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ABSTRACT
Simultaneous Multithreading machines fetch and execute in-
structions from multiple instruction streams to increase sys-
tem utilization and speedup the execution of jobs. When
there are more jobs in the system than there is hardware
to support simultaneous execution, the operating system
scheduler must choose the set of jobs to coschedule

This paper demonstrates that performance on a hardware
multithreaded processor is sensitive to the set of jobs that
are coscheduled by the operating system jobscheduler. Thus,
the full bene�ts of SMT hardware can only be achieved if the
scheduler is aware of thread interactions. Here, a mechanism
is presented that allows the scheduler to signi�cantly raise
the performance of SMT architectures. This is done without
any advance knowledge of a workload's characteristics, using
sampling to identify jobs which run well together.

We demonstrate an SMT jobscheduler called SOS. SOS com-
bines an overhead-free sample phase which collects informa-
tion about various possible schedules, and a symbiosis phase
which uses that information to predict which schedule will
provide the best performance. We show that a small sam-
ple of the possible schedules is su�cient to identify a good
schedule quickly. On a system with random job arrivals and
departures, response time is improved as much as 17% over
a schedule which does not incorporate symbiosis.

1. INTRODUCTION
Simultaneous Multithreading (SMT) [32, 31, 18] architec-
tures execute instructions from multiple streams of execu-
tion (threads) each cycle to increase instruction level paral-
lelism. When there are more jobs in the system than there is
hardware support for simultaneous execution (that is, more
than the number of hardware contexts), the jobscheduler
implements multiprogramming at two levels. It makes a
running set of jobs that will be coscheduled and compete
in hardware for resources every cycle; jobs move in and out
of the running set, at the discretion of the OS, at a much

coarser granularity. In this situation, the jobscheduler de-
cides which jobs should be coscheduled in the running set.

The term symbiosis has been used to refer to the e�ective-
ness with which multiple jobs achieve speedup when co-
executed on multithreaded machines [24]. Jobs in an SMT
processor can con
ict with each other on various shared sys-
tem resources. Throughput may actually go up or down
depending on how well the jobs in the running set symbios
or get along. It therefore makes a di�erence which jobs are
coscheduled. A job scheduler which takes symbiosis into
account can yield enhanced throughput and response time.

This paper presents a symbiotic OS-level jobscheduler for
SMT that dynamically adjusts its scheduling decisions to
enhance throughput and lower response time. The sched-
uler begins to coschedule jobs according to some fairness
policy. By sampling hardware performance counters, and
by periodically randomly perturbing the sets of coscheduled
jobs, it discovers a job schedule for the entire jobmix that
increases system performance over what would be expected
if scheduling were left to chance. We call our scheduler SOS
(for Sample, Optimize, Symbios) because it �rst samples the
space of possible schedules while making progress through
the job mix. It then examines hardware performance coun-
ters and applies a heuristic to guess at an optimal schedule,
then runs this (presumed to be optimal) schedule to boost
system utilization. SOS scheduling can improve system re-
sponse time by as much as 17% over a naive scheduler.

We �rst describe our methodology and experimental setup
in Section 3, then introduce a metric in Section 4 to mea-
sure progress through the execution of a jobmix. Section 5
shows how SOS discovers e�cient coschedules using runtime
counters to predict which combinations of jobs will run well
together, and that it exhibits gains in throughput on sev-
eral jobmixes. Sections 6 and 7 discuss the performance of
SOS on jobmixes which include parallel multithreaded pro-
grams, and Section 8 explores cache coldstart e�ects related
to these techniques. Lastly, Section 9 shows that SOS im-
proves response time as well as throughput on a system with
random job arrivals and runtimes.



2. RELATED WORK
A simultaneous multithreading processor [32, 31, 18, 14, 35]
holds the state of multiple threads (execution contexts) in
hardware, allowing the execution of instructions from mul-
tiple threads each cycle on a wide superscalar processor.
This organization has the potential to more than double the
throughput of the processor without excessive increases in
hardware [31].

The techniques described here also apply to other multi-
threaded architectures [3, 11, 2]; however, the SMT archi-
tecture is most interesting because threads interact at such a
�ne granularity in the architecture, and because it is closest
to widespread commercial use, having been announced for
the next Alpha processor [10]. By contrast, the Tera MTA
supercomputer [3], which features �ne-grain multithreading,
has fewer shared system resources and less intimate inter-
actions between threads. It issues one LIW instruction per
cycle, does not support out-of-order execution, does not have
shared renaming registers, and has no data cache.

Snavely, et al., [24] �rst used the term symbiosis to refer to
an increase in throughput that can occur when particular
jobs are coscheduled on multithreaded machines, and in [23]
exhibit a user-level schedule that boosts throughput on the
Tera MTA. But that application is for a massively paral-
lel system which largely protects threads from each other.
Thus, while the scale of the scheduling problem is great, the
number of factors determining how threads interact are few
and relatively straight-forward.

Sobalvarro and Weihl [26], Gupta, et al., [12], and Dusseau,
et al., [4] all explore the bene�ts of coscheduling parallel jobs
based on their communication patterns. In fact, a multipro-
cessor scheduler should solve a similar problem { how to
coschedule threads on di�erent processors to maximize e�-
ciency in the face of bottlenecks on shared system resource
(such as main memory or communication fabric). Chapin
[7] emphasizes load balancing, as does Tucker and Gupta
[30]; the idea is to migrate threads to under-utilized proces-
sors. Others have concentrated on keeping the cache warm
by favoring the mapping of threads to processors where they
have executed before [6] [29] [34].

