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Humans have evolved intimate symbiotic relationships with a
consortium of gut microbes (microbiome) and individual variations
in the microbiome influence host health, may be implicated in
disease etiology, and affect drug metabolism, toxicity, and effi-
cacy. However, the molecular basis of these microbe–host inter-
actions and the roles of individual bacterial species are obscure. We
now demonstrate a‘‘transgenomic’’ approach to link gut microbi-
ome and metabolic phenotype (metabotype) variation. We have
used a combination of spectroscopic, microbiomic, and multivari-
ate statistical tools to analyze fecal and urinary samples from seven
Chinese individuals (sampled twice) and to model the microbial–
host metabolic connectivities. At the species level, we found
structural differences in the Chinese family gut microbiomes and
those reported for American volunteers, which is consistent with
population microbial cometabolic differences reported in epidemi-
ological studies. We also introduce the concept of functional
metagenomics, defined as ‘‘the characterization of key functional
members of the microbiome that most influence host metabolism
and hence health.’’ For example, Faecalibacterium prausnitzii pop-
ulation variation is associated with modulation of eight urinary
metabolites of diverse structure, indicating that this species is a
highly functionally active member of the microbiome, influencing
numerous host pathways. Other species were identified showing
different and varied metabolic interactions. Our approach for
understanding the dynamic basis of host–microbiome symbiosis
provides a foundation for the development of functional met-
agenomics as a probe of systemic effects of drugs and diet that are
of relevance to personal and public health care solutions.

covariation analysis � gut microbiota � metabonomics � metabotype �
metagenomics

Human beings can be considered as ‘‘superorganisms’’ as a
result of their close symbiotic associations with the gut

microbiota (1). Superorganism metabolism involves integration
of truly indigenous metabolic processes (coded in the host
genome) with those of the microbiome. This results in extensive
transgenomic cometabolism of many substrates including those
involved in host metabolic regulation (2). The superorganism
concept represents an important paradigm shift in understand-
ing human biology and is likely to have a significant impact on
the future of disease prevention and therapy (3). Recent works
have shown that the exact human microbiome composition varies
between healthy people (2, 4, 5) and also between lean and obese
individuals (6), and further, that the microbiome composition is
responsive to dietary modulation for weight reduction (6).
‘‘Top-down’’ systems biology (3) analysis of metabolic profiles of
human baby microbiota and normal microbiota associated mice
revealed that absorption, storage, and metabolism of dietary

lipids were specifically modulated by the microbiome (7). More-
over, the induction of type 2 diabetes and obesity with a high-fat
diet in rats has been shown to correlate with the predose
metabolic patterns associated with differences in gut bacterial
activities, indicating the importance of the microbiome in host
predisposition to diseases (8). Recent work showed that gut
microbiome was probably responsible in part for the systemic
response to Schistosoma mansoni infection in mice (9). Disrup-
tions of choline metabolism caused by changes in symbiotic gut
microbiota may play an active role in the development of insulin
resistance and nonalcoholic fatty liver disease in high-fat diet
experiments with a mouse strain genetically predisposed to these
disease traits (10). Responses of individual animals and humans
to drug treatments can also be strongly influenced by gut
microbiome composition, because the microbiome provides not
only complementary metabolic pathways for drugs, but is also a
source of pharmacologically active secondary metabolites that
can activate mammalian liver enzyme systems (2, 3). The im-
portance of gut microbiota to host metabolism may best be
illustrated by the fact that genetically homogeneous animals can
have diverse metabolic phenotypes when they have structurally
different gut microbiota (2). It has also been shown that identical
twins still had significant differences in their gut microbiota
although they shared much higher similarity for gut microbiota
structures than genetically unrelated married couples (11). The
unique combination of gut bacteria in each animal may thus have
an important role in their host’s metabolism because they are
adding new dimensions to functional diversity at the whole-
organism level on host genetics, which includes participating the
development of pathophysiology (10) and providing complimen-
tary metabolic pathways for drugs and diets (2). In light of the
recent findings on the relationships between gut bacterial com-
position and the obese host phenotype (12), understanding gut
bacterial dynamics in relation to host physiology and pathology
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has become an important part of future personalized health care
solutions (3, 13).

