHC implementations under noisy evaluation.

While they performed adequately under the normal problem setting, when the pole length was

extended, their performance decreased dramatically. With a 2 meter pole, both approaches failed

in over half of their simulations. The two-layer AHC failed in every simulation after the pole length

reached 3 meters. The one-layer AHC fell to a success rate less than 20% after 2 meters and failed

in every simulation at 5 meters.

Q-learning scaled signi�cantly better than the AHCs, but signi�cantly worse than the evo-

lutionary algorithm approaches. Interestingly, the two table-based approaches, Q-learning and the

single-layer AHC, both performed better with a 3 meter pole than a 2 meter pole. Since they are

using the same \boxes" input space, it appears that the input division, tuned for a 1.0 meter pole,

does not scale proportionally with the problem di�culty.

SANE was the most resilient to �tness noise, �nding solutions in all 50 simulations for pole

lengths up to 4 meters. At 5 meters, SANE was successful in 46 out of 50 simulations. SANE's

performance advantage is due to the multiple evaluations each neuron receives. Each neuron is

evaluated in several networks per generation, which results in a greater sampling of the solution

space for each and averages out the �tness evaluation noise.
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Figure 5.3: The number of successful simulations out of 50 as the pole length is increased. For a
simulation to be successful, it must �nd a network that can balance the pole for 120,000 time steps
from some start state within 50,000 evaluations.

5.1.6 Concluding Remarks

SANE was evaluated using the common pole balancing in three main areas: speed of learning,

generalization, and resilience to evaluation noise. SANE required less than half of the training

episodes of Q-learning and GENITOR and only one tenth of the two-layer Adaptive Heuristic

Critic. The single layer adaptive heuristic critic required fewer training episodes than SANE, but

had the bene�t of a pre-segmented, discretized input space. In CPU time, SANE was an order of

magnitude faster than both AHC approaches. Furthermore, SANE's quick solutions do not lack

generalization as suggested by Whitley et al. (1993). SANE's performance is signi�cant because

pole balancing is a problem designed by the temporal di�erence community and set up to show the

merits of their methods. The next section will present a di�erent benchmark that is not speci�cally

tailored to the TD methods. The benchmark is also more di�cult than pole balancing which, while

historically interesting, has become relatively easy for modern methods.

5.2 Khepera Benchmark

The pole balancing comparisons illustrate SANE's e�cient learning in a common benchmark from

the reinforcement learning literature. However, while SANE performed well, some of the advantages

of SANE and neuro-evolution in general were not exhibited. Speci�cally, the quality of solutions

that could be achieved and the robustness to perceptual aliasing, described in chapter 2, was

not demonstrated. To examine these two issues, SANE, GENITOR, and the two-layer AHC were

implemented in the Khepera simulator. Q-learning and the single-layer AHC were not implemented,
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because unlike pole balancing there is no obvious discretization of the input variables for the

Khepera robot.

5.2.1 Solution Quality and Robustness to Hidden States

As described in chapter 4, Khepera provides an e�ective domain for evaluating reinforcement learn-

ing methods. The sensors and actuators re
ect real world resources, and the task requires a complex

balance of control. Unlike pole balancing where solutions are either successful or unsuccessful,2 so-

lution quality in the Khepera domain can be measured on a continuum. Neural networks are

evaluated by how far on average they can move the robot from its starting position. Thus, a

graded evaluation scale exists based on average Euclidean distance for each solution. A network

that learns to maneuver in tight corners and accelerate on straightaways will outperform a network

that simply drives at high speed everywhere.

Khepera also provides a domain where the robustness of learning methods to perceptual

aliasing or problems with hidden state can be studied. The neural network controller receives

a limited view of the world and cannot disambiguate its complete state. More concretely, the

controller receives sensory information re
ecting the immediate presence of obstacles (walls) but

has no information about its position within the maze. The Khepera simulator can thus test how

each reinforcement learning method performs without complete state information.

The experimental setup is identical to the performance analysis experiment discussed in

section 4.2.2: using only local sensors, move as far away from your starting position as possible.

Networks are trained (or evolved) for 8000 evaluations using the same learning parameters as in

the pole balancing benchmark. During each network evaluation, the robot is placed in a random

position in the Khepera world (�gure 4.2) and the network is allowed to move the robot until it hits

an obstacle or the maximum number of moves (200) is exhausted. The �tness of each network is the

maximum distance the robot moved from its initial starting position. A learning curve is generated

by testing the best network of each generation (according to �tness) on a 50 robot position test set.

For the AHC, since there are no \generations", networks are tested after every 100 evaluations.

5.2.2 Results

Figure 5.4 plots the learning curves for the three approaches. SANE returned far better networks

than both GENITOR and the AHC. Compared to GENITOR, SANE's networks averaged twice as

much distance from their starting location. GENITOR's search appeared to move quickly initially

but then stalled after 1500 evaluations. It is likely that the high mutation rates in GENITOR,

which are used to promote diversity, prevented the search from focusing on and possibly converging

to the global optimum. SANE's search was e�cient throughout evolution, allowing it to continue

to generate higher quality networks.

Despite numerous attempts with several di�erent parameters, the two-layer AHC was unable

to learn this task. Several reinforcement signals were generated to aid the AHC's learning:

� The distance from the last robot position, given after every action.

� The best distance attained during the trial, given after every action.

2In pole balancing, solutions typically either drop the pole within 100 steps or balance it forever.
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Figure 5.4: Comparison of the learning rates. The distance refers to the average distance over a
50 position test set for the best network found at or before each evaluation. The distances are
averaged over 20 simulations. SANE found the most pro�cient solutions, while the missing state
information caused the AHC to fail.

� The �nal best distance, given after a collision.

These extra signals were designed to boost the AHC's performance by rewarding solutions

for primitive behavior. The �rst signal rewards the robot for moving straight and not spinning.

The second and third signals reward the robot for moving further than its previous best distance.

None of the aforementioned reinforcement signals had any e�ect on the AHC's performance, nor

did any learning parameter adjustments.

The AHC's performance in this task demonstrates the weakness of the temporal di�erence

approaches in problems with limited state information and conversely the robustness of evolutionary

algorithm methods. Methods such as Q-learning and the AHC learn value functions that de�ne

the expected reward from the current state. The value function assumes that the input is su�cient

to uniquely identify the state of the world (see section 2.4.3 for more explanation), which in real

problems is not feasible. In the Khepera task, the sensory inputs do not adequately describe the

robot's state because they give no information about the position of the robot in its world nor do

they provide knowledge of the number of moves left that the robot can make.

From �gure 4.2 in section 4.1, it is obvious that to accurately evaluate the expected distance

(ie. the \value") from any point, a value function must know 1) the position of the robot, 2)

how far the robot is from its starting point, and 3) how many moves it can make. If the robot is

positioned in the tight corners of the maze, has made little progress, and has only a few moves left,

its expected return is very low. Conversely, if the robot is on a long straightaway, is very far from

its starting position, and has many moves left the expected return is very high. The AHC, however,
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makes predictions of expected returns based only on sensory information of the immediate presence

of walls. A characterization of such a prediction could be: \If there are no walls in front of the

robot, the expected return is 400." Clearly, there is not enough information here to make such a

prediction. What if the robot is still at the starting point, has been spinning for 199 action steps,

and only has one move left? Ignorant performance predictions do not take into account important

factors that determine the true performance and are essentially meaningless. Consequently, the

temporal di�erence approach makes no headway into the Khepera problem.

In contrast, evolutionary algorithm approaches do not associate sensors with values. As

described in chapter 2, they learn direct mappings from sensors to actions and thus associate

sensors with actions, not values. For example, a characterization of an evoluationary algorithm

control decision could be: \If there is a wall in front of the robot, reverse the motors." Clearly,

such action decisions can be made based on limited sensory information. By associating the reverse

action with the forward sensor activation, an EA will develop a policy that avoids frontal collisions.

Likewise, the left and right actions become associated with the right and left sensor activations,

respectively. Such actions do not require positional information within the robot's world, and the

EA can easily solve the task given the limited state information.

5.3 Concluding Remarks

SANE's performance in the two benchmarks demonstrates the advantages of both SANE as a tool

for sequential decision learning and symbiotic evolution in general. More speci�cally, the bench-

marks con�rm the hypotheses presented in the beginning of the chapter: 1) The pole balancing

simulations showed SANE to be more e�cient and faster than both current approaches to rein-

forcement learning and a state of the art neuro-evolution system. 2) SANE's learning was shown

to be more robust than the other methods when signi�cant noise was introduced in the �tness

function. 3) The generalization of SANE's solutions in pole balancing were comparable to current

RL approaches. 4) The Khepera benchmark demonstrated how SANE's e�cient search can evolve

better solutions than GENITOR and the two-layer AHC in di�cult tasks. 5) The Khepera bench-

mark demonstrated the robustness of SANE and conversely the weakness of the temporal di�erence

methods without complete state information. These assets suggest that SANE could be e�ective

in challenging and novel real world sequential decision tasks. Two such applications are described

in the next chapter.
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Chapter 6

Applications of SANE

One of the primary goals of this research was to build a system that can scale well and apply

to decision tasks in the real world. This chapter presents implementations of SANE to two such

situations. In the �rst task, SANE was used to �lter, or focus, a minimax game-tree search. By

discarding misinformation in the search tree, SANE signi�cantly improved the play of a world

champion Othello program. In the second task, SANE was applied to a di�cult problem in the

�eld of robotics. SANE successfully formed neural networks that guided a robot arm to target

objects while avoiding randomly placed obstacles. Such behavior was previously only possible

through sophisticated path planning algorithms. The �rst task in this chapter is an example of

a discrete state and action space problem. The second demonstrates SANE's performance in a

continuous state and action space problem. Conjunctively, the two applications demonstrate both

the 
exibility and scope of the SANE decision learning system. Portions of this chapter are taken

from (Moriarty and Miikkulainen 1994b, 1996b).