Coscheduling on traditional single-threaded architectures of-
ten leads to increased throughput due to overlapping of
I/O from some job(s) with the calculations of others. The
scheduling discipline Multi-level Feedback, implemented in
several 
avors of Unix ([28] 4.3 BSD Unix, Unix System
V, and Solaris TS (timesharing scheduling class), encour-
ages I/O bound jobs to run more frequently, thus leading to
higher overall machine utilization. I/O bound jobs tend to
relinquish the CPU as soon as they obtain it. If the hard-
ware and O/S support asynchronous I/O, this allows the
CPU to stay busy with the next job while I/O is serviced
([27] [16]). Patterson [19] describes an extension to the Mach
O/S that does informed prefetching to exploit I/O paral-
lelism in coscheduled jobs to boost throughput on a DEC
workstation with multiple SCSI strings.

Several systems schedule software threads on single-threaded
processors or clusters of single-threaded processors. Delany
[9] explains how the Daylight Multithreading Toolkit Inter-

face does this to overlap I/O with computation and increase
system throughput. Blumofe [5] describes a method for
scheduling software threads on a hardware single-threaded
multiprocessor via a workstealing heuristic.

Many scheduling techniques strive to coschedule jobs that
communicate frequently on massively parallel (MPP) sys-
tems conglomerated from single-threaded processors. Sistare
[22] describes a system that dynamically coschedules jobs
that communicate frequently to increase system utilization
and job response time. Sobalvarro [25] improves upon gang
scheduling to dynamically produce emergent coscheduling of
the processes constituting a parallel job. Silva [21] improves
upon gang scheduling to �ll holes in utilization around gang
scheduled jobs with pieces of work from jobs that do not
require all resources in order to to make progress. Lee [15]
evolves methods of balancing the demands of parallel jobs
waiting to be gang scheduled with those of I/O-bound jobs,
which require high CPU priority to achieve interactive re-
sponse times. The goal is to keep the system highly utilized.

Several works have explored the tension between schedul-
ing a system for high utilization and meeting an objective
function on single-threaded hardware devoted to a real-time
mix of jobs. Hamidzadeh [13] accounts for the scheduling
overhead in a system that dynamically schedules real-time
applications with a goal of using a multiprocessor single-
threaded system e�ciently to meet the maximum number
of deadlines.

Co�er [8] describes scheduling mechanisms allowing the sys-
tem administrator to balance the demand for fast turnaround
with demand for high throughput. The administrator can
over-allocate resources to allow high utilization of system
resources on the Origin 2000.

Schauser [20] describes a hierarchical scheduling policy that
allowed the TAMmachine to schedule logically related threads
closely together in time.

Previous work focused on coarse-grained overlapping of I/O
with computation on single-threaded hardware, or concen-
trated on ways to coschedule logically related jobs on MPP
systems conglomerated from single-threaded harwdware, or
focused on mechanisms to pack low priority jobs around high
priority jobs to raise utilization on hardware-single-threaded
machines. This work breaks new ground by considering
O/S mechanisms for increasing �ne-grained, overlapping, re-
source utilization on hardware-multithreaded machines for
jobs that run well together but have no other reason to be
coscheduled. So, while most previous work only takes into
account communication interaction and the need to cosched-
ule parallel jobs, this work incorporates much more complex
interactions between coscheduled jobs. Many of these inter-
actions are phenomena particular to multithreaded systems.

3. EXPERIMENTAL SETUP
An SMT processor comes equipped with some number of
hardware contexts (roughly a program counter and a set
of state-holding registers). The number of contexts deter-
mines how many threads can be co-executed; this number
is referred to as the multithreading (or SMT) level. The
jobscheduler selects, from the pool of jobs ready to run, a



number of jobs to coschedule less than or equal to the mul-
tithreading level. Every so often, for fairness, this running
set is swapped out and replaced with a new set of jobs from
the ready pool.

Our simulator (based on SMTSIM [33]) models an out-of-
order processor based on the Compaq Alpha 21264 with
modest hardware additions to support multithreading. The
21264 comes equipped with performance counters which can
be used to capture dynamic execution information. We
model 21264 instruction latencies, functional units (fully
pipelined), sizes of instruction queues, sizes and associativi-
ties of caches, and TLB capacity. This is not a particularly
aggressive architecture for this study, but provides some re-
source contention even at the most modest levels of multi-
threading. The same e�ects demonstrated in this work will
be evident with wider processors, but may happen at higher
levels of multithreading. In the experiments detailed be-
low, we use hardware multithreading levels of 2, 3, 4, and
6. Because our simulator, despite its detail, still simpli�es
the interactions between CPU resources, we expect results
on real SMT machines to produce more potential gain with
symbiotic scheduling than demonstrated here.

We present our jobscheduler with multiprogrammed work-
loads made up of single-threaded and multithreaded jobs
from the SPEC INT, SPEC FP, and NPB (NAS Parallel
Benchmarks [1]), and a parallel program (ARRAY) which
does a parallel pre�x operation on an array. We assume the
jobscheduler is required to make progress through all of the
jobs in a strictly fair manner; all jobs must be scheduled
on the CPU for the same number of cycles over the course
of a run. Every 5 million cycles, which would correspond
to a 10 millisecond timer interrupt on a 500 MHz system,
the jobscheduler receives a clock pulse; if runnable jobs are
available that were not scheduled during the previous times-
lice, it swaps out one or more of the jobs that ran in the last
timeslice, replacing these with jobs that did not.

