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Abstract: The symbiotic organism search (SOS) algorithm is a promising meta-heuristic evolutionary

algorithm. Its excellent quality of global optimization solution has aroused the interest of many

researchers. In this work, we not only applied the strategy of multi-group communication and

quantum behavior to the SOS algorithm, but also formed a novel global optimization algorithm called

the MQSOS algorithm. It has speed and convergence ability and plays a good role in solving practical

problems with multiple arguments. We also compared MQSOS with other intelligent algorithms

under the CEC2013 large-scale optimization test suite, such as particle swarm optimization (PSO),

parallel PSO (PPSO), adaptive PSO (APSO), QUasi-Affine TRansformation Evolutionary (QUATRE),

and oppositional SOS (OSOS). The experimental results show that MQSOS algorithm had better

performance than the other intelligent algorithms. In addition, we combined and optimized the

DV-hop algorithm for node localization in wireless sensor networks, and also improved the DV-hop

localization algorithm to achieve higher localization accuracy than some existing algorithms.

Keywords: SOS; MQSOS; OSOS; PSO; PPSO; APSO; QUATRE; WSN; DV-hop

1. Introduction

In the past several decades, intelligent computing has developed rapidly. Researchers

have evolved a variety of intelligent computing algorithms inspired by natural phenomena [1,2].

While conducting research, we often encounter complex problems that require the extreme value of

a multivariate function to be found. The usual practice is to calculate the gradient of the function.

When functions have higher dimensions or are relatively complex themselves, the gradient of the

computational function will be very time consuming, and thus unable to complete tasks. Moreover,

many problem functions are inseparable in real life, which limits the feasibility of the gradient

calculation of correlated functions. The advent of computational intelligence provides a new way of

thinking about the solution of these optimal solutions, thereby breaking the limitations of traditional

methods for solving extreme values of functions that require low-dimensional differentiation. In this

paper, we take the 28 unrestricted objective functions in CEC2013 [3–5] as an example to analyze and

compare the newly proposed algorithms. Although the objective function has multiple constraints in

the objective world, the performance of the objective function of the algorithm under unconstrained

conditions plays a fundamental role in various optimization applications, which will then affect

the performance and direction of the algorithm in a constrained objective function. Computational

intelligence (CI) [6–10] not only deals with complex problems in real life (most notably the objective

functions of uncertain or noisy problems [11]), it can also give calculation methods and solutions
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to solve these optimization problems. Evolutionary computation (EC) [12–15] is a branch of CI that

provides an optimization method with evolutionary ideas. There are many branches in the CI field,

such as computational learning theory (CLT), evolutionary computing, fuzzy logic (FL), artificial neural

networks (ANNs), and quantum computing (QC). Swarm intelligence (SI) is one branch of evolutionary

computing [16,17], including evolutionary algorithm (EAs), memetic calculation (MC), and so forth.

EC encompasses a variety of optimization algorithms developed by researchers and various scholars.

It is based on the inspiration and simulation of various natural phenomena in nature. The PSO

algorithm is a classic intelligent algorithm inspired by the foraging behavior of birds. Many scholars

have developed and improved on this basis to enhance the global optimization of PSO algorithms

[18,19], with developments such as parallel PSO (PPSO) [20], adaptive PSO (APSO) [21], and so

on. Differential evolution (DE) [5,5] is a stochastic model that simulates the evolution of organisms.

It is an evolutionary algorithm that is preserved by individuals which adapt to the environment

through repeated iterations. QUasi-Affine TRansformation Evolutionary (QUATRE) [22,23] is an

algorithm based on the quasi-affine transformation in geometry. It overcomes the shortcoming of the

DE algorithm where as the number of evolutionary iterations increases, the diversity of the population

is reduced, and it converges to a local optimization point prematurely or the algorithm stagnates.

The artificial bee colony (ABC) [24–26], ant colony optimization (ACO) [27], and cat group optimization

algorithms (CSO) [28,29] also have similar functionalities.

Symbiotic organism search (SOS) [30,31] is a very promising meta-heuristic optimization

algorithm with state-of-the-art global optimization ability. It uses the symbiotic relationship between

two organisms in an ecosystem to survive, and cycles to find the optimal value of the objective

function. In 2014, Cheng and Prayogo pioneered the algorithm. Subsequently, many researchers and

scholars improved this algorithm [32,33]. For example, in 2019, Falguni Chakraborty, Debashis Nandi,

and Provas Kumar Roy proposed oppositional SOS (OSOS) [30,34]. In order to further improve the

global optimization ability of the SOS algorithm (including the optimal solution and convergence

speed), this paper will integrate the quantum behavior [35,36] and the idea of multi-group optimization

into the SOS algorithm, while drawing comparisons with the other algorithms mentioned in this paper.