6.1 Focusing Minimax Search

Almost all current game programs rely on the minimax search algorithm (Shannon 1950) to return

the best move. Minimax operates by searching from the current game situation through all possible

moves. In most games to �nd the best move, minimax must search search through several turns

(player and opponent moves), which can be characterized as search levels. Because of time and space

constraints, searching to the end of the game is not feasible for most games. Heuristic evaluation

functions, therefore, are used to approximate the payo� of a state. Unfortunately, heuristics create

errors that propagate up the search tree, and can greatly diminish the e�ectiveness of minimax

(Korf 1988). In other words, minimax is only as strong as the state evaluation function, since it

always assumes that the heuristic estimates are accurate.

A second drawback is that minimax also assumes that the opponent will always make the

best move. It does not promote risk taking. Often in losing situations the best move may not

be towards the highest min/max value, especially if it will still result in a loss. Knowledge of

move probabilities could guide a search towards a more aggressive approach and take advantage of

possible mistakes by the opponent.

Recently, several algorithms have emerged that are more selective than the standard �xed-

depth minimax search (Korf and Chickering 1994; McAllester 1988; Rivest 1987). These algorithms

70



allow moves that appear more promising to be explored deeper than others, creating nonuniform-

depth trees. While these techniques have lead to better play, they still allow minimax to evaluate

every unexplored board and are therefore vulnerable to errors in the evaluation function.

Most game programs overcome weak evaluation functions by searching deeper in the tree.

Presumably, as the search frontier gets closer to the goal states, the heuristic evaluations become

more accurate. While this may be true, there is no guarantee that deeper searches will provide

frontier nodes closer to the goal states. Hansson and Mayer (1989) have shown that without a

sound inference mechanism, deeper searches can actually cause more error in the frontier nodes. A

more directed search, therefore, seems necessary.

6.1.1 Creating a Focus Window

Neural networks can be integrated with a minimax search to create a novel approach to game tree

searching that can overcome de�ciencies in the evaluation function and promote risk taking. At

each level of minimax search, the network sees the updated game situation and evaluates each

move. Only those moves that are better than a threshold value will be further explored. This

subset of moves can be seen as a window to the search tree returned by the focus network. The

search continues until a �xed depth bound is reached. A static evaluation function is applied to the

leaf states, and the values are propagated up the tree using the standard minimax method. The

�-� pruning algorithm (Edwards and Hart 1963; Knuth and Moore 1975) is used as in a full-width

search to prune irrelevant states.

To illustrate how such control of minimax might be bene�cial, consider the following situa-

tion. Two moves, A and B, are considered in the current board con�guration. Although move A

returns, through minimax search, a higher evaluation value than move B, both moves appear to

lead to losing situations. Move B, however, can result in a win if the opponent makes a mistake.

By assuming that the opponent will always make the best move, minimax would choose A over B

resulting in a sure loss. Focus networks, however, could learn that a win can sometimes be achieved

by selecting move B, and they would thus not include A in their search window.

More generally, restricting the number of moves explored has two advantages: (1) the

branching factor is reduced which greatly speeds up the search. As a result, searches can pro-

ceed deeper on more promising paths. (2) The focus networks are forced to decide which moves the

minimax search should evaluate, and in order to play well, they must develop an understanding of

the minimax algorithm. It is possible that they will also discover limitations of minimax and the

evaluation function, and learn to compensate by not allowing minimax to see certain moves.

Figures 6.1 and 6.2 illustrate the focused search process. The current player has a choice of

5 moves (a through e). Figure 6.1 shows a basic minimax search with a depth bound of 2. The leaf

states are evaluated according to a static evaluation function. The actual payo� value of each leaf is

shown below the depth bound. The di�erence between these values is the error or misinformation

generated by the evaluation function. The best move is e, as it will generate a payo� of at least

11. Because of the misinformation, however, full-width minimax would choose move b. Figure 6.2

shows the same search tree but with the addition of a focus window. Only the nodes in the window

are evaluated. By focusing the search away from the poor information, the best move (e) would be

selected.

While it is clear how a neural network can bene�t a minimax search by directing it away
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Figure 6.1: A full-width minimax search to level 2. All nodes in the shaded area are evaluated. The
actual payo� values of the leaf states are listed below the depth bound. Their heuristic estimates
are shown inside the leaf nodes. Min (circles) selects the lowest payo� and max (squares) the
highest of min's choices. As a result, move b is selected for the root.
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Figure 6.2: A focused minimax search. Only the states in the focus window (the shaded region)
are evaluated. As a result, move e appears to be max's best choice.

from misinformation, forming such a network is quite di�cult. The credit assignment problem

exists here in grand form. The only reward returned by the domain is the �nal outcome of the

game: a win or loss. The score or piece di�erential may provide additional information, but this

reward must still be distributed among thousands or possibly millions of search level decisions made

during the game. Since there is no obvious dispersement of game rewards, a supervised learning

method is impractical. The single reward attributed to all of the search level decisions makes this

an extremely challenging and important problem for reinforcement learning. A system capable of

forming e�ective focus neural networks presents a unique and quite novel application to game-tree

search and could bene�t a wide range of high-level game programs.

6.1.2 Implementation of SANE in Othello

To test the e�ectiveness of SANE in a challenging real-world application, SANE was implemented

to evolve focus networks in the game of Othello. Othello is a board game played on an 8 � 8 grid

(�gure 6.3). Each piece has one white and one black side. Players (\white" and \black") take turns

placing pieces on the board with their own color facing up until there are no further moves. For a

move to be legal, it must cause one or more of the opponent's pieces to be surrounded by the new

piece and another of the player's pieces. All surrounded pieces are subsequently 
ipped to become

the player's pieces. Several world championship-level Othello programs have been created using

full-width minimax search (Lee and Mahajan 1990; Rosenbloom 1982). Like most advanced game

programs, they achieve high performance through examining millions of positions per move.
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Figure 6.3: The architecture of the focus networks for Othello. Two inputs are used to encode each
position on the board. The encoding of the �rst four spaces (a1, b1, c1, d1) for the given board
with the network playing black are shown in the input layer. Both input nodes 1 and 2 are o�
since a1 is empty. Node 3 is on (i.e. dark) since b1 has the network's piece in it, and nodes 6 and
8 are on since the opponent has pieces in c1 and d1 (both nodes for the same position are never on
simultaneously). The activation of the output layer is shown by the shading. The corners (such as
a1 and h8) have high activations since corners are almost always good moves.

Two input units were used to represent the type of piece in each board space. If the space

contains the network's piece, the �rst input unit is turned on (value = 1). If the space contains

the opponent's piece, the second input unit is turned on. If the space is empty, neither input unit

is activated. The two input units are never both on.

Each output unit corresponded directly to a space on the board. The activation of an

output unit determined whether a move was to be considered or not. If the activation was greater

than or equal to 0, the move was included in the focus window. Separate output units were used

for the two players. Thus, the ranking for the network's moves may di�er from the ranking of

the opponent's moves. This distinction is bene�cial since an aggressive player should not assume

his opponent is equally aggressive and should take a more conservative approach when predicting

his opponent's moves. Similarly, a defensive player should not presume defensive play from his

opponents. The separation of player and opponent's output units allows o�ensive and defensive

strategies to develop. Figure 6.3 shows an example game situation, the input the network receives,

and an activation in the network's output layer.

To evaluate a network, it was inserted into an �-� search program and played against a full-

width, �xed-depth minimax-�-� search. The number of wins over ten games played determined

the network's �tness. To create di�erent games, an initial state was selected randomly among the

244 possible board positions after four moves. Both players were allowed to search through the
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second level and used the same evaluation function. To optimize �-� pruning, node ordering was

implemented based on the values of the evaluation function (Pearl 1984).

The evaluation function implemented was the Bayes-optimized function used in Bill (Lee

and Mahajan 1990), which is composed of enormous lookup tables gathered from expert games.

Bill was at one time the world-champion program and is still believed to be one of the best in

the world. Any improvement over the current Bill evaluation function would thus be a signi�cant

result.

SANE's dual populations contained 200 blueprints and 2000 neurons. Each blueprint pointed

to 25 neurons and each neuron speci�ed 12 network connections. The number of hidden neurons

and connections is small relative to the input and output layer, because SANE's hidden neurons are

mainly responsible for deselecting a move from consideration. The hidden layer deselects a move

by creating a negative activation in the corresponding output unit. If the output unit receives

no activation, the move is still included in the focus window. Since there is most likely a larger

proportion of selected moves than deselected moves, the hidden layer can be small.

The evaluation was performed over three main stages: the training stage, the validation

stage, and the testing stage. In the training stage, the SANE neurons and blueprints were evolved

for 200 generations, which took about 11 hours of CPU time on an IBM RS6000 25T. After each

generation, the network with the best score over its ten games played was saved for testing in the

validation stage. In the validation stage, the collection of best-of-the-generation networks were

further tested to obtain the �nal network. The networks were evaluated over the complete 244

starting positions against another full-width search, however, this time each player was allowed to

search through level 3. The search level was extended during the validation stage to better evaluate

networks that could generalize well. In other words, each of the networks were known to perform

well at search level 2 from the training stage. The validation stage narrows the �eld of networks by

testing the top networks using a more powerful (ie. deeper) search. The top performing network

over all 244 starting positions is taken as the �nal network to be used testing stage. In the testing

stage, the �nal network is tested on the 244 starting positions using 1 through 6 level searches.