A schedule is a covering set of coschedules such that ev-
ery job appears in an equal number of coschedules. The
jobs that make up a coschedule compete with each other
for system resources cycle by cycle during their scheduled
timeslice. Our goal is to �nd a schedule that exhibits the
highest average speedup across all jobs.

The jobscheduler runs in two phases called Sample and Sym-
bios. In what follows, we label experiments by a tuple
Jmn(X,Y,Z) where X is the number of runnable jobs, Y
the multithreading level, and Z the number of running jobs
swapped out and replaced with jobs from the runnable pool
at the expiration of the timeslice. `m' is a character from
fs,pg. An s indicates a multiprogrammed workload made
up of single-threaded applications and a p indicates that
the workload includes parallel (multithreaded) jobs. `n' is
a character from b,l where b(ig) indicates that a timeslice
of 5 million cycles was used for coschedules and l(ittle) in-
dicates that a smaller timeslice was used. So for example,
Jsb(6,3,1) is a jobmix of 6 single-threaded jobs that are run
3 at a time; at the end of 5M cycles (b) 1 job is swapped out
and replaced with 1 job that was not running. Since jobs
are selected to be swapped FIFO, this makes the e�ective
resident timeslice for each job equal to 15M cycles. As a

further example, Jpb(10,2,2) is a jobmix of 10 jobs, some of
which (ARRAY) are parallel jobs; jobs are run 2 at a time
and the entire running set (2 jobs) is swapped out every 5M
cycles. J2pb(10,2,2) is a di�erent jobmix run the same way
as Jpb(10,2,2) (see Section 6).

The exact jobs used in each throughput experiment are given
in Table 1. The jobmix for each experiment is meant to pro-
vide computational diversity. Each jobmix has a combina-
tion of high IPC 
oating point programs typical of scienti�c
computing (FP, MG, FT etc.) and lower-IPC integer in-
tensive codes typical of workstation tasks (GCC, GO etc.).
No particular e�ort was made to represent jobs evenly; FT
for example, only appears in one jobmix while FP appears
several times.

In each experiment we compare the performance of 10 di�er-
ent schedules. We run for a number of cycles in the sample
phase su�cient to pro�le 10 schedules and then for 2 billion
cycles in the symbios phase. The number of cycles required
to pro�le 10 schedules given a timeslice of 5 million cycles
varies according to the size of the jobmix, the multithread-
ing level and the job replacement policy. So the number of
cycles spent in the sample phase depends on the experiment
and is given in Table 2. In the sample phase the jobsched-
uler randomly permutes the sets of coscheduled jobs and
records dynamic execution information to observe how the
coschedules are performing.

In all but one of our experiments, the jobscheduler gener-
ates and evaluates 10 random schedules in the sample phase.
For Jsb(4,2,2) there are only 3 possible schedules. See Ta-
ble 2. Schedules are represented by permutations of X job
identi�ers starting at 0 parsed by underbars to delineate
coschedules. So, for example, 012 345 is the schedule for
Jsb(6,3,3) (6 jobs taken 3 at a time) that runs jobs 0, 1,
and 2 together as a tuple and then swaps these out replac-
ing them with jobs 3, 4, and 5. We consider jobschedules
to be identical if they coschedule the same tuples regardless
of the order in which the tuples are scheduled. All jobs are
required to run before any job runs again, and we swap a
�xed number of jobs per timeslice. This means that average
pressure on the memory subsystem is the same regardless
of tuple order. Furthermore, cache-sweeping interaction be-
tween jobs cannot be avoided simply by changing the order
of tuples; every schedule is a circular sequence of tuples; a
job that sweeps another job's cache does so in every sched-
ule. In Section 8, we examine the interaction of symbiosis
scheduling and cache coldstart e�ects more closely.

We begin simulation with each benchmark partially exe-
cuted. This avoids phase changes at the beginning of ex-
ecution, but in a real system, at most one benchmark in a
sample phase will typically be starting up.

4. WEIGHTED SPEEDUP
When jobs are co-executed on an SMT machine, processor
utilization can go up dramatically. This is because thread
level parallelism (TLP) is converted into instruction level
parallelism (ILP). The net e�ect is to increase the pool of
available-to-execute instructions and thus the opportunity
for the functional units to be utilized on every cycle.



Experiments Jobs
Jsb(4,2,2) FP,MG,GCC,IS
Jsb(5,2,2),Jsl(5,2,1) FP,MG,WAVE,GCC,GO
Jpb(10,2,2),J2pb(10,2,2) FP,MG,WAVE,SWIM,SU2COR,TURB3D,GCC,GCC,ARRAY,ARRAY
Jsb(6,3,3),Jsb(6,3,1),Jsl(6,3,1) FP,MG,WAVE,GCC,GCC,GO
Jsb(8,4,4), Jsb(8,4,1), Jsl(8,4,1) FP,MG,WAVE,SWIM,GCC,GCC,GO,IS
Jsb(12,6,6), Jsb(12,4,4) FP, MG, WAVE, SWIM, SU2COR, TURB3D, GCC, GCC, GO, IS, CG, EP
SMT level 2 CG,mt ARRAY,EP
SMT level 3 FP,MG,WAVE,mt EP,CG
SMT level 4 FP,MG,WAVE,mt ARRAY,EP,CG
SMT level 6 FP,MG,WAVE,GO,IS,GCC,mt ARRAY,EP,CG,FT

Table 1: The set of applications used in all experiments in this paper. FP is fpppp and MG is mgrid from
SPEC95.