Experimental results indicate that the performance of the proposed MQSOS algorithm is superior to

other algorithms.

Wireless network node positioning plays a very important role in wireless sensor networks

(WSNs) [37–40], navigating, monitoring, and other applications [41,42]. According to whether the

distance between nodes needs to be measured, the position can be divided into positioning based

on the distance measurement and positioning not based on the distance measurement. On the basis

of the deployment occasion, it can be divided into outdoor positioning and indoor positioning [43].

Common methods based on distance measurement include triangulation, trilateration, and maximum

likelihood estimation [23,44,45]. Common ranging methods include DV-hop [46], RSSI [47,48], etc.

The DV-hop-based positioning algorithm is simple and has high positioning accuracy, which has made

the research results published in this area widely used in recent years. Many scholars have applied

intelligent algorithms to wireless sensor network location algorithms based on distance measurement.

The accuracy of positioning is being continuously improved. The combination of the MQSOS algorithm

and the DV-hop algorithm to improve the performance of original DV-hop positioning is also proposed

in this paper.

Section 2 of this paper briefly introduces the DV-hop algorithm and several EC algorithms such

as native PSO, SOS, QUATRE, OSOS, and so on. Section 3 is dedicated to the newly proposed MQSOS

algorithm and the algorithm MQSOS_DV-hop that is generated in combination with the DV-hop

algorithm. Section 4 shows the experimental results under the CEC2013 test suite and compares

the proposed method with other EC algorithms. At the same time, the improvement of the DV-hop

algorithm by MQSOS and other CI algorithms is also compared. Finally, in Section 5, the corresponding

conclusions are drawn based on the experimental results.
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2. Related Works

2.1. Native PSO Algorithm

The PSO algorithm is a classic global optimization algorithm inspired by the foraging behavior

of birds in nature, where the area where the birds forage is simulated as the range of the solution,

the position of the bird is the position of the current particle, and the position of the food is the position

of the global optimal solution. The specific process of the PSO algorithm is as follows. In the initial

stage, the scope of the group search is set along with the critical value of the speed in the particle

search process. The position of the randomly initialized group is X =
[

x1, x2, . . . , xps

]

and the speed

is V =
[

v1, v2, . . . , vps

]

.

xi = (xi,1, xi,2, . . . , xi,D), (1)

vi = (vi,1, vi,2, . . . , vi,D), (2)

where xi and vi represent the position and velocity of the ith particle in the population, D represents

the dimension of the population, and ps is the population size.

In the evolutionary stage, the iterative evolution of the population is continually carried out by

Equations (3) and (4) until the conditions for the iterations to stop are met.

vt+1
i = ωvt

i + c1r1(P
t
i − xt

i) + c2r2(G
t
i − xt

i), (3)

xt+1
i = xt

i + vt+1
i , (4)

where vt
i represents the velocity of the ith particle at the tth iteration, and xt

i represents the position of

the tth iteration of the ith particle. ω denotes the inertia coefficient of the particle that maintains its

current velocity during the optimization process. Pt
i represents the individual optimal position after

iterating i times, and Gt
i represents the global optimal position after iterating i times. c1 and c2 denote

the ability to learn individual optimality and global optimality, respectively. r1 and r2 denote random

numbers between 0 and 1.

2.2. QUATRE Algorithm

The QUATRE algorithm simulates the process of particles moving from one affine space to another

in geometry [22,49]. The exact evolutionary formula of QUATRE is shown in Equation (5):

X← M⊗ X + M⊗ B, (5)

where the operator ⊗ denotes the multiplication of the values on the corresponding parts of the matrix.

X is expressed as the position matrix of all particles of the population. M is a contribution matrix

consisting of 0 and 1. When ps = 2 ∗D + 2, the matrix M is formed as shown in Equation (6), where ps

is the population number and D is the dimension of the space in which the population is located.

M represents a matrix of binary inverse operations while M. B is represented as a mutation matrix

with its generation strategy shown in Table 1. Xr1, Xr2, Xr3, Xr4, and Xr5 represent a random matrix

that randomly arranges the vectors in matrix X, respectively. Xgbest represents the optimal position

matrix. F denotes a control factor.
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Table 1. Seven schemes of mutation matrix B calculation. QUATRE: QUasi-Affine TRansformation

Evolutionary algorithm.

