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Abstract

We consider the stiffness matrices coming from the Galerkin B-spline
isogeometric analysis approximation of classical elliptic problems.
By exploiting specific spectral properties compactly described by a
symbol, we design efficient multigrid methods for the fast solution of
the related linear systems. We prove the optimality of the two-grid
methods (in the sense that their convergence rate is independent
of the matrix size) for spline degrees up to 3, both in the 1D and
2D case. Despite the theoretical optimality, the convergence rate of
the two-grid methods with classical stationary smoothers worsens
exponentially when the spline degrees increase. With the aid of
the symbol, we provide a theoretical explanation of this exponential
worsening and by a proper factorization of the symbol we provide
a preconditioned conjugate gradient ‘smoother’, in the spirit of the
multi-iterative strategy, that allows us to obtain a good convergence
rate independent both of the matrix size and of the spline degrees.
A selected set of numerical experiments confirms the effectiveness
of our proposal and the numerical optimality with a uniformly high
convergence rate, also for the V-cycle multigrid method and large
spline degrees.

Keywords : Multigrid methods, preconditioning, isogeometric analysis, B-
splines, Toeplitz matrices.
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Abstract. We consider the stiffness matrices coming from the Galerkin B-spline isogeomet-
ric analysis approximation of classical elliptic problems. By exploiting specific spectral properties
compactly described by a symbol, we design efficient multigrid methods for the fast solution of the
related linear systems. We prove the optimality of the two-grid methods (in the sense that their
convergence rate is independent of the matrix size) for spline degrees up to 3, both in the 1D and
2D case. Despite the theoretical optimality, the convergence rate of the two-grid methods with clas-
sical stationary smoothers worsens exponentially when the spline degrees increase. With the aid
of the symbol, we provide a theoretical explanation of this exponential worsening and by a proper
factorization of the symbol we provide a preconditioned conjugate gradient ‘smoother’, in the spirit
of the multi-iterative strategy, that allows us to obtain a good convergence rate independent both
of the matrix size and of the spline degrees. A selected set of numerical experiments confirms the
effectiveness of our proposal and the numerical optimality with a uniformly high convergence rate,
also for the V-cycle multigrid method and large spline degrees.

Key words. Multigrid methods, preconditioning, isogeometric analysis, B-splines, Toeplitz
matrices.
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1. Introduction. We consider the model problem

(1.1)

{
−∆u+ β · ∇u + γu = f, in Ω,
u = 0, on ∂Ω,

with Ω := (0, 1)d, f ∈ L2(Ω), β := (β1, . . . , βd) ∈ Rd, γ ≥ 0. Our aim is the design
of fast solvers for large linear systems coming from the Galerkin B-spline Isogeo-
metric Analysis (IgA) discretization of problem (1.1), see [12]. IgA was introduced
in [26] aiming to reduce the gap between the worlds of Finite Element Analysis and
Computer-Aided Design (CAD). The main idea in IgA is to use directly the geometry
provided by CAD systems – which is usually expressed in terms of tensor-product
B-splines or their rational version, the so-called NURBS – and to approximate the
unknown solutions of differential equations by the same type of functions. Thanks
to the well-known properties of the B-spline basis (see e.g. [9]), this approach offers
some interesting advantages from the geometric, the analytic, and the computational
point of view, see [12, 26] and references therein.

In the recent work [23], the spectral properties of the Galerkin B-spline IgA stiff-
ness matrices have been studied in some detail. In particular, the spectral localization
and the conditioning were investigated, while the asymptotic spectral distribution, as
the matrix size tends to infinity, has been compactly characterized in terms of a d-
variate trigonometric polynomial, denoted by f := fp, with p := (p1, . . . , pd) and pj
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being the spline degree in the direction xj , j = 1, . . . , d. In analogy with Finite Dif-
ference (FD) and Finite Element (FE) cases, the conditioning grows as m2/d, where
m is the matrix size, d is the dimensionality of the elliptic problem, and 2 is the order
of the elliptic operator in (1.1). As expected, the approximation parameters p play a
limited role, since they only characterize the constant in the expression O(m2/d).

The growth of the condition number implies that all classical stationary iterative
methods (if convergent) and the Krylov methods are not optimal, in the sense that
the number of iterations for reaching a preassigned accuracy ǫ is a function diverging
to infinity as the matrix size m tends to infinity. We specify that the notion of
optimality for an iterative method is twofold. First, the number of iterations for
reaching a preassigned accuracy ǫ must be bounded by a constant c(ǫ) independent
of the matrix size: the latter is also known as the optimal convergence rate condition.
For stationary iterative methods, it translates into the requirement that the spectral
radius of the iteration matrix is bounded by a constant c < 1 independent of the
matrix size. Second, when the matrix size goes to infinity, the cost per iteration must
be asymptotically of the same order as the cost of multiplying the matrix by a vector.1

In order to design optimal methods, we heavily rely on the spectral and structural
information of the coefficient matrices analyzed in detail in [23]. More precisely, the
coefficient matrices coming from the IgA approximation to equation (1.1) are

• banded in a d-level sense with partial bandwidths proportional to pj, j =
1, . . . , d;
• a low rank correction of a d-level Toeplitz matrix generated by fp and are
spectrally distributed as fp.

The first item implies that optimal methods should have a total cost which is
linear with respect to the matrix size and with a constant proportional to ‖p‖∞. The
second item suggests to look for optimal methods in the wide literature of multilevel
Toeplitz solvers [27]. Concerning preconditioned Krylov solvers, for d > 1 it has been
proved that matrix algebra preconditioners (like circulants, Hartley matrices, matrices
associated to trigonometric transforms [27], etc) cannot be optimal (see [31, 28] and
references therein), when there is asymptotic ill-conditioning as in our setting. This
restricts us to considering and adapting multigrid methods (V- and W-cycles) of the
kind devised in [1, 20] to our case, with the aim of designing optimal iterative solvers.
As a first step, we follow (see [19, 32]) a sort of ‘canonical procedure’ for creating –
based on the symbol – a two-grid method from which we expect optimal convergence
properties. We also refer to [16] for another application in a Discontinuous Galerkin
context. The optimality result is proved formally for the two-grid method and some
values of p and hence also for the W-cycle k-grid method (with k independent of
the matrix size), whereas for the V-cycle the result is numerically observed. When
proving the optimality result for the two-grid method, we arrive at a matrix inequality,
see (3.8), which is useful not only in a multigrid setting, but can be also employed
in a preconditioning context for designing optimal preconditioners for Krylov-type
techniques, in particular for the Conjugate Gradient (CG) method, see the discussion
in Section 8.

Despite the m-independence of the convergence rate in the two-grid case, the
method is, however, not really satisfactory when p has large entries: we have the-
oretical optimality, but the spectral radius of the two-grid iteration matrix is close
to 1. For instance, in the 1D case the spectral radius of the two-grid iteration matrix

1The optimal cost requirement is often easily satisfied and thus, throughout this paper, we take
the convergence rate independent of m as a synonymous of optimality.
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tends to 1 exponentially as p increases and a similar phenomenon is observed for any
dimensionality d. This catastrophic behavior is due to the analytical properties of the
symbol fp and is essentially related to the existence of a subspace of high frequen-
cies associated with very small eigenvalues. Therefore, the considered two-grid and
the associated V/W-cycle methods converge very fast in low frequencies but they are
slow, for large p, in high frequencies. This fact is nontrivial: it can be understood
in terms of the theory of multilevel Toeplitz matrices and is related to interesting
analytic features of the symbol. We refer to Section 4 for a theoretical proof of these
facts.

In order to address the above intrinsic difficulty, we enrich our two-grid procedure
by varying the choice of the smoothers, in the sense of the multi-iterative idea [30].
More precisely, we consider a Preconditioned Conjugate Gradient (PCG) technique
for our specific linear algebra problem, designed ad hoc for reducing the error in high
frequencies. In fact, the related preconditioner is chosen as the Toeplitz matrix gen-
erated by a specific function coming from a factorization of the symbol. This method
induces a convergence which is independent of p. Unfortunately, the conditioning of
the preconditioned matrix still grows as m2/d, so that the number of PCG iterations
grows as m1/d, and the error is slowly reduced in the low frequency space.

In other words, we have identified an optimal two-grid procedure and a p-inde-
pendent PCG technique: the former is especially effective in low frequencies, whereas
the latter is very slow in low frequencies but effective in high frequencies. Following
[30], our multi-iterative proposal consists in using few steps of the proposed PCG
technique as a smoother in our multigrid method and only at the finest level. The
combination of these two techniques with complementary spectral features – one con-
verging well in low frequencies, the other converging well in high frequencies – leads
to a global iteration which is optimal and whose convergence speed turns out to be
substantially independent of all the relevant parameters.

The relevant literature on fast solvers for IgA linear systems seems to be very
recent and quite limited [5, 6, 11, 21, 22]. Even though in some of the contributions
(see e.g. [21]) the bad dependency on the parameter p was observed, there was no
understanding that spurious small eigenvalues are present already for pj ≥ 4 and that
the related eigenspace largely intersects the high frequencies. The latter phenomenon
is indeed unexpected in this context, since high frequency eigenspaces related to small
eigenvalues are typical of matrices coming from the approximation of integral oper-
ators, like in the setting of blurring models in imaging and signal processing (see
e.g. [18]). Although the combination of multigrid and Krylov methods was already
investigated in [22], in order to obtain a robust solver with a convergence rate inde-
pendent of p, our approach follows a different strategy using a much simpler PCG
inside an elementary geometric multigrid method.

As a matter of fact, the basic ingredients of the techniques used so far are not
different from the ones in our proposal: different kinds of preconditioning and various
types of multigrid algorithms. However, the novelty of our proposal is that the choice
of the ingredients of the global solver (in fact a multi-iterative solver) is guided by the
knowledge of the symbol which in turn offers an approximate understanding of the
subspaces where the stiffness matrix is ill-conditioned. By exploiting the information
given by the symbol, we are able to design a cheap (indeed optimal) solver of multi-
iterative type, whose convergence speed is independent of all the relevant parameters
of the problem: the fineness parameter (related to the size of the matrices), the
approximation parameters (i.e. the degrees p), and the dimensionality d.
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The paper is organized as follows. In Section 2 we detail the considered model
problem; we define d-level τ -matrices and d-level Toeplitz matrices; and we describe
the canonical scheme of the two-grid method. Section 3 is devoted to the one-
dimensional setting, where optimality results are proved and a poor behavior (for
increasing p) is observed. Section 4 provides a local Fourier analysis of the two-grid
method, which explains why the method does not work satisfactorily for large p. In
order to maintain the optimality and to add robustness with respect to p, in Section 5
we introduce a multi-iterative strategy, by using a specialized PCG smoothing. Sec-
tion 6 deals with extensions of the analysis and of the proposals to the two-dimensional
setting. In Section 7 we give a numerical evidence that the proposed V-cycle multigrid
algorithm is also optimal and effective in practice. Finally, Section 8 concludes the
work, by emphasizing perspectives and open problems. We refer to the twin paper
[14] for an extensive numerical testing and comparison of the different kind of fast
solvers mentioned above and beyond (two-grid and multigrid methods with different
smoothing and size reducing strategies) in accordance with the given spectral analysis.

2. Preliminaries. We first present the coefficient matrices coming from the
Galerkin B-spline IgA approximation of (1.1) and then we introduce some auxiliary
structures, namely d-level Toeplitz and τ matrices, which are used for designing the
proposed algorithms and for studying their converge features.

2.1. The d-dimensional problem setting. Our model problem is the elliptic
problem (1.1), which can be solved in the weak form as follows: find u ∈ H1

0 (Ω) such
that

(2.1) a(u, v) = F(v), ∀v ∈ H1
0 (Ω),

where a(u, v) :=
∫
Ω
(∇u · ∇v + β · ∇u v + γuv) and F(v) :=

∫
Ω
fv. It is known [10]

that there exists a unique solution u of (2.1), the so-called weak solution of (1.1).
In the Galerkin method, we look for an approximation uW of u by choosing a finite

dimensional approximation spaceW ⊂ H1
0 (Ω) and by solving the following (Galerkin)

problem: find uW ∈ W such that

(2.2) a(uW , v) = F(v), ∀v ∈ W .

Let dimW = N , and fix a basis {ϕ1, . . . , ϕN} for W . It is known that the problem

(2.2) always has a unique solution uW ∈ W , which can be written as uW =
∑N

j=1 ujϕj

and can be computed as follows: find u := (u1, . . . , uN)T ∈ RN such that

(2.3) Au = b,

where A := [a(ϕj , ϕi)]
N
i,j=1 ∈ RN×N is the stiffness matrix, and b := [F(ϕi)]

N
i=1 ∈ RN .

