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Abstract

We propose a new method for the task of fine-grained vi-

sual categorization. The method builds a model of the base-

level category that can be fitted to images, producing high-

quality foreground segmentation and mid-level part local-

izations. The model can be learnt from the typical datasets

available for fine-grained categorization, where the only

annotation provided is a loose bounding box around the in-

stance (e.g. bird) in each image. Both segmentation and

part localizations are then used to encode the image con-

tent into a highly-discriminative visual signature.

The model is symbiotic in that part discov-

ery/localization is helped by segmentation and, conversely,

the segmentation is helped by the detection (e.g. part

layout). Our model builds on top of the part-based object

category detector of Felzenszwalb et al., and also on the

powerful GrabCut segmentation algorithm of Rother et al.,

and adds a simple spatial saliency coupling between them.

In our evaluation, the model improves the categorization

accuracy over the state-of-the-art. It also improves over

what can be achieved with an analogous system that runs

segmentation and part-localization independently.

1. Introduction

Fine-grained visual categorization is the task of dis-

tinguishing between sub-ordinate categories, e.g. between

“tree sparrow”, “Ivory gull” and “Anna hummingbird”,

which all belong to the base level category “bird”. Sev-

eral recent works have pointed out two aspects, which dis-

tinguish visual categorization at the subordinate level from

that at the base level.

First, in subordinate classification it often happens that

two similar classes can only be distinguished by the ap-

pearance of localized and very subtle details (such as the

color of the beak for bird classes or the shape of the petal

edges for flower classes). With generic classification ap-

proaches these fine differences often get “swamped” by the

bulk of the image, whenever encoding of the image content

into a visual signature of some sort is performed. There-

fore, [5, 24, 32, 34, 35] focused on the localization of these

discriminative image parts as a precursor to categorization.

Once the discriminative parts are localized, they are en-

coded into separate parts of the visual signature, enabling

the classifier to pick up on the fine differences in those parts.

The second distinguishing aspect is the role of the back-

ground. It is well known [13] that at the base category level

the background often provides valuable context for catego-

rization. However, [10, 22, 24] demonstrated that at the sub-

ordinate category level, the background is seldom discrimi-

native and it is beneficial to segment out the foreground and

to discard the visual information in the background. [10]

further demonstrated that increasing the accuracy of fore-

ground segmentation at training time directly translates into

an increase in accuracy of subordinate-level categorization

at test time.

In the light of all this evidence, it is natural to inves-

tigate the combination of part localization and foreground

segmentation for fine-grained categorization, and their in-

teraction in combination is the topic of this work. Our least

surprising finding (which nevertheless translates into a very

competitive categorization system) is that a simple concate-

nation of visual signatures, provided by a system that per-

forms part localization and by a system that performs fore-

ground segmentation, leads to improved categorization ac-

curacy (as compared to classifiers operating with each of

the two signatures individually).

More interestingly, we demonstrate that the accuracy of

fine-grained categorization can be further boosted if part lo-

calization and foreground segmentation are performed to-

gether, so that the outcomes of both processes aid each

other. As a result, better segmentation can be obtained by

taking into account part localizations, and, likewise, more

semantically meaningful and discriminative parts can be

learned and localized if foreground masks are taken into

account. We implement this feedback loop via the energy

minimization of a joint functional that incorporates the con-

sistency between part localization and foreground segmen-

tation as one of the terms. The resulting symbiotic system

achieves a better categorization performance compared to

the system obtained by a mere concatenation of two visual
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Figure 1. The symbiotic model using images from the Caltech-UCSD Bird dataset. Left: examples of the training images. Black frames

indicate the provided ground truth bounding box. Top: a stand alone Deformable Part Model (DPM) with its results to the right. Middle:

GrabCut automatically segments the images using the outside of the given bounding box as background and a prior foreground saliency

map for the region inside the bounding box. Bottom: our approach, which trains a symbiotic set of detector templates and saliency

maps and applies them jointly to images. As a result it achieves a considerable improvement in segmentation accuracy, part-localization

consistency, and the ultimate goal of fine-grained classification accuracy. (The saturation in the output images is reduced for illustration).