Although the importance of the gut microbiome in host health
is now widely recognized, it is not yet known which of the many
hundreds of species are of ‘‘key’’ importance in host health, and
little is understood of the molecular host–microbiome interac-
tions that influence host metabolic pathways. The chemical
signatures of biofluids can provide important metabolic pheno-
type (metabotype) (14) information that characterizes organis-
mal level metabolic status and is reflective of symbiotic meta-
bolic complexity and cometabolism (3). Thus, we postulate that
covariation between the metabolic phenotype and the gut mi-
crobiome structure may be exploited to identify specific associ-
ations between key members of the gut microbiotal community
and patterns in host physiology or pathology. Most gut microbial
metabolism analytical surveys have typically focused on single or
targeted components of the system, for example, short-chain
fatty acids (12), and have not addressed the wider complexity of
host–microbiome metabolic interactions in superorganisms. So
here we have developed a multivariate strategy to model co-
variation between gut microbiomic structural patterns as re-
f lected by community DNA fingerprints and host metabotype as
defined by NMR spectroscopic urinary profiling (15). Patterns of
covariation are extracted by using multivariate statistical ap-
proaches to establish the association between host metabolism
and variation of gut microbiota. This approach allows the
visualization and mapping of the transgenomic interactions of
microbiome and host by the noninvasively obtained excreted
metabolite profile and fecal microbiotal composition, which
holds promise for functional characterization of gut microbiota
and for understanding human health and disease at both the
individual and the population level.

Results
Phylogenetic Landscapes of Gut Microbiota in the Chinese Family. A
clone library approach was used first to investigate the diversity

of gut microbiomes in the cohort to obtain a detailed structural
overview of the microbiome of each member of the study family.
The clone library of each individual was shown to have �93%
Good’s coverage, indicating that the 16S rRNA gene sequences
from these samples represented the majority of human intestinal
bacterial community in this study [supporting information (SI)
Table 1]. Phylogenetic analysis of the total 7,255 16S rRNA gene
sequences from the seven individuals yielded 476 operational
taxonomic units (OTUs) with a 99% similarity cutoff (SI Table
1 and SI Figs. 4 and 5). The overall (SI Fig. 6) and individual (Fig.
1C) structures of the microbiome were dominated by Firmicutes
and Bacteroidetes as found in earlier studies (4). �-LIBSHUFF
analysis (16) also showed that each individual appears to have a
unique gut microbial community even within this one family
(details in SI Text: Results) in agreement with previous reports
about the individuality of human gut microbiota. The relative
abundance of the major bacterial divisions (Fig. 1C) shows a high
degree of interpersonal variation in the Bacteroidetes-to-
Firmicutes ratios ranging from 0.26 to 1.36. It was recently shown
that a low Bacteroidetes-to-Firmicutes ratio was correlated with
obesity and that this ratio can be increased by dietary calorific
restriction (6). All of the Chinese studied here had Bacteroidetes-
to-Firmicutes ratios that were similar to lean American individ-
uals reported in previous studies (6). However, in our study, the
only marginally overweight family member [GF, body mass index
(BMI) 25.6] also had the lowest Bacteroidetes-to-Firmicutes ratio
(0.26) in his gut microbiota. Interestingly, the other family
member (UC) who had a low Bacteroidetes-to-Firmicutes ratio
(0.28) was not overweight, but had lived in the United Kingdom
for 2 years and adopted a more Western lifestyle and diet pattern
(details in SI Text: Materials and Methods).