The matrix A is positive definite in the sense that vTAv > 0, ∀v ∈ RN \ {0}.
In classical FE methods the approximation space W is usually a space of C0

piecewise polynomials vanishing on ∂Ω, whereas in the IgA framework W is a spline
space with higher continuity, see [12].

2.2. d-level τ-matrices and d-level Toeplitz matrices. In this paper, for
every m ∈ N we denote by Sm the unitary discrete sine transform,

Sm :=

√
2

m+ 1

[
sin

(
ijπ

m+ 1

)]m

i,j=1

,
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and for every multi-index m := (m1, . . . ,md) ∈ Nd we set Sm := Sm1 ⊗ · · · ⊗ Smd
.

Definition 2.1. Given a d-variate function g : [0, π]d → R and a multi-
index m ∈ Nd, τm(g) is the d-level τ-matrix of partial orders m1, . . . ,md (and order
m1 · · ·md) associated with g, i.e.,

τm(g) := Sm diag
j1=1,...,m1

[
. . .

[
diag

jd=1,...,md

g

(
j1π

m1 + 1
, . . . ,

jdπ

md + 1

)]
. . .

]
Sm.

The function g is called the generating function of the τ-family {τm(g)}m∈Nd.
We denote by Cc(C) the set of all continuous functions onC with compact support.

Given g : [0, π]d → R in C([0, π]d), one can check that, ∀F ∈ Cc(C),

(2.4) lim
m→∞

1

m1 · · ·md

m1···md∑

j=1

F [λj(τm(g))] =
1

πd

∫

[0,π]d
F [g(θ1, . . . , θd)] dθ1 · · · dθd,

where, for a multi-index m ∈ Nd, m → ∞ means that min(m1, . . . ,md) → ∞. Due
to (2.4), the function g is called the (spectral) symbol of the τ -family {τm(g)}m∈Nd .

Definition 2.2. Given a d-variate function g : [−π, π]d → R in L1([−π, π]d)
and a multi-index m ∈ Nd, Tm(g) is the d-level Toeplitz matrix of partial orders
m1, . . . ,md (and order m1 · · ·md) associated with g, i.e.,

Tm(g) :=

[
. . .

[
[gi1−j1,i2−j2,...,id−jd ]

md

id,jd=1

]md−1

id−1,jd−1=1
. . .

]m1

i1,j1=1

,

where gi1,i2,...,id , i1, i2, . . . , id ∈ Z, are the Fourier coefficients of g,

gi1,i2,...,id =
1

(2π)d

∫

[−π,π]d
g(θ1, . . . , θd)e

−i(i1θ1+i2θ2+...+idθd)dθ1 · · ·dθd.

The function g is called the generating function of the Toeplitz family {Tm(g)}m∈Nd .
By the Szegö-Tilli theorem [35], a relation similar to (2.4) holds for {Tm(g)}m∈Nd :

∀F ∈ Cc(C),

(2.5) lim
m→∞

1

m1 · · ·md

m1···md∑

j=1

F [λj(Tm(g))] =
1

(2π)d

∫

[−π,π]d
F [g(θ1, . . . , θd)] dθ1 · · · dθd.

For this reason, g is called the symbol of the Toeplitz family {Tm(g)}m∈Nd .
Suppose that g : [−π, π]d → R is continuous over [−π, π]d and symmetric in each

variable, in the sense that g(ε1θ1, . . . , εdθd) = g(θ1, . . . , θd) for (θ1, . . . , θd) ∈ [−π, π]d
and (ε1, . . . , εd) ∈ {−1, 1}d. Then, the right-hand sides of (2.4) and (2.5) coincide
and g is simultaneously the symbol of {τm(g)}m∈Nd and {Tm(g)}m∈Nd .

It can also be shown that, if g is a linear d-variate cosine trigonometric poly-
nomial, i.e. g(θ1, . . . , θd) =

∑1
j1=0 . . .

∑1
jd=0 aj1,...,jd cos(j1θ1) · · · cos(jdθd) for some

coefficients aj1,...,jd ∈ R, then τm(g) = Tm(g), ∀m ∈ Nd.

2.3. Two-grid methods. Given a linear system of dimension m,

(2.6) Amu = b,

we assume to have a convergent stationary iterative method

u(k+1) = Smu(k) + (I − Sm)(Am)−1b,
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called smoother, for the solution of (2.6), and a full-rank matrix Pm ∈ Rl×m with l ≤
m, called projector or grid transfer operator. Moreover, we define the coarse matrix as
(PmAmPT

m)−1 following the Galerkin approach. Then, given an approximation u(k)

to the solution u = A−1
m b, the corresponding Two-Grid Method (TGM) for solving

(2.6) computes a new approximation u(k+1) by applying a coarse-grid correction and
a smoothing iteration as follows:

Algorithm 2.3 (TGM).
1. compute the residual: r← b−Amu(k);
2. project the residual: r← Pmr;

3. solve the coarse error equation: e←
(
PmAmPT

m

)−1
r;

4. extend the coarse error: e← PT
me;

5. correct the initial approximation: u(k+1) ← u(k) + e;
6. relax one time: u(k+1) ← Smu(k+1) + (I − Sm)A−1

m b.
The iteration matrix of the above two-grid scheme is

(2.7) TG(Sm, Pm) := Sm

(
I − PT

m

(
PmAmPT

m

)−1
PmAm

)
.

Note that Algorithm 2.3 only considers a single post-smoothing iteration for the sake
of simplicity in the presentation of the theoretical analysis according to the framework
[29], but it is clear that one can add a convergent pre-smoother or more smoothing
iterations improving the convergence rate of the TGM.

The optimality proofs for the two-grid methods, discussed in this paper, heavily
rely on Theorem 2.4. For its proof, we refer to [29, Theorem 5.2] and [2, Remark 2.2].
If X ∈ Rm×m is a Symmetric Positive Definite (SPD) matrix, then we denote by ‖·‖X
both the vector-norm and the matrix-norm induced by X , i.e. ‖x‖X = ‖X1/2x‖2,
x ∈ Rm and ‖Y ‖X = ‖X1/2Y X−1/2‖2, Y ∈ Rm×m, where ‖ · ‖2 denotes both the
classical 2-norm (the Euclidean norm) and its induced matrix-norm. Moreover, given
X,Y ∈ Cm×m, we write X ≤ Y if and only if X,Y are both Hermitian and Y −X is
nonnegative definite.

Theorem 2.4. Let Am ∈ Rm×m be SPD, let Sm ∈ Rm×m, and let Pm ∈ Rl×m

be full-rank (l ≤ m). Assume
(a) ∃ am > 0 : ‖Smx‖2Am

≤ ‖x‖2Am
− am‖x‖2A2

m
, ∀x ∈ Rm;

(b) ∃ bm > 0 : miny∈Rl ‖x− PT
my‖22 ≤ bm‖x‖2Am

, ∀x ∈ Rm.
Then bm ≥ am, and

ρ (TG(Sm, Pm)) ≤ ‖TG(Sm, Pm)‖Am
≤

√
1− am

bm
.

The condition (a) in Theorem 2.4 is usually referred to as smoothing condition,
and the condition (b) as approximation condition. In the following, we discuss the
values of the constants am and bm for specific smoothers and projectors.

When using the Richardson iteration, the smoothing condition can be easily sat-
isfied and the next lemma can be proved in the same way as [29, Theorem 4.4] (with
D = I and Q = I/ω).

Lemma 2.5. Let Am ∈ Rm×m be SPD, let Sm := I − ωAm (ω ∈ R), and
assume µm ≥ ρ(Am). Then, the smoothing condition (a) in Theorem 2.4 holds if
0 < ω < 2/µm. Moreover, in this case we also have ρ(Sm) < 1 and the smoothing
condition (a) in Theorem 2.4 holds with am := ω(2− ωµm) > 0.

We now define the projector Pm for multi-indices m ∈ Nd satisfying certain
additional constraints to be seen later. For any odd m ≥ 3 let us denote by Um the
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cutting matrix of size m−1
2 ×m given by

Um :=




0 1 0
0 1 0

. . .
...

0 1 0


 ∈ R

m−1
2 ×m.

For any m ∈ Nd with odd m1, . . . ,md ≥ 3, we define Um := Um1 ⊗ · · · ⊗Umd
. Then,

we set

(2.8) Pm := Um Tm(qd) = Um τm(qd), qd(θ1, . . . , θd) :=

d∏

j=1

(1 + cos θj).

The equality Tm(qd) = τm(qd) in (2.8) holds because qd is a linear d-variate cosine
trigonometric polynomial. By the properties of the Kronecker tensor-product it holds
that

Pm =

d⊗

j=1

Pmj
, Pmj

= Umj
τmj

(q1), q1(θ) = 1 + cos θ,

resulting in

Pm =
d⊗

j=1

1

2




1 2 1
1 2 1

. . .

1 2 1




︸ ︷︷ ︸
mj

,

which has full rank
∏d

j=1
mj−1

2 and it is the standard d-linear interpolation operator.
Let

(2.9) zd(θ1, . . . , θd) :=

d∑

j=1

(2− 2 cos θj),

which is a linear nonnegative d-variate cosine trigonometric polynomial with a unique
zero at (0, . . . , 0) over [0, π]d. Lemma 2.6 addresses the approximation condition
in Theorem 2.4 in the case where Am is the particular τ -matrix τm(zd) (of size
m = m1 · · ·md) and Pm = Pm. The lemma is a direct consequence of [32, Lemma 8.2]
thanks to the following two properties of qd and zd reported in (2.8) and (2.9), re-
spectively. LetM(θ) be the set of mirror points of θ := (θ1, . . . , θd) as defined in [32,
p. 454], namely

(2.10) M(θ) :=
{
θ̂ := (θ̂1, . . . , θ̂d) ∈ [0, π]d : θ̂i ∈ {θi, π − θi}, ∀i = 1, . . . , d

}
\ {θ},

then 2

(2.11)
∑

θ̂∈M(θ)∪{θ}

q2d(θ̂) > 0, ∀θ ∈ [0, π]d, and lim sup
θ→0

max
θ̂∈M(θ)

q2d(θ̂)

zd(θ)
<∞.

2 The first property holds because qd is nonnegative and, by a direct computation,
∑

θ̂∈M(θ)∪{θ}

qd(θ̂) = 2d > 0, ∀θ ∈ [0, π]d.
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Lemma 2.6. For m ∈ Nd with odd m1, . . . ,md ≥ 3, let Am = τm(zd) and let
Pm be the full-rank projector given by (2.8). Then, the matrix Am is SPD and the
approximation condition (b) in Theorem 2.4 holds with a constant depending only on
d, i.e.,

(2.12) ∃ b̃d > 0 : min

y∈R

∏d
j=1

(
mj−1

2

) ‖x− PT
my‖22 ≤ b̃d‖x‖2Am

, ∀x ∈ Rm1···md .

Moreover, if d = 1 then (2.12) holds with b̃1 = 1/2.

The specific value b̃1 has been found by looking carefully at the proof of [32,
Lemma 3.2]. From Lemma 2.6 we deduce the following result.

Lemma 2.7. For m ∈ Nd with odd m1, . . . ,md ≥ 3, let Am ∈ R(m1···md)×(m1···md)

be SPD and let Pm be given by (2.8). Let δm > 0 such that

(2.13) Am ≥ δm τm(zd).

Then, the approximation condition (b) in Theorem 2.4 holds, i.e.,

∃ bm,d :=
b̃d
δm

> 0 : min

y∈R

∏d
j=1

(
mj−1

2

) ‖x− PT
my‖22 ≤ bm,d‖x‖2Am

, ∀x ∈ Rm1···md ,

where b̃d is defined in Lemma 2.6.
Proof. We use the same monotonicity argument as in [32, proof of Lemmas 4.2

and 9.2]. Assuming (2.13), we have

‖x‖2τm(zd)
= xT τm(zd)x ≤

1

δm
xTAmx =

1

δm
‖x‖2Am

, ∀x ∈ Rm1···md .

