
RESEARCH ARTICLE

Symbiotic organisms search algorithm for the
unrelated parallel machines scheduling with
sequence-dependent setup times

Absalom E. Ezugwu*, Olawale J. Adeleke, Serestina Viriri

School of Mathematics, Statistics and Computer Science, University of Kwazulu-Natal, Westville Campus,
Durban, South Africa

* Ezugwua@ukzn.ac.za

Abstract

This paper addresses the problem of makespan minimization on unrelated parallel

machines with sequence dependent setup times. The symbiotic organisms search (SOS)

algorithm is a new and popular global optimization technique that has received wide accep-

tance in recent years from researchers in continuous and discrete optimization domains. An

improved SOS algorithm is developed to solve the parallel machine scheduling problem.

Since the standard SOS algorithm was originally developed to solve continuous optimization

problems, a new solution representation and decoding procedure is designed to make the

SOS algorithm suitable for the unrelated parallel machine scheduling problem (UPMSP).

Similarly, to enhance the solution quality of the SOS algorithm, an iterated local search strat-

egy based on combining variable numbers of insertion and swap moves is incorporated into

the SOS algorithm. More so, to further improve the SOS optimization speed and perfor-

mance, the longest processing time first (LPT) rule is used to design a machine assignment

heuristic that assigns processing machines to jobs based on the machine dynamic load-bal-

ancing mechanism. Subsequently, the machine assignment scheme is incorporated into

SOS algorithms and used to solve the UPMSP. The performances of the proposed methods

are evaluated by comparing their solutions with other existing techniques from the literature.

A number of statistical tests were also conducted to determine the variations in performance

for each of the techniques. The experimental results showed that the SOS with LPT (SOS-

LPT) heuristic has the best performance compared to other tested method, which is closely

followed by SOS algorithm, indicating that the two proposed algorithms’ solution

approaches are reasonable and effective for solving large-scale UPMSPs.

Introduction

The parallel machine scheduling problem (PMSP) is one of the most intensively studied prob-

lems in combinatorial optimization, probably because of its considerable theoretical interests

and as a representative of many real world problems such as, production lines; hospital man-

agement systems (e.g. nurses or doctors’ scheduling problems); university management

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 1 / 23

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation: Ezugwu AE, Adeleke OJ, Viriri S (2018)

Symbiotic organisms search algorithm for the

unrelated parallel machines scheduling with

sequence-dependent setup times. PLoS ONE 13

(7): e0200030. https://doi.org/10.1371/journal.

pone.0200030

Editor: Doddy Prayogo, Universitas Kristen Petra,

INDONESIA

Received: February 16, 2018

Accepted: June 17, 2018

Published: July 5, 2018

Copyright: © 2018 Ezugwu et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper.

Funding: The authors received no specific funding

for this work.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0200030
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200030&domain=pdf&date_stamp=2018-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200030&domain=pdf&date_stamp=2018-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200030&domain=pdf&date_stamp=2018-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200030&domain=pdf&date_stamp=2018-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200030&domain=pdf&date_stamp=2018-07-05
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0200030&domain=pdf&date_stamp=2018-07-05
https://doi.org/10.1371/journal.pone.0200030
https://doi.org/10.1371/journal.pone.0200030
http://creativecommons.org/licenses/by/4.0/

systems (e.g. timetabling scheduling problems); and shipping docks’, flow shops’ and job

shops’ systems. The parallel machine environments consist of either similar or unrelated types

of multiple numbers of machines on which jobs can be scheduled simultaneously. Because

PMSP involves both machines assignment and jobs sequencing decisions [1], the problem is

difficult to solve and is said to be NP-hard [2]. To successfully solve the PMSP, it is required to

concurrently determine both assignment and sequencing policies for the available parallel

machines and jobs [1]. The current proposal therefore, considers the integration of both poli-

cies into the solution search space of the newly proposed population based SOS optimization

algorithm, which was initially introduced to solve continuous engineering optimization prob-

lems [3].

The PMSP, like its scheduling counterparts, has received wide attention in the literature

with different solution approaches to the problem being proposed. Few exact solution methods

have been proposed and applied to solve the PMSPs. Examples of these methods include the

branch-and-bound algorithm [4–8] and the cutting plane algorithm [8]. One major limitation

of the exact solution is that it is designed to solve some specific problems, which therefore lim-

its its application area. However, several alternative metaheuristic algorithms have been pro-

posed too, of which many have been successfully applied to solve the UPMSP. Some of the

related population based metaheuristic algorithms include particle swarm optimization (PSO)

algorithms (see [9–13]), ant colony optimization (ACO) algorithm (see [14–17]), and cuckoo

search (CS) algorithm (see [18, 19]), artificial bee colony (BAC) algorithm (see [20], and

genetic algorithm (GA) [21]. More so, relevant literatures on UPMSPs can be found in [22–

26].

There are some existing studies that considered the use of metaheuristics to handle UPMSP

with sequence dependent setup times. For example, in [21], a GA that includes a fast local

search and a local search enhanced crossover operator was presented for solving the UPMSP

in which machine and job sequence dependent setup times are considered. From the exhaus-

tive computational and statistical analysis conducted by the authors, it can be concluded that

the proposed method obtained an excellent performance compared to the rest of the evaluated

methods in a comprehensive benchmark set of instances. In [16], an Ant Colony Optimization

(ACO) algorithm for the UPMSP was proposed, and the preliminary results obtained showed

better performance when compared with other existing techniques such as the partitioning

heuristic (PH) presented in [4] and the tabu search (TS) algorithm presented in [15]. An exten-

sion of the ACO algorithm referred to as ACOII for UPMSP was similarly proposed by the

same author in [14] with consideration to optimized parameters. The experimental results

obtained showed that there were significant improvements in the solution qualities of the

ACOII as compared to the results of the PH, TS, metaheuristic for randomized priority search

(Meta-RaPS) and ACO algorithms. Similarly, in [27], a variant of the genetic algorithm called

GADP that integrated a set of dominance properties to improve the solution quality of the

UPMSP was proposed. The result obtained showed that by applying these dominance proper-

ties for a given sequence, a near-optimal solution can be derived. To further support this

claim, the experimental results showed that the GADP was able to obtain all optimal solutions

for small test problems, and outperformed the solutions yielded by the PH algorithm and

other competing algorithms in both effectiveness and efficiency for larger test problems. In

another research contribution, a hybrid artificial bee colony (HABC) algorithm was presented

in [20] to solve the UPMSP with the objective of minimizing the makespan. The performance

of HABC algorithm was evaluated by comparing its solutions to other state-of-the-art meta-

heuristic algorithms and the results obtained showed that the HABC outperformed these

algorithms.

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 2 / 23

https://doi.org/10.1371/journal.pone.0200030

In [3], a new nature inspired and population based global optimization metaheuristic algo-

rithm, known as the symbiotic organisms search, was reported. The algorithm is modeled

based on the mode of relationship interactions among the various organisms that cohabit in

the ecosystem. One key advantage and characteristic of the SOS is that it is parameter free and

therefore, does not require any form of parameter fine-tuning. The only basic requirement of

the algorithm is the initialization and setting of the algorithm’s number of function evaluation

or generation. However, for the sake of this study, an additional parameter setting is required

to make SOS suitable and adaptive for the current problem. The performance superiority of

the SOS over other related population based algorithms such as the ACO, PSO, differential

evolution and genetic algorithm on the optimization of twenty-six mathematical benchmark

functions, was also reported in the same foundational paper presented in [3]. Since its intro-

duction in the literature, SOS has attracted the attention of numerous researchers from differ-

ent domains. This led to its application in different fields of studies, namely engineering [28,

29], power systems [30–32], cloud computing [33], and distribution scheduling [34, 35].

Inspired by the recent trend in the performance achievements and applications of the SOS

algorithm into different research domains, in this work an improved SOS algorithm is devel-

oped to solve the unrelated parallel machine scheduling problem with the main objective of

minimizing makespan. The method applied proceeded in two steps. First, the LPT rule,

known to be the most appropriate dispatching rule for the problem at hand [36, 37], is used as

a machine dispatching or an assignment heuristic to find partial optimal schedules for the

problem of scheduling non-preemptive jobs on unrelated parallel machines with setup times.

Second, all the partial schedules generated by the LPT are sequenced by using the SOS optimi-

zation algorithm to minimize the total setup costs. In addition, the proposed SOS algorithm is

enhanced with an iterated local search mechanism that uses a random kick move. A random

kick move is defined here as a series of random insertion moves or a series of random swap

moves used for the implementation of the SOS solution generation procedures. To evaluate

the performance of the SOS algorithm, an improved population based simulated annealing

(PSA) algorithm is implemented and used to compare the efficiency of the proposed SOS algo-

rithm in terms of the algorithm convergence speed and solution quality. Subsequently, to rig-

orously evaluate and present fair comparisons of the two proposed methods with other related

approaches from the literature, the balanced UPMSP standard benchmark data available at

[38] are used.