Experiment Distinct Schedules Million Sample Cycles
Jsb(4,2,2) 3 30
Jsb(5,2,2) 12 250
Jsb(5,2,1) 12 250
Jpb(10,2,2) 945 250
J2pb(10,2,2) 945 250
Jsb(6,3,3) 10 100
Jsb(6,3,1) 60 300
Jsl(6,3,1) 60 100
Jsb(8,4,4) 35 100
Jsb(8,4,1) 2520 400
Jsl(8,4,1) 2520 100
Jsb(12,4,4) 5775 150
Jsb(12,6,6) 462 100

Table 2: The number of distinct possible schedules
for each jobmix, and the time to run at most 10
schedules during the sample phase.

We wish to have a formal measure of the goodness or speedup
of a coschedule. Intuitively, if one jobschedule executes more
useful instructions than another in the same interval of time,
the �rst jobschedule is more symbiotic and exhibits higher
speedup. This suggests IPC as a measure of speedup. But
an unfair schedule can appear to have good speedup, at least
for a while, by favoring high-IPC threads. To ensure that we
are measuring real increases in the rate of progress through
the entire jobmix, we de�ne the quantity

WS(t) 'Weighted Speedup in interval t' =
nX

i=1

(realized IPC jobi= single-threaded IPC jobi)

WS(t) equalizes the contribution of each thread to the sum
of total work completed in the interval by dividing the in-
structions executing on each job's behalf by its natural o�er
rate if run alone. Implicit in the de�nition is a precise idea of
the interval t. An interval is not just a measure of elapsed
time. An interval starts on a certain cycle, but also at a
particular point in the execution of each job. An interval
ends on a certain cycle and at a speci�c point of execution
of each job.

WS(t) of a single-threaded job running alone is 1. In fact,
WS(t) of a time-shared single-threaded system, even with
unfair scheduling, is still 1.

This is intuitive since there is no speedup due to multi-

threading when running only one thread. More importantly,
WS(t) is a fair measure of real work done in processing the
jobmix. In order for it to have a value greater than 1 it
has to be that more instructions are executed than would
be the case if each job simply contributed instructions in
proportion to its single-threaded IPC.

A short exercise may make WS(t) even more intuitive; if we
have one job with single threaded IPC of 2 and another with
single threaded IPC of 1 and run them separately each for 1
million cycles then one will have executed 2 million instruc-
tions and the other 1 million. Now, if we instead coschedule
them for 1 million cycles and the �rst contributes 1 mil-
lion instructions and the second contributes 500 thousand
then WS(t) will equal 1. This makes sense because the total
number of instructions executed was exactly what would be
predicted by the natural IPC of each and their fair share
of the machine (1/2) when scheduled together. However,
if machine utilization goes up due to coscheduling (which
is the primary aim and purpose of multithreading to begin
with) then we might hope to see something like 1.2 million
instructions executed on behalf of the �rst job and 600 thou-
sand on behalf of the other for a total WS(t) of 1.2. It is
also possible for WS(t) to be less than 1 if coscheduled jobs
interact in pathological ways [24].

Figure 1 shows the worst and best weighted speedup ob-
served when 13 di�erent combinations of jobmix, SMT mul-
tithreading level, and job replacement policy are run with
permuted coschedules. Weighted speedup varies, depending
on which jobs run simultaneously. The symbiotic (or anti-
symbiotic) behavior of jobs causes speedup to vary by an
average of 8% and a maximum of 25%, even for the limited
number of samples we take. Clearly, performance is quite
sensitive to the actual schedule in all cases, and the potential
for a symbiosis-sensitive jobscheduler is signi�cant.

5. SOS
With SOS, the jobscheduler begins to run jobs in groups
equal to the multithreading level, using some fair policy to
allow all of the runnable jobs to make progress. The ini-
tial phase is called the sample phase. Here the scheduler
permutes the schedule periodically, changing the jobs that
are coscheduled. As it proceeds in the sample phase, SOS
gathers dynamic execution pro�les of the jobs being run by
referencing hardware performance counters. After sampling
the performance of several schedule permutations, SOS picks
one that it thinks will be optimal and proceeds to run it



Figure 1: Worst and best weighted speedup of sev-
eral jobmixes, multithreading levels, and job re-
placement policies.

in the symbios phase. The only overhead is the occasional
reading and resetting of the counters, which is typically nec-
essary infrequently.

The optimal ratio for the durations of the symbios phase and
the sample phase depends on how often the jobmix land-
scape changes. From time to time, jobs will terminate and
new jobs will enter the system. Jobs will naturally pass
through di�erent phases of execution where their resource
utilization and IPC pro�les change. We begin with experi-
ments where the ratio of symbios to sample is approximately
10 to 1 and the jobmix stays constant during that interval.
Section 9 models a more realistic system with random job
arrivals and departures.

5.1 Shared System Resources and Predicting
Future Performance

Our system needs the ability to �nd an accurate predictor of
future performance of jobschedules from a current snapshot
of counters. Hardware resources that can be shared among
the running threads of the SMT cycle by cycle include func-
tional units, instruction queues, caches and memory and in-
terconnections between them, the TLB, renaming registers,
and branch prediction tables. As part of sharing and com-
peting for these resources, threads will sometimes interact
in ways that contribute to enhanced throughput and some-
times will not. When one thread uses a system resource that
would otherwise have gone unused, system utilization and
thus system throughput goes up. But if threads con
ict on
resources, utilization can drop.