No. QUATRE/x/y Equation

1 QUATRE/rand/1 B = Xr1,G + F · (Xr2,G − Xr3,G)
2 QUATRE/best/1 B = Xgbest,G + F · (Xr1,G − Xr2,G)
3 QUATRE/target/1 B = X + F · (Xr1,G − Xr2,G)
4 QUATRE/target-to-best/1 B = X + F · (Xgbest,G − X) + F · (Xr1,G − Xr2,G)
5 QUATRE/rand/2 B = Xr1,G + F · (Xr2,G − Xr3,G) + F · (Xr4,G − Xr5,G)
6 QUATRE/best/2 B = Xgbest,G + F · (Xr1,G − Xr2) + F · (Xr3,G − Xr4,G)
7 QUATRE/target/2 B = X + F · (Xr1,G − Xr2,G) + F · (Xr3,G − Xr4,G)

2.3. SOS Algorithm

There are three phases in the SOS algorithm—the mutualism phase, the commensalism phase,

and the parasitism phase. In the mutualism phase, each individual Xi interacts with other individuals

Xj (i 6= j) in the population to benefit both individuals. The interaction between two organisms in the

ecosystem is shown in Equations (7)–(10).

{

Xinew = Xi + r1 × (Xgbest − XMV × b1),

Xjnew = Xj + r2 × (Xgbest − XMV × b1),
(7)

XMV =
Xi + Xj

2
, (8)

{

b1 = round(1 + rand(0, 1)),

b2 = round(1 + rand(0, 1)),
(9)

where Xinew and Xjnew represent the latest positions of Xi and Xj after mutual benefit, respectively.

XMV represents an interaction vector representing a mutual symbiotic relationship between organisms

Xi and Xj. r1 and r2 are between 0 and 1 subject to a uniformly distributed random variable. b1 and b2

respectively represent the benefit factors of each organism in the mutually beneficial phase, and the

formulae for the formation of b1 and b2 are as shown in Equation (10). Through Equation (11),

the optimal position of the organism in the population after the mutual benefit phase is retained.

{

Xi = Xinew, i f f (Xi) > f (Xinew),

Xj = Xjnew, i f f (Xj) > f (Xjnew),
(10)
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In the commensalism phase, two organisms Xi and Xj undergo random selection from the

ecosystem for interaction with symbiotic relationships. Xi attempts to profit from the symbiotic

relationship and find a better position, but Xj will not be affected by this stage. This symbiotic

relationship is shown in Equation (11):

{

Xinew = Xi + r3 × (Xgbest − Xj),

Xi = Xinew, i f f (Xi) > f (Xinew),
(11)

where r3 is a uniform distribution between −1 and 1. f (x) is a fitness function. Xi will update to the

state of Xinew when the fitness value of Xinew is better than Xi. By Equation (12), Xi can benefit from

this symbiotic relationship with Xj, but the state of Xj does not change.

To illustrate the parasitic phase, we can briefly describe the parasitic relationship between the

malaria parasite and the human host. Plasmodium sp. infects human hosts via the bite of a mosquito

carrying the parasite. After successfully infecting the humans, the malaria parasite will grow in the host

and invade red blood cells to cause malaria. If the host’s immunity is strong enough, the antibodies will

destroy the parasite. Otherwise, the host will die of serious illness under the invasion of the parasites.

The process is implemented by first selecting a parasite carrier (e.g., a mosquito) Xi and a

human-like host Xj from the ecosystem, and then performing host infection by Equation (12) to

generate parasite Xparasite. If the insect’s Xparasite has a better fitness value than the host Xj, then the

parasite Xparasite will replace the host Xj; otherwise, the host Xj will exert immunity against the parasite

Xparasite. The parasitic phase is calculated as shown in Equation (13).

{

Xparasite = Xi, rand(0, 1) > 0.5

Xparasite = rand(0, 1)× (UB− LB) + LB, rand(0, 1) ≤ 0.5
(12)

Xj = Xparasite, i f f (Xparasite) < f (Xj) (13)

In Equations (12) and (14), UB and LB are the maximum and minimum boundary values for the

creature to search within the D-dimensional space, respectively.