The technical contribution of this paper can be summarized into four parts. First, the appli-

cability of the SOS algorithm to solve the UPMSP by incorporating an iterated local search

strategy into it is demonstrated. Second, it is shown that the optimization speed of the pro-

posed SOS scheduling method can be improved with better results when combined with a

machine assignment heuristic, the LPT, as is the case in this paper. Third, it is demonstrated

that the SOS algorithm is a good alternative solution technique for solving large scale PMSPs

when compared to other well-known existing heuristics. Fourth, another main contribution is

the implementation of a new solution representation and decoding procedure that is designed

to make the SOS algorithm more suitable for solving the UPMSP. Finally, to the best of the

researchers’ knowledge, this work is the first to apply an SOS metaheuristic algorithm to solve

the UPMSP with Sequence-dependent setup times, which specifically served as the primary

motivation for undertaking this study.

The rest of the manuscript is systematically organized as follows: The next section presents

a brief description of the UPMSP. The details of the LPT machine assignment heuristic and

the SOS algorithm are outlined afterwards. This is followed by the presentation of the pro-

posed SOS optimization framework for the problem at hand, while the computational results

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 3 / 23

https://doi.org/10.1371/journal.pone.0200030

and algorithms’ evaluation are presented subsequently. The last section concludes the paper

and gives future research directions.

Problem description

The scheduling problem of minimizing the total completion time on unrelated parallel

machines examined in this paper is stated as a triplet: Pm|Si,j,k|Cmax. The first field, Pm,

describes the unrelated parallel machine environment. Reference to unrelated machines

means that the job processing time Pi,k, which is the processing time of job i on machine k,

depends on the machine to which they are assigned, and there is no relationship between

machine speeds. The second field, Si,j,k, describes the scheduling constraints, which in this case

are the sequence-dependent setup times, where the setup time required for job i when it suc-

ceeds job j on machine k, may be different from that required to set up job i if it precedes job j

on the same machine such that Si,j,k 6¼ Sj,i,k, for each i,j 2 {0,1,. . .,n}. The third field, Cmax, is the

objective function, which is the makespan (maximum completion time of a schedule X of n

jobs).

Therefore, the scheduling model can be described as follows: Given a set of n independent

jobs I = {1,2,. . .,n} with positive processing times Pi, to be processed on a set of unrelated paral-

lel machinesM = {1,2,. . .,m}. All jobs are available for processing at time zero and once a job

starts processing on any of the machines, it must reach completion. In other words, job pre-

emption is not allowed. The objective of this paper therefore is to find a non-preemptive

schedule X = {X1,X2,. . .,Xn} on a set of unrelated parallel machines k (k = 1,2,..,m) of job j

(j = 1,2,..,n), in such a way that the makespan is minimized. The parallel machine scheduling

environment is illustrated in Fig 1.

Scheduling heuristics

This section provides an introductory explanation on the LPT heuristic and SOS algorithm,

followed by a more detailed description of each of these techniques with their applications to

solve the PMSP. The LPT is a common dispatching heuristic employed to generate schedules

for the PMSP, whereas the SOS is a new population based metaheuristic algorithm that has a

wide range of applications in engineering and scientific computing. The scheduling method

proceeds in two stages of assignment and sequencing, comprising the following:

• The LPT heuristic generates a set of initial partial assignment schedules, which must satisfy

machine constraints with respect to load balancing, to minimize the total completion time.

• The SOS algorithm finds the sequence of the partial schedules to minimize the total setup

time.

These techniques and their applications to solve the parallel machine scheduling problem

entail the following:

Longest processing time first heuristic

The LPT heuristic is a well-known dispatching heuristic that is often employed to determine a

near-optimal schedule for the parallel machine scheduling problems [39, 40]. A dispatching

heuristic assigns a priority index to every job in a waiting queue. However, other dispatching

heuristics exist as well, including the earliest due date first (EDD) rule, shortest processing

time first (SPT) rule, least slack time first (LST) rule, and longest remaining processing time

first (LRPT) rule [39]. For a comprehensive review in this regard, reference is made to [40, 41].

The LPT heuristic was chosen for the scheduling model implementation, basically because of

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 4 / 23

https://doi.org/10.1371/journal.pone.0200030

it guarantees high performance and simple implementation. According to this rule, jobs in the

waiting queues are arranged in decreasing order of processing times. The jobs are then sorted

in such a way that the ones with the largest values of processing times are given high priority to

be scheduled on the parallel machines. Generally, the LPT commences with the creation of an

empty schedule and iteratively generating a queue of non-scheduled jobs beginning with the

job having the highest processing time, proceeding to the one with the least processing time.

In this order, the LPT assigns each of the jobs to the individual machinem starting with the

one having the least workload. The LPT determines load per machine, which is denoted asml

using the expression given in Eq (1):

mlk ¼
1

m� 1

X

n

j¼1

min
k ¼ 1; 2; . . . ;m
i ¼ 1; 2; . . . ; n

ðPj;k þ Si;j;kÞ
0

@

1

A

0

B

B

@

1

C

C

A

ð1Þ

where the expression ∑i6¼j(pj.k + mink Si,j,k) represents the total work content of all jobs in the

problem and k is the machine index. In addition, the proposed LPT model used in this paper

ensures that those jobs with processing times are placed more towards the end of the generated

schedule so as to maintain load balancing on all machines.

Symbiotic organisms search algorithm

The SOS algorithm is a population based metaheuristic algorithm introduced by Cheng and

Prayogo in 2014 [42]. The algorithm was first developed for solving numerical engineering

optimization problems on continuous real space. It replicates the symbiotic relationship inter-

action existing amongst organisms in the ecosystem. The symbiotic interaction strategy is

often adopted by organisms for their survival and modeled in the physical sense to find the fit-

test organisms in the solution search space. Like most population based metaheuristic algo-

rithms, SOS possesses a number of interesting features, some of which include using candidate

solutions from a population of organisms over a search space to find the global solution [3]. Its

search processes are guided by candidate solutions based on some special operators. The qual-

ity of solutions is preserved using a specific selection mechanism requiring the proper setting

of some common control parameters for its operation. However, as mentioned in the intro-

ductory section, the SOS differs from other population-based algorithms in that it uses few

control parameters and requires no parameter fine-tuning. These characteristics are consid-

ered as the advantages which the SOS have over other similar algorithms.

Fig 1. Parallel machine scheduling problemmodel.

https://doi.org/10.1371/journal.pone.0200030.g001

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 5 / 23

https://doi.org/10.1371/journal.pone.0200030.g001
https://doi.org/10.1371/journal.pone.0200030

The implementation process of the algorithm commences with the creation of an initial

population of ecosystem matrix, with each row of organism being considered as a candidate

solution to the corresponding problem. The search process begins after the initialization stage

is completed, following the generation of an initial ecosystem population. The new candidate

solutions are evaluated by simulating the continuous interactions between two organisms in

the ecosystem using three symbiotic interaction phases namely, mutualism, commensalism,

and parasitism. The mutualism phase involves an interaction where an organism engages in a

relationship that benefits all parties involved. In the commensalism phase, an individual

organism develops a relationship that attracts benefits to itself alone, while the other organism

is left unharmed. However, in the parasitism phase, the developed relationship only benefits

one organism and harms the other. These evaluation phases employed by the algorithm is

adopted by the individual organisms and used to increase their fitness and survival advantages

[42]. The evaluation and updating of the best organism during the search mechanism is an

iterative process which is performed until the termination condition is met. The computa-

tional procedures for the standard SOS are illustrated as shown in the Algorithm listing 1. The

SOS algorithm uses two control parameters, namely ecosize andmaxIt. The parameter denoted

as ecosize represents the number of organisms in the ecosystem, which is usually called the

population size. The parametermaxIt is the maximum number of iteration. A detailed descrip-

tion and formulation of the three algorithm phases are presented in the algorithm scheduling

procedure section below (Algorithm 1).
Algorithm 1: Standard SOS procedure
1: Setup control parameter: initial ecosystem, population size: eco-
size, maximum number of iteration: maxIt
2: While(termCondition < maxIt) // termCondition is the user defined
termination condition
3: For counter = 1 to ecosize
4: Determine the best organism
5: Mutualism Phase
6: Commensalism Phase
7: Parasitism Phase
8; End for
9: Print out global best solution
10: End While

Scheduling heuristic components

This section describes the various components of the proposed SOS algorithms. Following on

the description of the basic SOS algorithm presented in scheduling heuristics section, some

new features and modifications have been introduced into the basic SOS to make it more suit-

able to handle the scheduling of the parallel machines. The five essential components used for

the improvement of the proposed SOS method, namely, solution representation, initial solu-

tion, SOS update phase, SOS algorithm procedure and local search improvement, with detailed

descriptions following.