Best viewed in color.

signatures (discussed above). Overall, our symbiotic sys-

tem outperforms the previous state-of-the-art on all datasets

considered in our experiments (both the 2010 and 2011 ver-

sion of Caltech-UCSD Birds, and Stanford Dogs). This

symbiotic system is the main contribution of the paper.

As a coda, we investigate the gains in performance by us-

ing additional annotation, and show that although training

performance is near saturation, significant improvements

are still possible at test time; thus confirming similar find-

ings (e.g. a human in-the-loop [8]) in recent literature.

2. Related Work

There is a line of work stretching back over a decade

on the interplay between segmentation and detection. In

early works, object category detectors simply proposed

foreground masks [4, 18]. Later methods used these masks

to initialize graph-cuts based segmentations [7] that could

take advantage of image specific color distributions, giving

crisper and more accurate foreground segmentations [17,

19, 26].

In the poselet line of research [6] the detectors are for

parts, rather than for entire categories, but again the poselet-

detectors can predict foreground masks for object category

detection and segmentation [9, 20]. Whether the parts arise

from poselets [35] or are discovered from random initializa-

tions [33], there are benefits in comparing objects in fine-

grained visual categorization tasks at the part level where

subtle discriminative features are more evident. We demon-

strate, however, that the parts discovered in the absence of

supervision are less discriminative than those discovered

with the help of the segmentation process as is done in our

method.

Co-segmentation methods have been successful in build-

ing nuanced models of a base-level class in an unsuper-

vised way. A representative early work in this area is LO-

CUS [31]. The more recent methods such as [10] used

cosegmentation-based models for fine-grained categoriza-

tion. These methods however do not attempt to model mid-

level discriminative parts.

The closest work to ours is that of [32]. It also accom-

plishes unsupervised learning of a deformable part model

in order to find discriminative parts for fine-grained catego-

rization. An earlier method had used the image as a bound-

ing box for learning a deformable parts model for scene

classification [23]. Again, neither of these use segmenta-

tion to aid the part learning and localization.

In summary, although the synergy between segmentation

and detection has long been recognized [16], the interplay

between part localization and segmentation has not been in-

vestigated in the context of fine-grained categorization (to

the best of our knowledge). By exploiting this interplay, the

proposed approach is able to achieve a significant improve-

ment in the categorization accuracy.

3. Symbiotic Segmentation and Localization

We start with an overview of the system. It is built

around a model of the base category (e.g. bird) which in-

cludes a deformable part model W and a set S of saliency
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maps each associated with a part or root of the DPM. At test

time, given a pre-trained model, the model is fitted to an im-

age I via the minimization of the following three-term cost

function:

E(p, f , c|W ,S, I) = (1)

αEDPM(p|W , I) + βEGC(f , c|I) + EC(p, f |S)

Here, the minimization is performed over the part localiza-

tions p, the foreground mask f , and the color distributions

of the foreground and background c. α and β are weights

controlling the balance between the energy terms. The re-

covered part localizations p and the foreground segmen-

tation f are then used to encode the image content into a

highly-discriminative visual signature as discussed in the

next section. The model is intuitive: the first two mutually

independent terms in (1) correspond to the popular mod-

els we build upon, EDPM denotes a Deformable Part Model

(DPM) [14] energy; while EGC denotes a GrabCut [27] en-

ergy. With the introduction of a third (consistency) energy

term EC that takes a pre-trained saliency model S we penal-

ize the cases where the foreground segmentation f and the

part locations p do not agree. We postpone its definition to

Sec. 3.1 and first discuss the variables in (1) in more detail.

Deformable part model W = {wt}: here, we use a multi-

component Deformable Part Model (DPM) [14] consisting

of several mixtures of parts, where each part is described

by a HOG template and a geometric location prior. We de-

note the number of mixture components N , and the number

of parts in each component M . We omit extra indices for

different mixture components and use w0 to describe the

root HOG template for each component. wt then denotes

the parameters of the t-th part (the HOG template and the

geometric prior).

Saliency model S = {st}: we associate with the root and

each part wt of the deformable part model an extra map

st that indicates the foreground probability. Pixels of this

saliency map thus have values between −1 and 1, with 1 in-

dicating a high chance of the pixel being foreground and −1
otherwise. An example of a set of saliency maps is shown

in the center of the bottom row of Fig. 1.