When compared with data obtained from two other recent
studies conducted on American volunteers by using the same
genetic microbiological tools (4, 5), the Chinese family studied
here shared a similar division-level phylogenetic landscape with

Fig. 1. Experimental procedure and structural comparison of gut microbiome between Chinese and American individuals. (A) Family tree diagram of the
Chinese family. (B) Scheme of experimental procedure. (C) The division-level composition of gut microbiome of the Chinese family. (D) Species-level composition
of gut microbiome of the Chinese family in comparison with reported American microbiome data (4, 5). The principal coordinate scores plot was generated by
using UniFrac metrics. The percentages of variation described by the principal coordinates are shown in the parentheses.
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the American individuals (SI Fig. 6). However, the ‘‘Chinese’’
and ‘‘American’’ microbiomes were clearly different at the
species level of composition as shown by the principal coordinate
analysis scores plot based on UniFrac metrics (17) (Fig. 1D),
which also illustrated the relative similarity of the Chinese adults,
and the large differences in the baby microbiotal profile. Because
the Chinese baby had an immature and unique microbiome
structure compared with the adults (Fig. 1D), the baby samples
were excluded from the next level of metabolic linkage analysis.

Denaturing Gradient Gel Electrophoresis (DGGE) Profiling of Inter- and
Intraindividual Variation in Gut Microbiota of the Chinese Family.
After the overall structural survey of the Chinese family micro-
biome, the short-term time stability of the overall structure of
the microbiome over a month within the cohort was illustrated
by DGGE patterns of the16S rRNA gene V3 region for pre-
dominant bacteria and of regions for two specific groups,
Bacteroides spp. and Clostridium leptum subgroup (see SI Figs.
9B and 10A and Fig. 2 A). The analysis of the microbiota DGGE
fingerprints by using principle components analysis (PCA) and
fivefold cross-validated orthogonal projection to latent struc-
tures discriminant analysis (OPLS-DA) (18) showed a sex-
related difference for all of the three types of DGGE patterns (SI
Figs. 7 and 8). The key band variables, which were responsible
for the separation, were identified from the DGGE gels by
sequencing (SI Table 2). Among these sex-related bacteria, three
species were from Clostridia, one from Bacteroidetes, and two
from Proteobacteria. All of these species had higher abundance
in males than in females.

Metabolic Profiling of Metabotypes Variation by 1H NMR Spectros-
copy. For metabolic profiling of the urine samples, 600-MHz 1H
NMR spectroscopy was performed. PCA and fivefold cross-
validated OPLS-DA applied to the full NMR spectra data also
showed the suspected gender-related difference in urine metab-
olites of family members (SI Figs. 7D and 8G) that was consistent
with the PCA analysis of gut bacteria DGGE profiling. The
important gender-related variables for the discrimination were

statistically and structurally identified as 3-aminoisobutyrate
(BAIB, doublet �1.2), which was higher in males, and creatine
(singlet �3.05), which was higher in females.

Covariation Analysis of DGGE Microbiotal Profiling and NMR-Based
Metabolic Profiling. Covariation between NMR urine spectra and
DGGE gel data were modeled by using OPLS regression (18).
The predictive power of the model was assessed by fivefold
cross-validation, and the Q2 value (goodness of prediction) was
color-mapped onto the DGGE banding pattern, showing how
well each band was predicted by the spectroscopic data. The well
predicted bands were then sequenced and identified as OTUs
based on their nearest neighbors in the RDP-II database.
Conversely, the regions of the NMR spectra that were best
predicted by the DGGE data were color-coded (according to
Q2) onto the NMR profile. The DGGE gel for the C. leptum
subgroup was used to exemplify this analysis strategy (Fig. 2).
The methodology was first applied to the DGGE gel finger-
printing of the predominant bacteria. The bands, which were best
predicted by the variation in the NMR data, are identified as
OTUs in Bacteroidetes, Firmicutes, and Actinobacteria (SI Fig. 9).
The closest relative isolates of these OTUs are mostly well known
gut bacteria, such as Bacteroides coprocola, Faecalibacterium
prausnitzii, and Bifidobacterium pseudocatenulatum. Having es-
tablished the predominant bacteria, we repeated the analysis by
using DGGE fingerprints for specific groups of bacteria to
identify key OTUs at a deeper level. More OTUs were identified
in each group in addition to those identified from the V3 gel (Fig.
2 and SI Fig. 10). For instance, in the C. leptum subgroup, some
more OTUs such as Ruminococcus bromii and Subdoligranulum
variable were predicted in group-specific DGGE gel, in addition
to F. prausnitzii, whereas in the Bacteroides spp.-specific DGGE
gel, Bacteroidetes thetaiotaomicron and Bacteroidetes uniformis
were identified in addition to B. coprocola.