By Lemma 2.6 we get

min

y∈R

∏d
j=1

(
mj−1

2

) ‖x− PT
my‖22 ≤ b̃d‖x‖2τm(zd)

≤ b̃d
δm
‖x‖2Am

, ∀x ∈ Rm1···md ,

which completes the proof.
The next corollary follows immediately from Theorem 2.4 in combination with

Lemmas 2.5 and 2.7.
Corollary 2.8. Let I be a set of multi-indices such that I ⊆ {m ∈ Nd :

m1, . . . ,md ≥ 3 odd}. ∀m ∈ I, let Am ∈ R(m1···md)×(m1···md) be SPD, let Sm :=
I − ωAm, and let Pm := Um τm(qd). Assume that µ := supm∈I ρ(Am) < ∞, that
(2.13) holds with δ := infm∈I δm > 0, and that 0 < ω < 2/µ. Then,

ρ(TG(Sm, Pm)) ≤
√
1− a δ

b̃d
, ∀m ∈ I,

where a := ω(2− ωµ) and b̃d is defined in Lemma 2.6.

2.4. Multigrid methods. In practice, the coarser linear system of the TGM
could be too large to be solved directly. Hence, the third step in Algorithm 2.3 is
usually replaced by one recursive call obtaining a multigrid (V-cycle) algorithm.

In the case where Am = τm(zd) and the projector Pm is defined in (2.8), then
the coarser matrix is again a τ matrix generated by zd up to a constant scaling. More
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precisely, fix the multi-indices m0 := m > m1 > m2 > · · · > ml > 0, where the
inequalities are component-wise; take at each level the projector Pmi

∈ Rmi+1×mi ;
and define the coefficient matrix at the i-th level as Ami+1

:= Pmi
Ami

PT
mi

for i =
0, . . . , l − 1. From the results in [32] (or by direct computation), we know that, if
Pmi

:= Umi
τmi

(qd), i = 0, . . . , l − 1, then the coarser matrix is Ami
= τmi

(rizd),
where ri is a constant, for all coarser levels i = 1, . . . , l.

Finally, we observe that the condition (2.11) is not sufficient to obtain the V-cycle
optimality, see [2]. Nevertheless, it can be strengthened as follows

(2.14) lim sup
θ→0

max
θ̂∈M(θ)

qd(θ̂)

zd(θ)
<∞,

which leads to the V-cycle optimality according to the results in [1]. Unfortunately,
Lemma 2.7 does not suffice to extend the optimality proof provided in [1] for matrix
algebras to more general matrix structures. This could be a difficult task to be
considered in a future research.

3. The 1D setting. In this section we focus on our model problem for d = 1:

(3.1)

{
−u′′ + βu′ + γu = f, in (0, 1),
u(0) = 0, u(1) = 0,

with f ∈ L2(0, 1), β ∈ R, γ ≥ 0. In the framework of Galerkin B-spline IgA, we
approximate the (weak) solution u of (3.1) in the space W of polynomial splines with
maximal smoothness represented in the B-spline basis. More precisely, for p ≥ 1 and
n ≥ 2, let

V [p]
n :=

{
s ∈ Cp−1[0, 1] : s|[ i

n
, i+1

n ) ∈ Pp, ∀i = 0, . . . , n− 1
}
,

W [p]
n :=

{
s ∈ V [p]

n : s(0) = s(1) = 0
}
⊂ H1

0 (0, 1).

It is known that dimV [p]
n = n + p and dimW [p]

n = n + p − 2. Then we choose

W = W [p]
n , for some p ≥ 1 and n ≥ 2, and the corresponding uniform B-spline basis

{N2,[p], . . . , Nn+p−1,[p]} described in [23, Section 4]. With these choices, we obtain in

(2.3) the stiffness matrix A
[p]
n ∈ R(n+p−2)×(n+p−2) such that

A[p]
n =

[
a(Nj,[p], Ni,[p])

]n+p−1

i,j=2
= nK [p]

n + βH [p]
n +

γ

n
M [p]

n ,

where

nK [p]
n :=

[∫

(0,1)

N ′
j,[p]N

′
i,[p]

]n+p−1

i,j=2

, H [p]
n :=

[∫

(0,1)

N ′
j,[p]Ni,[p]

]n+p−1

i,j=2

,

1

n
M [p]

n :=

[∫

(0,1)

Nj,[p]Ni,[p]

]n+p−1

i,j=2

.

The above matrices have the following properties, see [23].
Lemma 3.1. For every p ≥ 1 and n ≥ 2,

• K
[p]
n is SPD and ‖K [p]

n ‖∞ ≤ 4p;

• H
[p]
n is skew-symmetric and ‖H [p]

n ‖∞ ≤ 2;

• M
[p]
n is SPD, ‖M [p]

n ‖∞ ≤ 1 and ∃C [p] > 0, depending only on p, such that

λmin(M
[p]
n ) > C [p].
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3.1. The symbol of the sequence { 1nA
[p]
n }n. For p ≥ 0, let φ[p] be the cardinal

B-spline of degree p over the uniform knot sequence {0, 1, . . . , p+1}, which is defined
recursively as follows [9]:

φ[0](t) :=

{
1, if t ∈ [0, 1),
0, elsewhere,

and

φ[p](t) :=
t

p
φ[p−1](t) +

p+ 1− t

p
φ[p−1](t− 1), p ≥ 1.

We point out that the ‘central’ basis functions Ni,[p](x), i = p+1, . . . , n, are cardinal
B-splines, namely

Ni,[p](x) = φ[p](nx− i+ p+ 1), i = p+ 1, . . . , n.

Let us denote by φ̈[p](t) the second derivative of φ[p](t) with respect to its argument
t (for p ≥ 3). For p ≥ 0, let hp : [−π, π]→ R,

(3.2) h0(θ) := 1, hp(θ) := φ[2p+1](p+ 1) + 2

p∑

k=1

φ[2p+1](p+ 1− k) cos(kθ),

and, for p ≥ 1, let fp : [−π, π]→ R,

(3.3) fp(θ) := −φ̈[2p+1](p+ 1)− 2

p∑

k=1

φ̈[2p+1](p+ 1− k) cos(kθ).

It has been proved in [23, Theorem 12] that, for each fixed p ≥ 1,

lim
n→∞

1

n+ p− 2

n+p−2∑

j=1

F

(
λj

(
1

n
A[p]

n

))
=

1

2π

∫ π

−π

F (fp(θ))dθ, ∀F ∈ Cc(C).

Hence, we can say that fp is the symbol of the sequence of matrices { 1nA
[p]
n }n. Note

that fp is symmetric on [−π, π], so it is also the symbol of both {τn+p−2(fp)}n and
{Tn+p−2(fp)}n, see Section 2.2. The symbol fp is independent of β and γ, and pos-
sesses the properties collected in Lemma 3.2, see [23, Section 3]. Recall that the
modulus of the Fourier transform of the cardinal B-spline φ[p] is given by

(3.4)
∣∣∣φ̂[p](θ)

∣∣∣
2

=

(
2− 2 cos θ

θ2

)p+1

.

Lemma 3.2. The following properties hold for all p ≥ 1 and θ ∈ [−π, π]:
• fp(θ) = (2− 2 cos θ)hp−1(θ);

• hp−1(θ) =
∑

k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣
2

;

•
(

4

π2

)p

≤ hp−1(θ) ≤ hp−1(0) = 1.
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Figure 3.1. Graph of fp/Mfp for p = 1, . . . , 5.

Table 3.1
Computation of fp(π)/Mfp for p = 1, . . . , 9.

p 1 2 3 4 5 6 7 8 9
fp(π)/Mfp 1.000 0.889 0.494 0.249 0.129 0.057 0.026 0.012 0.005

The properties in Lemma 3.2 have been proved in [23, Lemma 7 and Remark 2]
for p ≥ 2, but it can be checked that they also hold for p = 1. Moreover, we recall

from [23] that hp is the symbol of the sequence of matrices {M [p]
n }n.

Figure 3.1 shows the graph of fp normalized by its maximumMfp , for p = 1, . . . , 5.
The value fp(π)/Mfp decreases exponentially to zero as p → ∞, see Table 3.1. This
will be formally proved in Proposition 4.4. From a numerical viewpoint, we can say
that, for large p, the normalized symbol fp/Mfp possesses two zeros over [0, π]: one
at θ = 0 and the other at the corresponding mirror point θ = π. Because of this,
and in view of the theoretical results in Section 4 (see Observation 7.2), we expect
intrinsic difficulties, in particular a slow (though optimal) convergence rate, when

solving for large p a linear system of the form 1
nA

[p]
n u = b by means of the two-grid

method described in Section 3.2. Indeed, if zd(θ) is replaced by a function which
vanishes both at θ = 0 and θ = π, then the conditions (2.11) cannot be satisfied,
independently of the choice of any different function instead of qd(θ). Possible ways
to overcome this problem are choosing a different size reduction at the lower level
and/or adopting a multi-iterative strategy involving a variation of the smoothers.
The first possibility was described in [17] for Toeplitz matrices, whereas the second
one has been considered in [30]. Both approaches have been extensively numerically
tested in [14]. A specialized multi-iterative strategy turned out to be the only optimal
and totally robust solver, so we just focus on this strategy in Section 5.

3.2. Symbol-based construction and optimality of the TGM for 1
nA

[p]
n .

We now design a specific two-grid method for linear systems with coefficient matrix
1
nA

[p]
n . Since the symbol fp of the sequence { 1nA

[p]
n }n is known, we can adopt from

[32] a sort of ‘canonical two-grid procedure’ for which we expect optimal convergence
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properties. The underlying idea is to treat 1
nA

[p]
n as if it were the τ -matrix τn+p−2(fp)

or the Toeplitz matrix Tn+p−2(fp) associated with the symbol fp, and to design a
two-grid method that has been proved in [32] to be optimal for both the sequences of
τ -matrices and Toeplitz matrices.

Fix p ≥ 1 and consider the sequence of matrices { 1nA
[p]
n : n ∈ Ip}, with Ip ⊆

{n ≥ 2 : n+ p− 2 ≥ 3 odd} an infinite set of indices. Note that we require n+ p− 2
to be odd and greater than or equal to 3 in view of the definition of the projector

P
[p]
n , see (3.7). We are looking for an optimal two-grid method for solving

(3.5)
1

n
A[p]

n u = b,

with n ∈ Ip and b ∈ Rn+p−2. As smoother we take the relaxed Richardson iteration,

(3.6) S[p]
n := I − ω[p] 1

n
A[p]

n ,

where ω[p] ∈ R is a relaxation parameter chosen as a function of p and independent
of n. The projector

(3.7) P [p]
n := Un+p−2 τn+p−2(1 + cos θ),

as defined in (2.8) for d = 1 and m = n+ p− 2, is the standard linear interpolation
and it should be a good choice, because from Lemma 3.2 we know that θ = 0 is a
zero of fp of order 2 and fp(θ) > 0 for all θ ∈ (0, π]. Hence, q1(θ) = 1 + cos θ in

(2.8) satisfies the conditions (2.11) and if 1
nA

[p]
n were exactly τn+p−2(fp) the TGM

optimality follows from Lemma 2.6. Moreover, q1(θ) satisfies also the condition (2.14)
that leads to the V-cycle optimality for the matrix τn+p−2(fp) according to the results
in [2].

Assuming β = γ = 0, the matrix 1
nA

[p]
n = K

[p]
n is SPD (see Lemma 3.1). Under

such an assumption and under suitable conditions on the relaxation parameter ω[p],

we now show that for p = 1, 2, 3, our method with iteration matrix TG(S
[p]
n , P

[p]
n ) is

optimal, i.e., ∃ cp < 1 such that ρ(TG(S
[p]
n , P

[p]
n )) ≤ cp for all n ∈ Ip. We start with

elaborating Corollary 2.8 in our context for general p ≥ 1.
Corollary 3.3. Assume that for a certain p ≥ 1 it holds that

(3.8) ∃ δ[p] > 0 : K [p]
n ≥ δ[p]τn+p−2(2 − 2 cos θ), ∀n ≥ 2.

Then, for any ω[p] ∈ (0, 2/µ[p]) with µ[p] := supn∈Ip
ρ(K

[p]
n ), it holds that

ρ(TG(S[p]
n , P [p]

n )) ≤
√

1− 2 a[p] δ[p], ∀n ∈ Ip,

where a[p] := ω[p](2− ω[p]µ[p]).
From Lemma 3.1 we know that µ[p] ≤ 4p for any p ≥ 1, and if ω[p] ∈ (0, 2/µ[p])

then ρ(S
[p]
n ) < 1, ∀n ∈ Ip. In particular, we have µ[1] = 4 and µ[2] ≤ 3

2 + 1+
√
2

6 , see

[23, Eq. (79)]. Moreover, from our numerical experiments it seems that µ[2] = 3/2
and µ[3] ≤ 1.80.