Solution representation

The design of an appropriate encoding scheme increases the effectiveness of the SOS algorithm

to handle the one-to-one mapping between candidate solutions and individual organisms. For

the problem at hand, a similar representation pattern presented in [14, 16] is adopted, where

the solution representation of assigning n jobs tommachines is represented as a vector S1
whose dimension is equal to the number of jobs. Assuming there are 16 jobs (n = 16) and 4

machines (m = 4), then the following vector S1 = [4,1,4,4,4,1,3,3,3,3,2,2,2,2,1,1] implies that the

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 6 / 23

https://doi.org/10.1371/journal.pone.0200030

first machinem1 will be assigned the following jobs:m1 = {2,6,15,16}, the second machinem2

will be assigned the following jobs:m2 = {11,12,13,14}, the third machinem3 will be assigned

the following jobs:m3 = {7,8,9,10}, and the fourth machinem1 will be assigned the following

jobs:m4 = {1,3,4,5}. For clarity’s sake, the solution representation of the machine assignment

vector is shown in Table 1.

Therefore, the operation sequence denoted in this case can be represented by S2 asm × n

matrix that shows the sequence of operations on each machine. Consider the following

instance of S2 given as

S
2
¼

6 15 16 2 0 0 0 0 0 0 0 0 0 0 0 0

12 11 13 14 0 0 0 0 0 0 0 0 0 0 0 0

8 9 10 7 0 0 0 0 0 0 0 0 0 0 0 0

3 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0

2

6

6

6

6

4

3

7

7

7

7

5

The variable S1 or S2 describes the sequence of operation for each machine, while the

sequence of operation in machinem1 is job 6, job 15, job 16, and job 2. The same descrip-

tion applies to machines m2 andm3. The zeros after job 2, job 14, job 7, and job 1 indicate

that these jobs are the last to be processed bym1 for job 2,m2 for job 14,m3 for job 7 andm4

for job 1.

In the SOS algorithm, since machine assignment is performed by the LPT heuristic, each

organism carries only the information of job sequencing, such as the favorability of sequencing

job j after job i in machine k. It is important to note that machine k is only assigned a job when

its total workload is less than that of machine l, that is following the LPT dynamic load balanc-

ing condition. In the decoding process for the organism, jobs are selected one by one from the

set of unscheduled jobs and assigned processing machines according to the described LPT pro-

cedure until all the jobs are scheduled, after which the total completion time corresponding to

the organism is calculated and then used to evaluate the performance of each organism as

described in the algorithm update phase section.

Initial solution

The initial solution is constructed by assigning all jobs to the available sets of processing

machines. The initial solution is randomly generated using the design variables which are the

unscheduled jobs andmmachines. The randomly generated solution is considered as the ini-

tial ecosystem which comprises of individual organisms that correspond to the choice of job

sequencing operation S2 on a specific selected machine encoded in a matrix ofm × n dimen-

sion as described in algorithm solution representation section above, wherem and n denote

the number of machines and jobs. Let us assume that Xk is the kth position of the organism in

the solution search space, then Xk(j) denotes the machine where job j is assigned by the LPT

heuristic. The position of the organism is updated through the iterative phases of the SOS pro-

cedure described in the algorithm update phase section.

Table 1. Illustration of machine assignment vector.

jobi| i = 1,2,..n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

mk| k = 1,2,. . .m 4 1 4 4 4 1 3 3 3 3 2 2 2 2 1 1

m4 m1 m4 m4 m4 m1 m3 m3 m3 m3 m2 m2 m2 m2 m1 m1

https://doi.org/10.1371/journal.pone.0200030.t001

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 7 / 23

https://doi.org/10.1371/journal.pone.0200030.t001
https://doi.org/10.1371/journal.pone.0200030

Algorithm update phase

The update variable denoted by Xbest in the first two update phases (mutualism and commen-

salism) of the algorithm stores the best organism position, which is evaluated based on its cor-

responding objective value (makespan). The organism’s objective value is obtained by the

decoding process that incorporates the LPT machine assignment rule. The update parameter

Xbest is usually updated for each Xk(1), Xk(2), . . ., Xk(n), after which the organism with overall

Xk(j) best is saved as the global best cost. The details of the proposed SOS algorithm procedure

are presented next.

Algorithm scheduling procedure

In describing the proposed algorithm’s strategy for generating sequencing solutions for S1 and

S2, it is noteworthy to mention that the novel aspect of this solution approach is the use of two

heuristic techniques, LPT and SOS, in solving the parallel machine scheduling problem. One

technique is used for assigning jobs to machines, which is the LPT heuristic. The other tech-

nique is the new SOS metaheuristic algorithm used for generating solutions S1 and S2 by opti-

mizing the sequencing of the assigned jobs in each machine. Prior to the search process, the

algorithm starts with control parameter setups, followed by the random generation of the ini-

tial ecosystem population of S1 or S2. An organism Xj with the sequencing operation informa-

tion is randomly selected from the population and its corresponding objective value (Cmax),

which is computed using the LPT heuristic evaluated against one of the organisms Xi in the

initial ecosystem, as explained in the initial solution section. The organism with the current

best sequencing operation solutions (S1 or S2) and best objective value (Cmax), is set to be the

best organism (Xbest). The SOS search process begins immediately after the initialization stage,

by iteratively updating each organism in the ecosystem as explained above in the algorithm

update phase section, while the organism benefits from the continuous interaction with other

organisms in the population based on the following three interaction phases:

• Mutualism phase: in this phase the organism Xj is randomly selected from the ecosystem to

mutually interact with the organism Xi (where Xi 6¼ Xj), with the sole aim of increasing their

mutual survival advantage in the ecosystem. The resulting solutions, Xinew and Xjnew, that are

the consequences of this interaction, are calculated based on Eqs (2) and (3)

Xinew ¼ Xi þ r1ðXbest � φ� f1Þ ð2Þ

Xjnew ¼ Xj þ r1ðXbest � Xmutual � f2Þ ð3Þ

where

φ ¼
Xi þ Xj

2
ð4Þ

r1 and r2 are uniformly distributed random numbers in the range of [0, 1]. The term φ in Eq

(2) and defined in Eq (4), is known as theMutualVector and it represents the relationship

between the two organisms Xi and Xj. The term Xbest denotes the highest degree of adapta-

tion for the organisms. The terms f1 and f2 denote the mutual benefit factors, which represent

the level of benefit that both Xi and Xj can derive from the mutual association, since either of

the organisms can get a partial or full benefit from the interaction, both f1 and f2 are deter-

mined by randomly using the values 1 or 2. The values 1 and 2 denote partial and full bene-

fits, respectively. The new candidate solutions, Xinew and Xjnew, are however, only accepted if

they give better fitness values than the previous solutions.

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 8 / 23

https://doi.org/10.1371/journal.pone.0200030

• Commensalismphase:Similar to the mutualism phase, an organism Xj is randomly selected

from the ecosystem’s population and made to interact with the organism Xi. The relationship

interaction is such that only one organism benefits from the interaction. For example, the

organism Xi derives benefit from its interaction with Xj, while Xj does not benefit and neither

is it harmed as a result of the interaction. The new organism is updated as shown in Eq (5).

Xinew ¼ Xi þ r1ðXbest � XjÞ ð5Þ

where the term Xbest – Xj represents the benefit provided by the organism Xj to assist Xi
increase its level of survival advantage in the ecosystem.

• Parasitism phase: In this phase, an artificial parasite vector denoted by Xpv is created in the

problem search space by mutating the organism Xi and then modifying its randomly selected

dimensions using a random number. The organism Xj|i6¼j is selected randomly from the eco-

system’s population to serve as a host to the Xpv. The evaluation is carried out in such a way

that, if the fitness value of the Xpv is better than that of the organism Xj, then Xpv will replace

the position of Xj in the population, otherwise, if the fitness value of Xj is better, then Xj will

build an immunity against Xpv, after which Xpv is removed from the list of the population.

The standard SOS algorithm was originally implemented to work on a continuous domain.

However, the problem described in this paper is essentially an optimization problem that

involves the discrete search domain (which is an integer space of alignment of job indices).