We can conjecture that symbiosis is a function of 3 interre-
lated attributes of the jobmix and schedule:

Diversity
The instructions in the window of instructions being con-
sidered for execution on the current cycle should be diverse.
Because the goal is to keep all of the functional units as busy
as possible, we need instructions for each.

Balance

Figure 2: Weighted speedup achieved with several
dynamic predictors on Jsb(6,3,3).

A schedule that alternates timeslices of
over-subscription with timeslices of under-subscription is un-
likely to outperform a more balanced schedule. When the
system is under-subscribed, utilization and throughput are
low. When the system is over-subscribed con
icts are high,
and little bene�t accrues to havingmore than su�cient work
for the functional units; the resources are oversaturated in
one timeslice and under-utilized in the next.

Low Conflicts
Between two fair schedules for the same jobs, one with lower
con
icts is likely to perform better. Con
icts can lower sys-
tem utilization. Furthermore, con
icts are correlated to the
two previous attributes. Diverse instructions do not con
ict;
smooth schedules lessen con
icts by load-balancing demand
for resources.

The validity of these conjectures is explored next.

5.2 An Example - Jsb(6,3,3)
Table 3 shows dynamic predictor data gathered by SOS in
the sample phase for a jobmix of 6 threads with a multi-
threading level of 3. The possible ways of dividing 6 threads
into 2 sets of 3 are enumerated in the �rst column. There are
only 10 possible �xed schedules of 6 jobs when coscheduling
3 jobs at a time and replacing all 3 each timeslice. In the
sample phase we run each possible schedule for 10 million
cycles (the minimum time required to evaluate the schedule
with a swap timeslice granularity of 5 million cycles). So,
in this case, after a 100 million cycle sample phase, we have
run all possible schedules and have predictions for the per-
formance of all possible schedules. Columns 2 through 9 are
predictors gathered in the 100 million cycle sample phase.
The best score in each column is shown in bold font; the
predictors can be used to guess how a schedule will perform
in the subsequent 2 billion cycle symbios phase. The last
column is the weighted speedup of each schedule in the 2
billion cycle symbios phase.

Figure 2 shows weighted speedups obtained in the symbios
phase by SOS, using the several di�erent predictors of Ta-
ble 3 and a vote tallying one (Score). The predictors are:



Schedule IPC AllConf Dcache FQ FP Sum2 Diversity Balance Composite WS(t)
012 345 3.007 146.14 97.5 37.04 17.36 54.4 0.15 0.24 1.45 1.38
013 245 3.266 146.6 97.5 9.68 31.66 41.34 0.18 0.10 3.30 1.56
014 325 2.865 129.52 97.5 20.77 16.74 37.51 0.17 0.61 1.15 1.57
015 342 3.223 147.72 97.6 9.06 32.09 41.15 0.18 0.86 2.14 1.52
023 145 3.321 146.14 98.1 7.51 28.93 36.44 0.18 0.27 2.90 1.59
024 315 3.462 140.4 97.4 8.6 17.73 26.33 0.18 0.21 2.73 1.60

025 341 3.453 140.07 97.4 6.69 16.82 23.51 0.17 0.55 2.93 1.55
034 125 3.28 140.52 97.6 7.61 22.73 30.34 0.18 1.34 2.47 1.53
035 124 3.333 139.82 97.4 6.42 21.7 28.12 0.17 0.52 3.06 1.58
045 123 3.532 158.45 97.9 6.8 31.02 37.82 0.16 0.13 3.70 1.59

Table 3: Detailed results for jobmix Jsb(6,3,3), including performance data collected by various predictors
during the sample phase, and the weighted speedup of that schedule in the symbios phase.

IPC
A schedule with observed high IPC in the sampling phase is
predicted to be highly symbiotic.

AllConf
A schedule with a low sum of con
icts on the integer queue,
the 
oating point queue, the integer renaming registers, the

oating point renaming registers, scoreboard entries , in-
teger units, 
oating point unit and load store units in the
sampling phase is predicted to be highly symbiotic. We sum
the percentages of cycles for which the schedule con
icts on
each of these resources. The schedule with the lowest sum
is deemed best.

Dcache
A schedule with a high overall hit-rate in the L1 data cache
is predicted to be highly symbiotic.

FQ
A schedule with low total con
icts on the 
oating point
queue is predicted to be highly symbiotic. A queue con-

ict arises when instructions cannot be placed in the queue
because it is full.

FP
A schedule with low con
icts on the 
oating point units is
predicted to be highly symbiotic.

Sum2
A schedule with a low sum of con
icts on the 
oating point
units and the 
oating point queue is predicted to be highly
symbiotic.

Diversity
A schedule with a diverse mix of instructions in all of its
timeslices is predicted to be highly symbiotic. The schedule
with the lowest absolute di�erence between percentage of

oating point and integer instructions is deemed best.

Balance
A schedule with little variation in IPC between consecutive
timeslices is predicted to be symbiotic. The schedule with
the lowest standard deviation in IPC between coschedules is
deemed best.

Composite
A schedule with the highest score of

0:9

MINf(FQ=LowestFQ); (FP=LowestFP ); (SUM2=LowestSUM2)g

+

0:1

Balance

is predicted to be highly symbiotic. The Lowest terms are
the lowest of these values observed for any of the schedules
in the sample phase. This predictor is an experimental �t
that correlates data gathered in the sample phase to later
performance. It gives most weight to load balance but some
weight to low con
icts on critical resources. It was developed
using data for Jsb(6,3,3). This predictor in the sample phase
is highly correlated to performance in the symbios phase.
The next section will evaluate the same predictor on other
jobmixes.