Part localizations p = {pt}: this variable denotes the lo-

cation (the bounding box coordinates) of all detected parts

in an image. Only one mixture component is active for a

single image. The localization of a particular part template

wt is denoted pt. The part localizations are shown as col-

ored bounding boxes in the output images of Fig. 1.

Color distributions c = {c−1, c1}: following Grab-

Cut [27], we model the distribution of colors in the image

in the foreground and the background as Gaussian mixtures

in RGB space (denoted c1 and c−1 respectively).

Foreground segmentation f : this map assigns each pixel

the value 1 if it is foreground, and −1 if it is background.

Examples of the binary segmentations are shown as binary

maps in Fig. 1.

Note that p, f , c are specific to an image I , while W
and S are global parameters describing the base-level cat-

egory (e.g. bird or dog). These parameters can be learned

from a dataset I of images containing instances of this base

category as discussed in Sec. 3.2.

3.1. Optimization

We begin by describing the consistency term in (1), and

then detail the minimization of the entire cost function.

Consistency term: EC: this is defined as the sum of a set

of distances (or equivalently as as a sum of correlations):

EC(p, f |S) =
1

2

∑

t

||mt(pt, f)− st||
2
2 (2)

=
1

2

∑

t

||mt(pt, f)||
2
2 − 2〈mt(pt, f), st〉+ ||st||

2
2

=−
∑

t

〈mt(pt, f), st〉+ C (3)

where mt(pt, f) is a binary map {−1, 1} clipped from the

segmentation mask f by the localized part bounding box

pt. This map is resized to the size of a saliency map st,

which is denoted as θt. C is a constant with respect to pt

and f and therefore can be ignored during the optimization.

||mt(pt, f)||
2
2 is constant for the reason that mt only con-

tains pixel values of either −1 or 1 and hence the squared

norm is simply the number of pixels specified by the size

θt, and does not depend on pt and f .

We optimize the cost function (1) using a block-

coordinate-descent pattern, that is, alternating between up-

dating part localizations p while fixing the foreground seg-

mentation f and color c, and vice versa.

Updating part localizations p. When finding the best part

localization p (given the DPM W , the saliency model S and

the foreground segmentation f ), EGC can be ignored and

we are left with the original DPM term and the consistency

term:

min
p

αEDPM(p|W , I) + EC(p, f |S) (4)

We modified the standard off-the-shelf DPM detec-

tor [14] to solve (4). The DPM energy EDPM from [14]

can be written as:

EDPM(p|W , I) = −R(p0,wt)−
∑

t�=0

D(pt,wt,p0) (5)

D(pt,wt,p0) = R(pt,wt) +Qt(pt,p0) (6)

R(pt,wt) is the HOG-template filter response map of the

t-th root or part template. Qt is a quadratic function of the
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relative location of the part and the root that penalizes the

atypical geometric configurations.

Minimization of (4) is then equivalent to the minimiza-

tion of (5) with the following modification of the response

function R(p,W) → R′(p, f ,W,S):

R′(pt, f ,wt, st) = αR(pt,wt) +mt(pt, f)⊗ st (7)

Here, ⊗ is the convolution operator and α is a scalar con-

stant which balances between the two information sources.

The modified response function is then passed to an off-the-

shelf DPM solver which finds the optimum p for (4) via tree

dynamic programming.

Updating foreground segmentation f and color models

c. Assuming that part localizations p are fixed, the mini-

mization

min
f

βEGC(f , c|I) + EC(p, f |S) (8)

can be accomplished with an appropriately modified Grab-

Cut algorithm.

Recall that GrabCut alternates the color model updates

and the segmentation updates. Since the consistency term

(2) does not depend on color model c, the color model up-

date step is left unchanged compared to the original Grab-

Cut [27]. Let us now focus on the foreground segmentation

update (given part localizations p and the color model c).

Recall that this update within the original GrabCut min-

imizes the following energy:

EGC(f , c|I) =
∑

x

Ux + σ
∑

(x,x′)

Vx,x′ (9)

Ux = f(x){UGMM
−1 (I(x))− UGMM

1 (I(x))} (10)

Vx,x′ = |f(x)− f(x′)| v (I(x)−I(x′)) (11)

I(x) denotes an RGB value at pixel x, (x, x′) spans all pairs

of adjacent pixels, v is the binary Ising potential weighted

according to the contrast observed between the two pixels.