Therefore, to obtain a corresponding discrete solution for the Pm|Si,j,k|Cmax optimization prob-

lem with integer variables, the round function in MATLAB is employed to convert the result-

ing floating variable solutions to the nearest integer. Thus the previous SOS formulated Eqs in

(2), (3), and (5) are then transformed as follows:

• mutualism

Xinew ¼ roundfXi þ r1ðXbest � φ� f1Þg ð6Þ

Xjnew ¼ roundfXj þ r2ðXbest � φ� f2Þg ð7Þ

• commensalism

Xinew ¼ roundfXi þ r1ðXbest � XjÞg ð8Þ

The pseudocode of the SOS algorithm procedures described above is as presented in Algo-

rithm 2 below.
Algorithm 2: Standard SOS-LPT pseudocode
1: Using LPT rule, create initial schedule as X = {X1,X2,. . .,ecosize}
for SOS and evaluate its fitness
2: Solve assignment task using the LPT heuristic to find S1 according
to Eq (1)
3: Solve sequencing tasks by using SOS to find S2
4: Identify the best solution of the initial schedule Xbest (Cmax) that
is associated with S1 and S2
5: for it = maxIt
6: for i = 1 to ecosize
7: //Mutualism Phase
8: Randomly select Xj, where i 6¼ j
9: f1 (1 + round(rand(0,1))

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 9 / 23

https://doi.org/10.1371/journal.pone.0200030

10: f2 (1 + round(rand(0,1))
11 r1 rand(0,1)
12 r2 rand(0,1)
13: φ (Xi + Xj)/2
14: for k = 1 to n//n is the problem dimension (or number of

jobs)
15: Xinew[k] round{Xi[k] + r1 × (Xbest[k] − φ[k] ×

f1)}
16: Xjnew[k] round{Xj[k] + r2 × (Xbest[k] − φ[k] ×

f2)}
17: if f(Xinew) < f(Xi) Then
18: Xi Xinew
19: end if
20: if f(Xjnew) < f(Xj)
21: Xj Xjnew
22: end if
23: //Commensalism Phase
24: Randomly select Xj, where i 6¼ j
25: Xinew[k] round{Xi[k] + r1 × (Xbest[k] − Xj[k])}
26: if f(Xinew) < f(Xi) Then
27: Xi Xinew
28: end if
29: //Parasitism Phase
30: Randomly select Xj, where i 6¼ j
31 Create a parasite vector Xpv from Xi
32: Xpv[k] Xi[k]
33: if f(Xpv) < f(Xj) Then
34: Xj Xpv
35: end if
36 end for
37: Update the current Xbest using the iterated local
search mechanism (Algorithm 3)
38: end for
39: end for
The SOS-LPT algorithm follows through each of the steps highlighted in Algorithm 2, start-

ing with the initialization of the ecosystem Xi of size ecosize. The ecosize which denotes the

population of the organisms is usually set within a relatively small value of ecosize (� 25), a rel-

atively moderate vale of ecosize (� 50) and a relatively large value of ecosize (� 100). However,

the size of the population can also be defined, depending on the objective function of the prob-

lem at hand. The reason is there are instances when selecting a small population size yields a

better result than a large population size and vice versa. After the initialization process, the

algorithm creates and evaluates each new organism’s position by computing and comparing

their respective objective function values in such a way that the organism with the best objec-

tive value is selected as Xbest. Iteratively, the process is repeated by updating the current solu-

tion with the best solution ever found, until the organism with the global best solution is

discovered. The algorithm execution is terminated when the maximum iterations criterion is

attained or the fitness evaluation is met. Otherwise, the algorithm continues to evaluate by

exploring and exploiting other new possible solution search spaces. However, the stopping

condition denoted bymaxIt is quite an important factor that can determine the final result of

the simulation. For example, if the algorithm is stopped too early, the approximation of the

solution might not be close to the targeted global optimum and prolonging the simulation

might as well incur unnecessary scale up in the computational effort.

The integration of a local search strategy into the SOS algorithm has proven to be efficient

in providing very competitive solutions [43, 44]. Therefore, an iterated local search strategy

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 10 / 23

https://doi.org/10.1371/journal.pone.0200030

has been included in the implementation of the SOS algorithm for the current problem. The

local search improvement step which is explained below is applied after the end of the move-

ment in each phase of the algorithm evaluation, on the condition that Xbest does not improve

after each round of the evaluation process. The SOS uses the local search to generate neighbor-

ing solutions for S1 and S2 for each organism for which the neighboring solution’s Cmax is com-

pared with the generated solution’s Cmax (S1 or S2). If the solution generated by the local search

after each iteration is better, then the local search solution is used to update each organism.

The neighboring solutions for S1 is generated by reversing the initial machine assignment gen-

erated by the LPT heuristic for the available n jobs, while the neighboring solution for S2 is

generated by swapping two randomly generated jobs in the n ×m dimension matrix. The

insertion operation was also applied where necessary to generate solutions for either S1 or S2.

The discussion on each of these operators is presented in the following section.

Local search

An iterated local search method is implemented and applied to improve the local search phase

of the proposed algorithm. The application of iterated local search to parallel machine schedul-

ing is not new, and interested readers are referred to [1, 45] for more information in this

regard. The term ‘improvement’ refers here to a reduction in the current solution’s total com-

pletion time (Cmax). The iterated local search procedure employed here consists of the applica-

tion of a series of random insertion and swap moves to the local optimum solution generated

by the LPT rule. An insertion move removes a job i from machine k and inserts it into another

machine l, the swap move selects two jobs i and j and exchange their machine assignment,

while the reversion move replaces a randomly selected job’s sub-assignment by its reversal.

The procedures used for applying the set of combined random insertion and swap moves, are

as presented in the kick move Algorithm listing 3 (Algorithm 3).
Algorithm 3: Pseudocode for the iterated and the local search random
moves (kick move)
Function kickMove (X)
1: While (π) do // π denotes the number of moves
2: Randomly select two machines k and l such that k 6¼ l
3: Randomly select two jobs mk(i) and ml(j)
4: Apply(Swap(mk(i),ml(j)))
5: Apply(Reverse(mk(i),ml(j)))
6: Apply(Insert(mk(i),ml(j)))
7: End while
In Algorithm 3, the value of π (number of randommoves) depends on the number of

machines. In this experiment, the values of π between the intervals of [0.5m, 0.9m], were care-

fully selected to fine-tune the algorithm. The computational complexity of the proposed LPT

heuristic and SOS algorithm can be calculated as follows: the cost of obtaining the initial

scheduling and computing the corresponding jobs completion times by the LPT can be deter-

mined in O(n log n) times. The cost of determining the total load per machines and makespan

can be calculated in constant time, which can be determined in O(1) times. The average-case

time complexity of the kick move operation is O(n2), while the total time complexity of the

proposed algorithm is O(n2).

Experimental setup and results

In this section, the performance of the two developed algorithms, SOS and SOS-LPT, are ana-

lyzed with other methods from the literature. Both algorithms were implemented in MATLAB

R2015a and run on Intel1 Core™ i3 M300 @ 2.13 GHz with 4GB memory running under

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 11 / 23

https://doi.org/10.1371/journal.pone.0200030

Windows 7, 64 bits. The computational tests conducted were divided into three experiments.

In the first experiment, the researchers compared the performance of the SOS with the PSA.

The algorithms were tested using randomly generated test instances. The parameter setting for

the five algorithms considered in this paper are as described in Table 2. In the second experi-

ment, the numerical results obtained were compared by running SOS and SOS-LPT on 15 rep-

lication of existing benchmark problem instances available at [38].

In the third experiment, the numerical results of both SOS and SOS-LPT were compared

against other existing techniques from the literature. The processing time and setup times,

which were obtained from [38] follows a randomly generated uniform distribution on the

interval [50,100]. For fair comparison the two main methods proposed in this paper, namely

SOS and SOS-LPT with the other compared algorithms, that is ACO with local search

(ACOII), hybrid genetic algorithm with dominance properties (GADP2) heuristic [27], and

hybrid simulated annealing with dominance properties (SADP) heuristic [27]), are executed

under the same experimental conditions using the same benchmark data available at [38]. The

obtained results are analyzed by using the percentage deviation (PD) from the lower bound

(LB), which was calculated as follows:

PDLB ¼
C

max algorithm � LB

LB
� 100% ð9Þ

While the PD from SOS was calculated as follows:

PDSOS ¼
C

max algorithm � Cmax SOS

C
max SOS

� 100% ð10Þ

where Cmax_algorithm and Cmax_SOS are the solutions obtained by the other algorithms and

SOS, respectively, for the fifteen (15) replicate runs carried out for each method. Similarly,

the formula in Eq (10) was also used to calculate the percentage deviation from SOS-LPT

(PDSOS–LPT). The LB used in this paper was adopted based on the model from [45] and is pre-

sented as follows:

LB1 ¼
1

m

X

n

j¼1

min
k ¼ 1; 2; . . . ;m
i ¼ 1; 2; . . . ; n

½Pj;k þ Si;j;k� ð11Þ

Table 2. Parameter settings for the five algorithms.