The relationships between the metabolic data and the microbi-
ome data were visualized in the form of transgenomic cross-
correlation maps, which displayed both positive and negative (e.g.,
r � 0.7 and � �0.7) correlations between the NMR and DGGE

Fig. 2. Multivariate analysis for identifying associations between the gut microbiome structure and the urine metabolite profile. (A) DGGE gel for C. leptum
subgroup. Mr, marker lane. (B) OPLS prediction of clostridia bands from the NMR urinary profile data. (C) Two-dimensional correlation map of NMR-derived
metabolic profile variation in relation to DGGE fingerprints (only the aromatic region of urinary NMR spectra is shown); only points with absolute correlation
level �0.7 are shown, red denotes positive correlation, blue denotes negative correlation. (D) OPLS prediction of aromatic region of the NMR spectrum from
DGGE data. The color indicates the Q2 value.
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data matrices (Fig. 2C). The metabolic associations of each of the
well predicted members of the gut microbiome were shown in Fig.
3. Many of the identified compounds are well known gut microbial
cometabolites such as phenylacetylglutamine, 4-cresol sulfate, and
4-hydroxyphenylacetate (SI Table 3).

Some microbial members only reveal a single metabolite
association, for example, the connection between B. thetaio-
taomicron and 3-aminoisobutyrate which also both correlated
with sex, other members have multiple connectivities, for exam-
ple F. prausnitzii was statistically linked with the presence of 8
urinary metabolites including dimethylamine, taurine, lactate,
glycine, 2-hydroxyisobutyrate, glycolate, 3,5-hydroxylbenzoate,
and 3-aminoisobutyrate.

Discussion
Gut microbiotal composition among healthy people is influ-
enced by host genotype, diet, age, and sex, and it appears that
organic disease and drugs (especially antibiotics) can modulate
microbiome composition and activities (2, 3). The observed host
metabolic phenotype is thus strongly influenced by the gut
microbiome (2). Host genetics affects the broad gut microbiotal
structure as evidenced by the widely differing species composi-
tions of various animal species. On short time scales, the
host-specific effects are relatively constant and changes in the
gut microbiota and host metabolism will be closely influenced by
dietary variation. To understand these interactions, it is essential
to understand which host metabolic pathways are most closely
associated with structural variation of gut microbiota and vice
versa.

In the Chinese family cohort studied here, background data on
the genetic relatedness among members, the sex, age, and
dietary pattern of each individual, are relatively more defined
than a random population cohort. Sampling at two time points
increases statistical power and with appropriate multivariate
methods it is possible to dissect the relationships between gut
microbiotal variation and the interacting host metabolic path-
ways and assessing cross-sectional and longitudinal variations.

The overall species composition of gut microbiota is signifi-
cantly different between this Chinese family and previously
reported Americans (4, 5). This is coherent with the recent

epidemiological observation that metabolic phenotypes of the
Chinese population differed from the metabolic phenotypes of
the American population (15), and the gut microbial-
mammalian cometabolites were distinguishing biomarkers, in-
cluding hippurate and phenylacetylglutamine.