In the next theorem we prove that the condition (3.8) holds for p = 1, 2, 3.
Theorem 3.4. For 1 ≤ p ≤ 3, the condition (3.8) is satisfied with δ[1] = 1,

δ[2] = 1/3 and δ[3] = 28/465. Hence, for any ω[p] ∈ (0, 2/µ[p]), ∃ cp < 1 such that

ρ(TG(S
[p]
n , P

[p]
n )) ≤ cp for all n ∈ Ip, for p = 1, 2, 3.
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Proof. Since K
[1]
n = τn−1(2− 2 cos θ) for any n ≥ 2, it is obvious that (3.8) holds

for p = 1 with δ[1] = 1.
In the case p = 2, we have ∀n ≥ 5,

K [2]
n =

1

6




8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

. . .
. . .

. . .
. . .

. . .

−1 −2 6 −2 −1
−1 −2 6 −1

−1 −1 8




,

and one can check that the matrix K
[2]
n − δ τn(2− 2 cos θ) is nonnegative definite for

δ = 1/3 and for all n ≥ 5, thanks to the Gershgorin theorems [7]. Since it can be

directly verified that K
[2]
n ≥ (1/3)τn(2 − 2 cos θ) for n = 2, . . . , 4, we conclude that

(3.8) holds for p = 2 with δ[2] = 1/3.
In the case p = 3, we have ∀n ≥ 8,

K [3]
n =

1

240




360 9 −60 −3
9 162 −8 −47 −2

−60 −8 160 −30 −48 −2
−3 −47 −30 160 −30 −48 −2

−2 −48 −30 160 −30 −48 −2
. . .

. . .
. . .

. . .
. . .

. . .
. . .

−2 −48 −30 160 −30 −48 −2
−2 −48 −30 160 −30 −47 −3

−2 −48 −30 160 −8 −60
−2 −47 −8 162 9

−3 −60 9 360




.

We first note that f3(θ) = (cos2 θ+13 cosθ+16)(2− 2 cosθ)/30 ≥ (2/15)(2− 2 cosθ),
∀θ ∈ [−π, π], implying τm(f3) ≥ (2/15)τm(2 − 2 cos θ), ∀m ≥ 1. Then, by the Gersh-

gorin theorems we find that K
[3]
n ≥ ε τn+1(f3) is met for all n ≥ 8 with ε = 14/31, and

so K
[3]
n ≥ (28/465)τn+1(2 − 2 cos θ) holds for all n ≥ 8. A direct verification shows

that it also holds for n = 2, . . . , 7.
Remark 3.5. There are at least two reasons why the condition (3.8) is likely to

be satisfied for all p ≥ 1.

1. The condition (3.8) would hold if we had τn+p−2(fp) instead of K
[p]
n . Indeed,

from Lemma 3.2 it follows that fp(θ) ≥ (4/π2)p (2− 2 cos θ), and this implies

that τm(fp) ≥ (4/π2)p τm(2 − 2 cos θ), ∀m ≥ 1. On the other hand, K
[p]
n

mimics τn+p−2(fp), because these matrices share the same symbol fp and
they differ from each other only by a small-rank correction term.

2. The matrices K
[p]
n and τn+p−2(2− 2 cos θ) are both associated with particular

approximations of the elliptic problem (3.1) in the case β = γ = 0.
When multiplying (3.8) by (τn+p−2(2 − 2 cos θ))−1/2 on the left and the right, and
observing that

(τn+p−2(2− 2 cos θ))−1/2K [p]
n (τn+p−2(2− 2 cos θ))−1/2 ∼ (τn+p−2(2 − 2 cos θ))−1K [p]

n ,
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we obtain that (3.8) is equivalent to

(3.9) ∃ δ[p] > 0 : λmin((τn+p−2(2− 2 cos θ))−1K [p]
n ) ≥ δ[p], ∀n ≥ 2.

The inequality (3.9) is certainly satisfied for p = 1 (with δ[1] = 1), and numerical
experiments reveal that (3.9) is also satisfied for p = 2, . . . , 6, with the best value

δ[p],∗ := infn≥2 λmin((τn+p−2(2− 2 cos θ))−1K
[p]
n ) given by δ[2],∗ ≈ 0.3333, δ[3],∗ ≈

0.1333, δ[4],∗ ≈ 0.0537, δ[5],∗ ≈ 0.0177, δ[6],∗ ≈ 0.0054. Note that the value δ[p]

obtained in Theorem 3.4 coincides with δ[p],∗ not only for p = 1 but also for p = 2.

4. Symbol-based (local Fourier) analysis of TG(S
[p]
n , P

[p]
n ). In order to

simplify the discussion, throughout this section, we assume β = γ = 0 so that
1
nA

[p]
n = K

[p]
n . By analyzing the spectral symbols involved, we are able to predict

the behavior of TG(S
[p]
n , P

[p]
n ). The idea is to think about the matrix K

[p]
n as if it were

the τ -matrix τn+p−2(fp), since K
[p]
n and τn+p−2(fp) have the same spectral symbol,

and, in this perspective, a detailed analysis of TG(S
[p]
n , P

[p]
n ) can be performed. This

is equivalent to the classical Local Fourier Analysis (LFA) for multigrid methods as
proved in [13]. Nevertheless, this approach is more general since it can be applied
also to linear systems that do not arise from an approximation of a partial differential
equation.

In order to avoid confusion, we slightly change the notation and we set

(4.1) T̃G(S̃[p]
n , P [p]

n ) := S̃[p]
n

(
I − (P [p]

n )T
(
P [p]
n τn+p−2(fp)(P

[p]
n )T

)−1
P [p]
n τn+p−2(fp)

)
,

with the smoother S̃
[p]
n := I − ω[p]τn+p−2(fp) and the projector P

[p]
n as in (3.7). We

analyze the two-grid scheme (4.1) and provide sharp lower and upper bounds for its
spectral radius.

4.1. Analysis of T̃G(S̃
[p]
n , P

[p]
n ) in the 1D case. The two-grid scheme (4.1) fits

into the framework described in [19] and so we can adopt the results given there. Let
us define q(θ) := 1 + cos θ, and

sp : [−π, π]→ R, sp(θ) := 1− ω[p]fp(θ),

tp :
[
0,

π

2

]
→ R, tp(θ) :=

q2(θ)fp(θ)sp(π − θ) + q2(π − θ)fp(π − θ)sp(θ)

q2(θ)fp(θ) + q2(π − θ)fp(π − θ)
.

The function tp is well-defined and continuous over (0, π/2]; it is also well-defined for
θ = 0 by continuous extension, i.e.,

(4.2) lim
θ→0

tp(θ) = lim
θ→0

q2(θ)

fp(π − θ)
sp(π − θ) +

q2(π − θ)

fp(θ)
sp(θ)

q2(θ)

fp(π − θ)
+

q2(π − θ)

fp(θ)

= 1−ω[p]fp(π) =: tp(0),

where we used the fact that limθ→0
q2(π−θ)
fp(θ)

= 0. Hence, tp is well-defined and contin-

uous over [0, π/2].

From [19] we know that the eigenvalues of T̃G(S̃
[p]
n , P

[p]
n ) are given by

(4.3) λj(T̃G(S̃[p]
n , P [p]

n )) =

{
tp

(
jπ

n+p−1

)
, for j = 1, . . . , n+p−1

2 ,

0, for j = n+p+1
2 , . . . , n+ p− 2.
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Let us set ρ̃
[p]
n := ρ(T̃G(S̃

[p]
n , P

[p]
n )) and ρ̃

[p]
∞ := limn→∞ ρ̃

[p]
n , then

ρ̃[p]n = max

{∣∣∣∣tp
(

jπ

n+ p− 1

)∣∣∣∣ : 1 ≤ j ≤ n+ p− 1

2

}
≤ ‖tp‖∞,(4.4)

ρ̃[p]∞ = ‖tp‖∞ := max
θ∈[0,π/2]

|tp(θ)|.(4.5)

The smallest asymptotic spectral radius with respect to ω[p] is denoted by

(4.6) ρ̃[p],∗∞ := min
ω[p]∈R

ρ̃[p]∞ ,

and the corresponding best value for ω[p] (if unique) is denoted by ω̃[p],∗. For those ω[p]

for which ‖tp‖∞ < 1, the formulas (4.4)–(4.5) imply that the method with iteration

matrix T̃G(S̃
[p]
n , P

[p]
n ) is optimal, because ρ̃

[p]
n ≤ ρ̃

[p]
∞ < 1. However, in the following

we will see that for large values of p (in fact, even for moderate values of p such

as p = 6) the asymptotic spectral radius ρ̃
[p]
∞ is very close to 1, independently of

the choice of ω[p]. Actually, we will prove that ρ̃
[p],∗
∞ converges exponentially to 1 as

p → ∞. By looking carefully at the proof of Proposition 4.5, we may conclude that

this exponential convergence to 1 of ρ̃
[p],∗
∞ is related to the exponential convergence to

0 of fp(π)/Mfp , which is shown in Proposition 4.4 (see also Figure 3.1 and Table 3.1).
Remark 4.1. From (4.3) we deduce that, for every F ∈ Cc(C),

lim
n→∞

1

n+ p− 2

n+p−2∑

j=1

F (λj(T̃G(S̃[p]
n , P [p]

n ))) =
1

2
F (0) +

1

2
· 2
π

∫ π/2

0

F (tp(θ))dθ.

Hence, tp is ‘almost’ the spectral symbol of the sequence {T̃G(S̃
[p]
n , P

[p]
n ) : n ∈ Ip}; see

also the general theory in [34, Section 3.7]. Moreover, it is clear that sp is the symbol

of the sequence of smoothers {S̃[p]
n }n, because S̃

[p]
n = I−ω[p]τn+p−2(fp) = τn+p−2(sp).

Remark 4.2. If 0 < ω[p] < 2/Mfp , then ‖tp‖∞ < 1 and the method with

iteration matrix T̃G(S̃
[p]
n , P

[p]
n ) is optimal. Indeed, assume 0 < ω[p] < 2/Mfp. Then

sp(θ) = 1 − ω[p]fp(θ) ∈ (−1, 1) for θ ∈ (0, π] and sp(0) = 1. As a consequence,
tp(θ) ∈ (−1, 1) for θ ∈ (0, π/2], being a weighted mean of sp(θ) and sp(π − θ) both
belonging to (−1, 1), and also tp(0) = sp(π) ∈ (−1, 1). Thus, ‖tp‖∞ < 1. Note that

for each value ω[p] ∈ (0, 2/Mfp) all the smoothers S̃
[p]
n , n ∈ Ip, are convergent, i.e.

ρ(S̃
[p]
n ) < 1 for every n ∈ Ip. On the contrary, for each value ω[p] /∈ [0, 2/Mfp] all the

smoothers S̃
[p]
n for n large enough are not convergent.

Remark 4.3. If we had fp(π) = 0 (this is the catastrophic situation in which

the symbol fp vanishes in two mirror points, θ̂ = 0 and π − θ̂ = π), then the two-grid

scheme with iteration matrix T̃G(S̃
[p]
n , P

[p]
n ) would not be optimal because we would

have ρ̃
[p]
∞ = ‖tp‖∞ = 1 = tp(0), independently of ω[p].

4.2. Lower and upper bounds for ρ̃
[p],∗
∞ . To improve the readability of the

present section, the proofs of the propositions are collected in Appendix A. We first
provide a relation between the values fp

(
π
2

)
and fp(π).

Proposition 4.4. For every p ≥ 1 we have fp
(
π
2

)
= 2p−2fp(π).

A first consequence of Proposition 4.4 is that, when p→∞, the ratio fp(π)/Mfp

converges to 0 exponentially, as observed numerically in Figure 3.1 and Table 3.1:

fp(π)

Mfp

=
fp(π)

fp
(
π
2

) fp
(
π
2

)

Mfp

≤ 1

2p−2
.
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Furthermore, in view of Lemma 3.2, it follows that

(4.7) hp

(π
2

)
= 2php(π).

The next two propositions give a lower bound and upper bound for ρ̃
[p],∗
∞ .

Proposition 4.5. Let p ≥ 1. Then, independently of the choice of ω[p] ∈ R,

ρ̃[p]∞ ≥
2p−2 − 1

2p−2 + 1
=: σ[p].

In particular, ρ̃
[p],∗
∞ ≥ σ[p].

Proposition 4.6. Let p ≥ 1, then

ρ̃[p],∗∞ ≤ 2p+1 + 1

2p+1 + 3
=: ς [p].