PSA ACOII GADP2 SADP SOS

NP = 100 NP = 50 NP = 100 T0 = LB + (UB − LB)/10 NP = 50,100

T0 = 10 ρ = 0.01 pc = 0.6 Tf = LB π = [0.5m,0.9m]

Tf = 0.001 φ = 0.081 pm = 0.5 α = 0.99

α = 0.99 τ = 10

τ0 = 10

LocalIter = 50

Note: NP = population size or eco size or number of ants; T0 = initial temperature; Tf = final temperature; temperature reduction rate = α; pheromone evaporation = ρ;

global update rates = φ; pheromone amounts = τ; local search iteration = LocalIter; pc = crossover rate; pm = mutation rate; π = number of random move; m = number

of machines.

https://doi.org/10.1371/journal.pone.0200030.t002

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 12 / 23

https://doi.org/10.1371/journal.pone.0200030.t002
https://doi.org/10.1371/journal.pone.0200030

LB2 ¼ max
j¼1;2;...;n

(

min
k ¼ 1; 2; . . . ;m
i ¼ 1; 2; . . . ; n

½Pj;k þ Si;j;k� ð12Þ

LB ¼ maxðLB1; LB2Þ ð13Þ

It is noteworthy to mention that the three set of existing algorithms selected for comparison

with the proposed techniques were chosen on the basis that the same type of balanced machine

benchmark datasets was also used for their evaluation.

First experiment

Table 3 presents the results of the first experiment conducted in this study, which is the evalua-

tion between SOS and PSA. The first and second columns of this table show the sizes of the test

instances for machines and jobs. The third “Cmax” and fourth “times” columns represent the

average makespan and CPU run times in seconds for the 20 problem instances tested respec-

tively. The comparison is carried out in this form to firstly test the performance of the SOS algo-

rithm over a wide range of randomly generated datasets. Furthermore, a PSA was implemented

and used to evaluate the efficiency of the SOS. Interested readers could consult [46] for more

details on the standard SA implementation for solving the UPMSP problem. Therefore, since

the two algorithms, SOS and PSA, are population based methods, the comparison can be justi-

fied by using the same platform, datasets and computational environment. The processing time,

which was randomly generated followed a discrete uniform distribution (DUD) on (10,100)

and the setup time followed a DUD on (1,10). The values of jobs and machines were varied. For

Table 3. Comparison between SOS and SA, with SOS as the reference algorithm.

Machines Jobs PSA SOS Improvement

Cmax Time(s) Cmax Times(s) PDSOS(%)

2 10 207 3.95 196 4.71 5.31%

4 20 254 13.98 138 7.59 45.67%

2 30 879 21.62 754 10.58 14.22%

3 30 420 18.9 272 10.6 35.24%

4 30 427 22.32 292 10.6 31.62%

6 30 307 26.18 145 10.62 52.77%

8 30 273 26.96 95 10.68 65.20%

10 30 222 36.34 77 10.75 65.32%

2 50 1419 33.09 1137 16.34 19.87%

3 50 929 44.4 614 16.49 33.91%

4 50 764 44.92 419 16.56 45.16%

6 50 558 66.91 219 16.45 60.75%

8 50 463 69.02 157 16.6 66.09%

10 50 407 71.07 127 16.85 68.80%

2 100 2697 130.67 2077 31.35 22.99%

3 100 2002 131.28 1236 31.43 38.26%

4 100 1633 133.42 820 31.67 49.79%

6 100 1092 134.35 482 31.67 55.86%

8 100 954 155.39 324 33.7 66.04%

10 100 809 197.19 253 31.66 68.73%

https://doi.org/10.1371/journal.pone.0200030.t003

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 13 / 23

https://doi.org/10.1371/journal.pone.0200030.t003
https://doi.org/10.1371/journal.pone.0200030

the jobs instance, the selected values were n = 10,20,30,50,100, while for the machines instance,

the selected numbers werem = 2,3,4,6,8,10. The number of randommoves or kick moves (π)

used for the SOS implementation was set at interval [0.5m, 0.9m].

From the results presented in Table 3, it can be observed that SOS performed better than

PSA as regards solution quality and average CPU time. Similarly, SOS outperformed PSA in

all cases for the varying problem instances tested in terms of solution quality, because of the

iterated local search improvement mechanism incorporated into the SOS algorithm. Since the

main goal of the improvement strategy is to bring about a reduction in the current solution’s

total completion time, it is not surprising that the SOS has gained tremendously over the PSA

with respect to the average CPU execution time of the two algorithms. As regards the overall

performance of the two methods, the results in Table 3 show that the relative performance of

SOS and PSA increases with increase in the problem size.

Second experiment

In the second experiment, the two developed algorithms were tested on a total of 450 out of

the 540 problem instances combination. The available balanced machine benchmark dataset

in [38] has 15 replications of problem combination comprising of 20, 40, 60, 80, 100 and 120

numbers of jobs. The number of machines in this combination includes 2, 4, 6, 8 and 10. In

this experiment, only up to 10 machines were considered. By referring to balanced machine

dataset, it is meant that the data distribution for processing time (Pi,k) and setup times (Si,j,k) is

balanced. In Table 4, results of all the tests instances are shown for the evaluated algorithms.

This table presents the minimum, average, and maximummakespan simulation results for

SOS and SOS-LPT. The gap between these two methods is also computed in the form of per-

centage deviation using the formula described in Eq (11).

The results in Table 4 show that the performance of the SOS-LPT algorithm is better than that

of the SOS in both quality of solution and average CPU time. For the average CPU time illustrated

in Fig 2, the excellent performance of the SOS-LPT can be explained that by incorporating LPT

assignment heuristic into the SOS, the SOS-LPT algorithm needed to only perform its search on

the different job sequencing solutions generated by the LPT, unlike in the case of the SOS, where

the search space, even though efficient, still lacks such additional refinement and focused search

direction introduced by the incorporation of the LPT heuristic. Therefore, it can be concluded

that the LPT assists to speed up the search process for the SOS algorithm by reducing the solution

search space. In addition, a noticeable increase in the solution quality of the SOS was observed,

indicating that LPT also improves the performance of the SOS in finding better solution, Cmax.

In this paper, only the SOS’s and SOS-LPT’s average CPU times for all the different prob-

lem structures described above, are reported. The average CPU times were obtained by run-

ning 15 replicates of each problem instance for 500 iterations. From Fig 2, it can be noticed

that as the number of jobs increased, the computational time for both the SOS and SOS-LPT

also increased. Increasing the number of machines likewise increased the algorithm running

times, as it was observed with the instance of running 20 jobs on 2 machines, where the aver-

age CPU times of 43.10 seconds and 34.48 seconds were recorded for SOS and SOS-LPT, as

compared to the 844.61 seconds and 674.68 seconds for running 20 jobs on 120 machines. The

main reason for introducing the LPT heuristic into the SOS as aforementioned was to mini-

mize the duration of each problem execution time. The results of the CPU times illustrated in

Fig 2, show that this goal has been achieved. For example, the average CPU time for the

SOS-LPT to solve 120 jobs on 10 machines, is 792.51 seconds compared to the SOS’s 990.64

seconds, which makes SOS-LPT a more suitable candidate algorithm in terms of speed to be

used in real-world practice.

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 14 / 23

https://doi.org/10.1371/journal.pone.0200030

Third experiment

In the third experiment, SOS and SOS-LPT are compared with other methods from the litera-

ture, namely ACO [16], ACOII [14], GADP2 and SADP [27]. The problem instance combina-

tion for the comparison with ACO and ACOII included 20, 40, 60, 80 100, and 120 jobs, while

the machine instances included 2, 4, 6, 8, 10, and 12 number of machines. In summary, the

problem set used for this experiment consists of 15 instances for each combination of machine

number, job number, processing time distribution, and setup time distribution, resulting in a

total of 1,620 (6 × 6 × 3 × 15) test instances. However, for the hybrid SADP and GADP2, the

problem combination included 20, 40, 60, and 80 jobs, while 2 and 6 machines were consid-

ered. The ACO algorithm considered is a hybrid of the classical ACO and local search imple-

mentation, while the ACOII is an extended version of the ACO. The GADP2 is a hybrid of

genetic algorithm and dominance properties heuristic and SADP is a hybrid of simulated

annealing and dominance properties heuristic. Therefore, to justify the rationale behind select-

ing these algorithms for the purpose of evaluation, the algorithms hybridization structures

Table 4. Comparison between SOS and SOS-LPT algorithms, with SOS-LPT as the reference algorithm.