The unary potential UGMM
k is equal to the log-likelihood of

I(x) under the Gaussian mixture ck(I(x)), where k is the

foreground/background label {−1, 1} of pixel x.

To add the consistency term (2), we first re-express it

using image pixel-based terms:

EC(p, f |S) = 1
2

∑

x

∑

t
1

rt(pt)
(nx(pt, st)− f(x))2

= −
∑

x f(x)
∑

t
1

rt(pt)
nx(pt, st) + C (12)

x describes pixel location, and f(x) denotes the binary

foreground-background label at position x. n(pt, st) de-

scribes a real valued saliency map of the same size as the

input image. It has all pixel values equal to 0 except for

the window specified by pt, which is filled with an appro-

priately resized st. nx is then the value of n at location x.

Note that to ensure the equivalence of (12) and (2), each

term in (12) is reweighted by the reciprocal of the rt(pt),
which is the ratio between the number of pixels in st speci-

fied by the size hyper-parameter θt and the number of pixels

defined in the window in pt. The squared terms from ex-

panding (12) do not depend on p and f for the same reason

as in (3).

Adding (12) into (9) keeps the pairwise terms un-

changed, while modifying the unary potential, Ux → U ′
x:

U ′
x = βUx −

∑

x

f(x)
∑

t

1

rt(pt)
nx(pt, st) (13)

The modified energy can still be minimized exactly via

graph cut.

In conclusion, the minimization of (1) alternates between

three steps: (a) optimizing for p with the help of a DPM

solver with modified filter responses according to (7), (b)

estimating the color model c (standard GMM estimation

step within GrabCut) and (c) optimizing for f using Grab-

Cut with modified unary energy as defined in (13).

3.2. Learning the Model

The DPM model W and the saliency model S are trained

using a set I of training images. We learn the model pro-

gressively, starting with the HOG-filters and saliency mask

corresponding to the root, and then proceeding to the parts.

Learning the root parameters. We start with the train-

ing of the HOG template for the root filter w0 of the DPM

model. For the most part we follow the approach of Felzen-

szwalb et al. (c.f. section 5.2 in [14]). Thus, the HOG tem-

plates for root filters are in the mixture components via la-

tent SVM training (we use a separate unrelated dataset as a

source of negative examples; and constrain the root filters to

overlap with user-provided boxes by at least 70%). At the

same time, we run GrabCut on all training examples (using

bounding box annotations), and estimate the root saliency

map s0 corresponding to root filters by averaging the seg-

mentation masks (as detailed below).

Discriminative part discovery. We then use a standard

DPM approach to discover repeatable parts wt,∀t �=0 with

an important modification. In [14], “interesting” parts are

discovered greedily (as discussed in [14]) by covering the

high-energy (large gradient magnitude) parts of the root

HOG-template. In our case, we modify this interestingness

measure by multiplying the HOG magnitude by the root

saliency maps estimated for each component. In this way,

we constrain the discovery process to parts which overlap

substantially with the foreground (as estimated by a Grab-

Cut). We found this modification to be important to make

the learned parts consistent with our model (1), but also

to discover more semantically meaningful parts. We come

back to the issue of unsupervised part discovery in the ex-

periments section. After the discovery, we proceed with the
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[32] [35] [1] [2] Symb* Symb

Birds11 - 28.2 - 56.8 56.6 59.4

Birds10 28.2 - 30.2 - 46.5 47.3

Dogs 38.0 - - - 44.1 45.6

Table 1. Mean accuracy (mA) performance on the three fine-

grained categorization datasets. The symbotic model (“Symb”)

consistently outperforms previously published results. “Symb*”

is the model with classifiers trained on image sets not augmented

by left-right mirroring. The authors of [35] have confirmed that

they measured mA, rather than mAP as stated in their paper.

standard DPM training, and fit the learnt DPM to each train-

ing image.

Learning the saliency model S . Given the part localiza-

tions and the GrabCut segmentations of all training images,

we set the saliency mask for each part to be the pixel-wise

mean of all segmentation masks cutouts, corresponding to

the locations of this part (i.e. st =
1
|I|

∑

I∈I mt(p
I
t , f

I)).