A previous cross-sectional study (n � 230 from four European
countries) also showed that gender-specific differences were
observed in the Bacteroides-Prevotella group with males more
prominent than females (19). However, the gender-correlated
key species were not identified probably because only species-
specific probes for Bacteroides vulgatus and Bacteroides putredinis
were used and neither showed sex-related difference. By using
our Bacteroides spp. group-specific DGGE profiling method, we
identified B. thetaiotaomicron as being higher in males than
females. Variation of the B. thetaiotaomicron population level
was positively correlated with urinary BAIB, which was also a sex
discriminator for Chinese (15).

By correlating the DGGE pattern with the urinary NMR
profiles, the covariance of structural variation in gut microbiome
and host metabolism were visualized in the current work (Fig. 2).
The OTUs of DGGE variables, which were best predicted by the
variation in the metabotype data, were related to Bacteroides,
Clostridium, and Bifidobacteria. Isolates of the species nearest to
these identified OTUs have been extensively studied with respect
to interactions with host energy bioavailability and immunity
(20, 21). F. prausnitzii is the most significant n-butyrate-
producing gut bacterium with well known effects on host energy
metabolism and mucosal integrity (22). B. pseudocatenulatum is
well known for its conjugated linoleic acid (CLA) biosynthetic
ability which has anti-carcinogenic effects (23). The identifica-
tion of metabolically linked OTUs related to these known
important members of the gut microbiota adds weight to the
utility of this new methodology.

Conversely, the regions of the NMR spectra, which were well
predicted by the individual DGGE OTUs, had been structurally
identified as the well known metabolites produced by gut
bacteria or cometabolites with the host, such as phenylacetyl-
glutamine, 4-cresol sulfate, and 4-hydroxyphenylacetate.
4-Cresol sulfate has previously been identified as mammalian
metabolite of 4-cresol that can be synthesized by only a few

Fig. 3. Dendrogram of OTUs from DGGE bands, which are well predicted by metabolic variation, labeled as the nearest known neighbor with similarity value.
Associations with specific urine metabolites are shown for each OTU with the direction of correlation indicated by red (positive) or green (negative) lines.
Gender-related bands predicted by OPLS-DA are denoted by bold text.
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species of bacteria including Clostridium difficile (24). Here, we
also observed a statistical association between 4-cresol sulfate
and Subdoligranulum variable BI-114, which is genetically closely
related to the clostridia. The negative association between S.
variable and 4-cresol sulfate may indicate a competitive rela-
tionship between this bacterium and its close relatives that can
produce 4-cresol. Variation of these metabolites in urine has
been used to indicate the importance of gut microbiotal dynam-
ics over time or changes from individual to individual in disease
progression or drug metabolism (2). Identification of these gut
bacterial metabolites confirmed the power of this method to link
specific metabolite with a specific species or group of gut
bacteria.

The number and diversity of metabolic pathways associated
with OTUs may reflect the magnitude of importance of these
members of the gut microbiome in host physiology. Although
some members only reveal a single metabolite association, other
members have multiple connectivities. These data suggest that
there are profound host–microbiota symbiotic connections that
influence global metabolism regardless of the genetic back-
ground across a range of pathways or environmental exposure of
the host. The connectivity between dimethylamine and F.
prausnitzii is particularly intriguing because dimethylamine is a
product of microbial catabolism of dietary choline (by trimeth-
ylamine) that has previously been linked to high-fat diet-induced
insulin resistance, fatty liver, and type 2 diabetes in experimental
mice (10), and in other studies a low Bacteroidetes-to-Firmicutes
ratio was identified in both genetic models of obesity (12) and in
obese people (6). Furthermore, we have shown that gut micro-
bial variation in mice strongly influences bile acid metabolism,
including higher enterohepatic recycling of taurine conjugates
that are important in the emulsification of fats (7) (and therefore
lipid bioavailability to the host), and the connectivity found here
to free urinary taurine levels for F. prausnitzii and B. uniformis
may also reflect this interaction. This provides further indirect
evidence of the connectivity between disturbances in the gut
microbial populations and the metabolic consequences of the
altered microbial–mammalian metabolic balance influencing
host disease.