It can be checked that

(4.8) lim
p→∞

1− ς [p]

1− σ[p]
=

1

8
,

so the lower bound σ[p] and the upper bound ς [p] converge to 1 with the same (expo-

nential) asymptotic speed, implying that ρ̃
[p],∗
∞ converges exponentially to 1 as well.

4.3. Numerical experiments and some conjectures. Table 4.1 summarizes
the results of some numerical experiments for p = 1, . . . , 9 with respect to the spectral

radius ρ̃
[p]
∞ in terms of the parameter ω[p]. The second column provides the optimal

value ω̃[p],∗, while the best asymptotic spectral radius

ρ̃[p],∗∞ = min
ω[p]∈R

ρ̃[p]∞ = ρ̃[p]∞ |ω[p]=ω̃[p],∗

is shown in the fourth column. Referring to Remark 4.2, we know that the choice

ω[p] ∈ (0, 2/Mfp) leads to an optimal scheme T̃G(S̃
[p]
n , P

[p]
n ). We see that ω̃[p],∗ is not

necessarily in the range (0, 2/Mfp). This means that the method with iteration matrix

T̃G(S̃
[p]
n , P

[p]
n ) may be optimal (and even reach its better asymptotic convergence rate)

with a value ω̃[p],∗ for which the smoothers S
[p]
n , n ∈ Ip, are not convergent at all

(see Remark 4.2). Finally, the last column illustrates the lower bound σ[p] given in
Proposition 4.5.

The case p = 2 is somewhat peculiar and can be interpreted as a ‘case of reso-
nance’, since f2(π) = f2

(
π
2

)
, see Proposition 4.4. As a consequence, t2(0) = t2

(
π
2

)
,

the derivative t′2(θ) vanishes at θ ∈
{
0, α := arccos

√
−2 +

√
6, π

2

}
, and

(4.9) ρ̃[2]∞ = max
(
|t2(0)| =

∣∣∣t2
(π
2

)∣∣∣ , |t2 (α)|
)
= max

(
|1− ω[2]f2(π)|, |t2(α)|

)
.

Note that the best asymptotic spectral radius ρ̃
[p],∗
∞ attains its smallest value 5−2

√
6

9−2
√
6

precisely in the resonance case p = 2 (and not in the case p = 1).

Figure 4.1 shows ρ̃
[p],∗
∞ together with the lower bound σ[p] and the upper bound ς [p]

varying p = 1, . . . , 9. Note that the bounds become extremely accurate for increasing
p and all quantities approach quickly one.
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Table 4.1
Some numerical results related to ρ̃

[p]
∞ for p = 1, . . . , 9.

p ω̃[p],∗ 2/Mfp ρ̃
[p],∗
∞ σ[p]

1 1
3
≈ 0.33 0.5000 1

3
≈ 0.333 −

1
3

2 3
9−2

√
6
≈ 0.73 1.3333 5−2

√
6

9−2
√

6
≈ 0.025 0

3 5
4
= 1.25 1.8531 1

3
≈ 0.333 1

3

4 63
34

≈ 1.85 2.3106 3
5
= 0.600 3

5

5 315
124

≈ 2.54 2.7639 7
9
≈ 0.778 7

9

6 155925
46988

≈ 3.32 3.2169 15
17

≈ 0.882 15
17

7 184275
43688

≈ 4.22 3.6699 31
33

≈ 0.939 31
33

8 9823275
1859138

≈ 5.28 4.1229 63
65

≈ 0.969 63
65

9 3618239625
550794052

≈ 6.57 4.5760 127
129

≈ 0.984 127
129

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

σ[p]

ρ̃
[p],∗
∞

ς[p]

Figure 4.1. ρ̃
[p],∗
∞ with the lower bound σ[p] and the upper bound ς[p] varying p = 1, . . . , 9.

From these results we can formulate the following conjecture:

(4.10) σ[p] = ρ̃[p],∗∞ , ∀p ≥ 3.

This conjecture is verified in Table 4.1 for p = 3, . . . , 9. Actually, supported by
additional numerical experiments, we can formulate a stronger conjecture than (4.10),
which has been deferred to Appendix B.

5. Multi-iterative method: multigrid with PCG. Despite its optimality,

the basic method TG(S
[p]
n , P

[p]
n ) suffers from a ‘pathology’: its convergence rate rapidly

worsens when p increases. This phenomenon can be explained as follows. Due to the

projector P
[p]
n , the method TG(S

[p]
n , P

[p]
n ) uses a reduction strategy with reduction

factor 2, meaning that the system at the coarse level is of size one half of the system
at the fine level. In this way, the mirror point of θ = 0 (i.e. the zero of fp) is θ = π.
When p is large, θ = π is a numerical zero of the normalized symbol fp/Mfp (see
Figure 3.1 and Proposition 4.4), and so fp/Mfp essentially possesses two zeros: one
in θ = 0 and the other in the corresponding mirror point θ = π. This leads to a slow

convergence of TG(S
[p]
n , P

[p]
n ).

To overcome this problem, following the multi-iterative idea [30], we propose
to use PCG as smoother, whose preconditioner takes care of dampening the ‘high
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frequencies’ corresponding to values of θ near θ = π. A similar strategy has been
employed in [8] to deal with a rank deficient projector.

Let β = 0. Under this assumption, 1
nA

[p]
n = K

[p]
n + γ

n2M
[p]
n is SPD (see Lemma 3.1)

and the PCG method can be applied to it. For the case β 6= 0 (not considered here),
we simply suggest to replace the PCG method with the Preconditioned GMRES (P-
GMRES) method, where we use for P-GMRES the same preconditioner that we are
going to devise for PCG, see [14].

5.1. Two-grid with PCG. As mentioned above, the idea for improving the

convergence rate of TG(S
[p]
n , P

[p]
n ) for large p is the following: we substitute, in Al-

gorithm 2.3, the single smoothing iteration by S
[p]
n , with a few smoothing iterations

(say s[p] iterations) by the PCG method, using the SPD preconditioner Tn+p−2(hp−1).
Due to the presence of the PCG smoother, the resulting method is no longer a station-
ary iterative method and hence it is not a two-grid, in the classical sense. However,

using an expressive notation, we denote this method by TG((PCG)s
[p]

, P
[p]
n ), where

the exponent s[p] simply indicates that we apply s[p] steps of the PCG method and it
is assumed that the preconditioner is Tn+p−2(hp−1).

We now motivate our choice of the preconditioner Tn+p−2(hp−1). First, we recall
from Lemma 3.2 that the function hp−1 appears in the factorization of the symbol
fp(θ) = (2 − 2 cos θ)hp−1(θ). Since 2 − 2 cos θ is monotone increasing over [0, π], the
factor hp−1 is responsible for the exponential convergence to 0 of fp(π)/Mfp (which
is proved in Section 4.2). The idea of using the preconditioner Tn+p−2(hp−1) as
smoother is then a way to ‘erase’ the numerical zero θ = π of the normalized symbol
fp/Mfp . Moreover, we notice that such PCG works exactly as a smoother reducing
the error in the high frequencies, as requested by an efficient multigrid algorithm for
differential operators. In other words, the eigenvalues of the preconditioned matri-

ces T−1
n+p−2(hp−1)K

[p]
n and T−1

n+p−2(hp−1)
1
nA

[p]
n behave like a uniform sampling of the

standard Finite Difference Laplacian symbol 2−2 cosθ for n large enough, as formally
stated in the next theorem.

Theorem 5.1. The symbol of the sequences of preconditioned matrices

{T−1
n+p−2(hp−1)K

[p]
n }n and {T−1

n+p−2(hp−1)
1

n
A[p]

n }n

is 2− 2 cos θ, i.e.,

lim
n→∞

1

n+ p− 2

n+p−2∑

j=1

F
(
λj

(
X [p]

n

))
=

1

2π

∫ π

−π

F (2− 2 cos θ)dθ, ∀F ∈ Cc(C),

with the matrix X
[p]
n being either T−1

n+p−2(hp−1)K
[p]
n or T−1

n+p−2(hp−1)
1
nA

[p]
n .

Proof. We heavily rely on the results on Generalized Locally Toeplitz (GLT)
sequences [33, 34] and the seminal paper by Tilli [36]:

1. each GLT sequence of Hermitian matrices has a symbol, and the eigenvalues
of the sequence are spectrally distributed as the symbol;

2. each Toeplitz sequence with Lebesgue integrable symbol is a GLT sequence
with the same symbol;

3. the product of GLT sequences is a GLT sequence whose symbol is the product
of the symbols, the inverse of a GLT sequence is a GLT sequence as long as
the symbol has, at most, a set of zeros of zero Lebesgue measure;
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4. if {Gn}n is a GLT sequence with symbol f , {En}n is a sequence of infinitesi-
mal spectral norm with respect to the size n of the matrix, and {Rn}n is such
that rank(Rn)/n is infinitesimal as n tends to infinity, then {Gn+En+Rn}n
is a GLT sequence with symbol f .

We first deal with the pure Hermitian case, i.e. β = 0. From the second item,
we know that {Tn+p−2(hp−1)}n is a GLT sequence with symbol hp−1. Moreover, due

to the fourth item, we infer that {K [p]
n }n is a GLT sequence with symbol fp(θ) =

(2− 2 cos θ)hp−1(θ), because the rank of K
[p]
n − Tn+p−2(fp) is bounded by a constant

depending on p but independent of n, see [23]. By using again item 4 and the fact that

{K [p]
n }n is a GLT sequence with symbol fp, we obtain that { 1nA

[p]
n }n is a GLT sequence

with the same symbol fp, because the norm of 1
nA

[p]
n −K

[p]
n is infinitesimal as n tends

to infinity. Finally, by invoking items 1 and 3, and by employing a symmetrization

trick (X
[p]
n is not Hermitian, but it is similar to a Hermitian matrix in both cases),

the desired results follow.
When β is nonzero, due to the small norm of the non-symmetric term, it is enough

to invoke the perturbation arguments in [24].
We are now ready to give an LFA interpretation:
• the preconditioned matrix is spectrally equivalent to the standard Finite Dif-
ference Laplacian with symbol 2− 2 cos θ;

• the projector P
[p]
n takes care of the zero θ = 0, by reconstructing the error e

at the coarse level in the subspace generated by the low frequencies, corre-
sponding to values of θ near 0 (note that the polynomial 1 + cos θ associated

with P
[p]
n attains its maximum at θ = 0).

Finally, we remark that the proposed preconditioner Tn+p−2(hp−1) can be interpreted

as a small rank perturbation of the (normalized) B-spline mass matrix M
[p−1]
n+1 related

to the fineness parameter n+ 1 and the spline degree p− 1, see [23].

5.2. V-cycle with PCG. Inspired by the specialized two-grid method designed
in Section 5.1, we now develop an effective V-cycle multigrid method. For the sake of

simplicity, we just focus on the case where β = γ = 0, so 1
nA

[p]
n = K

[p]
n .

The finest level is indicated by index 0 and the coarsest level by ℓ
[p]
n := log2(n+

p−1)−1, assuming that n+p−1 is a power of 2. Let K
[p]
n,i be the matrix at level i and

let m
[p]
n,i denote its dimension, 0 ≤ i ≤ ℓ

[p]
n . In this notation, we have K

[p]
n,0 := K

[p]
n ,

K
[p]
n,i+1 := P

[p]
n,iK

[p]
n,i (P

[p]
n,i)

T , i = 0, . . . , ℓ[p]n − 1,

and K
[p]

n,ℓ
[p]
n

has dimension 1. In the above expression,

P
[p]
n,i := P

m
[p]
n,i

, i = 0, . . . , ℓ[p]n − 1,

is the projector employed at level i, defined by (2.8) for d = 1 and m = m
[p]
n,i. Given

the structure of P
m

[p]
n,i

, one can show by induction on i that m
[p]
n,i+1 = (m

[p]
n,i−1)/2, i =

0, . . . , ℓ
[p]
n − 1, and m

[p]
n,i =

n+p−1
2i − 1, i = 0, . . . , ℓ

[p]
n . Regarding the smoother, at each

coarser level i ≥ 1 we choose the simple Gauss-Seidel smoother. On the other hand,
at the finest level i = 0 we apply s[p] smoothing iterations by the PCG method with
preconditioner Tn+p−2(hp−1). At each level i, we first perform a coarse-grid correction,
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with one recursive call and then we apply one Gauss-Seidel smoothing iteration (if
i ≥ 1) or s[p] smoothing iterations by the proposed PCG (if i = 0).