Machines Jobs SOS (1) SOS-LPT (2) Improvement

Min Avg Max StDev Min Avg Max StDev PDSOS–LPT(%)

2 20 1152 1224.12 1260 30.48 1152 1200.86 1236 20.80 1.9369

40 2363 2377.86 2393 9.52 2360 2376.27 2393 10.60 0.0669

60 3519 3565.61 3631 32.86 3519 3556.66 3631 26.34 0.2516

80 4705 4734.86 4754 11.44 4705 4725.20 4754 13.85 0.2044

100 5789 5838.87 5976 65.07 5793 5829.40 5976 49.11 0.1625

120 6996 7050.04 7238 70.20 6881 7021.53 7247 129.42 0.406

4 20 541 592.26 643 8.33 539 563.33 601 6.01 2.9562

40 1085 1132.13 1183 28.89 1076 1129.34 1183 33.48 0.247

60 1684 1718.68 1752 23.81 1684 1705.72 1752 16.42 0.7598

80 2256 2296.52 2320 18.51 2256 2284.53 2320 18.60 0.5248

100 2808 2840.84 2903 20.90 2778 2821.07 2915 41.58 0.7008

120 3380 3404.74 3449 22.68 3331 3397.06 3446 43.01 0.2261

6 20 380 386.26 393 3.77 381 386.21 393 3.78 0.0129

40 734 750.47 763 9.08 734 741.28 750 4.01 1.2397

60 1104 1118.05 1167 16.04 1096 1106.01 1113 5.56 1.0886

80 1500 1506.46 1514 4.91 1491 1502.92 1514 6.87 0.2355

100 1868 1879.93 1893 8.46 1868 1874.23 1892 6.21 0.3041

120 2245 2255.86 2266 6.75 2239 2244.47 2266 8.42 0.5074

8 20 276 282.18 291 4.26 270 275.87 286 3.91 2.2873

40 524 561.37 601 4.51 522 538.39 599 4.15 0.3631

60 819 832.93 845 8.61 803 822.24 840 10.98 1.3001

80 1092 1116.66 1134 14.25 1046 1092.17 1134 27.68 2.2423

100 1367 1378.30 1390 8.77 1341 1361.42 1390 16.80 1.2399

120 1673 1681.68 1690 4.73 1643 1659.66 1690 16.09 1.3268

10 20 177 231.12 262 2.10 167 225.17 281 5.07 3.9461

40 409 447.48 489 5.63 394 425.86 446 9.31 3.8368

60 641 648.15 655 4.71 602 632.34 655 17.11 5.1473

80 866 874.40 884 5.99 842 862.33 884 13.32 1.3997

100 1111 1121.53 1127 5.34 1029 1077.6 1127 34.43 4.0767

120 1324 1335.31 1355 10.36 1290 1314.26 1355 17.96 1.6017

https://doi.org/10.1371/journal.pone.0200030.t004

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 15 / 23

https://doi.org/10.1371/journal.pone.0200030.t004
https://doi.org/10.1371/journal.pone.0200030

were compared with the researchers’ proposed methods. It is reasonable therefore, to deduce

that the ACO can be compared with SOS implementation, which is a mix of basic SOS and

iterated local search strategy. Similarly, the dominance properties heuristics (DP) of GADP2

and SADP can be compared with the SOS with LPT heuristic.

In Tables 5 and 6, results of all the tests instances are shown for the evaluated algorithms.

However, only the results obtained by SOS and SOS-LPT originated from the researchers’ tests

computation, while the results of other heuristics were directly obtained from [38], which con-

tains the sets of all benchmark problem instances with their respective solutions that were also

used for this implementation. Table 6 presents the minimum, average, and average makespan

results for the compared algorithms. As indicated in Table 5, ACO and ACOII are outper-

formed by both SOS and SOS-LPT, with SOS-LPT having the best results, and closely followed

by the SOS. Similarly, in Table 6 the performances of the SADP and GADP2 were outper-

formed by SOS and SOS-LPT, still with SOS-LPT emerging the overall best performed algo-

rithm in all the problem instances tested. The least performed method is the SADP algorithm,

since it has the highest average Cmax values for most of the tests results carried out. Fig 3 sum-

marizes the relative percentage deviation of ACO, ACOII, SOS, and SOS-LPT from the LB for

all the problem combination considered.

The PD plots shown in Fig 3, illustrate the relative deviation of the four algorithms from LB

in all instances for each problem combination. The solutions obtained from the calculation of

LB using Eq (11) above, were considered to be the optimum solution for which other algo-

rithms were evaluated. However, the results of the relative deviation clearly show that the

SOS-LPT implementation outperformed all the other methods. Next in the performance hier-

archy is the SOS, followed by the ACOII approach.

Fig 4 illustrates the results of the average percentage deviation of SADP, GADP2, and SOS

algorithms from SOS-LPT, used here as the control algorithm, because of its excellent perfor-

mance. Similarly, this figure provides an idea of which algorithm among the four methods per-

formed better.

It is clearly seen that the initial claim that the proposed SOS algorithm is better than the

other methods is justifiable if the computed average PD (%) values of each method are com-

pared. Therefore, since the average PD (%) value obtained by the SOS-LPT which is 3.57%,

being the least among the other two compared methods (10.89% for ACO and 9.26% for

ACOII respectively), it can be concluded that the proposed methods are better alternatives

Fig 2. Comparison of SOS and SOS-LPT average CPU execution time.

https://doi.org/10.1371/journal.pone.0200030.g002

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 16 / 23

https://doi.org/10.1371/journal.pone.0200030.g002
https://doi.org/10.1371/journal.pone.0200030

than the other existing algorithms that address the same problem. It is also highlighted that the

observed wide discrepancy between the high quality solutions obtained by the SOS-based

methods (SOS and SOS-LPT) and other methods, suggests that the algorithm may be more

appropriate for handling large problem instances.

Statistical analyses

In order to conclude the whole analysis of the presented results and with the aim of making

thorough analysis, there is need to further evaluate the statistical significance of our claims on

the better performance of SOS and SOS-LPT. As such, two statistical tests are carried out.

Table 5. Experimental results for 15 replicated runs of ACO, ACOII, SOS, and SOS-LPT algorithms.

Machines Jobs LB ACO ACOII SOS SOS-LPT

2 20 1185.833 1237.8 1235.267 1224.12 1200.86

40 2344.7 2397.8 2394.933 2377.86 2376.27

60 3510.167 3574.6 3565.133 3565.61 3556.66

80 4664.833 4730.4 4722.867 4734.86 4725.2

100 5819.233 5897.6 5881.933 5838.87 5829.4

120 7008.033 7082.6 7072.667 7050.04 7021.53

4 20 560.8333 617.1333 609.4667 592.26 563.33

40 1101.883 1179.867 1166.933 1132.13 1129.34

60 1650.733 1737.933 1725.667 1718.68 1705.72

80 2201.483 2298.533 2288.933 2296.52 2284.53

100 2740.7 2849.933 2837.8 2840.84 2821.07

120 3291.2 3405.133 3389.867 3404.74 3397.06

6 20 362.3999 452.7333 445.8667 386.26 386.21

40 716.5556 805.4 791.9333 750.47 741.28

60 1071.478 1163.467 1147.8 1118.05 1106.01

80 1429.121 1545.333 1530.467 1506.46 1502.92

100 1783.033 1897.467 1882.467 1879.93 1874.23

120 2137.599 2253.933 2234.2 2255.86 2244.47

8 20 267.225 347.6 340.2667 282.18 275.87

40 529.7583 599.2667 580.7333 561.37 538.39

60 791.7417 893.8 880.4667 832.93 822.24

80 1053.083 1142.4 1131.133 1116.66 1092.17

100 1315.382 1439.067 1422 1378.3 1361.42

120 1580.234 1686.067 1670.333 1681.68 1659.66

10 20 210.8533 252.5333 245.5333 231.12 225.17

40 419.8867 485.5333 476.1333 447.48 425.86

60 625.56 708.2667 688.6667 648.15 632.34

80 835.12 925.8667 903.1333 874.4 862.33

100 1041.54 1141.533 1126.467 1121.53 1077.6

120 1249.073 1351.667 1336.333 1335.31 1314.26

12 20 174.5889 241.8667 234.2 230.24 181.23

40 346.9334 448.1333 436.9333 433.83 380.85

60 519.2055 597.3333 573.4667 567.99 537.33

80 690.4666 790.0667 773.1333 765.2 725.21

100 863.5278 988.6667 968.7333 960.43 927.43

120 1034.789 1138.733 1113.4 1122.2 1102.28

https://doi.org/10.1371/journal.pone.0200030.t005

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 17 / 23

https://doi.org/10.1371/journal.pone.0200030.t005
https://doi.org/10.1371/journal.pone.0200030

These tests include the paired-samples t-test and Friedman’s test with SOS-LPT used as the

control algorithm.

Paired samples t-test

To draw an unbiased conclusion for the above conducted experiments, a hypothesis test was

performed to demonstrate the superiority of the proposed algorithms over the other existing

methods. A paired-samples t-test was conducted to compare the average Cmax values generated

by SOS and SOS-LPT algorithms.

Hypothesis

SOS-LPT versus SOS in terms of average Cmax values

H0: μ1 = μ2, meaning that the average Cmax values of SOS-LPT and SOS are the same.

H1: μ1 6¼ μ2 meaning that the average Cmax values of SOS-LPT and SOS are not the same.

The paired samples correlation information shows that SOS and SOS-LPT average Cmax
values are significantly positively correlated (r = 1.000, p< 0.001). There was a significant aver-

age difference between SOS-LPT’s and SOS’s Cmax (t27 = 7.465, p< 0.001). These results

Table 6. Experimental results for 15 replicated runs of SADP, GADP2, SOS, and SOS-LPT algorithms.