2.4. OSOS Algorithm

Oppositional symbiotic organism search optimization (OSOS) is a new SOS algorithm with a

solution based on opposite-based learning (OBL) [34] which can improve the performance of SOS

through the concept of opposite learning. The specific flow of the OSOS algorithm is as follows.

First, according to the SOS algorithm, the reciprocal phase, the symbiotic phase, and the parasitic

phase are iterated, and then based on the ratio of the number of the individuals to the number of

all biological individuals after each iteration, a strategy of using opposite learning is determined.

This strategy is shown in Equation (14):

{

xi = (UB + LB)− xi, i f P < p,

xi = xi, i f f (xi) < f (xi),
(14)

where P represents the rate of change of all biological states after one iteration. p is a proportionality

constant. If the value of p is too large, the biological population is likely to fall into local optimum

and if the p value is too small, the performance of the SOS algorithm cannot be improved. When the

value of p is too small, the strategy based on opposite-based learning will not achieve the desired

effect. When the value of p is too large, the group will easily fall into a local optimum and converge

too soon in the optimization process. So, the value of P is usually set to 0.35. After the opposite-based

learning, the creature can maintain its optimal position state.
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2.5. Original DV-Hop Algorithm

The DV-hop positioning algorithm is a distributed positioning method using the idea of distance

vector routing and GPS positioning. The algorithm is not only simple but also has high positioning

accuracy. The DV-hop algorithm has the following three stages.

In the first stage, the location information packet of each anchor node in the network is broadcast

to the neighboring nodes through itself by a typical distance vector exchange protocol, so that all nodes

in the network can obtain the hop count information of the distance node.

In the second phase, after the average per hop of each anchor node is obtained, it needs to be

broadcast to other nodes in the network.










Hsi =
∑

m
j=2,j 6=i hi,jdi,j

∑
m
j=2,j 6=i h2

i,j

,

di,j =
√

(xi − xj)2 + (y1 − y2)2,
(15)

where Hsi represents the average distance per hop from all anchor nodes to the ith anchor node, hi,j is

the number of hops of anchor nodes i to j, and di,j is the distance between the anchor nodes i and j.







Usi,u = λi,u × Hsi,

λi,u =
hi,u

∑
M
k=1 hk,u

,
(16)

where λi,u represents the weight of the average hop distance of anchor node i, and hi is the number of

hops from anchor node i to an unknown node u. Usu represents the average distance of each hop from

the unknown node u to the anchor node i. Finally, the approximate distance d̂i,u of the anchor node i

to the unknown node u can be found by Equation (17):

d̂i,u = Usu × hi,u. (17)

In the third stage, after calculating the distance between an unknown node and three or more

anchor nodes by Equation (17), it is possible to calculate the unknown node position by trilateration

or maximum likelihood estimation. Since the maximum likelihood of the estimation method is more

accurate than the trilateration method in the positioning process, the simulation experiment carried

out in this thesis uses the method of maximum likelihood estimation to locate the nodes, as shown

in Figure 1. Next, we will introduce the node location method for maximum likelihood estimation.

Figure 1. Maximum likelihood estimation localization method.
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Assuming that the unknown node coordinates are (x, y), the coordinates of the anchor node ANi

are (mi, ni) and the number of anchor nodes is k. The solution formula for the unknown node position

coordinate point is as follows:






















(m1 − x)2 + (n1 − y)2 = d̂2
1

(m2 − x)2 + (n2 − y)2 = d̂2
2

· · ·

(mk − x)2 + (nk − y)2 = d̂2
k

(18)

We expand on each equation of Equation (18), and then subtract the last equation from each

formula to get Equation (19). Finally, we use Equations (20)–(23) to simplify the form of the

matrix solution.














































m2
1 −m2

k + 2(m1 −mk)x + n2
1 − n2

k − 2(n1 − nk)y = d̂2
1 − d̂2

k

m2
2 −m2

k + 2(m2 −mk)x + n2
2 − n2

k − 2(n2 − nk)y = d̂2
2 − d̂2

k

· · ·

m2
k−1 −m2

k + 2(mk−1 −mk)x + n2
k−1 − n2

k − 2(nk−1 − nk)y = d̂2
k−1 − d̂2

k

(19)

X =

[

x

y

]

(20)

A =











2(m1 −mk) 2(n1 − nk)

2(m2 −mk) 2(n2 − nk)

· · ·

2(mk−1 −mk) 2(nk−1 − nk)











(21)