6.1.3 Focused Search Results

Figure 6.4 shows the best focus network's performance during the testing stage over various search

levels against the full-width opponent. The results show that the minimax search with the focus

network was playing a stronger game than the unfocused search. SANE's winning percentage is

statistically signi�cant (p < :05) at every search level, except levels 1 and 5. At level 5, SANE's

winning percentage is statistically signi�cant with p < :09. Of all of the games played over all

levels, SANE wins 54.8% of the time, which is statistically signi�cant (p < :01).

What is most remarkable about the focus network's play is that it is able to win while

looking at only a subset of the states of the full-width search. Of all available moves to level 6,

only 77% were included in the focus network's window. Since the full-width search is looking at

the same moves as the focused search plus additional moves, there must be some misinformation in

the additional moves that are causing it to select poor moves. Since the focused search employs the

same evaluation function to the same depth and yet is selecting better moves, the focus network

must be shielding the root from this misinformation.

To better understand how the stronger play was achieved, the moves included in the focus
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Level 1 2 3 4 5 6

% of games won by SANE 52 59 57 54 53 54

Statistical Signi�cance (p < n) 0.2 0.00004 0.001 0.03 0.09 0.03

Nodes searched with SANE 198 931 5808 30964 166911 939999

Nodes searched with full-width 207 977 6305 35932 212285 1217801

Figure 6.4: The winning percentage of SANE and the average number of moves searched per
level. The percentage re
ects the number of games won out of 488 games played. The statistical
signi�cance is shown beneath the percentage. For example at level 3, SANE's winning percentage
is statistically signi�cant with (p < :001).

window were further analyzed. One hundred test games were played against a full-width search

using the same evaluation function. At each board position the moves in the focus window were

compared with the move a full-width minimax search would return at the same position. Figure 6.5

shows the percentage of full-width minimax's moves that were included in the focus network's

window. The graph thus re
ects how often the focus network agrees with full-width minimax. The

results show that the focus network is e�ectively looking far ahead. The moves in the network's

window are similar to moves that a deep-searching, full-widthminimax would return (black triangles

in �gure 6.5). However, since the network has only been evolved against a shallow-searching

opponent, its predictions of the opponent's moves become less accurate as the opponent searches

deeper (white circles in �gure 6.5). The focus network's moves are strong because they are not tied

to the moves that a full-width minimax search would choose. Instead, they re
ect moves that have

led to wins. It is this strong o�ense that allows the networks to scale with the search level. It is

conceivable that eventually the network's diminishing defense will leave it vulnerable to a powerful

opponent, however that was never observed in these experiments.

In the implementation described here, focus networks searched only through uniform{depth

trees. Focus networks could also be implemented with algorithms such as best{�rst minimax (Korf

and Chickering 1994), where the tree is grown in non-uniform depths allowing more promising

moves to be searched deeper. Whereas the standard best{�rst minimax considers all unexplored

board positions in the decision of where to explore next, a selective window of the most important

positions could be maintained to focus the search.

6.1.4 Concluding Remarks

The results indicate that SANE can evolve better and more e�cient game play through more

selective search. Much like humans, focus networks selectively dismiss moves that have previously

led to adverse situations. Whereas full-width minimax is very sensitive to inconsistencies in the

evaluation function, focused searches can actually discover and discard unreliable information. The

approach will be most useful in improving performance in domains where it is di�cult to discover

e�ective evaluation functions. SANE's decision policies can tailor the minimax search to make the

best use out of the information the evaluation function provides to produce stronger overall play.

More generally, the simulations demonstrate SANE's ability to form e�ective decision poli-

cies in novel decision tasks. Whereas most research has improved game-playing through optimiza-

tion of the evaluation function (Hansson and Mayer 1990; Lee and Mahajan 1990) or altering

the minimax algorithm (Korf and Chickering 1994; McAllester 1988; Rivest 1987), SANE attacks
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Figure 6.5: The percentage of moves returned by minimax as its choice that the focus network
considers.

misinformation by making search-level decisions pertinent to the particular game and evaluation

function. Such a novel approach to game-tree search, which is one of the most-studied �elds in

arti�cial intelligence, illustrates how SANE, through its generality and ability to learn with sparse

reinforcement, may uncover previously unrealizable decision tasks.

6.2 Controlling a Robot Arm

In the minimax task, both the state and action spaces were �nite. The state space consisted of the

number of possible board con�gurations, and the action space consisted of the 64 possible moves.

However, states and actions in many real world control tasks in �elds such as robotics are not

easily discretizable. A mobile robot that receives sensory input over a continuous range and must

generate real-valued rotations to its motors, operates in a continuous state and action space. This

section presents an application of SANE to an important real-world control problem in robotics,

where both the input and output spaces are continous.

6.2.1 Robot Hand Eye Coordination

Many industrial tasks such as assembly, packaging, and processing rely heavily on the manipulation

and transportation of small components. Robot arms can automate many of these processes and

improve the cost e�ciency of the operation. To be as e�ective as their human counterparts, robot

arms normally use vision systems based on one or more cameras to identify and locate the target

objects (Feddema and Lee 1990; Papanikolopoulos and Khosla 1993; van der Smagt 1995; Weiss

et al. 1987; Wijesoma et al. 1993).
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Vision-based robot arm control is a very complex task that requires mapping the information

of the target and obstacle locations to the joint rotations that position the hand near the target.

This task in commonly known as hand-eye coordination. Because it is di�cult to specify such a

mapping by hand, many researchers have applied machine learning techniques to learn the control

strategy. The resulting policies are often much more robust than manually-designed, �xed policies.

Several methods have been proposed for learning robot arm control in neural networks

(Kawato 1990; Kuperstein 1991; Miller 1989; van der Smagt 1995; Walter et al. 1991). Each

of these methods is based on supervised learning from a corpus of input/output examples that

demonstrate correct behavior. During training, the network is presented inputs from the database

and its output is compared to the desired output. Errors are calculated according to the di�erences,

and modi�cations are made to the network's weights based on some variant of the backpropagation

algorithm. As in any supervised learning application, it is crucial that the training corpus contains

a good representative sample of the desired behavior.

The most common approach for generating training examples is to 
ail the arm and record

the resulting joint and hand positions (Werbos 1992). For example, if the joints are initially in

position ~J and a random rotation ~R results in hand position ~H, a training example of the form

Input : ~J; ~H;Output : ~R can be constructed. This example re
ects the correct rotation to reach

target position ~H from joint position ~J . Given a su�cient database of such examples, a neural

network can learn to approximate the inverse kinematics necessary to translate between the camera-

based visual and joint spaces.

A major limitation of generating training examples by \
ailing" is that it only applies to

situations where the target can be reached in a single rotation (~R) applied to the joints. It cannot

demonstrate more general behavior such as reaching while simultaneously avoiding obstacles, where

a sequence of rotations (~R; ~R; ~R; . . .) are necessary. For example, when an obstacle is placed

between the arm and the target, the arm cannot take a direct path, but must instead make several

moves around the obstacle. Random arm movement would never produce a su�cient training

example for this situation, since there is no single rotation ~R of the joints that can reach the

target. To produce such behavior using a supervised learning approach, training examples must

demonstrate movement to intermediate arm positions (e.g. above the block). It is unclear how such

examples could be generated without a path-planning algorithm (Lumelsky 1987). Path-planning

is an analytical approach performed o�ine in a complete mathematical model of the robot and

its environment. Thus path-planning requires signi�cant domain knowledge and computational

resources, which may not be available in many situations.

Learning obstacle avoidance behavior without explicitly generating training examples is thus

an important problem in robot arm control. SANE presents a solution to this problem by evolving

the neuro-control networks. SANE o�ers two important advantages to robotic arm control over the

standard supervised methods. First, it operates using only the overall performance of the neural

network controllers as a guide. If avoiding obstacles is a necessary component of good performance,

the evolutionary algorithm will select for networks that can avoid obstacles. No input/output

examples are necessary, and thus neuro-evolution is not constrained by the inability to generate

training examples. Second, neuro-evolution can be applied with very little a priori information.

Knowledge of the robot arm dynamics, the arm's environment, or the components of the visual

system is not necessary as they are in path-planning algorithms. Neuro-evolution evolves this
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Figure 6.6: The OSCAR-6 robot arm. OSCAR is designed for pick-and-place tasks and has been
applied in several industrial settings. The arm contains 6 total joints and a camera mounted in the
end e�ector. This OSCAR-6 robot is owned by the Autonomous Systems Group at The University
of Amsterdam. Printed with permission.

knowledge through experience and tailors it's control policy to meet the speci�c demands of the

domain.

6.2.2 Evolving Obstacle Avoidance Behavior

To demonstrate how SANE can integrate obstacle avoidance into a robot arm control policy, SANE

was implemented in a sophisticated robot arm simulation of the OSCAR-6 anthromoporphic robot.

Figure 6.6 shows a picture of an OSCAR robot.

The network controller receives both camera-based visual and infrared (IR) sensory input

representing the location of the target and the distance from obstacles, and must resolve a series of

joint rotations to position the hand at a target location. The hardware speci�cations and algorithms

used to generate the input are independent of the learning system and are considered given. For

descriptions of camera-based vision and IR sensors in robot manipulators, see (Lumelsky 1987;

Papanikolopoulos and Khosla 1993; Sanderson and Weiss 1983; van der Smagt 1995; Wijesoma et al.

1993). The focus of this section is how SANE can automatically integrate the sensory information

into an e�ective control policy.

Primary and Secondary Control Networks

The task of reaching a target can be seen as a composite of two basic movements. First, the robot

arm must make several large joint rotations to get within a certain proximity of the target object.