Score
A schedule which is voted best by the majority of the other
predictors is predicted best. Ties are broken by relative
magnitude of goodness predicted.

The �rst bar in Figure 2 gives the highest weighted speedup
obtained by any of the 10 possible schedules, and the second
bar gives the lowest. There is a 17% di�erence between the
two. The third bar is the average weighted speedup of all
10 schedules and can be thought of as the expected through-
put that an oblivious jobscheduler would obtain. The best
schedule is 9% better in terms of weighted speedup than the
average. If a smart jobscheduler can �nd the best sched-
ule, it can boost throughput. The rest of the bars show
the weighted speedup obtained by SOS using the various
dynamic predictors to guess at good schedules.

In this experiment, all but one of the predictors (Diversity)
avoided the worst schedule. IPC, Dcache, FQ, Composite,
and Score all achieved within 2% of the best schedule (a 9%
gain over the expected value of speedup). For this particular
jobmix, then, we can expect as much as a 9% performance
gain over the average schedule a naive jobscheduler would
choose, and up to 17% over an unlucky schedule choice. The
next section shows that similar results are achieved over a
much wider range of workloads and architectures.



5.3 Other Jobmixes

Figure 3 shows the weighted speedup achieved with SOS
scheduling for 13 combinations of jobs, multithreading lev-
els and job replacement policies. The jobs in each jobmix
can be found in Table 1. In each case but one, we have sam-
pled 10 schedules (Jsb(4,2,2) has only 3 possible schedules).
We then predict which would be best using the dynamic
predictors gathered in the sample phase and then run all
10 for 2 billion cycles in the symbios phase to see how they
actually perform. Thus, we use the information gathered in
the sample phase to predict the performance of 10 random
schedules and then proceed to run each one to validate our
guesses. Note that while there are only 10 possible sched-
ules for Jsb(6,3,3), there are many more for other experi-
ments (see Table 2) so that 10 schedules is just a statistical
sample of the performance space in most cases. Figure 3
con�rms our �nding that 10 random schedules of any given
jobmix produced a substantial di�erence between a best and
a worst schedule and even between a best and an average
schedule, and thus was su�cient to identify a good schedule.
More sampling would likely �nd a better schedule, but at
a greater cost for the sampling phase. It also shows that
SOS can discover a schedule with better than average per-
formance using dynamic predictors and that some dynamic
predictors are better than others.

One interesting result is that IPC alone is not a particularly
good predictor. This is non-intuitive, since high IPC means
high system utilization, which is essentially the goal of this
work. We found IPC to be quite variable, even over the
granularity of the timeslices we used. Other metrics were
typically much more stable from sample to sample of the
same mix, and thus often provided better predictions of fu-
ture performance. Also, a temporarily high IPC schedule
does not always equate to the highest system-throughput
schedule; it can happen that high IPC threads monopolize
system resources to the detriment of low IPC threads in the
sample phase.

The Diversity predictor is not e�ective; the variance in the
Diversity predictor was not very great for these experiments.
It likely was insu�ciently large to manifest as an important
e�ect.

The Balance predictor is quite e�ective. Good schedules
balance the demand for system resources across timeslices.
The fact that a schedule is balanced is a good indication
that it will deliver high throughput.

The AllConf predictor was not very e�ective; paradoxically,
high con
icts are often a symptom of high system utiliza-
tion. However, con
icts on the 
oating point queue and

oating point unit are especially to be avoided in our pro-
cessor model; low scores for the FP, FQ, and SUM2 predictor
are correlated to good performance.

The Dcache predictor was an inconsistent performer. In
some cases it chose the worst schedule. All of the kernels
get good cache reuse, and none are large enough to seriously
stress the capacity of the cache even when run in combina-
tion. The hit rate is high and there is little variation in this
predictor between schedules.

The Composite predictor, which uses criteria of smooth-
ness and low con
icts, is the most consistent individual per-
former. We tried several composite predictors. Intuitively
it might seem that a predictor that gives more weight to
events that detract the most from performance (e.g. dcache
misses) might work well. However we did not �nd a correla-
tion between the con
ict penalty and the weight that should
be given to it in a composite predictor. Con
icts only cause
a drop in throughput if no job can make progress. Oth-
erwise, a loss to one job is a gain to another and may not
negatively impact weighted speedup.

Score, which tallies votes from all of the other predictors is
the best overall performer. It appears that symbiosis lead-
ing to increased throughput is a function of several factors.
Score usually discovers the best of the 10 schedules. Ig-
noring for a moment the gains exhibited for Jpb(10,2,2) (a
special case that will be explored in the next section), SOS
with score predictor boosts weighted speedup by 22% over
unlucky schedules and by 7% over the expected value of
random schedules.

The best predictors will, in general, be very architecture-
dependent. We have discovered e�ective ones for our par-
ticular simulation of SMT. The important result is that good
predictors are not di�cult to �nd, and they do have an im-
pact on performance.