B =











m2
1 + n2

1 −m2
k − n2

k + d̂2
k − d̂2

1

m2
2 + n2

2 −m2
k − n2

k + d̂2
k − d̂2

2

· · ·

m2
k−1 + n2

k−1 −m2
k − n2

k + d̂2
k − d̂2

k−1











(22)

AX = B ⇒ X = (ATA)−1ATB (23)

3. Our Proposed MQSOS Algorithm and Its Improvement on the DV-Hop Algorithm

3.1. MQSOS Algorithm

SOS and OSOS algorithms have the following disadvantages: the group is less diverse, they

easily fall into local optima, and they converge prematurely. We introduce multi-group ideas and

inter-group communication strategies based on quantum behavior to improve the SOS algorithm’s

global optimization ability. The algorithm is shown in the following steps.

Step 1: initialize the biological population size (ps), the range of the biological search

space, the number of subgroups (gs) divided, and the inter-group communication step size

(cs). Each subgroup undergoes three stages: mutualism, commensalism, and parasitism through

Equations (7)–(14), and iterates independently.

Step 2: all subgroups are independently iterated gs times and then the best individuals in each

subgroup are compared. The point with the best position state is chosen as the current global optimum.

Then, the inter-group communication strategy based on quantum behavior is selected to update the

position status of some individuals in each subgroup. Assuming that the population size is 100,

divided into 4 subgroups, there are then 25 individuals in each subgroup. Five better-performing



Appl. Sci. 2020, 10, 930 8 of 19

points are selected among all individuals in each sub-group, updated by Equation (24), and five points

with poorer status are selected to update the position of the poorest creature using Equation (25).

{

Xinew = Pi ± α× |Xi − Ci| × ln 1
u

Xi = Xinew, i f f (Xinew) < f (Xi)
(24)

The difference between Equations (24) and (25) is that when the point with better state in each

subgroup is updated, a condition for judging whether the position state of the individual is superior

is added, so that the individual with the better state always maintains the optimal value. In the case

of updating a poorly-performing individual, there is no condition for judging whether the state is

superior, so the poor points in the group are freed from the convergence process only toward one

local optimum to find other advantageous positions. Therefore, each group can be explored to a wider

range, and the diversity of the group can be enhanced, so that the group does not converge to the local

optimal position in advance, resulting in poor performance of the algorithm in the global optimization

performance, especially in the multi-objective function. Therefore, the convergence speed is improved

by updating the individuals with better position states, and the diversity of the algorithm’s global

optimization is improved by updating the state of the poorly positioned particles.

{

Xinew = Pi ± α× |Xi − Ci| × ln 1
u ,

Xi = Xinew,
(25)

where Xi is the position vector of the current individual and Xinew is the updated position vector. Ci is

a vector of the average value of the ith individual’s historical optimal position, with the calculation

formula shown in Equation (26). In quantum mechanics, Pi is a local attraction point, and the quantum

tilts toward the local attraction point during free movement until the potential energy is 0, as shown in

Equation (27). α is the convergence coefficient that affects the convergence of the MQSOS algorithm.

α can be found according to Equation (28). u is a random variable that is uniformly distributed from

0 to 1.

Ci =
1

M
×

M

∑
t=1

Pbesti,t, (26)

where M is the current number of iterations, and Pbesti,t is the position of the ith best position state of

the biological individual after the tth iteration in the population. Through this formula, the optimal

center position of each individual is iterated M times.







Pi = ϕ×Gi + (1− ϕ)× (
∑

gs
j=0,j 6=i Gj

gs−1 ),

ϕ = c1r1
c1r1+c2r2

,
(27)

where Gi represents the most individual in the ith subgroup, gs is the number of subgroups, ϕ is the

inertia weight coefficient, and c1 and c2 are the learning factors of the optimal learning group and

other subgroups. Values of the constants range from 0 to 4, with a constraint of c1 + c2 6 4. r1 and r2

are between 0 and 1 subject to a uniformly distributed random variable.

α =
0.5 + 0.5× (Tmax)− T

Tmax
(28)

where Tmax represents the maximum number of iterations set by the algorithm, and T is the number of

iterations reached by the current algorithm.

The pseudo-code of the execution process of the entire SOS algorithm is shown in Algorithm 1.
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Algorithm 1 Pseudo-code of the MQSOS algorithm.

1: //initialization

Initialize the maximum and minimum values of the boundaries of the bio-search space UB and LB,

the dimension D of the population search space, the number of individuals ps in the population,

the number of sub-groups gs, the maximum number of iterations Tmax, and the inter-group

communication step size cs. The number of current iterations T is 1.