We have presented a proof-of-principle for the development
of a transgenomic methodology for exploring microbial host
metabolic relationships. The clone library was not used in this
work for covariation analysis because of its qualitative nature
and the uncertainty of its reproducibility (25–27). However, with
the rapid development of high-throughput sequencing tech-
niques (12, 28), sequencing-based analysis will eventually be-
come quantitative and cost-effective enough for this type of
analysis. We can even anticipate a covariation analysis between
host metabotypes and composition of a gut bacterial functional
gene pool obtained by low-cost, high-throughput, nonbiased, and
quantitative sequencing and annotation of whole-gut microbiota
DNA from multiple samples with statistical power. Thus, a
molecular link between host metabolism and gut microbiota
genes, rather than just species identity, can be established in the
end for more profound understanding of metabolic basis of host
health and their responses to various drug/diet modulations.

In conclusion, this approach allows identification of poten-
tially important associations between changes of bacterial com-
munity structure and dynamics of host metabolic patterns that
can be used to develop new and existing hypotheses on the
relationships between dysbiosis and disease. This approach
should lay a foundation for the development of functional
metagenomics, which is currently constrained by the difficulties
in studying the functional ecology of the symbionts in situ.
Specifically, we can now identify microbial candidates for se-
quencing that have strong host metabolic connectivities, because
these are likely to be more relevant to host biology and health.
Thus, this work is a step in the quest for the ‘‘Rosetta stone’’ that

will allow translation of microbial community activity into host
response, which, in turn, will enable an understanding of ex-
tended genome-related disease processes and may provide a
means of engineering metabolic activities of gut microorganisms
to better suit human health.

Materials and Methods
Subject Selection and Sampling. A volunteer four-generation Chinese family
(Fig. 1A) including three male (ages, 18–55 years) and four female (ages,
1.5–95 years) members living in three separate households, two in Hangzhou
(GG, GM, and GF in one household; FA, MO, and BB in another), China, and one
(UC) in London was chosen for study. The use of these subjects was approved
by the First Affiliated Hospital of Zhejiang University Institutional Review
Broad. All participants in this study provided their informed consent. Fecal and
early-morning urinary samples from each individual were collected on two
occasions, 30 days apart. All samples were immediately frozen on collection
and stored at �70°C before analysis.

Phylogenetic Analysis of Large-Scale 16S rRNA Gene Sequencing Data. One
clone library was constructed for each family member with one time point
sample by PCR amplification of near full-length 16S rRNA genes with primer
P0 (Escherichia coli position 7–27) and 1492r (E. coli position 1492–1511) (29,
30). An average 1,000 positive clones of each subject were picked randomly for
sequencing in both directions with ABI 3730xl sequencers (Applied Biosys-
tems). The manually checked high-quality reads with average length of 750 bp
were assembled into consensus sequences by the program CodonCode Aligner
(CodonCode Corporation). The assembled sequences were first trimmed to
exclude vector sequences, and then checked for chimeras by using CCODE (31)
and Chimera Check v2.7 on Ribosomal Database Project II(RDP-II) website
(http://rdp.cme.msu.edu/cgis/chimera.cgi?su � SSU). Finally, all full-length 16S
rRNA sequences were aligned to the small subunit rRNA sequences in the
RDP-II (32) by using ARB software package (33). A phylogenetic tree was
generated by a neighbor-joining algorithm from an Olsen-corrected distance
matrix. Sequences were grouped into OTUs at the 99% similarity threshold
from Olsen-corrected distance metrics by DOTUR with the furthest-neighbor
algorithm and 0.001 precision (34).