Such rotations involve detecting and avoiding obstacles in the arm's path. Second, the robot arm

must make smaller, more precise movements to position the end e�ector within grasping distance of

the target object. This observation leads to an e�cient design of a neuro-evolution system, where
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control is divided between two networks. The �rst, called the primary network, positions the arm

near the target, while the secondary network makes the smaller movements to reach the target

object.

When a task is initiated, the primary network moves the arm until it speci�es that the arm

should be stopped or it exceeds a prespeci�ed maximum number of joint rotations. There is no �xed

proximity boundary for the primary network; its goal is to \get as close as it can". It is possible to

evolve primary networks to complete the entire task, however, because of the diminishing returns

of late evolution, it is often more advantageous to accept a certain level of pro�ciency and begin a

new search for secondary networks. Since the secondary networks start close to the target, there

is normally little need for an obstacle avoidance strategy. Thus, any of the existing supervised

approaches can generate e�ective secondary networks. Secondary networks are evolved here to

demonstrate that neuro-evolution can solve the entire task.

Network Architectures

Each neural network controller (primary and secondary) contains 9 input, 16 hidden, and 7 output

units (�gure 6.7). The input units correspond to the x, y, and z relative distances of the hand to

the target and six directional proximity sensors located on the hand that sense obstacles in the

negative and positive x, y, and z directions.1 In other words, they sense obstacles in back of, in

front of, to the left of, to the right of, above, and below the end e�ector. They have a 10 cm range

and return the absolute distance to the obstacle. If no obstacle is currently within the sensor range,

the activation is 10.0.

Each joint's rotation is determined by two unique output units. The �rst unit is linear; the

sign of its total activation speci�es the direction of rotation. The second output unit is sigmoidal

and speci�es the magnitude of rotation. Dividing the output function this way makes it easier for

hidden units to control a speci�c function, such as the direction of rotation of a particular joint.

In the primary network, the magnitude output units are normalized between 0.0 and 5.0, limiting

each joint rotation to [-5,+5] degrees. This forces the primary network to make several small joint

rotations to reach the target, which allows it to more e�ectively sense and avoid obstacles in the

arm's path. In the secondary network, the rotation is normalized between 0.0 and 1.0 to allow for

�ner movements near the target.

When the joint rotations are small, it is not necessary to take into account a large magni-

tude of distance from the target object. Such information can only interfere with the next local

movement. Thus, it is very useful to \cap" the camera-based visual input units at 10.0 cm, such

that if the target object is further away than 10.0 cm in any direction, the corresponding input

unit receives an activation of only +/- 10.0.

A �nal threshold output unit is included as an override unit that can prevent movement

regardless of the activations of the other output units. If the activation of the override unit is

positive, the arm is not moved. If it is negative, the joint rotations are made based on the other

output units. Without the override unit, stopping the arm would require setting the activation of

the three sigmoidal units to exactly 0.0. Since genetic algorithms do not make systematic, small

1The OSCAR-6 at the University of Amsterdam (�gure 6.6) does not actually have IR sensors on its hand. These
experiments, however, use a simulation of OSCAR, which was modi�ed to include IR sensors.
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Figure 6.7: The architecture of the neural network controller for the OSCAR-6 robot. The dark
arrows indicate activation propagation from the input to hidden layer and hidden layer to output
layer. The connections and weights between the hidden layer and the input and output layers are
evolved by the genetic algorithm.

weight changes, it is very di�cult to evolve neurons to compute such exact values. The override

unit allows networks to easily stop the arm when it is su�ciently close to the target.

6.2.3 Evaluation

Experimental Setup

The Simderella 2.0 package written by van der Smagt (1994) was used as the robot arm simulator in

these experiments. Simderella is a simulation of the OSCAR-6 anthromoporphic arm, and van der

Smagt (1995) has reported that controllers that perform well in Simderella exhibit very similar

performance when applied to OSCAR. Figure 6.8 illustrates the Simderella robot. Since neither

the OSCAR-6 robot at the University of Amsterdam nor the Simderella simulator use IR sensors,

the simulator was modi�ed to re
ect sensor placement on the robot's hand.

Obstacles were introduced in the Simderella environment in the form of \boxes". Figure 6.9

shows the twelve di�erent obstacle placements used in the simulations. During each trial, which

consists of a sequence of moves to reach a target, one of the boxes is occupied by an obstacle.

If the end e�ector moves into an occupied box, the trial ends, and the last position before the

collision is used as the �nal position for �tness evaluation. This obstacle scheme is very simple,

since obstacles always have the same size and there is no check if the rest of the arm (besides the

hand) violates an occupied box. However, the task is still quite di�cult and, to my knowledge, no

existing supervised learning approach can learn the intermediate joint rotations without signi�cant

a priori information about the size, shape, and location of the obstacles. Thus, this task presents

an important �rst step in learning obstacle avoidance behaviors.

Each neural network evaluation begins with random, but legal, joint positions and a random

80



3

1

2

Figure 6.8: The Simderella simulation of the OSCAR robot. The numbers indicate the joints
which are to be controlled. The Simderella software was developed by Patrick van der Smagt and
is supported by the Dutch Foundation for Neural Networks.

Figure 6.9: The 12 obstacle placements in the robot simulator. Each box is 30�30�30 centimeters.
During any trial, one box is �lled with an obstacle.
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target position. The target and hand are never started within an obstacle. The same reach space

used by van der Smagt (1995) is employed, where targets are placed within a 180 degree rotation

of the �rst joint. A total of 450 target positions were created and separated into a 400 position

training set and a 50 position test set. During evolution, a target position is randomly selected

from the training set before each network evaluation. During each trial, a network is allowed to

move the arm until one of the following conditions occur:

1. The network stops the arm.

2. The network places the arm in an illegal position (e.g. hits the 
oor).

3. The network hits an obstacle.

4. The number of moves exceeds 40.

The score for each trial is computed as the percentage of distance that the arm covered from its

initial starting point to the target position. For example, if the arm starts 120 cm from the target

and its �nal position is 20 cm from the target, the network receives a score of (120 � 20)=120 =

0:83. The percentage of distance covered, instead of the absolute �nal distance, provides a fairer

comparison between a network that receives a close target and a network that receives a distant

target. Each network is evaluated over a single randomly selected target.

A population of 1600 neurons and 200 network blueprints are evolved by SANE. The �rst

stage of evolution consists of only primary networks. The population is evolved for 200 generations,

and the best network of each generation is tested over the 50 target test set. The overall best

network is then �xed as the primary network, and the secondary network evolution begins from

random populations of neurons and blueprints. In other words, the secondary network evolution

occurs after the primary network evolution and uses a �xed primary network to make the initial

joint rotations. An interesting future research question is whether primary and secondary networks

can be evolved simultaneously.

Results

Figure 6.10 shows the performance of the primary networks per generation averaged over 10 sim-

ulations. The graph plots the average �nal distance of the best neural network found at or before

each generation. On average, a network capable of moving the arm within an average of 10 cm was

found in 41 generations.

Figure 6.11 shows the performance of the secondary networks per generation. Again, the

graph presents an average of 10 simulations. In each simulation, the primary network was taken

from a di�erent one of the 10 primary evolutions. Within 80 generations, the secondary networks

were able to position the arm with an error of only 1 cm, which is considered acceptable for most

industrial applications (van der Smagt 1995). Thus, in this task, the combination of the primary

and secondary networks can e�ectively control the robot arm to within industry standards.

It is di�cult to measure how e�ciently a network avoids obstacles as a function of each

generation, since early networks do not hit many obstacles simply because they do not move the

arm very far. Thus, counting the number of hits is a poor measure of obstacle avoidance. A better

metric is the percentage of trials in which the primary network positions the arm within 10 cm
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Figure 6.10: Evolution of primary networks. The average distance from the targets is plotted for
the best network found so far at each generation. The curve is an average over 10 simulations.
In each simulation, the distances were averaged over 50 randomly placed targets. The networks
achieve the desired performance level (10 cm) after an average of 41 generations.
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Figure 6.11: Evolution of secondary networks. The distance per generation is plotted, averaged
over 50 trials and 10 simulations. Each simulation uses a di�erent �xed primary network return
from the 10 primary network evolutions.
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Figure 6.12: Evolution of obstacle avoidance behavior. The percentage of trials within 10 cm per
generation is plotted for the primary network evolution.

of the target object. To achieve a high percentage, the network must contain a strong avoidance

strategy coupled with an e�ective target reaching ability. Figure 6.12 plots this percentage for the

best primary networks at each generation. On average, the best primary networks moved within 10

cm of the target objects 98% of the time. When collisions did occur, it was often not due to poor

control decisions. With only 6 proximity sensors in these simulations, blind spots are inevitable,

and occasionally a nearby obstacle can not be detected. Thus given more sensors, the primary

networks should encounter even fewer obstacles.

In order to discover how often it was necessary to avoid obstacles, a manually-designed

inverse-kinematics controller2 was tested on the same 50 position test set and obstacle con�gura-

tions. The �xed controller takes the most direct path towards the target and does not contain any

obstacle avoidance strategies. On average, the �xed controller, hit obstacles in 11% of the trials.

Since the best networks found in these simulations hit obstacles in only 2% of the trials, it follows

that that signi�cant avoidance strategies have been evolved.

6.2.4 Related Work

Davidor (1991) used a genetic algorithm to generate the intermediate joint rotations necessary to

keep the end e�ector of a robot arm on a straight path. Davidor's work di�ers from the work pre-

sented in this chapter in several ways. First, Davidor used a two-dimensional robot arm simulation

that was not based on a real arm. Second, Davidor evolved speci�c trajectories for a single, �xed

path. The evolved trajectories are unique to the speci�c path and do not provide generalization for

other arm paths. Thus, a new set of trajectories must be evolved for every new robot movement.

2The controller is included as part of Simderella simulator.