2: //MainLoop

Randomly generate the locations of all living things in the population and divide them into

gs subgroups.

3: Evaluate the fitness values of all individuals.

4: subps = ps/gs; //subps is the number of organisms divided into each subgroup.

5: while (T < Tmax) do

6: if T%cs == 0 then //Each iteration cs selects an inter-group communication strategy based

//on quantum behavior to communicate between subgroups.

7:

8: for g = 1; g <= gs; g ++ do

9: / ∗ step 1 ∗ /

10: Select several organisms with better positional status in the gth subgroup to

communicate between groups by Equation (24).

11: / ∗ step 2 ∗ /

12: Select several organisms with poor positional status in the gth subgroup to communicate

between groups by Equation (25).

13: end for

14: end if

15: for g = 1;g <= subgs;g ++ do

16: for i = 1;i <= ps;i ++ do

17: / ∗Mutualism phase ∗ /

18: Randomly select a creature Xj, where i 6= j

19: The interaction between the biological i and the biological j through Equations (7)–(10)

is the mutualism phase.

20: / ∗ Commensalism phase ∗ /

21: Randomly select a creature Xj, where i 6= j

22: Organism i and organism j interact with the commensalism phase by Equation (11).

23: / ∗ Parasitism phase ∗ /



Appl. Sci. 2020, 10, 930 10 of 19

24: Randomly select a creature Xj, where i 6= j

25: Organism i and organism j interact in the parasitism phase by Equations (12) and (13).

26: end for

27: end for

28: end while

Output: The global optimum Xgbest, global best fitness value f (Xgbest).

3.2. Our Proposed Algorithm’s Application in WSN Localization Based on DV-hop

This section describes the use of MQSOS positioning in DV-hop-based wireless sensor network

node location. We know that the hop count between anchor nodes is obtained by the anchor node

transmitting broadcast information, and the distance between the anchor node and the unknown node

is multiplied by the average distance per hop of the anchor node by the anchor node to the unknown

node. The number of hops between the two nodes is obtained. The location of the unknown node

is then estimated by the method of least squares or maximum likelihood estimation of the nodes.

However, since the method has an error in estimating the average distance per hop, it presents a

decrease in positioning accuracy. The main purpose of the positioning problem is to minimize the

estimation error and improve the positioning accuracy. An improved DV-hop algorithm based on

swarm intelligence for the unknown node location in WSN is proposed to reduce the estimation error.

It is known that in network node positioning, the greater the number of hops between nodes,

the higher the positioning accuracy. Therefore, the fitness function in the WSN location node

positioning algorithm is shown in Equation (30), where hopui is the number of hops from anchor

node u to an unknown node, d̂ui is the estimated distance from the anchor node u to the unknown

node i by the maximum likelihood estimation method, and dui is the actual distance between node u

(xu, yu) and position node i (xi, yi).

dui =
√

(xu − xi)2 + (yu − yi)2 (29)

f (x, y) = min(
m

∑
i=1

(
1

hopui
)2(dui − d̂ui)

2) (30)

The MQSOS_DV-hop algorithm first calculates the minimum hop count and the distance between

the anchor nodes by communication between the anchor nodes, and then calculates the average step

size of each anchor node. The hops received by all anchor nodes are then weighted to calculate the

hop of the unknown node. Finally, the location of the unknown node is estimated by the proposed

MQSOSE algorithm.

For each unknown node we use the complete MQSOS algorithm for positioning. The steps are

as follows.

Step 1: calculate the average distance per hop of all anchor nodes, the number of hops between

nodes, and so on.

Step 2: calculate the distance between the unknown node and all the anchor nodes.

Step 3: initialize the parameters used by the MQSOS algorithm (population size, population

search space size, population dimension, etc.).

Step 4: randomly generate the position of the individual, and divide it into gs subgroups for

iteration, with the inter-group communication based on the quantum behavior being performed every

cs times.

Step 5: repeat step 4 until the maximum number of iterations is reached and then output the

position of the optimal node.
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4. Experimental Analysis

This section presents the results of node positioning using the CEC2013 benchmark suite test

function and our newly proposed algorithm for DV-hop in wireless sensor networks.