4. Experimental Results

The empirical evaluation is carried out on three bench-

mark datasets for fine-grained image classification – the

Caltech-UCSD Birds 2010 and 2011, and Stanford Dogs.

Both versions of the Caltech-UCSD Birds [30] contain 200

bird categories. While the 2010 version only has 15 train-

ing and around 15 test images per class, the 2011 version

increased both numbers to 30. Evaluations are on both the

2010 and 2011 versions of the Caltech Birds, in order to

compare to as many state-of-the-art works as possible. The

Stanford Dogs dataset [15] consists of 120 dogs species and

has around 100 training images/70 test images per class.

The images are a carefully filtered subset of ImageNet.

In all experiments, we make use of the provided bound-

ing boxes around the object during both training and testing,

as do most of the approaches we compare to. During pre-

processing, all images are first resized such that the bound-

ing box has the longest dimension equal to 300 pixels. Im-

ages are cropped to include the bounding box together with

a maximum 50 pixel wide strip around the box. This is

important for any GrabCut-related steps as the background

can be better estimated using the strip. Each dataset is aug-

mented with the left-right mirrored versions of its training

images, as this typically yields a 1-3% improvement over

not doing so (for reference we also give final results with-

out such mirroring).

The symbiotic model is fitted to images using 5 alterna-

tion iterations (the convergence is observed after 3 iterations

in most cases). It takes about 10 seconds to fit the model to

a typical image. The parameters α and β were set to 0.1
and 4 respectively (we find the final accuracy to be not too

sensitive to the variation of these parameters). The choice

of the parameters M,N is discussed below.

Classification Process. The symbiotic model outputs one

binary segmentation and a set of detected part bounding

boxes for a given image. Descriptors are extracted from

each of them individually, i.e., one feature vector, xSEG, for

the foreground region in the segmentation, and a feature

vector for each of the parts apart from the root template.

A feature vector is not included for the root template as it

would be too redundant with xSEG. We denote the concate-

nation of all part features as xPART. If the final feature di-

mension is D, we use D/2 for xPART and the other D/2 for

xSEG.

Each region (i.e. the foreground and the box of each part)

is encoded by: (1) LLC-encoded [29] Lab color histogram

vector, and (2) Fisher vector [25] aggregating SIFT features

(the implementation [11] was adopted). Both features are

ℓ2 normalized after encoding and then concatenated. Fi-

nally, after another ℓ2 normalization, xSEG and xPART are

concatenated. A conventional multi-class 1-vs-rest linear

support vector machine (SVM) is used for the final fine-

grained classification (the regularization strength is set by

cross-validation).

To encode the foreground, we use a k-means Lab vocab-

ulary of size 512, and a SIFT GMM with 128 components.

The resulting feature vector xSEG has 20992 dimensions.

When encoding parts, we choose the size of the vocabu-

lary so that xPART and xSEG are always the same length (i.e.

20992 dims each), no matter how many parts and mixture

components are used.

Performance Measures. We evaluate the categorization

performance of several baselines and variations of our sys-

tem, and report two performance measures for this: (1)

Mean accuracy (mA): for each class we measure the pro-

portion of test images of the class that are classified cor-

rectly (as belonging to this class). The proportion is then

averaged over all classes. This measure is the one used in

most previous works. (2) Mean average precision (mAP):

For each class, we evaluate the SVM score of the class’

classifier for the entire dataset. Once the dataset is ordered

by decreasing score, the average precision (AP) of the re-

turned list is computed (i.e. the area under the precision-

recall curve). The AP numbers are averaged over all classes.

This measure is more relevant than mean accuracy (mA) for

some applications (e.g. Web image search).

4.1. Results and Comparisons

Overall, our complete system surpasses all previously

published results on all three datasets (Tab. 1). The mod-

els learned by the symbiotic system for the birds and dogs

datasets can be seen in Fig. 1 and Fig. 2 respectively. The

relative importance of the model components, as well as the

net effect of the “symbiosis” between the segmentation and

part localization, are evaluated in Tab. 2.