We point out that the choice of the projector P
[p]
n,i at each level i has the same

motivation as the projector P
[p]
n for K

[p]
n . Indeed, referring to [32, Proposition 2.2] or

[2, Proposition 2.5], if K
[p]
n were exactly τ

m
[p]
n,0

(fp,0) := τn+p−2(fp), then K
[p]
n,i would

be exactly τ
m

[p]
n,i

(fp,i), with the symbol fp,i at level i sharing the same properties

of the symbol fp,0 := fp at level 0: fp,i(0) = 0, with θ = 0 a zero of order two,
and fp,i(θ) > 0 for all θ ∈ [−π, π]\{0}. These properties coincide with those of fp

used in Section 3.2 for devising the appropriate projector P
[p]
n for K

[p]
n . Furthermore,

Lemma 3.2 ensures that a certain modification of our V-cycle, considered and analyzed

in [2], would be optimal when applied to τn+p−2(fp) instead of K
[p]
n . Finally, we want

to motivate why the s[p] PCG smoothing steps are only used at the finest level.
Let Mfp,i := maxθ fp,i(θ). Referring again to [32, Proposition 2.2 (item 2)], and
taking into account also some additional numerical experiments that we performed,
it seems that the numerical zero θ = π of fp,0/Mfp,0 disappears for i ≥ 1, and each
fp,i/Mfp,i , i ≥ 1, only possesses the actual zero θ = 0. Hence, a single smoothing
iteration by the simple Gauss-Seidel method is all we need at the coarser levels i ≥ 1.

6. The 2D setting. In this section we focus on our model problem (1.1) in
the case d = 2 with Ω = (0, 1)2, and we perform the same study as in Section 3.
Although the argumentation in the 2D case follows more or less the same pattern
as in the 1D case, we will briefly describe it, both for the sake of completeness and
for illustrating the strict analogies between the 1D and 2D setting. Given any two
functions f, g : [a, b]→ R, we denote by f ⊗ g the tensor-product function

(6.1) f ⊗ g : [a, b]2 → R, (f ⊗ g)(x, y) := f(x)g(y).

We now approximate the weak solution u of (1.1) by means of the approximation
space W chosen as a space spanned by tensor-product B-splines. More precisely, we

choose W =W [p1,p2]
n1,n2 , for some p1, p2 ≥ 1, n1, n2 ≥ 2, where

W [p1,p2]
n1,n2

:= 〈Nj1,[p1] ⊗Nj2,[p2] : j1 = 2, . . . , n1 + p1 − 1, j2 = 2, . . . , n2 + p2 − 1〉,
and Nj,[p] are the basis functions used in Section 3 and defined in [23, Section 4]. We
choose the tensor-product B-spline basis {Nj1,[p1] ⊗ Nj2,[p2] : j1 = 2, . . . , n1 + p1 −
1, j2 = 2, . . . , n2 + p2 − 1} ordered in the same way as considered in [23, Eq. (85)],
namely

[[
Nj1,[p1] ⊗Nj2,[p2]

]
j1=2,...,n1+p1−1

]
j2=2,...,n2+p2−1

.

Then, we obtain in (2.3) the following stiffness matrix, see [23, Section 5.1]:

A[p1,p2]
n1,n2

:= K [p1,p2]
n1,n2

+
β1

n2
M [p2]

n2
⊗H [p1]

n1
+

β2

n1
H [p2]

n2
⊗M [p1]

n1
+

γ

n1n2
M [p2]

n2
⊗M [p1]

n1
,

where

K [p1,p2]
n1,n2

:=
n1

n2
M [p2]

n2
⊗K [p1]

n1
+

n2

n1
K [p2]

n2
⊗M [p1]

n1
,

and the matrices K
[p]
n , H

[p]
n , M

[p]
n are defined for all p ≥ 1 and n ≥ 2 in Section 3.

Remark 6.1. By Lemma 3.1 and by the fact that X ⊗ Y is SPD whenever X,Y

are SPD, we know that A
[p1,p2]
n1,n2 is SPD for all p1, p2 ≥ 1 and n1, n2 ≥ 2, provided that

β1 = β2 = 0.
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6.1. The symbol of the sequence {A[p1,p2]
ν1n,ν2n}n. For p1, p2 ≥ 1 and ν1, ν2 ∈

Q+ := {r ∈ Q : r > 0}, we define the function

(6.2) f (ν1,ν2)
p1,p2

: [−π, π]2 → R, f (ν1,ν2)
p1,p2

:=
ν1
ν2

hp2 ⊗ fp1 +
ν2
ν1

fp2 ⊗ hp1 ,

see (3.2)–(3.3) for the definition of hp and fp. From now on we always assume that
n ∈ N is chosen such that ν1n, ν2n ∈ N. Consider the sequence of matrices

A[p1,p2]
ν1n,ν2n = K [p1,p2]

ν1n,ν2n +
β1

ν2n
M [p2]

ν2n ⊗H [p1]
ν1n +

β2

ν1n
H [p2]

ν2n ⊗M [p1]
ν1n +

γ

ν1ν2n2
M [p2]

ν2n ⊗M [p1]
ν1n ,

with n varying in the set of indices where ν1n ≥ 2 and ν2n ≥ 2. It was proved in [23,
Section 5.2] that, ∀F ∈ Cc(C),

lim
n→∞

1

N

N∑

j=1

F
(
λj

(
A[p1,p2]

ν1n,ν2n

))
=

1

(2π)2

∫ π

−π

∫ π

−π

F (f (ν1,ν2)
p1,p2

(θ1, θ2)) dθ1dθ2,

with N := (ν1n+ p1 − 2)(ν2n+ p2 − 2), and so f
(ν1,ν2)
p1,p2 is the symbol of the sequence

{A[p1,p2]
ν1n,ν2n}n. The symbol f

(ν1,ν2)
p1,p2 is independent of β := (β1, β2) and γ. Moreover, it

possesses the following properties (consequences of Lemma 3.2).
Lemma 6.2. Let p1, p2 ≥ 1 and ν1, ν2 ∈ Q+. Then, ∀(θ1, θ2) ∈ [−π, π]2,

f (ν1,ν2)
p1,p2

(θ1, θ2) ≥
(

4

π2

)p1+p2+1

min

(
ν2
ν1

,
ν1
ν2

)
(4− 2 cos θ1 − 2 cos θ2) ,

f (ν1,ν2)
p1,p2

(θ1, θ2) ≤ max

(
ν2
ν1

,
ν1
ν2

)
(4− 2 cos θ1 − 2 cos θ2) .

Let M
f
(ν1,ν2)
p1,p2

:= maxθ∈[0,π]2 f
(ν1,ν2)
p1,p2 (θ). By Lemma 6.2, the normalized symbol

f
(ν1,ν2)
p1,p2 /M

f
(ν1,ν2)
p1,p2

has only one (theoretical) zero at θ = 0. However, when p1, p2 are

large, it also has infinitely many ‘numerical zeros’ over [0, π]2, located at the edge
points

(6.3) {(θ1, π) : 0 ≤ θ1 ≤ π} ∪ {(π, θ2) : 0 ≤ θ2 ≤ π}.

Indeed, by (6.2) and (6.1), and recalling equation (4.7) and Proposition 4.4, we have

f (ν1,ν2)
p1,p2

(θ1, π) =
ν1
ν2

hp2(θ1)fp1(π) +
ν2
ν1

fp2(θ1)hp1(π)

=
ν1
ν2

hp2(θ1)
fp1(π/2)

2p1−2
+

ν2
ν1

fp2(θ1)
hp1(π/2)

2p1
≤ 1

2p1−2
f (ν1,ν2)
p1,p2

(θ1, π/2)

≤ 1

2p1−2
M

f
(ν1,ν2)
p1,p2

,

and similarly f
(ν1,ν2)
p1,p2 (π, θ2) ≤

1

2p2−2
M

f
(ν1,ν2)
p1,p2

. Because of this unpleasant property,

the two-grid schemes that we are going to devise for the matrix A
[p1,p2]
ν1n,ν2n are expected

to show a bad (though optimal) convergence rate when p1, p2 are large. A possible
way to overcome this problem is discussed in Section 6.3 and consists in adopting a
multi-iterative strategy involving a specialized PCG smoother, just as we have seen
in Section 5 for the 1D case.
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6.2. Symbol-based construction and optimality of the TGM for A
[p1,p2]
ν1n,ν2n.

We now develop a specialized two-grid method for linear systems having A
[p1,p2]
ν1n,ν2n as

matrix. To this end, we are going to follow a recipe analogous to the one in Section 3.2.

In particular, we will exploit specific properties of the symbol f
(ν1,ν2)
p1,p2 in order to choose

an appropriate projector. The underlying idea is again to treat A
[p1,p2]
ν1n,ν2n as if it were

the two-level τ -matrix τν2n+p2−2, ν1n+p1−2(f
(ν1,ν2)
p1,p2 ) or the two-level Toeplitz matrix

Tν2n+p2−2, ν1n+p1−2(f
(ν1,ν2)
p1,p2 ), and to design a two-grid (multigrid) method that has

been proved to be optimal for both the sequences of two-level τ -matrices and Toeplitz
matrices in the two-grid case [32], while the proof of optimality of the V-cycle is known
only for multilevel τ -matrices [1].

Fix p1, p2 ≥ 1, ν1, ν2 ∈ Q+, and consider the sequence of matrices {A[p1,p2]
ν1n,ν2n : n ∈

I(ν1,ν2)p1,p2 }, with I(ν1,ν2)p1,p2 ⊆ {n : ν1n ≥ 2, ν2n ≥ 2, ν1n+ p1 − 2 ≥ 3 odd, ν2n+ p2 − 2 ≥
3 odd}, #I(ν1,ν2)p1,p2 = ∞. Note that we require ν1n + p1 − 2 and ν2n + p2 − 2 to be
odd and ≥ 3 in view of the definition of the projector, see (6.5). We are looking for

solving A
[p1,p2]
ν1n,ν2nu = b, with n ∈ I(ν1,ν2)p1,p2 and b ∈ R(ν1n+p1−2)(ν2n+p2−2).

Like in the 1D setting, we take the relaxed Richardson iteration as smoother,

(6.4) S[p1,p2]
ν1n,ν2n := I − ω[p1,p2,ν1,ν2]A[p1,p2]

ν1n,ν2n,

where ω[p1,p2,ν1,ν2] is the relaxation parameter (independent of n). For the choice

of the projector, we exploit certain properties of f
(ν1,ν2)
p1,p2 , together with the sug-

gestions coming from [20]. From Lemma 6.2 we know that f
(ν1,ν2)
p1,p2 (0, 0) = 0 and

f
(ν1,ν2)
p1,p2 (θ1, θ2) > 0 for all (θ1, θ2) ∈ [0, π]2\{(0, 0)}. Therefore, we look for a bivariate
cosine trigonometric polynomial (possibly depending on p1, p2, ν) that vanishes at the
mirror points of (0, 0), i.e. at {(π, 0), (0, π), (π, π)}, and satisfies the conditions (2.11).
The simple choice q2(θ1, θ2) = (1 + cos θ1)(1 + cos θ2) satisfies all these requirements
for all p1 and p2. Hence, we choose the projector

(6.5) P [p1,p2]
ν1n,ν2n := Uν2n+p2−2,ν1n+p1−2 τν2n+p2−2,ν1n+p1−2((1 + cos θ1)(1 + cos θ2)),

as defined in (2.8) for d = 2 and m = (ν2n + p2 − 2, ν1n + p1 − 2). Note that if

A
[p1,p2]
ν1n,ν2n were τν2n+p2−2,ν1n+p1−2(f

(ν1,ν2)
p1,p2 ) the projector (6.5) ensures the optimality

of the two-grid method [32] and of the V-cycle [1].

Assuming β1 = β2 = γ = 0, the matrix A
[p1,p2]
ν1n,ν2n = K

[p1,p2]
ν1n,ν2n is SPD, see Re-

mark 6.1. In the bilinear case p1 = p2 = 1, it can be shown that K
[1,1]
ν1n,ν2n =

τν2n−1,ν1n−1(f
(ν1,ν2)
1,1 ). So, the eigenvalues of K

[1,1]
ν1n,ν2n are given by f

(ν1,ν2)
1,1

(
j2π
ν2n

, j1π
ν1n

)
,

j2 = 1, . . . , ν2n− 1, j1 = 1, . . . , ν1n− 1, and

µ[1,1,ν1,ν2] := sup
n∈I(ν1,ν2)

1,1

ρ(K [1,1]
ν1n,ν2n) = lim

n→∞
ρ(K [1,1]

ν1n,ν2n)

= max
(θ1,θ2)∈[0,π]2

f
(ν1,ν2)
1,1 (θ1, θ2) = 4max(ν1/ν2, ν2/ν1).