4.1. Simulation Results on CEC2013 Standard Bounded Constraint Benchmark

In the following experimental results, we used the CEC2013 benchmark function set to verify

the performance of our newly proposed MQSOS algorithm. There are 5 single objective functions

( f1– f5), 15 multi-objective functions ( f6– f20), and 8 composite functions ( f21– f28) in the CEC2018

benchmark function set. The performance of the MQSOS algorithm was verified by comparing the

minimum values obtained by the MQSOS algorithm with the PSO, PPSO (uses the algorithm’s first

parallel strategy), APSO, SOS, OSOS, and QUATRE/best/1 algorithms in the 28 functions of CEC2013.

These algorithms were set to a 10-dimensional search space with a search range of −100 to 100 for

each dimension and 100 individual organisms in the population. The averages of 51 runs obtained by

running each of the algorithms in the 28 test functions of CEC2013 are shown in Table 2.

Table 2. The average result of 51 runs of the 28 test functions of CEC2013. OSOS: oppositional symbiotic

organism search; SOS: symbiotic organism search; PSO: particle swarm optimization; PPSO: parallel

PSO; APSO: adaptive PSO.

10D QSOS OSOS QUATRE/best/1 SOS PSO PPSO APSO

f1 1.18 × 10−10 0.009640731 2.27 × 10−13 0.038254473 289.4136577 10.04216027 5.62 × 10−13

f2 193367.9438 113763.592 889449.4249 145575.2446 10837116.07 14001923.19 2547.75727
f3 11880480.72 16909742.94 23330872.95 23726585.02 4951324311 3244216188 22948055.61
f4 661.440066 175.162262 131.3633898 152.7108574 8600.319725 10477.12871 0.342498633
f5 0.004097075 0.189700439 1.72 × 10−13 0.140903611 38.01069592 41.65887436 2.28 × 10−6

f6 2.740562037 11.01590683 44.00418878 8.070490159 90.41673181 87.49306032 10.52798203
f7 14.63153166 8.260054514 66.99438202 9.326686201 122.6511894 117.4431652 69.98246858
f8 20.29520798 20.30506148 21.17324133 20.28710544 21.17500409 21.18592137 20.2805531
f9 4.106030908 3.887585628 37.13346545 3.335481458 56.86665037 56.32169745 7.401379274
f10 1.412587281 3.350325979 0.056224489 4.340255885 45.43815507 32.62018286 0.454624473
f11 3.125514927 2.458508876 83.91416214 2.575184185 463.1454425 406.0993089 3.687190726
f12 10.92322063 13.05767574 171.1598925 13.06953884 492.1355397 420.6903226 57.93064594
f13 18.62053621 21.64559719 256.5157113 21.28818981 604.8453199 552.22279 61.67670155
f14 22.47892499 163.3439652 2407.877979 157.3712725 7186.806812 7409.258683 490.8691883
f15 389.2997671 941.4180847 11162.633 929.5794833 8833.067255 8927.017959 1113.300043
f16 0.908436333 0.960089119 3.243875708 0.973481914 3.49881289 2.242848436 0.549564067
f17 14.1026589 18.72894243 145.6661446 19.51473017 530.8252613 454.0139662 9.924413615
f18 22.47224658 33.177874 337.4434254 34.66681477 537.0074268 483.7155871 39.20187771
f19 0.829976787 0.836401626 8.440261004 0.805727226 36.55774468 30.81993874 0.353383372
f20 2.184865268 2.250843251 21.81858302 2.097217739 23.23990292 23.61282538 3.593762056
f21 386.4532439 396.2728612 860.3816959 400.195441 932.5338316 940.1287436 353.0780298
f22 58.59191557 150.4605807 2452.529171 126.0279799 9884.874283 10467.13819 598.9627235
f23 518.2871717 670.0505397 11090.5636 743.1169371 11455.73222 11372.86454 1487.015091
f24 214.2191613 197.4156461 276.2135126 212.798625 384.6004172 372.6251127 225.9659846
f25 207.1848093 185.4059034 312.0851878 209.3880697 438.818476 429.9179684 226.8415975
f26 126.7225764 169.5477313 358.426793 171.6842972 423.1558806 341.1912057 209.3710808
f27 390.7050789 414.2617179 1096.020791 396.0662283 2005.041586 1937.655962 538.6672654
f28 298.0657625 359.308157 1228.074714 353.224138 2646.484041 729.2107403 662.5128806

In Table 2, the bolded values represent the smallest fitness function error values obtained by

comparing the seven algorithms. The MQSOS algorithm obtained a better fitness function value than

other algorithms when using 12 benchmark functions ( f3, f6, f12, f13, f14, f15, f18, f22, f23, f26, f27, f28).