SADP GADP2 SOS SOS-LPT

Machines Jobs Min Avg Max StDev Min Avg Max StDev Min Avg Max StDev Min Avg Max StDev

2 20 1196 1255 1338 33.80 1242 1254 1266 6.03 1152 1224 1260 30.48 1152 1201 1236 20.80

40 2371 2462 2550 35.90 2441 2459 2474 8.26 2363 2378 2393 9.52 2360 2376 2393 10.60

60 3588 3680 3764 41.20 3652 3675 3695 10.59 3519 3566 3631 32.86 3519 3557 3631 26.34

80 4753 4879 5045 59.10 4846 4872 4896 11.89 4705 4735 4754 11.44 4705 4725 4754 13.85

6 20 441 455 481 8.80 448 454 459 3.08 380 386 393 3.77 381 386 393 3.78

40 796 841 892 18.53 809 831 853 11.00 734 750 763 9.08 734 741 750 4.01

60 1210 1259 1295 15.50 1219 1246 1270 12.05 1104 1118 1167 16.04 1096 1106 1113 5.56

80 1606 1662 1705 18.80 1622 1648 1672 12.47 1500 1506 1514 4.91 1491 1503 1514 6.87

https://doi.org/10.1371/journal.pone.0200030.t006

Fig 3. Percentage deviation of each algorithm with LB as the control algorithm.

https://doi.org/10.1371/journal.pone.0200030.g003

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 18 / 23

https://doi.org/10.1371/journal.pone.0200030.t006
https://doi.org/10.1371/journal.pone.0200030.g003
https://doi.org/10.1371/journal.pone.0200030

suggest that SOS average Cmax values were 13 points higher than that of the SOS-LPT average

Cmax values (95% CI [9.47, 16.62]), where CI denotes confidence interval. Therefore, in this

case, the null hypothesisH0 is rejected. Specifically, the test results suggest that SOS-LPT is sta-

tistically significantly better than the SOS in terms of average Cmax values generated for all the

problem instances considered.

Friedman test

Friedman test was performed to further demonstrate the superiority of the SOS and SOS-LPT

over other benchmarked algorithms. The ranking results obtained from the analyses of all the

problem instance combinations are presented in Tables 7 and 8. The performance ranking

results presented in Table 7 show the comparison between ACO, ACOII, SOS and SOS-LPT,

while the results presented in Table 8, show the comparisons between GADP, SADP, SOS, and

SOS-LPT. However, analysis and interpretation of the Friedman’s tests performed reveals that

there is statistically significance difference among the evaluated algorithms with χ2 (3) =
90.300, p = 0.001, but the test does not exactly show where those differences lie. Therefore,

Post hoc analysis with Wilcoxon signed-rank tests was further conducted with a Bonferroni

correction applied, resulting in a significance level set at p< 0.0125. The Friedman test with

post hoc tests results show that SOS-LPT is the overall best performed algorithm with (Z =

-5.232, p = 0.001), and is closely followed by the SOS, while GADP appears to be the least per-

formed method.

Finally, we can conclude by stating that under the same experimental settings and condi-

tions, the two main contributions discussed in this paper, namely SOS and SOS-LPT, outper-

form the other alternative methods by showing better robustness and efficiency. In addition,

Fig 4. Percentage deviation of each algorithm with SOS-LPT as the control algorithm.

https://doi.org/10.1371/journal.pone.0200030.g004

Table 7. Friedman’s rank test for the 180 instance combination of the benchmarked problem of ACO, ACOII,
SOS, and SOS-LPT using their average Cmax values.

Algorithm Mean Rank Rank

ACO 3.94 4

ACOII 2.69 3

SOS 2.28 2

SOS-LPT 1.08 1

https://doi.org/10.1371/journal.pone.0200030.t007

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 19 / 23

https://doi.org/10.1371/journal.pone.0200030.g004
https://doi.org/10.1371/journal.pone.0200030.t007
https://doi.org/10.1371/journal.pone.0200030

the improvements shown by these two methods are significant in most cases and even more

pronounced in the case of SOS-LPT that has been shown to be more superior to others. For

this reason, we can say that the presented SOS and SOS-LPT are promising alternative meth-

ods to solve the UPMSP and its variants. While the conducted tests show very promising

results for the proposed algorithms, it is noteworthy to mention here that the two algorithms

(ACO and ACOII) were compared using balanced processing and setup times (which means

that both the processing times and setup times were generated from the same uniform distri-

bution) with data sets obtained from Scheduling Research Virtual Center (http://

schedulingresearch.com/).

Conclusion

This paper considers the implementation and application of an improved symbiotic organisms

search optimization algorithm, to solve the parallel machine scheduling problem with the

objective of minimizing makespan. The proposed approach resulting from the research,

involves a two stage solution, which includes the use of the longest processing time first heuris-

tic to generate an initial schedule of jobs to machine assignment for n jobs onmmachines,

and the employment of the improved SOS algorithm (SOS-LPT) to perform a global search

update on the generated job sequence. In order to apply SOS-LPT to solve the unrelated paral-

lel machine scheduling problem, a new encoding scheme was designed to increase the effec-

tiveness of the SOS algorithm to handle the one-to-one mapping between candidate solution

and individual organisms. The incorporation of the local search improvement mechanism

into the SOS scheme has been shown to introduce diversity in the search process and avoid

premature convergence. The performance of SOS-LPT is evaluated in comparison with previ-

ous results from other existing scheduling techniques from the existing literature. The experi-

mental results clearly show that SOS-LPT substantially outperforms the other methods for all

the problem instances tested. Future research suggested is to focus on developing an improved

hybrid SOS for solving UPMSP that could handle both small and large scale instances effi-

ciently. For example, it would be interesting and could be useful to extend this work by inte-

grating 2-opt, 3-opt, or k-opt local search algorithms and investigate further for any possible

improvement that can be accomplished using other approaches. The researchers plan to

extend their research by incorporating additional improvements into the SOS by using hybrid-

ization techniques to include other meta-heuristics such as simulated annealing, and test its

performance on different set of larger problem instances.

Acknowledgments

The authors would like to thank the late Prof. Aderemi O. Adewumi and the University of

KwaZulu-Natal, College of Agriculture, Engineering and Science, Durban, South Africa for

providing the facilities and technical support needed to conduct our experiments.

Table 8. Friedman’s rank test for the 120 instance combination of the benchmarked problem of GADP, SADP,
SOS, and SOS-LPT using their average Cmax values.

Algorithm Mean Rank Rank

GADP 4.00 4

SADP 3.00 3

SOS 2.00 2

SOS-LPT 1.00 1

https://doi.org/10.1371/journal.pone.0200030.t008

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 20 / 23

http://schedulingresearch.com/
http://schedulingresearch.com/
https://doi.org/10.1371/journal.pone.0200030.t008
https://doi.org/10.1371/journal.pone.0200030

Author Contributions

Conceptualization: Absalom E. Ezugwu.

Data curation: Absalom E. Ezugwu.

Formal analysis: Absalom E. Ezugwu.

Investigation: Absalom E. Ezugwu, Olawale J. Adeleke.

Methodology: Absalom E. Ezugwu, Olawale J. Adeleke.

Resources: Absalom E. Ezugwu, Olawale J. Adeleke.

Software: Absalom E. Ezugwu.

Supervision: Serestina Viriri.

Validation: Absalom E. Ezugwu, Olawale J. Adeleke.

Visualization: Absalom E. Ezugwu.

Writing – original draft: Absalom E. Ezugwu.

Writing – review & editing: Absalom E. Ezugwu, Olawale J. Adeleke, Serestina Viriri.

References
1. Hao J., Liu M. andWu C., 2010. Particle swarm optimization for parallel machine scheduling problem

with machine eligibility constraints. Chinese Journal of Electronics, 19(1), pp.103–106.

2. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness.
W.H. Freeman, New York (1979).

3. ChengM.Y. and Prayogo D., 2014. Symbiotic organisms search: a newmetaheuristic optimization algo-
rithm. Computers & Structures, 139, pp.98–112.

4. Tanaka S, Araki M (2008) A branch-and-bound algorithmwith Lagrangian relaxation to minimize total
tardiness on identical parallel machines. Int J Prod Eco 113(1):446–458

5. Dell’Amico M., Martello S. 1995. Optimal scheduling of tasks on identical parallel processors. ORSA J.
Comput. 7 191–200.

6. Dell’AmicoM., Martello S. 2005. A note on exact algorithms for the identical parallel machine scheduling
problem. Eur. J. Oper. Res. 160 576–578.

7. Mokotoff E. 2004. An exact algorithm for the identical parallel machine scheduling problem. Eur. J.
Oper. Res. 152 758–769.

8. Li X., Yalaoui F., Amodeo L. and Chehade H., 2012. Metaheuristics and exact methods to solve a multi-
objective parallel machines scheduling problem. Journal of Intelligent Manufacturing, 23(4), pp.1179–
1194.