In the table, we compare the categorization accuracy of

the systems resulting from applying GrabCut alone or DPM
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ID Model fitting Descriptor
Birds11 Birds10 Dogs

mA mAP mA mAP mA mAP

1 taking whole bounding box xSEG 40.7 32.5 27.9 20.0 39.7 33.0

2 GrabCut segmentation xSEG 51.1 40.4 39.3 26.7 42.2 33.9

3 Symbiotic model fitting xSEG 57.5 41.9 42.1 25.2 47.3 37.8

4 DPM part localization xPART 38.6 27.3 26.7 15.1 22.2 17.0

5 Symbiotic model fitting xPART 52.0 36.0 40.1 23.6 34.8 28.5

6 GrabCut + DPM (independent)
[

xSEG; xPART
]

54.4 46.6 41.7 30.4 41.3 35.8

7 Symbiotic model fitting
[

xSEG; xPART
]

59.4 52.1 47.3 35.4 45.6 40.7

Table 2. A detailed comparison with baselines (no model fitting, segmentation only, part localization only). Note that segmentations

produced by the symbiotic model allow for more discriminative signatures than those produced with GrabCut alone (#3 vs. #2), while

parts learned and localized by the symbiotic model are more discriminative than those learned and localized by DPM (#5 vs. #4). Fi-

nally, categorization with full signatures produced by the symbiotic model is better than categorization based on the concatenation of

segmentation-based and part-based signatures produced by GrabCut and DPM run independently (#7 vs #6). All these improvements are

due to the fact that part localization and segmentation processes assist each other within the proposed symbiotic model.

part localization alone, while keeping the rest of the param-

eters (initialization, feature encoding, etc.) fixed. Notably,

a considerable improvement over a GrabCut-based system

(line 2) is observed even if we only use the segmentation-

based descriptor xSEG in our system (line 3), thus highlight-

ing that segmentations obtained by our systems are better

(at least for further categorization). Likewise, the same im-

provement is observed for part localization, when the seg-

mentation process is used to aid part discovery and fitting,

as opposed to using a DPM model on its own (line 5 vs

line 4). Finally, and most importantly, the symbiotic system

improves considerably in all measures on all three datasets

when compared to the system that gets the same visual sig-

nature by running the classification and the part localization

processes independently and concatenating the correspond-

ing signatures (line 7 vs line 6).

The interaction between the segmentation and the part

localization processes are further shown in Fig. 3 and

Fig. 4. Note, that in the case of Fig. 3, we used the same

deformable part model W (learned within the symbiotic

model) but evaluated it with and without the help of the

segmentation process. In Fig. 4, we simply compare the

segmentations obtained by our system and by GrabCut. In

both cases, it can be seen how symbiosis between the part

localization and the segmentation improve the performance

of each process.

We note that the improvement over the baselines (espe-

cially over the GrabCut baseline) is smaller for the Dogs

dataset than for the Birds datasets. We attribute this fact to

a greater pose variability for dogs that is harder to cope with

for the deformable parts model. At the same time, dogs have

a nice roundish shape which makes them very appropriate

for GrabCut (so that the aid from the parts localization is

not needed in most cases). The performance of the DPM

on dogs can be potentially improved by having more mix-

ture components. However, as discussed below, it might

hurt the generalization in the categorization step, and es-

pecially since we keep the feature dimension of xPART the

same. Post-processing as suggested in [35], may also be

useful in this case.

Influence of the parameters. We have further evaluated

the influence of the size of the deformable parts model on

the categorization accuracy, namely N (number of mixture

components) and M (the number of parts per component).

As discussed in [14], in the context of detection a larger N
increases the non-linearity of the model while also increas-

ing data fragmentation. Meanwhile, an M has to strike a

balance between having too many parts some of which are

not detectable and having too few parts, which will make

the detector less powerful.

In the context of building the base-class model for fine

grained classification, M and N have some additional

meaning. While large N may also increase the data frag-

mentation within some subordinate classes, potentially hav-

ing large N may also attribute different subordinate classes

to different components, thus making the categorization

easier. At the same time, picking the value for M faces

the usual choice between feature repeatability and the dis-

criminating power. The more parts the model has, the more

discriminative information it can provide into xPART. How-

ever, it becomes more difficult to detect parts repeatedly at

the same semantic “locations”.