OSOS achieved the optimal value using four benchmark functions ( f7, f11, f24, f25), QUATRE/best/1

in three benchmark functions ( f1, f5, f10), the SOS algorithm in two benchmark functions ( f9, f20),

and APSO in seven benchmark functions ( f2, f4, f8, f16, f17, f19, f20). PSO and PPSO did not get the

optimal value in any of the 28 benchmark functions.

The global optimization capabilities of the seven algorithms based on the 28 benchmark functions

of CEC2013 are shown in Figures 2–5. According to the global optimization process and the final
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optimization result of each algorithm in these figures, the MQSOS algorithm was superior to the other

algorithms in 15 benchmark functions ( f8, f9, f11, f12, f13, f14, f15, f16, f18, f20, f22, f23, f24, f26, f28).

The APSO algorithm outperformed other algorithms in 8 benchmark functions ( f1, f2, f3, f5, f10, f17,

f19, f21). The QUATRE/best/1 algorithm outperformed other algorithms in 3 benchmark functions ( f4,

f7, f27). The SOS algorithm obtained the optimal value in benchmark function f6. The OSOS algorithm

achieved this in benchmark function f25.
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Figure 2. Comparison of the best fitnesses for functions f1 − f8 with 10D optimization.
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Figure 3. Comparison of the best fitnesses for functions f9 − f16 with 10D optimization.
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Figure 4. Comparison of the best fitnesses for functions f17 − f28 with 10D optimization.
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Figure 5. Comparison of the best fitnesses for functions f25 − f28 with 10D optimization.

4.2. Simulation Results of Applied MQSOS to Node Localization in WSN Based on DV-Hop

In this section, the results of the practical application of the newly proposed MQSOS algorithm

in wireless node positioning are shown and compared with the results of the PSO, QUATRE/best/1,

OSOS, and SOS algorithms in this application, and the performance of our proposed algorithm in

practical applications is verified. In the environment simulated in this experiment, there were 20 anchor

nodes and 380 unknown nodes in a two-dimensional space of 100 m × 100 m, and the communication

radius of the nodes was 20 m. The results of each of these algorithms in simulation experiments are

shown in Table 3.

Table 3. Four positioning errors.

MQSOS_DV-hop OSOS_DV-hop SOS_DV-hop QUATRE_DV-hop PSO_DV-hop DV-hop

0.2242 0.2924 0.2246 0.2243 0.2924 0.4988

The error graphs of each unknown node of the MQSOS algorithm and other algorithms in

wireless sensor positioning are shown in Figure 6. They show the sum of the errors of each node and

all anchor nodes.
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Figure 6. Comparison diagram of positioning errors between the MQSOS_DV-hop positioning

algorithm and other positioning algorithms.

5. Conclusions

This paper proposes a novel SOS algorithm called the MQSOS algorithm that is based

on a quantum state-based inter-group communication strategy. In the implementation process,

the algorithm is first divided into several subgroups for independent iterative evolution, and the

corresponding group communication is performed after each subgroup iterates to achieve the step

size of inter-group communication. The quantum state-based inter-group communication strategy

is used to iterate several organisms with better states in each subgroup and replace the organisms

with poor states in order to enhance the convergence speed and improve the overall performance

of the algorithm due to the increase of diversity. In order to verify the performance of the newly

proposed MQSOS algorithm, the CEC2013 test suite was applied to compare the algorithm with other

swarm intelligence algorithms. The experimental results indicate that the performance of the MQSOS

algorithm was better than those of other intelligent algorithms (PSO, PPSO, original SOS, QUATRE,

APSO, and OSOS algorithms). We also applied the algorithm to the location of wireless sensor nodes

to form a new DV-hop algorithm called MQSOS_DV-hop, with the aim of improving the accuracy

of DV-hop algorithm node positioning, and simulated the MQSOS_DV-hop wireless sensor location

algorithm in Matlab. The experimental results show that the MQSOS algorithm had higher accuracy

in wireless sensor network node location.
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In the future, we will further study more accurate and efficient evolutionary algorithms,

evolutionary programs, and communication strategies to improve the performance and efficiency of

social intelligence algorithms. We also need to apply subsequent improved algorithms to different

types of application scenarios, such as hierarchical routing, node deployment, clustering methods,

and coverage issues in WSNs, in addition to applications in transportation, energy supply, etc.
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