Therefore, for any choice of ω[1,1,ν1,ν2] ∈
(
0, 2/µ[1,1,ν1,ν2]

)
and ν1, ν2 ∈ Q+, the opti-

mality of the method with iteration matrix TG(S
[1,1]
ν1n,ν2n, P

[1,1]
ν1n,ν2n) was proved in [32]

and that of the V-cycle in [1]. More generally, for 1 ≤ p1, p2 ≤ 3 and ν1, ν2 ∈ Q+, we

will show that the two-grid scheme with iteration matrix TG(S
[p1,p2]
ν1n,ν2n, P

[p1,p2]
ν1n,ν2n) and
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β1 = β2 = γ = 0 is optimal under the assumption ω[p1,p2,ν1,ν2] ∈ (0, 2/µ[p1,p2,ν1,ν2])

with µ[p1,p2,ν1,ν2] := sup
n∈I(ν1,ν2)

p1,p2

ρ(K
[p1,p2]
ν1n,ν2n). Note that from Lemma 3.1 we know

that ∀n ≥ 2,

ρ(K [p1,p2]
ν1n,ν2n) = ‖K [p1,p2]

ν1n,ν2n‖2 ≤
ν1
ν2
‖M [p2]

ν2n‖2‖K [p1]
ν1n‖2 +

ν2
ν1
‖K [p2]

ν2n‖2‖M [p1]
ν1n‖2

≤ ν1
ν2
‖M [p2]

ν2n‖∞‖K
[p1]
ν1n‖∞ +

ν2
ν1
‖K [p2]

ν2n‖∞‖M
[p1]
ν1n‖∞ ≤

4p1ν1
ν2

+
4p2ν2
ν1

,

where we used the fact that, whenever X,Y are normal matrices, ‖X ⊗ Y ‖2 =
‖X‖2‖Y ‖2 and ‖X‖2 = ρ(X) ≤ ‖X‖∞.

In our 2D context, the condition (2.13) reads as
(6.6)
∃ δ[p1,p2,ν1,ν2] > 0 : K [p1,p2]

ν1n,ν2n ≥ δ[p1,p2,ν1,ν2] τν2n+p2−2,ν1n+p1−2(4− 2 cos θ1 − 2 cos θ2).

Since the two-grid optimality follows from Corollary 2.8, in the next theorem we show
that the condition (6.6) holds for 1 ≤ p1, p2 ≤ 3.

Theorem 6.3. Let 1 ≤ p1, p2 ≤ 3. Then, (6.6) holds with

δ[p1,p2,ν1,ν2] = min

(
ν1
ν2

C [p2]δ[p1],
ν2
ν1

C [p1]δ[p2]

)
,

where C [p], p ≥ 1, is given in Lemma 3.1 and δ[p], 1 ≤ p ≤ 3, is specified in The-

orem 3.4. Hence, the scheme with iteration matrix TG(S
[p1,p2]
ν1n,ν2n, P

[p1,p2]
ν1n,ν2n) is optimal

for 1 ≤ p1, p2 ≤ 3 and for any ω[p1,p2,ν1,ν2] ∈ (0, 2/µ[p1,p2,ν1,ν2]).
Proof. Recall that if X,X ′, Y, Y ′ are SPD with X ≥ X ′ and Y ≥ Y ′, then X ⊗ Y

and X ′ ⊗ Y ′ are SPD with X ⊗ Y ≥ X ′ ⊗ Y ′. Hence, for every ν1n, ν2n ≥ 2 integer,
from Theorem 3.4 we deduce

K [p1,p2]
ν1n,ν2n =

ν1
ν2

M [p2]
ν2n ⊗K [p1]

ν1n +
ν2
ν1

K [p2]
ν2n ⊗M [p1]

ν1n

≥ ν1
ν2

C [p2]Iν2n+p2−2 ⊗ δ[p1]τν1n+p1−2(2− 2 cos θ1)

+
ν2
ν1

δ[p2]τν2n+p2−2(2− 2 cos θ2)⊗ C [p1]Iν1n+p1−2

≥ δ[p1,p2,ν1,ν2] τν2n+p2−2,ν1n+p1−2(4− 2 cos θ1 − 2 cos θ2).

6.3. Multigrid with PCG. With the aim of accelerating the convergence rate

of TG(S
[p1,p2]
ν1n,ν2n, P

[p1,p2]
ν1n,ν2n) for large p1, p2, we propose to substitute in Algorithm 2.3

the single relaxation iteration (step 6) with a few smoothing iterations (say s[p1,p2]

iterations) by the PCG method using as preconditioner

(6.7) Tν2n+p2−2,ν1n+p1−2(hp2−1 ⊗ hp1−1) = Tν2n+p2−2(hp2−1)⊗ Tν1n+p1−2(hp1−1).

We denote the resulting multi-iterative method by TG((PCG)s
[p1,p2]

, P
[p1,p2]
ν1n,ν2n), where

the exponent s[p1,p2] means that we apply s[p1,p2] smoothing steps by the PCG method
with preconditioner (6.7). In this section we assume β1 = β2 = 0 to ensure that the

matrix A
[p1,p2]
ν1n,ν2n is SPD. If this is not the case, then we could simply replace PCG

with P-GMRES and a similar reasoning holds as well.
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We now sketch a motivation why (6.7) should be a suitable smoothing precondi-

tioner. Thanks to Lemma 3.2, the symbol f
(ν1,ν2)
p1,p2 (θ1, θ2) can be factored as follows:

f (ν1,ν2)
p1,p2

(θ1, θ2) = hp2−1(θ1)hp1−1(θ2)r
(ν1,ν2)
p1,p2

(θ1, θ2),

r(ν1,ν2)p1,p2
(θ1, θ2) :=

[
ν2
ν1

wp1(θ2)(2− 2 cos θ1) +
ν1
ν2

wp2(θ1)(2 − 2 cos θ2)

]
,(6.8)

where wp(θ) :=
hp(θ)

hp−1(θ)
is a function ‘well-separated’ from zero for all θ ∈ [0, π] and

all p ≥ 1. This means that r
(ν1,ν2)
p1,p2 (θ1, θ2) does not have numerical zeros and only

presents a zero at θ = 0, which, however, does not create problems to our two-grid

schemes, because the projector P
[p1,p2]
ν1n,ν2n takes care of it.

Therefore, the function hp2−1(θ1)hp1−1(θ2) is responsible for the existence of nu-
merical zeros at the edge points (6.3) when p1, p2 are large. Hence, the same function

is also responsible for the poor behavior of our two-grid scheme TG(S
[p1,p2]
ν1n,ν2n, P

[p1,p2]
ν1n,ν2n)

when p1, p2 are large. The choice of using the PCG method with preconditioner (6.7)
as a smoother is made in order to ‘erase’ the numerical zeros at the edge points (6.3)
as summarized in the following result.

Theorem 6.4. The symbol of the sequences of preconditioned matrices

{T−1
ν2n+p2−2,ν1n+p1−2(hp2−1 ⊗ hp1−1)K

[p1,p2]
ν1n,ν2n}n

and

{T−1
ν2n+p2−2,ν1n+p1−2(hp2−1 ⊗ hp1−1)A

[p1,p2]
ν1n,ν2n}n

is r
(ν1,ν2)
p1,p2 (θ1, θ2) defined in (6.8), i.e.,

lim
n→∞

1

N

N∑

j=1

F
(
λj

(
X [p1,p2]

ν1n,ν2n

))
=

1

2π

∫ π

−π

F (r(ν1,ν2)p1,p2
(θ1, θ2)) dθ, ∀F ∈ Cc(C),

with the matrix X
[p1,p2]
ν1n,ν2n being either T−1

ν2n+p2−2,ν1n+p1−2(hp2−1 ⊗ hp1−1)K
[p1,p2]
ν1n,ν2n or

T−1
ν2n+p2−2,ν1n+p1−2(hp2−1 ⊗ hp1−1)A

[p1,p2]
ν1n,ν2n, and N := (ν1n+ p1 − 2)(ν2n+ p2 − 2).

Theorem 6.4 can be shown by following verbatim the proof of Theorem 5.1. In-
deed, no changes have to be considered in the two-dimensional setting (and actually
in any d-dimensional setting, see [14] for the formulation in d dimensions).

The proposed preconditioner (6.7) can be interpreted as a small rank perturbation

of the (normalized) B-spline mass matrix M
[p2−1]
ν2n+1 ⊗M

[p1−1]
ν1n+1 related to the fineness

parameters (ν1n + 1, ν2n + 1) and the spline degrees (p1 − 1, p2 − 1). Last but not
the least, the preconditioner (6.7) is effectively solvable: due to the tensor-product
structure, the computational cost for solving a linear system with matrix (6.7) is linear
in the matrix size (ν1n+ p1 − 2)(ν2n+ p2 − 2).

The V-cycle can be defined in a similar way as in the 1D case, see Section 5.2. For

the sake of simplicity, we focus on a linear system with coefficient matrix K
[p,p]
n,n,0 :=

K
[p,p]
n,n . The finest level is again indicated by index 0 and the coarsest level by index

ℓ
[p]
n := log2(n + p − 1) − 1. Let K

[p,p]
n,n,i be the matrix at level i, whose dimension

is (m
[p]
n,i)

2, 0 ≤ i ≤ ℓ
[p]
n . We have K

[p,p]
n,n,i+1 := P

[p,p]
n,n,iK

[p,p]
n,n,iP

[p,p]
n,n,i

T
, where P

[p,p]
n,n,i :=
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Table 7.1
Values of ρ

[p]
n := ρ(TG(S

[p]
n , P

[p]
n )) in the case β = γ = 0, for the specified parameter ω[p].

n ρ
[1]
n [ω[1] = 1/3] ρ

[3]
n [ω[3] = 1.0368] ρ

[5]
n [ω[5] = 1.2576]

320 0.333333 0.447201 0.892595
640 0.333333 0.447073 0.892595
1280 0.333333 0.447037 0.892595
2560 0.333333 0.447039 0.892595

n ρ
[2]
n [ω[2] = 0.7311] ρ

[4]
n [ω[4] = 1.2229] ρ

[6]
n [ω[6] = 1.2235]

321 0.025287 0.737126 0.959435
641 0.025215 0.737102 0.959399
1281 0.025200 0.737102 0.959399
2561 0.025200 0.737102 0.959399

P
m

[p]
n,i

,m
[p]
n,i

, for i = 0, . . . , ℓ
[p]
n − 1, is the projector employed at level i, defined by (2.8)

for d = 2 and m = (m
[p]
n,i,m

[p]
n,i). Regarding the smoother, at each coarser level i ≥ 1

the simple Gauss-Seidel smoother is used, whereas for the finest level i = 0 we propose
to use s[p,p] smoothing iterations by the PCG method with preconditioner (6.7).

7. Numerical experiments. In the numerical experiments we use Matlab 7.0
in double precision; the stopping criterion is the scaled residual with 10−8 tolerance;
and the initial guess is the zero vector. We start with addressing the pure Laplacian,
in order to show the adherence of the theoretical findings with the numerical results.
Then, we consider a 2D problem with non-zero values of β and γ, for demonstrating
the effectiveness of the proposed multi-iterative technique illustrated in Section 5 in
a more general setting.

7.1. 1D Examples. We fix β = γ = 0, so that 1
nA

[p]
n = K

[p]
n . Table 7.1 shows

the results of some numerical experiments for TG(S
[p]
n , P

[p]
n ). For p = 1, . . . , 6 we

determined experimentally the best parameter ω[p], in the sense that ω[p] minimizes

ρ
[p]
n := ρ(TG(S

[p]
n , P

[p]
n )) with n = 2560 (if p is odd) and n = 2561 (if p is even) among

all ω ∈ R with at most four nonzero decimal digits after the comma. We note that the
choice ω[1] = 1/3 has a theoretical motivation, see Section 4.3. Finally, we computed

the spectral radii ρ
[p]
n for increasing values of n.