84



The method presented here evolves a single control policy for all robot movements. The �nal di�er-

ence from Davidor's work is that Davidor's intermediate joint positions were computed to maintain

a straight line of movement for the end e�ector. SANE's networks have the exact opposite e�ect:

Straight lines are broken when obstacles are sensed in the arm's path. Davidor's trajectories do

not contain obstacle avoidance strategies.

6.2.5 Concluding Remarks

In many industrial settings, it is crucial for a robot arm to detect and avoid obstacles in the its

path. Existing methods for learning robot arm control, however, cannot learn the intermediate joint

rotations necessary to move around an obstacle. By evolving neuro-controllers, such rotations can be

learned since performance is evaluated over multiple control steps. Experiments in a sophisticated

simulation of the OSCAR-6 robot arm showed that SANE can e�ectively integrate both target

reaching and obstacle avoidance into a single control policy.

More generally, the experiments demonstrate that SANE can be applied to sequential deci-

sion problems with continous sensor and action spaces. Because SANE generates a direct mapping

from sensors to actions (�gure 2.3) and does not have to evaluate each possible action choice, it can

consider an in�nite number of actions for each sensor reading. These results coupled with SANE's

performance in the minimax domain demonstrate the 
exibility and scope of SANE for learning

decision strategies.
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Chapter 7

Related Work

The work in this dissertation makes novel contributions in two main areas: an e�cient reinforce-

ment learning method for sequential decision tasks and a novel coevolutionary mechanism to foster

population diversity and improve search e�ciency. Work related to this dissertation is separated

along these two fronts. First, other evolutionary algorithm approaches to reinforcement learning

are discussed. Second, other methods of coevolution are presented and compared to the symbiotic

evolution in SANE.

7.1 Evolutionary Reinforcement Learning Methods

Several systems have been built or proposed for sequential decision learning through evolutionary

algorithms, including both symbolic and connectionist approaches. This section highlights three of

the most well-known systems.

7.1.1 SAMUEL

The SAMUEL system uses evolutionary algorithms to form a production system to solve sequential

decision problems (Grefenstette et al. 1990). SAMUEL consists of three major components: a

problem-speci�c module, a performance module, and a learning module. The problem-speci�c

module consists of the environment and its interfaces. The performance module is a production

system made up of several if-then rules that represent the decision policy. This set of reactive rules

is called the tactical plan. Like traditional rule-based systems, the production system performs

matching and con
ict resolution to select the appropriate rule to �re. Additionally, the production

system adjusts rule strengths based on the infrequent feedback from the environment. The learning

module uses an evolutionary algorithm to develop new tactical plans. Each plan is evaluated by

testing its performance in the task. New plans are created using genetic operators such as selection,

crossover, and mutation. SAMUEL has been applied to several small problems including the evasive

maneuvers problem (Grefenstette et al.1990) and the game of cat-and-mouse (Grefenstette 1992). In

more recent work, SAMUEL has been extended to the task of mobile robot navigation (Grefenstette

and Schultz 1994).

The key di�erence between SAMUEL and SANE is the choice of representation. SAMUEL

uses a rule-based production system, while SANE uses neural networks. Which representation is
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more appropriate is a matter of some debate in the arti�cial intelligence community and beyond

the scope of this dissertation. Neural networks do not require matching or con
ict resolution to

decide the appropriate output. On the other hand, it is easier to incorporate preexisting domain

knowledge into a set of decision rules than accross the weights of a neural network. The bottom

line, however, is that both provide e�ective generalization of the decision policy.

7.1.2 GENITOR

GENITOR (Whitley and Kauth 1988; Whitley 1989) is an aggressive search genetic algorithm

that has been shown e�ective in reinforcement-learning problems. Whitley et al. (1993) demon-

strated how GENITOR can e�ciently evolve decision-making neural networks using only limited

reinforcement from the domain. Since GENITOR uses neural networks to represent the decision

policy, it achieves e�ective generalization of the state space. GENITOR relies solely on its evolu-

tionary algorithm to adjust the weights in the neural networks and thus belongs to the ERL class

of methods.

In the GENITOR reinforcement learning method, a neural network is represented in the

population as a sequence of connection weights. The weights are concatenated in a real-valued

chromosome along with an allele (chromosome position) that represents a crossover probability. The

crossover allele determines whether the network is to be mutated (randomly perturbed) or whether

a crossover operation (recombination with another network) is to be performed. The crossover

allele is modi�ed and passed to the o�spring based on the o�spring's performance compared to the

parent. If the o�spring outperforms the parent, the crossover probability is decreased. Otherwise,

it is increased. Whitley et. al. refer to this technique as adaptive mutation which tends to increase

the mutation rate as populations converge. Essentially, this method promotes diversity within the

population to encourage continual exploration of the solution space.

GENITOR is considered a \steady-state" genetic algorithm (Syswerda 1991), which di�ers

considerably from the traditional function-optimization GA. In traditional GA's, genetic opera-

tors are applied after the entire population of individuals have been evaluated. In a steady-state

GA, rather than following the synchronous generation model, genetic operators are applied asyn-

chronously often after each solution is evaluated. For example in GENITOR, after a network is

evaluated, it is immediately mutated or recombined to form a new neural network. A steady-state

GA may prove more adaptive than a generational GA because revisions are more frequent.

In addition to the steady-state feature, GENITOR makes three other important modi�ca-

tions to the canonical genetic algorithm for reinforcement learning. First, each chromosome position

is a single real value rather than a binary bit. By associating chromosome positions directly with

weights of the neural network, GENITOR always recombines solutions between weight de�nitions.

Thus, GENITOR reduces the haphazard destruction of neural network weights that would result if

crossover operations occured in the middle of a weight de�nition. The second modi�cation is a very

high mutation rate. GENITOR relies heavily on mutation to maintain diversity and promote rapid

exploration of the solution space. Finally, GENITOR uses unusually small populations of neural

networks. Small populations are used to discourage di�erent, competing neural network \species"

from forming within the population. Whitley et al. (1993) argue that speciation leads to competing

conventions and produces poor o�spring when two dissimilar networks are recombined.

Whitley et al.(1993) compared GENITOR to the Adaptive Heuristic Critic (Anderson 1989,
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Figure 7.1: Holland's Learning Classi�er System.

AHC), which uses the TD method of reinforcement learning. In several di�erent versions of the

common benchmark of balancing an pole on a cart, GENITOR was found to be comparable to the

AHC in both learning rate and generalization. The only di�erence Whitley et. al. found was that

the AHC was less consistent in solving the problem. In 5 out of 50 simulations, the AHC failed to

return a successful solution.

There are several key di�erences between GENITOR and SANE. The �rst di�erence is that

in GENITOR, each network is only evaluated once. While this can reduce the number of network

evaluations, it is very susceptible to sample error often referred to as noisy �tness evaluation

(Grefenstette et al. 1990). In SANE, each neuron is reevaluated in several networks per generation

and in subsequent generations. Such variance results in a greater sampling of the solution space for

each neuron and averages out the �tness evaluation noise. Another di�erence between SANE and

Whitley's approach lies in the network architectures. In the current implementation of GENITOR

(Whitley et al. 1993), the network architecture is �xed and only the weights are evolved. The

topology of the network must be resolved a priori by the implementor. In SANE, the topology of

the network evolves together with the weights, granting more freedom to the genetic algorithm to

manifest useful neural structures. Perhaps the major di�erence between SANE and GENITOR is

that SANE does not require any extra randomness to maintain diverse populations. GENITOR

achieves diversity through unusually high mutation rates that produce a random point within a

speci�c radius of the parent network (Whitley et al.1993). Reliance on high randomness will create

diversity, however, at the expense of many disruptions to important genetic building blocks.

7.1.3 Learning Classi�er Systems

Learning Classi�er Systems (LCS) enjoy the longest history of the ERL methods (Holland and

Reitman 1978; Holland 1987; Wilson 1994). An LCS uses an evolutionary algorithm to evolve

symbolic if-then rules called classi�ers that map sensory input to an appropriate decision. Figure 7.1

outlines Holland's LCS framework (Holland 1986). When sensory input is received, it is posted

on the message list. If the left hand side of a classi�er matches a message on the message list, its

right hand side is posted on the message list. These new messages may subsequently trigger other

classi�ers to post messages or invoke a decision from the LCS.
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Because of memory and complexity issues, normally only a subset of the matching classi-

�ers are allowed to post their messages to the message list. Determining which classi�ers should

activate is typically handled by a bidding system known as Holland's bucket brigade algorithm (Hol-

land 1986). In the bucket brigade algorithm, classi�ers maintain a strength measure and use their

strength to bid against other classi�ers to post their messages. Classi�ers are thus in direct com-

petition with each other to post their messages. Bids are subtracted from winning classi�ers and

passed back to the classi�ers that posted the message that triggered them. Classi�er strengths are

thus reinforced if the classi�er posts a message that triggers another classi�er. The classi�er that

invokes a decision from the LCS receives a strength reinforcement directly from the environment.

Sutton (1988) noted that the bucket brigade bid passing strategy bears a strong resemblance

to the theory of temporal di�erences. Both follow from Samuel's observation that steps in a sequence

should be evaluated and adjusted based on near successors rather than on the �nal outcome. The

bucket brigade updates a given classi�er's strength based on the strength of the classi�ers that �re

as a direct result of it's activation. The TD methods di�er slightly in this respect because they

assign credit based strictly on temporal succession and do not take into account causal relations of

steps. It remains unclear which is more appropriate for distributing credit.