6. PARALLEL WORKLOAD SCHEDULING
It can be seen in Figure 3 that the most dramatic gain for
SOS was for Jpb(10,2,2), where the score-predicted sched-
ule increased the gains due to multithreading over the aver-
age by almost 400%. However this is an artifact of random
scheduling. ARRAY does tight synchronization between its
threads. If these threads are not coscheduled, very poor
performance results. Most of the random schedules did not
coschedule the threads of ARRAY. However, any reason-
ably designed jobscheduler for a multithreaded system will
likely coschedule parent and child threads from the same job.
SOS dynamically determines that parent and child threads
should run together in this case. However we do not feel jus-
ti�ed in claiming the 400% gain as a breakthrough result!
On the other hand, if the parent and child thread do not
communicate often, coscheduling may not be the best op-
tion. J2pb(10,2,2) uses a variant of ARRAY that does little
synchronization. In this case, the score-predicted schedule
does not coschedule the parent and child threads of ARRAY
and outperforms one that does by 13%.

Thus we see the advantage of a dynamic scheduler such
as SOS over a scheduler which uses a rule-of-thumb always
schedule parent and child threads together. SOS determines
whether it makes sense to schedule threads together for per-
formance. Not all of our SOS predictors chose the right com-
bination. If we were to depend on SOS to schedule parallel
jobs, we would want to make sure that IPC was a signi�cant



Figure 3: Weighted speedup achieved by SOS for several di�erent jobmixes.

component of the prediction.

7. HIERARCHICAL SYMBIOSIS
As automatic multithreading compiler technologies mature,
SMT workloads will include more multithreaded jobs like
ARRAY. If the compiler is sophisticated enough to generate
code that can adapt to the number of hardware contexts
available at runtime (the Tera MTA compiler does this),
then the jobscheduler has an additional degree of freedom
when allocating resources{it can decide how many contexts
to assign to each multithreaded job. Consider a machine
with an SMT level of 3 and a workload that includes two
multithreaded jobs, ARRAY and a multithreaded version
of EP. Assuming that SOS decides to coschedule ARRAY
and EP, it can also decide whether to devote 2 contexts
to ARRAY and 1 to EP or vice-versa (of course, it could
also keep both single-threaded and coschedule a third job.)
It turns out that the coschedule that devotes 2 contexts
to ARRAY is 8% more symbiotic than the complementary
coschedule. If the jobmix is exactly EP and ARRAY, we
can consider a third possibility, alternating 3 threads of EP
with 3 of ARRAY. However, this last schedule is 9% worse
than the best.

SOS could implement symbiosis at 2 levels by deciding which
jobs to coschedule and then deciding how many contexts to
give multithreaded jobs. In the absence of an MTA-like com-
piler for SMT, we have hand-coded several multithreaded
versions of the benchmarks with di�erent levels of multi-
threading and evaluated the potential bene�ts of giving the
jobscheduler this extra degree of freedom. Interestingly, al-
though the above division of resources is optimal for just
EP and ARRAY together, it is not necessarily optimal in
a larger schedule. If the jobmix is single-threaded CG with
multithreaded EP and ARRAY on a machine with an SMT
level of 4, the optimal schedule is 1 context for CG, 2 for EP,
and 1 for ARRAY. The resources used by a job impact every
other coscheduled job. In this case, adding one extra job to
the mix changes the optimal resource allocation between the
�rst two. SOS could heuristically approximate a solution to
this global optimization problem by trying di�erent ways of
dividing up contexts in the sample phase.

We extend the de�nition of WS(t) to include multithreaded

Figure 4: Improvements in weighted speedup poten-
tially achievable by SOS using hierarchical symbiosis
with di�erent levels of multithreading.

jobs by making the denominator term equal to the issue rate
of the job running alone, with no other jobs in the cosched-
ule. Figure 4 shows the average percent improvement in
weighted speedup achievable by SOS using the score pre-
dictor for various levels of SMT if, besides deciding which
threads to coschedule, SOS determines how many threads
to devote to each parallel job. It can be seen that these two
levels of choice allow SOS a signi�cant advantage over ran-
dom (average) or unlucky (worst) schedules. The SMT level
entries in Table 1 give the jobs used in these experiments.

8. WARMSTART SCHEDULING
In example Jsb(6,3,3), we used a scheduling policy that re-
placed all of the members of the running set each timeslice;
a thread had �xed partners in a schedule. This limits the
number of possible schedules and the time required to sam-
ple a schedule, thus making exhaustive sampling possible.
But a system may prefer to swap only one job at a time
to reduce pressure on the memory subsystem. Furthermore,
while our experiments have focused on CPU-bound jobmixes
with infrequent I/O, a system may use an I/O event as an
opportunity to swap the job out, bring in a new job, and
sample a new coschedule. SOS applies equally well to a



Figure 5: Response time improvements obtained by
SOS over a random jobscheduler for various levels
of multithreading.

scheme where only one job is swapped at a time (which we
call warmstart scheduling); SOS samples a number of such
schedules and picks a good one based on observation.

Bene�ts of warmstart scheduling can be seen by comparing
Jsb(5,2,2) to Jsb(5,2,1) of Figure 3 and also by comparing
Jsb(6,3,3) to Jsb(6,3,1) and Jsl(6,3,1) and also by compar-
ing Jsb(8,4,4) to Jsb(8,4,1) and Jsl(8,4,1). Recall that for
the experiments with Z (the last number in the triple) =
1, we swapped only 1 job per timeslice. There are two ef-
fects likely to increase utilization associated with this style
of scheduling. First, the resident timeslice for a single thread
increases. Second, pressure on the memory subsystem dur-
ing a context switch decreases. The �rst e�ect is well known.
It is particularly important on an SMT processor. If only 1
job is cold-starting, the other jobs can hide those latencies
more e�ectively. The longer a job stays resident the better
it amortizes the cost of warming up the memory subsystem.
The experiments labeled with `n' = b bene�t from both ef-
fects. To isolate the e�ect of simply reducing the pressure on
the memory subsystem by swapping only one job at a time,
we shortened the swap timeslice in the experiments labeled
with `n' = l where Z = 1. It can be seen that there is a mod-
est gain in symbiosis associated with warmstart scheduling.
It averages 7% for the experiments labeled `n' = b but is
negligible in the other cases.