9. Mokotoff E. and Chrétienne P., 2002. A cutting plane algorithm for the unrelated parallel machine
scheduling problem. European Journal of Operational Research, 141(3), pp.515–525.

10. Lin Y.K., 2013. Particle swarm optimization algorithm for unrelated parallel machine scheduling with
release dates. Mathematical Problems in Engineering, 2013.

11. Chen Y.Y., Cheng C.Y., Wang L.C. and Chen T.L., 2013. A hybrid approach based on the variable
neighborhood search and particle swarm optimization for parallel machine scheduling problems—a
case study for solar cell industry. International Journal of Production Economics, 141(1), pp.66–78.

12. Kashan A.H. and Karimi B., 2009. A discrete particle swarm optimization algorithm for scheduling paral-
lel machines. Computers & Industrial Engineering, 56(1), pp.216–223.

13. Torabi S.A., Sahebjamnia N., Mansouri S.A. and Bajestani M.A., 2013. A particle swarm optimization
for a fuzzy multi-objective unrelated parallel machines scheduling problem. Applied Soft Computing, 13
(12), pp.4750–4762.

14. Arnaout J.P., Musa R. and Rabadi G., 2014. A two-stage Ant Colony optimization algorithm to minimize
the makespan on unrelated parallel machines—part II: enhancements and experimentations. Journal of
Intelligent Manufacturing, 25(1), pp.43–53.

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 21 / 23

https://doi.org/10.1371/journal.pone.0200030

15. Behnamian J., ZandiehM. and Ghomi S.F., 2009. Parallel-machine scheduling problems with
sequence-dependent setup times using an ACO, SA and VNS hybrid algorithm. Expert Systems with
Applications, 36(6), pp.9637–9644.

16. Arnaout J.P., Rabadi G. and Musa R., 2010. A two-stage ant colony optimization algorithm to minimize
the makespan on unrelated parallel machines with sequence-dependent setup times. Journal of Intelli-
gent Manufacturing, 21(6), pp.693–701.

17. Keskinturk T., Yildirim M.B. and Barut M., 2012. An ant colony optimization algorithm for load balancing
in parallel machines with sequence-dependent setup times. Computers & Operations Research, 39
(6), pp.1225–1235.

18. Guo P., ChengW. andWang Y., 2015. Parallel machine scheduling with step-deteriorating jobs and
setup times by a hybrid discrete cuckoo search algorithm. Engineering Optimization, 47(11), pp.1564–
1585.

19. MarichelvamM.K., Prabaharan T. and Yang X.S., 2014. Improved cuckoo search algorithm for hybrid
flow shop scheduling problems to minimize makespan. Applied Soft Computing, 19, pp.93–101.

20. Lin S.W. and Ying K.C., 2014. ABC-based manufacturing scheduling for unrelated parallel machines
with machine-dependent and job sequence-dependent setup times. Computers & Operations
Research, 51, pp.172–181.

21. Vallada E. and Ruiz R., 2011. A genetic algorithm for the unrelated parallel machine scheduling problem
with sequence dependent setup times. European Journal of Operational Research, 211(3), pp.612–
622.

22. Fleszar K., Charalambous C. and Hindi K.S., 2012. A variable neighborhood descent heuristic for the
problem of makespanminimisation on unrelated parallel machines with setup times. Journal of Intelli-
gent Manufacturing, 23(5), pp.1949–1958.

23. Armentano V.A. and de Franca Filho M.F., 2007. Minimizing total tardiness in parallel machine schedul-
ing with setup times: An adaptive memory-based GRASP approach. European Journal of Operational
Research, 183(1), pp.100–114.

24. Jia J. and Mason S.J., 2009. Semiconductor manufacturing scheduling of jobs containing multiple
orders on identical parallel machines. International Journal of Production Research, 47(10), pp.2565–
2585.

25. Ying K.C. and Cheng H.M., 2010. Dynamic parallel machine scheduling with sequence-dependent
setup times using an iterated greedy heuristic. Expert Systems with Applications, 37(4), pp.2848–
2852.

26. Baykasoğlu A. and Ozsoydan F.B., 2018. Dynamic scheduling of parallel heat treatment furnaces: A
case study at a manufacturing system. Journal of Manufacturing Systems, 46, pp.152–162.

27. Chang P.C. and Chen S.H., 2011. Integrating dominance properties with genetic algorithms for parallel
machine scheduling problems with setup times. Applied Soft Computing, 11(1), pp.1263–1274.

28. ChengM.-Y.;Chiu C.-K.;Chiu Y.-F.;Wu Y.-W.;Syu Z.-L.;Prayogo D. et al, 2014. SOS optimization
model for bridge life cycle risk evaluation andmaintenance strategies. Journal of the Chinese Institute
of Civil and Hydraulic Engineering Volume 26, Issue 4, 1, pp. 293–308.

29. Do D.T. and Lee J., 2017. A modified symbiotic organisms search (mSOS) algorithm for optimization of
pin-jointed structures. Applied Soft Computing, 61, pp.683–699.

30. Prasad D. and Mukherjee V., 2016. A novel symbiotic organisms search algorithm for optimal power
flow of power systemwith FACTS devices. Engineering Science and Technology, an International Jour-
nal, 19(1), pp.79–89.

31. Secui D.C., 2016. A modified Symbiotic Organisms Search algorithm for large scale economic dispatch
problem with valve-point effects. Energy, 113, pp.366–384.

32. Sonmez Y., Kahraman H.T., Dosoglu M.K., Guvenc U. and Duman S., 2017. Symbiotic organisms
search algorithm for dynamic economic dispatch with valve-point effects. Journal of Experimental &
Theoretical Artificial Intelligence, 29(3), pp.495–515.

33. Ezugwu A.E. and Adewumi A.O., 2017. Soft sets based symbiotic organisms search algorithm for
resource discovery in cloud computing environment. Future Generation Computer Systems 76 (2017)
33–503.

34. Vincent F.Y., Redi A.P., Yang C.L., Ruskartina E. and Santosa B., 2017. Symbiotic organisms search
and two solution representations for solving the capacitated vehicle routing problem. Applied Soft Com-
puting, 52, pp.657–672.

35. Ezugwu A.E.S., Adewumi A.O. and Frı̂ncu M.E., 2017. Simulated annealing based symbiotic organisms
search optimization algorithm for traveling salesman problem. Expert Systems with Applications,
77, pp.189–210.

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 22 / 23

https://doi.org/10.1371/journal.pone.0200030

36. Balin S., 2011. Parallel machine scheduling with fuzzy processing times using a robust genetic algo-
rithm and simulation. Information Sciences, 181(17), pp.3551–3569.

37. Ramezanian R. and Saidi-MehrabadM., 2012. Multi-product unrelated parallel machines scheduling
problem with rework processes. Scientia Iranica, 19(6), pp.1887–1893.

38. Scheduling research virtual center, http://SchedulingResearch.com, a web site that includes benchmark
problem data sets and solutions for scheduling problems, 2005. [accessed 17th May, 2017].

39. Claudia R. Gatica, Susana C. Esquivel, and Guillermo Leguizam´on, An ACO approach for the Parallel
Machines Scheduling Problem

40. Morton T. and Pentico D. Heuristic Scheduling Systems. JohnWiley and Sons, New York, 1993.

41. Pinedo M. Scheduling: Theory, Algorithms and System. Prentice Hall, 1995.

42. ChengM.Y., Prayogo D. and Tran D.H., 2015. Optimizing multiple-resources leveling in multiple proj-
ects using discrete symbiotic organisms search. Journal of Computing in Civil Engineering, 30(3),
p.04015036.

43. Ezugwu A.E.S. and Adewumi A.O., 2017. Discrete Symbiotic Organisms Search Algorithm for Travel-
ling Salesman Problem. Expert SystemsWith Applications 87 (2017) 70–78.

44. Vincent F.Y., Redi A.P., Yang C.L., Ruskartina E. and Santosa B., 2017. Symbiotic organisms search
and two solution representations for solving the capacitated vehicle routing problem. Applied Soft Com-
puting, 52, pp.657–672.

45. Agarwal, R., Ergun, Ö., Orlin, J. and Potts, C., 2004. Solving parallel machine scheduling problems with
variable depth local search. In Working Paper, Operations Research.

46. Anagnostopoulos G.C. and Rabadi G., 2002. A simulated annealing algorithm for the unrelated parallel
machine scheduling problem. In Automation Congress, 2002 Proceedings of the 5th Biannual World
(Vol. 14, pp. 115–120). IEEE.

Symbiotic organisms search algorithm for parallel machines scheduling

PLOSONE | https://doi.org/10.1371/journal.pone.0200030 July 5, 2018 23 / 23

http://SchedulingResearch.com
https://doi.org/10.1371/journal.pone.0200030