While the bucket brigade distributes credit among classi�ers within the population, it does

not provide a means to generate new types of classi�ers. An evolutionary algorithm is the main

reinforcement learning engine that modi�es the base of classi�ers. The strength of the classi�er is

normally used as the �tness function for the EA. The EA selects, mutates, and recombines classi�ers

that accrue the most credit through the bucket brigade. Such classi�ers are the most responsible

for the good behavior of the LCS and should be selected for by evolution. Recent work, however,

has suggested that a separation of classi�er strength and �tness may be more appropriate to build

smaller, but important niches (Wilson 1995).

Unfortunately, the progress of the LCS has been somewhat disappointing. Despite the

long history of work in LCS, there are very few successful applications. Wilson and Goldberg

(1989) give an excellent historical perspective of the LCS and discuss many problems that have

prevented its practical implementations. Despite the disappointing progress, the LCS is a very

intriguing framework because it applies ideas from both ERL and TD learning. Future work may

resolve many of the di�culties in the LCS and allow it to reap the combined bene�ts of the two

approaches. Future work may also uncover more e�cient combinations of ERL and TD methods.

The LCS di�ers from SANE in many ways. Most notably, the LCS uses temporal di�erences

for explicit credit assignment to individual decisions. SANE uses an implicit credit assignment

strategy (see section 2.4.2) by evaluating and promoting entire sequences of decisions. Section 2.4.3

demonstrated how explicit credit assignment can be mislead by ambiguous state information. The

implicit strategies of SANE, SAMUEL, and GENITOR are much more robust under problems of

perceptual aliasing. It is likely no coincidence that the three implicit methods have achieved greater

applications than the LCS.

89



7.2 Co-Evolutionary Genetic Algorithms

7.2.1 Co-Adaptive Genetic Algorithms

Symbiotic evolution is somewhat similar to implicit �tness sharing or co-adaptive genetic algorithms

(Smith et al. 1993; Smith and Gray 1993). In their immune system model, Smith and Gray (1993)

evolved arti�cial antibodies to recognize or match arti�cial antigens. Since each antibody can only

match one antigen, a diverse population of antibodies is necessary to guard against a variety of

antigens.

The co-adaptive genetic algorithm model is based more on competition than cooperation.

Each antibody must compete for survival with other antibodies in the subpopulation to recognize

the given antigen. The �tness of each individual re
ects how well it matches its opposing antigen,

not how well it cooperates with other individuals. The antibodies are thus not dependent on

other antibodies for recognition of an antigen and only interact implicitly through competition.

Horn et al. (1994) characterize this di�erence as weak cooperation (co-adaptive GA) vs. strong

cooperation (symbiotic evolution). Since both approaches appear to have similar e�ects in terms of

population diversity and speciation, further research is necessary to discover the relative strengths

and weaknesses of each method.

Smith and Cribbs (1994) have proposed a method where a learning classi�er system (LCS)

can be mapped to a neural network. Each hidden node represents a classi�er rule that must

compete with other hidden nodes in a winner-take-all competition. Like SANE, the evolution in

the LCS/NN is performed on the neuron level instead of at the network level. Unlike SANE, the

LCS/NN is a pure \Michigan" approach where the entire population of neurons represents the �nal

solution. In SANE, subpopulations represent the solution.

The LCS/NN implementation uses a variant of the cascade correlation algorithm (Fahlman

and Lebiere 1990) to compute �tness levels for each neuron. Neuron �tness levels are increased if

their activations correlate with correct output from the neural network. However, by basing credit

assignment on the known correct behavior, the current LCS/NN implementation cannot be used

for reinforcement learning. In most di�cult sequential decision tasks, correct behavior is unknown.

7.2.2 Cooperative Coevolutionary Genetic Algorithms

Potter and De Jong have developed a symbiotic evolutionary strategy called Cooperative Coevo-

lutionary Genetic Algorithms (CCGA) and have applied it to both neural network and rule-based

systems (Potter and De Jong 1995; Potter et al. 1995). The CCGA evolves partial solutions much

like SANE, but distributes the individuals di�erently. Whereas SANE keeps all individuals in a

single population, the CCGA evolves specializations in distinct subpopulations or islands. Members

of di�erent subpopulations do not interbreed across subpopulations, which eliminates haphazard,

destructive recombination between dominant specializations, but also removes information-sharing

between specializations.

Evolving in distinct subpopulations places a heavier burden on a priori knowledge of the

number of specializations necessary to form an e�ective complete solution. In SANE, the number

and distribution of the specializations is determined implicitly throughout evolution. For example,

a network may be given eight hidden neurons but may only require four types of hidden neurons.

SANE would evolve four di�erent specializations and redundantly select two from each for the
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�nal network. While two subpopulations in the CCGA could represent the same specialization,

they cannot share information and therefore are forced to �nd the redundant specialization in-

dependently. Potter and De Jong (1995) have proposed a method that automatically determines

the number of partial solutions necessary by incrementally adding random subpopulations. This

approach appears promising, and motivates further research comparing the single population and

incremental subpopulation approaches.
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Chapter 8

Discussion and Future Directions

This chapter describes several research projects that have been spawned by the work in the dis-

sertation and outlines several future research directions. The chapter is divided into three major

sections. First, additional applications of SANE and systems related to SANE are presented. Sec-

ond, several enhancements and proposed improvements to the SANE decision learning system are

outlined. The �nal section discusses how the concept of symbiotic individuals can be transferred

to other machine learning systems.

8.1 Other Applications of SANE

SANE has not been limited to the minimax and robot arm control applications, but has been

successfully applied in other domains as well. This section describes two such applications that

have been completed during my tenure at Texas.

8.1.1 Value Ordering in Constraint Satisfaction Problems

One of the �rst applications of SANE was for search control in a di�cult class of arti�cial intelligence

problems called constraint satisfaction problems (Moriarty and Miikkulainen 1994a). Constraint

satisfaction problems are common in many areas of computer science such as machine vision,

scheduling, and planning. A CSP generally consists of a set of variables and a set of possible

values for them. The variables must be bound such that none of the constraints in the problem

are violated. Most CSP solution methods are based on depth-�rst search with backtracking. When

variables are instantiated, constraints are propagated forward, which either constrains the possible

values for other variables or produces a contradiction. If a contradiction is found, the search

backtracks and alternative variable bindings are tried. Since the order in which variables and

values are bound a�ects when a contradiction is found, choosing variable and value binding wisely

can have a signi�cant impact on the time required to �nd a solution.

SANE was implemented to direct a depth-�rst search in the car sequencing problem (Van

Hentenryck et al. 1992; Parrello et al. 1986), which is known to be NP-Complete. At each level

of the search, SANE's networks decided the order in which values should be applied to variables.

More speci�cally, SANE decided the order that classes of cars should be applied to an assembly

line.
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SANE used only the number of backtracks over an entire depth-�rst search as the �tness

for each network. After 100 generations, the SANE networks required 1/30 of the backtracks of

random value ordering and 1/3 of the backtracks of the commonly-used maximization-of-future-

options heuristic. SANE's performance in this applications further demonstrates its applicability

to important real-world problems.

8.1.2 Controlling Chaos

Weeks and Burgess (1996) applied SANE to the di�cult task of controlling chaos in unstable

systems. Chaos is dynamical behavior that is unpredictable over long periods of time, but obeys

simple laws. Chaos can be controlled by applying small perturbations to system variables to achieve

stability around a �xed point. Once the chaotic behavior is controlled, future system behavior

can be more easily and accurately predicted. Weeks and Burgess demonstrated how SANE can

e�ciently evolve neural networks to control chaos in several unstable systems. Unlike existing

methods that require knowledge of the underlying system dynamics, SANE's formed networks

simply through trial and error experimentation using only the relative stability of the system as

feedback. Moreover, SANE is the only method that has been shown to stabilize a system that is far

from its stable state. The results show that SANE is quite e�ective at controlling chaotic behavior

and should be applicable to many unstable systems including systems that are poorly understood.

8.2 Learning Enhancements

There are several learning enhancements that can be made within SANE and its applications to

increase search e�ciency and scalability in more di�cult problems. Many of these enhancements

are actively being explored by members of the neural networks research group at The University of

Texas. The primary enhancements include seeding the population with good initial behaviors, learn-

ing complex behaviors by incrementally increasing the problem complexity, implementing adaptive

online learning, and incorporating short term memory into control policies.

8.2.1 Population Seeding

SANE performs a tabula rasa form of learning, since searches are started from random populations

which contain no domain speci�c knowledge. Such learning requires little a priori information or

implementation e�ort. As reinforcement learning methods are scaled up, however, it is becoming

increasingly clear that they will need aid from existing domain knowledge (Kaelbling et al. 1996).

SANE has no direct mechanism to incorporate such knowledge into its initial population. Currently,

the most e�ective way to encode domain information in SANE is through more descriptive input

units or a better tuned �tness evaluation function. An important future research direction is how to

seed SANE's population with existing domain knowledge. One possible method is to extract some

examples of correct behavior from the domain and train a neural network using backpropagation

over the training set. The network's weights could then be encoded in a chromosome and mutated

to create di�ering individuals in a population. This seeding could help jump start SANE's search

by placing it in a good region of the solution space.
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8.2.2 Incremental learning

In many di�cult sequential decision tasks, the problem may be too complex to evolve the desired

behavior all at once. Simple behaviors may evolve that give some �tness bene�ts, but may not be

essential to the optimal solutions. Far worse, these behaviors may in fact be detrimental to the

optimal solutions. Gomez and Miikkulainen (1996) refer to these behaviors asmechanical behaviors.

Once mechanical behaviors emerge, it may be di�cult to redirect the population towards the (often

opposing) desired behaviors.

An example of detrimental mechanical behaviors occurs in the game of Othello (section 6.1.2).