The scheduling policy can change cold-start behavior. More
importantly, for this study, results show symbiosis schedul-
ing is e�ective for both scheduling policies that attempt to
minimize cache coldstarts and those that do not.

9. RESAMPLING AND RESPONSE TIME

Because job resource utilization pro�les do not remain static
over time, and because jobs come and go as they enter the
system and complete, it is necessary to repeat the sample
phase from time to time. There is tension in choosing the
rate of resampling. We want to sample as little as possible
because we want to maximize the ratio of the duration of
the symbios phase to the sample phase. This allows us to

amortize the cost of sampling. But we want to sample often
to catch changes in job execution pro�les and jobmix. The
system we have designed will adjust the duration of each
phase dynamically. If the jobmix is observed to be changing
rapidly (things have changed a lot since the previous sample
phase), sampling frequency goes up. If the jobmix seems
stable, sampling frequency goes down.

We model a system where jobs enter and leave the system
with exponentially distributed arrival rate � and exponen-
tially distributed average time to complete a job T. We study
a stable system where � and T are such that the number of
jobs in the system (N) does not grow without bound. In such
a system it makes sense to measure response time rather
than throughput, since throughput cannot possibly exceed
the rate of job arrival. If two stable systems are compared
and one is faster, the faster one will complete jobs more
quickly and thus typically have fewer queued up waiting to
run.

We randomly generated jobs with an average distribution of
T centered around 2 billion cycles by �rst generating ran-
dom numbers with this distribution and then fetching that
many instructions multiplied by single-threaded IPC from
the jobs of Table 1. So, for the purposes of these experi-
ments, a job is about 2 billion cycles worth of instructions
from one of the jobs in Table 1. We then used a job arrival
rate (�) with an exponential distribution that would cause
the system to remain stable with N about equal to double
the SMT level (based on Little's law [17] N = � � T ). So
most of the time there are about N = 2 * SMT-level jobs
in the system. To model a random system but produce re-
peatable results, we fed the same jobs in the same order with
the same arrival times to SOS and a control group scheduler.
The control group scheduler is a random, or naive, scheduler
in the sense that it simply coschedules jobs together in tu-
ples equal to the SMT level in the order in which they arrive.
SOS, on the other hand, selects a symbiotic schedule based
on sampling. Three events trigger a new sample phase: a
job arrival, a job departure, or the expiration of the sym-
biosis phase timer. For these experiments we used � as the
default symbiosis interval. If no new job arrives after � cy-
cles and the new prediction is the same as the old one, SOS
employs exponential backo� by doubling the time it will run
before sampling in the absence of a new job. When a job
arrives or departs, or the new prediction does not agree with
the old one, the duration of the symbiosis phase reverts to
�. For these experiments both the SOS scheduler and the
baseline scheduler swap out all jobs from the running set
each timeslice, when possible.

Figure 5 compares the average response time delivered by
a random jobscheduler to that delivered by SOS for four
di�erent levels of SMT multithreading, with response time
improvement varying from 8 to nearly 18%. The response
time improvement includes the performance of the sampling
phases, when no speedup is expected. Figure 6 shows re-
sponse time improvements for SOS over a random scheduler
with various job arrival rates and the SMT multithreading
level held constant at 3. The arrival rates shown are the
mean of an exponential distribution centered at the value
indicated. The improvements shown in Figure 6 di�er from
those of Figure 5 for SMT level of 3 simply because the ex-



Figure 6: Response time improvements obtained by
SOS over a random jobscheduler for various values
of � (in cycles); with SMT level held constant at 3.

periments are di�erent in each case, with di�erent jobs, ran-
dom job lengths, random orders of arrival, and random rates
of arrival. After many such experiments, we have concluded
that: 1) SOS boosts response time substantially. 2) It is al-
ways worthwhile resampling when a new job comes in. The
old schedule `adjusted' to accommodate a new job is typi-
cally no better than random. Thus, we should go straight to
the sampling phase. 3) Resource utilization pro�les of the
SPEC and NPB benchmarks are quite stable. In most of our
experiments, resampling when no new job arrived or old job
terminated did not result in dramatic gains. But this is an
artifact of the stability of the SPEC and NPB benchmarks
in terms of resource utilization. We expect other workloads
will experience more phased behavior.

10. CONCLUSION
This paper demonstrates that performance on a multi-
threaded processor is sensitive to the set of jobs that are
coscheduled by the operating system jobscheduler. It presents
a mechanism that allows the scheduler to exploit this phe-
nomenon to arrive at a schedule which can signi�cantly
improve performance. This is done without any advance
knowledge of an application's characteristics, using sampling
to identify jobs which run well together. It can even iden-
tify multithreaded (parallel) jobs that perform better if not
coscheduled.

SOS combines a sample phase which collects information
about various possible schedules, and a symbiosis phase which
uses that information to predict which schedule will provide
the best performance. We show that a small sample of the
possible schedules is su�cient to identify a good schedule
quickly. There is no cost to the sample phase, because the
performance of the sample phase is equivalent to what would
be expected of a naive scheduler. On a system with random
job arrivals and departures, response time is improved as
much as 17% over a schedule which does not incorporate
symbiosis.
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