To find the population difference between gut microbial communities, we
compared the clone library data of the Chinese family with the data of five
American individuals from two recent studies (4, 5) by using �-LIBSHUFF
analysis (16) and the UniFrac method (17) (details in SI Text: Materials and
Methods).

DGGE Analysis of Fecal Samples. The V3 regions of 16S rRNA genes and specific
DNA fragments of two predominant bacterial groups in the gut (Bacteroides
spp., C. leptum subgroup) from fecal samples of two time points were ampli-
fied by universal bacterial primers and group-specific primers (35–37). PCR
products were separated in 8% (wt/vol) denatured polyacrylamide gels by
electrophoresis. The DGGE image was read by ImageJ software (http://
rsb.info.nih.gov/ij/) and the intensity and position of bands in each lane were
read into a spectrum of 249 variables. The spectra were manually corrected for
gel shift (details in SI Text: Materials and Methods).

Selected DGGE bands were excised from original gels and their DNA
fragments were reamplified with corresponding primers. The PCR products
were sequenced as described earlier. The sequences were submitted to RDP-II
release 9 database to determine their closest isolate relatives. The phyloge-
netic tree was constructed based on sequences of their closest neighbors of
DGGE bands.

NMR Spectroscopic Analysis of Urinary Samples. An aliquot (320 �l) of each
urine sample was mixed with 160 �l of sodium phosphate buffer (0.2 M, pH
7.4) and 120 �l of deuterium oxide containing 0.05% (wt/vol) 3-trimethylsilyl-
1-[2,2,3,3-2H4] propionate (TSP) as a reference. All NMR analysis of urine was
carried out at 298 K on a Varian INOVA-600 spectrometer, operating at 600.13
MHz for 1H resonance frequency, equipped with a 5-mm inverse cryogenic
probe. A standard one-dimensional pulse sequence [recycle delay (RD)-90°-
t1-90°-tm-90° acquisition (ACQ)] was used to obtain urinary metabolite profiles
with 90° pulse length of �10 �s. Water suppression was achieved with a weak
irradiation equivalent to �50 Hz during the recycle delay (RD, 2 s) and mixing
time (tm, 100 ms). One hundred twenty-eight transients were collected into
32,768 data points for each spectrum with a spectral width of 12 kHz, and total
repetition time was 3 s. An exponential window function with line-
broadening factor of 1 Hz was applied to all free induction decays (FIDs)
before Fourier transformation (FT). Metabolites concerned were identified
according to literature data (9, 38) and selected metabolites were further
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confirmed with a catalog of two-dimensional NMR experiments, including
1H–1H COSY, 1H–1H total correlation spectroscopy, IH–13C heteronuclear
single-quantum correlation, and IH–13C heteronuclear multiple-bond correla-
tion 2D NMR spectroscopy (see details in SI Text: Materials and Methods).
1H NMR spectra were manually corrected for phase and baseline and refer-
enced to TSP (� 0.0).

Multivariate Data Analysis. Initially, PCA was performed (on mean-centered
data) to visualize the general structure of each dataset. Sex differences in 1H
NMR and each DGGE dataset were investigated by OPLS-DA (18), where each
data matrix was regressed against a dummy matrix of ones and zeros indicat-
ing sex class. The models were evaluated by assessment of the cross-validated
scores from the model based on fivefold cross-validation (data were mean-
centered and scaled to unit-variance before modeling). Sex-related variables
were determined by interpretation of each OPLS-DA model.

Urinary metabolite profile and gut microbiota composition data were

analyzed by OPLS methods where 1H NMR data were used for modeling and
prediction of individual DGGE variables (bands) by using a model with one
predictive component and one DGGE-orthogonal component (data were
mean-centered and scaled to unit variance before modeling). The predictive
performance was evaluated by fivefold cross-validation, where the Q2 value
(goodness of prediction) was used to select DGGE bands of interest (Q2 � 0.4).
1H NMR peaks (urine metabolites) related to the DGGE bands were deter-
mined by interpretation of each respective OPLS model.
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