A very simple strategy that gives immediate �tness bene�ts over random play is to select the move

that maximizes the number of your pieces on the board. However, the desired behavior of a cham-

pionship Othello program is just the opposite. The best Othello players keep their piece count

quite low during most of the game to maximize the number of move options (Billman and Shaman

1990). If populations of game-playing individuals are evolved against a top Othello program from

the start, they will likely never experience a winning game and will not evolve the complex strate-

gies necessary for winning. The individuals will likely succumb to the piece maximization strategy

to minimize the overall damage at the end of the game.

Previously, I showed that complex Othello strategies could be evolved in an incremental

fashion (Moriarty and Miikkulainen 1995). Populations were �rst evolved against a simple oppo-

nent to learn some good overall winning strategies. The opponent's skill level was then increased,

and the population adapted this strategy into the di�cult to master mobility strategy. Similarly,

incremental approaches may be necessary in other di�cult tasks to avoid convergence on less desir-

able behaviors. Gomez and Miikkulainen (1996) explored the advantages of incremental evolution

in several di�cult problems, including enemy avoidance, catching a prey, and balancing multiple

poles. They found that problems that could not be solved through direct evolution could often be

solved using an incremental approach.

8.2.3 Online or Local Learning

All of the neural controllers presented in this dissertation can be characterized as �xed adaptive

controllers (Werbos 1992). That is, once the controller is evolved and placed in its task it does

not change. Evolution may create new controllers, but these merely replace the existing controller.

Since evolution can often take too long to modify control policies, it is necessary to develop malleable

controllers that can make small adaptations during the task. Such behavior can be characterized as

online or local learning. Essentially, local learning is an inner loop learning mechanism inside of the

outer loop evolution. Local learning can more quickly adapt control policies to the speci�c domain

and may greatly speed up evolution. One can imagine the outer loop evolution searching for good

areas of solution space and the inner loop learning mechanism making the smaller movements to

reach the global optimum within that space. These smaller re�nements relieve the outer loop evo-

lution from the task of locating the exact global optima, which is often di�cult for an evolutionary

algorithm.

Since the domains of interest are sequential decision tasks, the local learning mechanism must

be capable of adjusting policies under general and infrequent reinforcements. One possibility is to

use a temporal di�erence method to form value functions that critique the decision policies created
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by the outer loop evolution. While the value functions may be unable to solve the task alone due

to perceptual aliasing and function approximation issues, their feedback may be su�cient to make

small yet important re�nements to the neural network controller. This system would essentially

be the Adaptive Heuristic Critic inside of SANE. SANE would generate the new neural network

controllers and perform the primary search movements. The AHC would make smaller re�nements

to the controllers and optimize the speci�c area of the solution space. This approach suggests a

very interesting combination of temporal di�erence and evolutionary algorithm approaches.

Another solution to local learning is to evolve neural networks that can provide accurate

training signals for themselves. Nol� and Parisi (1995) have developed a method where evolved

neural networks compute both the desired action and training signals for each of the output units.

The training signals are used to compute errors from which standard supervised learning methods

such as backpropagation can be used to adjust the network's weights. Nol� and Parisi have shown

this to work well in small problems, and it will be interesting to see if it can be scaled up to larger

applications.

8.2.4 Short Term Memory

All of the tasks described in this dissertation have been Markovian. The Markov assumption states

that future behavior of the system is only dependent on the current state and future inputs and is

independent of the past states. While many interesting problems can be formulated to satisfy the

Markov property, in many real-world applications factors outside the current observable state or

the path on which the current state was achieved may also in
uence the behavior of the system.

For example, in chess move decisions are often based not only on the current board con�guration,

but also on the opponent's apparent strategy up to that point. Furthermore, while many tasks are

Markovian in nature, they may appear non-Markovian to the decision making agent because it does

not have access to all of the state information. As described in section 1.1.2, such tasks are termed

inaccessible. If a decision making agent can remember several state sequences, however, it can more

easily disambiguate the true state of the system as well as predict future system behavior. The

incorporation of short term memory in SANE's neural networks is thus an important enhancement

that could greatly increase the performance of the evolved controllers.

The most obvious way to create short term memory in neural networks is to use recurrent

connections within the network to propagate values from previous network activations. Recurrent

neural networks can maintain an internal state representation in their hidden layer activations

which can be used as input in subsequent activations. This internal state represents the network's

memory since it is generated and maintained over several previous activations. Since SANE uses

an evolutionary algorithm to search for neural network controllers, evolving recurrent neural net-

works is very straightforward. In contrast, forming a recurrent network using temporal di�erence

methods may not be feasible, because training recurrent connections from gradient information (i.e.

backpropagation) requires many error propagations through various network states, which is very

costly (Williams and Zipser 1989). Neuro-evolution does not require error propagation procedures

and can thus form recurrent neural networks without additional overhead to the learning algorithm.

Recurrent networks, however, do bring up several interesting issues within SANE's symbiotic

populations. Currently, each neuron only connects to the input layer or the output layer. Thus,

the neuron connects the same way and performs the same function no matter what other hidden
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neurons are connected with it. With recurrent connections, however, this is no longer true. Since

a neuron may receive input from another hidden neuron or an output unit in
uenced by another

hidden neuron, its function is highly dependent on the hidden neurons that are implemented with

it. It is therefore essential for a neuron to achieve some degree of reliance or expectation of

the activations propagated by other neurons. Since SANE operates by continually combining

neurons with di�erent types of neurons, such expectations may be di�cult to achieve. Gomez and

Miikkulainen (1996) developed a neuro-evolution system called ESP (Enforced Sub-Populations)

that is based on SANE, but designed to evolve recurrent networks. The important change ESP

makes is to enforce segregated subpopulations within SANE's single population so that neuron

combinations and connections are more consistent. Neurons should therefore evolve with a certain

level of expectation of the activations of other neurons and hopefully utilize such activations as

short term memory. Gomez and Miikkulainen (1996) demonstrate their approach in a pursuit and

evasion task that requires knowledge of previous activations to perform well.

8.3 Symbiotic Evolution in Machine Learning

Symbiotic evolution is not unique to connectionist systems, but may provide useful insight in other

areas of machine learning as well. One application is to employ symbiotic evolution to evolve a

rule base for multi-category classi�cation. Current machine learning techniques do not directly

induce shared intermediate concepts between multiple categories, but instead typically re-invent

intermediate states for each category. For example, in an animal classi�cation domain, the mammal

concept is normally not shared between zebra and gira�e, but is learned separately for each speci�c

mammal. Shared concepts, however, are advantageous because they can increase the classi�cation

accuracy for each category by applying general knowledge attained about one category to a related,

but possibly more unfamiliar category (Ourston and Mooney 1994).

Symbiotic evolution, however, is capable of forming shared intermediate concepts by simul-

taneously evolving rules which are used to classify multiple categories. From an initially random

rule base, subpopulations of rules could be selected to form a domain theory. The domain theory

could then be evaluated through theory re�nement (Ourston and Mooney 1994) which measures

both the accuracy of the domain theory and the amount of re�nement necessary. The evaluation

score of the domain theory would be given to each participating rule and the process of selecting

and evaluating random subpopulations would repeat. Once each rule has an average utility mea-

sure, crossover and mutation operators would be applied to form a new rule base. Since sharing

intermediate states generally requires less theory re�nement and can produce more accurate clas-

si�ers, evolutionary pressures will select cooperative rules which connect together and form shared

intermediate concepts.

While I believe that symbiotic evolution is a general principle, applicable not only to neural

networks but to other representations as well, not all representations may be compatible with

this approach. Symbiosis emerges naturally in the current representation of neural networks as

collections of hidden neurons, but preliminary experiments with other types of encodings, such

as populations of individual network connections, have been unsuccessful (Steetskamp 1995). An

important facet of SANE's neurons is that they form complete input to output mappings, which

makes every neuron a primitive solution in its own right. SANE can thus form subsumption-
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type architectures (Brooks, 1991), where certain neurons provide very crude solutions and other

neurons perform higher-level functions that �x problems in the crude solutions. Preliminary studies

in simple classi�cation tasks have uncovered some subsumptive behavior among SANE's neurons.

An important focus for future research will be to further analyze the functions of evolved hidden

neurons and to study other symbiotic-conducive representations.
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Chapter 9

Summary and Conclusions

This dissertation has presented a novel approach for generating e�ective decision strategies in com-

plex problems using evolutionary algorithms. Evolutionary approaches to reinforcement learning

are quite di�erent from the more standard temporal di�erence approaches. While there are many

subtle contrasts, the primary di�erence exists in the level of credit assignment to individual de-

cisions. Whereas temporal di�erence approaches explicitly distribute and assign credit to each

individual decision, evolutionary algorithms do so only implicitly by selecting against poor strate-

gies. Chapter 2 demonstrated how the implicit credit assignment of evolutionary algorithms can

avoid some of the pitfalls that temporal di�erence methods face when the sensory input does not

adequately cover all of the features of a state.

The decision learning system developed in this dissertation called SANE combines evolu-

tionary algorithms with arti�cial neural networks. SANE's decision policies are represented by

neural networks, which provide constant storage, constant computation time, and generalize deci-

sions from one situation to another. SANE uses an evolutionary algorithm to adjust the neural

networks, which allows it to learn tasks with only minimal direction from the environment. SANE's

evolutionary algorithm is unique in that it maintains a diverse collection of individuals and e�ec-

tively decomposes the search for complete solutions into a search for partial solutions. Consequently,

SANE's search is very e�cient and less susceptible to premature convergence.

Simulations using the Khepera mobile robot simulator con�rmed the e�ciency SANE's

evolutionary algorithm. SANE was compared to three other neuro-evolutionary approaches: an

aggressive standard neuro-evolution, a less-aggressive standard neuro-evolution, and a version of

SANE without the outer loop blueprint evolution. In di�erent experiments, SANE was shown to

learn faster, maintain higher levels of diversity, and adapt quicker to changes in the environment.