We mainly selected these 2 parameters based on visual

feedback during the training stage. But we also did some

quantitative evaluation using different settings for the Bird

2011 dataset, as shown in Tab. 3. Overall, for the bird

datasets, we chose N = 1 and M = 4, while N = 2 and

M = 4 seems to be more reasonable for the dogs dataset

(each DPM mixture component is applied twice (once with

mirroring and once without) during training and test).

4.2. Experiments with Extra Annotation

From Tab. 2, one can notice that generally the

segmentation-based signatures outperform part-localization
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Figure 2. Trained W and S for the dogs dataset. After learning a symbiotic model, the two mixture components (shown side-by-side)

happen to correspond to a more profile and a more frontal views.

N×M 1×8 1×4 1×2 1×1 2×4 2×2 4×2
mA 59.2 59.4 58.2 58.3 57.6 55.9 52.9

mAP 54.3 52.1 49.2 45.9 52.0 47.2 46.1

Table 3. Effect of different choice of N and M evaluated on the

Caltech-UCSD Birds 2011. The loss in accuracy with higher num-

ber of mixture components indicates that the complexity of a bird

pose does not justify more than one mixture component in our

model.

based signatures considerably. Only by combining segmen-

tation and part localization (lines 6 and 7 in the table) can

we see a consistent benefit from having part localization in

the system. One natural question is whether the perfor-

mance of part localization is inherently limited or is this

a problem with segmentation-supervised and, particularly,

unsupervised part discovery?

To address this question we used the extensive annota-

tions available for the Birds 2011. Apart from the bound-

ing boxes, there are 15 part locations annotated per image.

These parts include, e.g. beak, eyes, feet, etc. Given these

annotations, we evaluated what would be achievable if we

move away from unsupervised parts discovery and localiza-

tion to supervised parts learning, or even using supervised

parts localization during both training and testing (the lat-

ter would correspond to the scenario of asking the user to

annotate some parts in the test image, thus approaching the

human-in-the-loop approach investigated in [8]).

For simplicity, we considered a single part – a head of a

bird, which leads to a setup that is similar to [24]. Thus, we

first made use of the annotated head locations and trained

a head detector (which was a mixture of HOG templates).

This detector was used to locate heads in bird images. The

first two experiments in Tab. 4 correspond to this setup. In a

second set of experiments, we used the ground truth (rather

than detected) head locations at all stages. Through these

batch of experiments we followed the rest of our pipeline

(i.e. extracting feature from parts/foreground segmentation

and concatenating them, etc.).

As shown in Tab. 4, the resulting systems were able

to surpass the performance of the symbiotic system even

when only using the trained head detector. Using ground

truth head localizations, the gap in the achieved accu-

racy compared to the symbiotic system (and, naturally, all

other systems evaluated on this task) becomes very large.

Overall, our conclusion here is that part localization has

localization Descriptor GT mA mAP

det. head xPART trn 52.4 31.9

GC + det. head
[

xSEG; xPART
]

trn 61.0 51.2

GT head xPART trn/tst 60.2 45.5

GC + GT head
[

xSEG; xPART
]

trn/tst 69.5 62.2

Table 4. Using extra annotation on Caltech-UCSD Birds 2011.

The top two rows show the results if the head detector is trained

using human annotation rather than unsupervised training, while

the bottom rows show the accuracies if the head position is given

even during test time.

a great potential for fine-grained categorization. While

the segmentation-based discovery and localization that we

present in this paper is a definite step forward, compared to

fully unsupervised part discovery and localization, there is

still substantial room for improvement to unleash the full

potential of part localization for base-class modeling.

5. Conclusion

We have introduced and demonstrated the worth of a

symbiotic part localization and segmentation model for

fine-grained categorization. It successfully pulls together

a number of recent research strands: the use of distinctive

parts for registration when discriminating sub-ordinate cat-

egories [5, 24, 32, 34, 35]; unsupervised discovery of mid-

level discriminative patches [23, 28, 32]; learning a DPM

given only weak annotation (a loose bounding box com-

pared to the tight boxes provided in PASCAL VOC) [3,

12, 21]; and, improving segmentations using a lite spatial

model [31].

It also opens up new research questions: how can the

model be extended from loose bounding box annotation to

(even weaker) image level annotation? How should the

number of components and parts be determined automati-

cally? How should humans be used in-the-loop [8] to pro-

vide annotation at test time (based on the results from sec-

tion 4.2)?
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