Further experiments in the robot simulator using a principal component analysis and arti�cial lesion

studies showed both the emergence of specializations within SANE's population and the di�erent

roles the neurons assume. These results con�rm the initial hypothesis that SANE maintains a

diverse collection of neurons in several subpopulations that de�ne di�erent roles in the neural

network. The emergence of specializations allows the evolutionary algorithm to search several

decompositions of the neural network space in parallel.

SANE's performance relative to existing methods for sequential decision learning was demon-

strated in chapter 5. SANE was compared to several temporal di�erence approaches and GENI-

TOR, a fast neuro-evolution system. Using the common reinforcement learning benchmark of pole
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balancing, SANE outperformed each approach in average learning speeds, learning consistency, and

resilience to noisy evaluation. Moreover, SANE's quick learning did not sacri�ce generalization to

unfamiliar problem states. In the Khepera mobile robot simulator, the advantages of the evolution-

ary algorithm approaches in problems with hidden state information were more clearly illustrated.

While both SANE and GENITOR found e�ective solutions in all simulations, the two-layer Adap-

tive Heuristic Critic could not make any headway. Compared to GENITOR in the Khepera task,

SANE formed more pro�table solutions in less time.

The scope and scalability of SANE was demonstrated in two applications: game playing and

robot arm manipulation. In a minimax search, SANE was implemented to evolve neural networks

that made search level decisions to avoid misinformation in the search tree. The SANE-directed

searches were trained and evaluated using the powerful former world champion program Bill. By

directing the minimax search towards the most promising paths, SANE formed networks that

signi�cantly improved the performance of Bill.

The second application demonstrated SANE in a continuous input and decision space task.

SANE was implemented to manipulate a robot arm to reach target objects, while avoiding obstacles

in the arm's path. Previously, this task was only possible through mathematically complex path-

planning algorithms that require complete knowledge of the arm and the obstacle environment.

SANE requires no such knowledge and learned to reach objects and avoid obstacles simply through

trial and error movements in the environment.

The goals of this dissertation were twofold: to provide a novel and e�ective methodology for

learning decision strategies in complex problems and to develop symbiotic evolution as a new and

powerful evolutionary paradigm. Towards the �rst goal, SANE was shown to outperform current

approaches and scale well to di�cult problems. Moreover, SANE requires very little knowledge from

the implementor about the underlying environment. SANE thus presents a powerful and domain-

independent methodology that should extend well to many challenging and novel real-world decision

tasks.

The symbiotic search strategy in SANE should also spawn additional research in evolu-

tionary algorithms and machine learning. By reducing the functional capacity of individuals and

evaluating performance in conjunction with several individuals, symbiotic evolution encourages co-

operating problem specializations. Thus, the search for a single solution is broken up into a parallel

search for several cooperative components of the solution. This search paradigm may extend well

beyond neural networks and provide important insights into intelligent behavior in other multi-

agent systems such as nodes on the Internet or cars on a highway. I believe that this research has

opened up many new and exciting research directions.
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Appendix A

Arti�cial Neural Network Background

This appendix provides a general background on arti�cial neural networks. Since neural networks

are many things to many people, the intention of this chapter is to provide a description that best

suits the work in this dissertation. Readers interested in a more comprehensive view are encouraged

to read the excellent foundation text by Haykin (1994).

A loosely-put de�nition of an arti�cial neural network1 is a simulation of the mechanisms

of the brain on a computer. Neural network research is motivated by the complex and entirely

di�erent computation performed in the brain as compared to the computation in the traditional

digital computer. Researchers theorize that by simulating the basic computational processes of the

brain, true arti�cial intelligence will be realized. This dissertation takes a more moderate position

that can be characterized by the following statemement: a neural network provides an e�cient tool

for building, executing, and generalizing decision policies.

A neural network is made up of several small computational elements called neurons. Neu-

rons are interconnected with communication links such that the output of one neuron can serve as

an input to another neuron. The speci�c interconnection of neurons is termed the neural network

architecture. An e�ective and very common architecture for decision making agents is a layered

approach where neurons are organized in sequential layers or groups (�gure A.1). The output

from one layer of neurons propagates as input to the next layer. Network architectures are termed

feedforward if the neuron activations propagate in a single direction and recurrent if the activa-

tion can loop back to previous neuron layers. All of the network architectures in this dissertation

are feedforward, although recurrent networks may o�er some advantages and will be explored in

post-dissertation work.

Figure A.1 shows a common decision-making neural architecture known as a two-layer feed-

forward neural network. The network contains three layers of neurons and two layers of connec-

tions.2 The �rst layer of neurons is commonly referred to as the input layer. The neurons in the

input layer, called the input units, receive direct stimulation from the environment. In the con-

text of this dissertation, stimulation represents the sensory input that the decision-making agent

perceives. The input send their output to the second layer of neurons known as the hidden layer.

The hidden layer neurons perform a computation based on their input and pass their output to the

1For brevity, the term arti�cial is not used in this dissertation. All neural networks in this dissertation are arti�cial.
2There has been some discrepency in the literature as to whether the number of layers neurons or layers of

connections determines the number of layers in the neural network. This dissertation uses the latter as its convention.
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Sensory Input
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Figure A.1: A two-layer, feedforward neural network.

�nal layer called the output layer. The �nal computation of the neural network is normally taken

directly from the neurons in the output layer.

The computation within a neuron can vary greatly among implementations, however, the

most common method is to sum up all inputs received from other neurons and/or the environment

and pass the sum through an activation function. The output of the activation function represents

the neuron's output. The most popular activation function is the sigmoid function because it is

simple mathematically and is biologically plausible (Haykin 1994). A common sigmoid function is

de�ned by

F (v) =
1

1 + e�v

where v is the sum of the neuron's input.

The communication between neurons is ampli�ed or reduced by weighting the neural con-

nections. The output from a neuron is typically multiplied by the value of the weight and passed

to the connecting neuron. Thus, the in
uence of each neuron on other neurons can be altered by

\tuning" the weights on the connections. The connection weights are the most dynamic elements

of the neural network and de�ne how the network behaves. Consequently, most neural network

learning methods focus on developing good combinations of connection weights to solve a particular

task. If the weights are set properly, a 2-layer, fully-connected, feedforward neural network can

approximate any continous function.
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Appendix B

Additional PCA and Lesion Results

This appendix contains the additional PCA and lesion data from the Khepera simulations discussed

in chapter 5. The format for the lesion data follows the data format for the �rst simulation, which

was presented in the chapter. For explanation of the speci�c lesion experiments, please refer to

section 4.3.2.
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Figure B.1: PCA of simulation 2.
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Figure B.2: PCA of simulation 3.
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Figure B.3: PCA with labelled specializations for simulation 2.

Neuron Rank Specialization Capability Necessity

73 A 6.9 293.0
2 C 20.4 332.5
72 B 35.7 307.5
23 A 14.8 304.1
1 F 14.9 193.2
14 E 44.0 195.4
16 C 19.2 311.6
15 D 50.4 328.9

Table B.1: Lesion results from simulation 2. The complete (non-lesioned) network achieved a
performance level of 363.7

Lesioned Specialization Performance

A 166.6
B 307.5
C 304.7
D 328.9
E 195.4
F 193.4

Table B.2: Specialization Lesions for simulation 2. All members of a specialization are removed
from the network.

105



Motor Activation from Speci�c Sensors
Neuron Rank Specialization None Left Forward Right Rear

73 A -6,+4 -6,+4 -6,+4 -6,+4 -6,+4
2 C +9,-1 +9,-1 0,-1 0,-1 +9,-1
72 B -2,0 -2,0 -2,0 -2,0 -2,0
23 A -5,+4 -6,+4 -6,+4 -6,+4 -6,+4
1 F +9,-5 +9,-5 +1,-1 0,-1 +8,-4
14 E +9,+4 +9,+4 +9,+4 0,0 +9,+4
16 C +9,-1 +9,-1 0,-1 0,-1 +9,-1
15 D +7,+4 +9,+4 0,0 0,0 +7,+4

Table B.3: Individual neuron responses to speci�c sensory inputs. The output numbers refer to the
speed at which the neuron drives the left and right motors.
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Figure B.4: PCA with labelled specializations for simulation 3.

Neuron Rank Specialization Capability Necessity

3 E 26.1 296.2
2 E 29.0 276.0
25 B 18.7 310.2
1 F 12.0 216.9
26 C 37.5 371.2
24 B 18.7 319.5
32 A 7.5 62.0
33 D 25.6 407.1

Table B.4: Lesion results from simulation 3. The complete (non-lesioned) network achieved a
performance level of 363.7
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Lesioned Specialization Performance

A 62.0
B 65.9
C 371.2
D 407.1
E 75.4
F 216.9

Table B.5: Specialization Lesions for simulation 3. All members of a specialization are removed
from the network.

Motor Activation from Speci�c Sensors
Neuron Rank Specialization None Left Forward Right Rear

3 E +8,0 +9,0 0,0 +9,0 +9,0
2 E +8,0 +9,0 0,0 +9,0 +9,0
25 B -1,+4 0,0 0,0 -2,+5 -1,+4
1 F +5,-9 +5,-6 +5,-9 +5,-9 +5,-9
26 C +5,+6 0,0 0,0 +5,+7 +6,+9
24 B -1,+4 0,0 0,0 -2,+5 -1,+4
32 A -6,+6 0,0 0,0 -7,+7 -6,+6
33 D +5,-1 +5,-1 +5,-1 0,0 +5,-1

Table B.6: Individual neuron responses to speci�c sensory inputs for simulation 3. The output
numbers refer to the speed at which the neuron drives the left and right motors.
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