In all the considered experiments, the proposed two-grid scheme is optimal. More-

over, when n →∞, ρ
[p]
n converges to a limit ρ

[p]
∞ , which is minimal not for p = 1 but

for p = 2. We also observe that ρ
[p]
∞ increases for increasing p ≥ 2, in such a way

that even for moderate values of p (such as p = 5, 6) the value ρ
[p]
∞ is not really sat-

isfactory. Finally, from some numerical experiments we notice that ρ(K
[4]
n ) ≈ 1.8372,

∀n ≥ 15. Therefore, for the set of indices I4 = {81, 161, . . . , 2561} considered in
Table 7.1, the best parameter ω[4] = 1.2229 produces a non-convergent smoother

S
[4]
n = I − 1.2229K

[4]
n having ρ(S

[p]
n ) ≈ 1.2467. This shows that the two-grid scheme

can be convergent even when the smoother S
[p]
n is not and, moreover, ρ

[p]
n can attain

its minimum at a value of ω[p] for which ρ(S
[p]
n ) > 1, according to the multi-iterative

idea [30].
Thanks to the results given in Section 4, we can now interpret some observations

about TG(S
[p]
n , P

[p]
n ).

Observation 7.1. The existence of an asymptotic spectral radius ρ
[p]
∞ , observed

in Table 7.1 for p = 1, . . . , 6, is not surprising: if K
[p]
n were replaced by τn+p−2(fp), the
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existence of an asymptotic spectral radius would follow from the analysis in Section 4,
see in particular the equation (4.5).

Observation 7.2. Section 4.3 provides the key to understand why the asymptotic

spectral radius ρ
[p]
∞ worsens for increasing p: if K

[p]
n were replaced by τn+p−2(fp), this

behavior would be a direct consequence from Proposition 4.5. Moreover, by combining

Propositions 4.5 and 4.6, we expect that ρ
[p]
∞ exponentially converges to 1 when p→∞.

This ‘exponentially poor’ behavior is related to the fact that fp(π)/Mfp exponentially
approaches 0 when p increases (see Figure 3.1 and Table 3.1).

Observation 7.3. In Table 7.1 we have chosen for ω[p] the best value among all
ω ∈ R with at most four nonzero decimal digits after the comma. The corresponding

asymptotic spectral radius ρ
[p]
∞ is then (almost) the best one. The fact that the best

ρ
[p]
∞ is minimal for p = 2 and not for p = 1 can be explained by means of Table 4.1.

Indeed, if K
[p]
n were replaced by τn+p−2(fp), the best ρ

[p]
∞ would be nothing else than

ρ̃
[p],∗
∞ , which is minimal precisely for p = 2. In this regard, recall that p = 2 is the

‘case of resonance’ in which f2(π) = f2
(
π
2

)
, see the discussion in Section 4.3.

Observation 7.4. For p = 1, 2,

• ρ̃
[p],∗
∞ is obtained with a value ω̃[p],∗ (shown in Table 4.1) which is very close

to the value ω[p] (shown in Table 7.1) for which the best ρ
[p]
∞ is obtained;

• ρ̃
[p],∗
∞ has a value very close to the best ρ

[p]
∞ .

For p = 3, 4, 5, 6,

• ρ̃
[p],∗
∞ is obtained with a value ω̃[p],∗ (shown in Table 4.1) which is greater than

the value ω[p] (shown in Table 7.1) for which the best ρ
[p]
∞ is obtained;

• ρ̃
[p],∗
∞ has a value smaller than the best ρ

[p]
∞ .

In view of this discussion, we stress that K
[p]
n is ‘more similar’ to τn+p−2(fp) when p

is small. Indeed, rank(K
[p]
n − τn+p−2(fp)) grows with p, although it is bounded by a

constant independent of n.

Observation 7.5. Recall that in Table 7.1 we experimentally determined the best
values ω[p] for p = 1, . . . , 6 when n = 2560 (if p is odd) and n = 2561 (if p is even).

We now substitute these values in the expression of ρ̃
[p]
∞ (see (4.9) and (B.2) based on

our conjecture), which would be the exact expression of ρ
[p]
∞ if K

[p]
n were replaced by

τn+p−2(fp). In this way we obtain

ρ̃[1]∞ |ω1=1/3 =
1

3
≈ 0.333333, ρ̃[2]∞ |ω2=0.7311 =

63

2500
= 0.0252,

ρ̃[3]∞ |ω3=1.0368 =
1397

3125
= 0.44704, ρ̃[4]∞ |ω4=1.2229 =

82801

112500
≈ 0.736009,

ρ̃[5]∞ |ω5=1.2576 =
126157

141750
≈ 0.889996, ρ̃[6]∞ |ω6=1.2235 =

37290373

38981250
≈ 0.956623.

These values are very close to the exact values of ρ
[p]
∞ for p = 1, . . . , 6, given in

Table 7.1. In fact, for p = 1, 2 the value is exact; for p = 3, . . . , 6 the difference with
the exact value is at most of the order of 10−3. Unfortunately, the converse to this
observation does not hold: if we use the best ω̃[p],∗ in Table 4.1 as relaxation parameter

for S
[p]
n in the two-grid algorithm TG(S

[p]
n , P

[p]
n ), the resulting ρ

[p]
∞ is not at all close

to ρ
[p],∗
∞ for p ≥ 3, and, for p ≥ 4, it is also greater than 1.

To show that the numerical behavior observed for TG(S
[p]
n , P

[p]
n ) is common to all

classical smoothers, we perform the same test using the relaxed Gauss-Seidel iteration
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Table 7.2
Values of ρ̂

[p]
n := ρ(TG(Ŝ

[p]
n , P

[p]
n )) in the case β = γ = 0, for the specified parameter ω[p].

n ρ̂
[1]
n [ω[1] = 0.9065] ρ̂

[3]
n [ω[3] = 0.9483] ρ̂

[5]
n [ω[5] = 1.1999]

320 0.195630 0.156779 0.462856
640 0.222806 0.158920 0.471018
1280 0.235823 0.160239 0.475829
2560 0.241693 0.160975 0.478694

n ρ̂
[2]
n [ω[2] = 0.9109] ρ̂

[4]
n [ω[4] = 1.0602] ρ̂

[6]
n [ω[6] = 1.3292]

321 0.064874 0.320103 0.600236
641 0.064874 0.325533 0.610415
1281 0.064874 0.328651 0.616444
2561 0.064966 0.330459 0.619784

as smoother, which will be denoted by Ŝ
[p]
n . Table 7.2 illustrates the behavior of

ρ(TG(Ŝ
[p]
n , P

[p]
n )). Like in Table 7.1, the relaxation parameter ω[p] was chosen so as

to minimize ρ̂
[p]
n := ρ(TG(Ŝ

[p]
n , P

[p]
n )) with n = 2560 (if p is odd) and n = 2561 (if

p is even) among all ω ∈ R with four nonzero decimal digits after the comma. It
follows from Table 7.2 that, except for the particular case p = 2, the use of the Gauss-
Seidel smoother improves the convergence rate of the two-grid. However, we also

observe that ρ̂
[p]
n presents the same dependence on p as ρ

[p]
n : the scheme is optimal

but its asymptotic convergence rate (if existing) attains its minimum for p = 2 and
then worsens as p increases from 2 to 6. It is likely that such a worsening is an
intrinsic feature of the problem and is related to the fact that fp(π)/Mfp converges
exponentially to 0 as p increases.

We also investigated the behavior of the two-grid scheme in the case β = 100 and
γ = 1, for p = 1, . . . , 6 and with ω[p] chosen as in Table 7.1. Due to the presence
of the dominating convection term, it turns out that the scheme is not convergent in
this case for small values of n. However, we verified that the method with iteration

matrix TG(S
[p]
n , P

[p]
n ) is optimal if the set of indices Ip for which we solve (3.5) does

not contain small values of n. In addition, for large n the value of ρ
[p]
n is almost the

same as the corresponding value in Table 7.1. This is not at all surprising because
1
nA

[p]
n = K

[p]
n + β

nH
[p]
n + γ

n2M
[p]
n equals K

[p]
n plus a matrix whose infinity norm tends

to zero as n→∞, see Lemma 3.1.

7.2. 2D examples. Similar to the 1D case, the convergence rate of the two-grid
and multigrid schemes rapidly worsens for increasing p1, p2 and for classical stationary
smoothers like Gauss-Seidel (see [14]). Without providing a full theoretical justifica-
tion, we limit ourselves to say that this is due to the presence of infinitely many

‘numerical zeros’ in the symbol f
(ν1,ν2)
p1,p2 when p1, p2 are large, see Section 6.1.

Table 7.3 collects the results of the V-cycle multigrid method when solving the

system K
[p,p]
n,n u = bp ⊗ bp, with

bp =
1

n

[
2

p+ 1

3

p+ 1
· · · p

p+ 1
1 · · · 1

p

p+ 1
· · · 3

p+ 1

2

p+ 1

]T
,

for p = 1, . . . , 6 and for increasing n. The V-cycle with the PCG smoother at the
finest level (see Section 6.3) is compared to the same V-cycle but with relaxed Gauss-
Seidel at the finest level (the relaxation parameter is chosen such that it minimizes
the spectral radius of the two-grid method, see [14]). We can conclude that, when
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Table 7.3
Number of V-cycle multigrid iterations c̃

[p]
n (resp. ĉ

[p]
n ) needed for solving K

[p,p]
n,n u = bp ⊗ bp,

up to a precision of 10−8, when using the multigrid cycle with s[p,p] smoothing steps by the PCG
algorithm (resp. by the relaxed Gauss-Seidel smoother) at the finest level, and one smoothing step by
the simple Gauss-Seidel smoother at the coarser levels. The parameters s[p,p] and ω[p,p] are specified

between brackets [·] near the labels c̃
[p]
n and ĉ

[p]
n , respectively.

n c̃
[1]
n [2] ĉ

[1]
n [1.0035] n c̃

[3]
n [2] ĉ

[3]
n [1.3143] n c̃

[5]
n [4] ĉ

[5]
n [1.3990]

16 10 9 14 7 16 12 7 85
32 11 10 30 9 15 28 8 59
64 12 11 62 9 14 60 10 49
128 13 12 126 10 13 124 11 42

n c̃
[2]
n [2] ĉ

[2]
n [1.1695] n c̃

[4]
n [3] ĉ

[4]
n [1.3248] n c̃

[6]
n [6] ĉ

[6]
n [1.4914]

15 8 8 13 7 37 11 7 204
31 9 8 29 8 30 27 8 129
63 10 9 61 10 27 59 10 105
127 11 10 125 11 25 123 11 86

Table 7.4
Number of iterations c̃

[p]
n needed by TG((P -GMRES)s

[p,p]
, P

[p,p]
n,n ) for solving A

[p,p]
n,n u = b

with β = (5,−5) and γ = 1, up to a precision of 10−8. The parameter s[p,p] is specified between
brackets [·].

n c̃
[1,1]
n,n [2] c̃

[3,3]
n,n [2] c̃

[5,5]
n,n [4] n c̃

[2,2]
n,n [2] c̃

[4,4]
n,n [3] c̃

[6,6]
n,n [6]

20 7 6 7 21 6 6 6
40 6 6 6 41 6 6 6
60 6 6 6 61 6 6 6
80 6 6 6 81 6 6 6
100 6 6 6 101 6 6 5
120 7 6 6 121 6 6 6

using a few PCG smoothing steps at the finest level, the resulting V-cycle shows a
convergence rate that is independent not only of n but also of p, and apparently also
of the dimension d of the elliptic problem. This means that the proposed method is
robust and optimal with respect to all the parameters n, p and d, i.e., the fineness pa-
rameter, the approximation parameter and the dimensionality of the elliptic problem,
respectively.

In the final example, we consider a 2D problem with non-zero convection and
reaction terms. The main message is that the replacement of the PCG smoother by a
P-GMRES smoother, with the very same tensor preconditioner (6.7), does not change

the effectiveness of the proposal. We take the linear system A
[p,p]
n,n u = b coming from

the B-spline IgA approximation of the model problem (1.1) in the case d = 2 with

β = (5,−5), γ = 1 and f = 1. The matrix A
[p,p]
n,n is no longer symmetric, and so

we replace the PCG smoother in the two-grid method TG((PCG)s
[p,p]

, P
[p,p]
n,n ) with a

GMRES smoother preconditioned by Tn+p−2(hp−1) ⊗ Tn+p−2(hp−1). The results of
the numerical experiment are given in Table 7.4.

An extensive numerical testing and comparison of the presented different solvers
can be found in the twin paper [14]. In particular, additional experiments are pro-
vided for the W-cycle multigrid scheme with a PCG smoother, and also the three-
dimensional setting is considered. Moreover, an outlook is given on how to extend
the machinery towards more general elliptic problems with variable coefficients and
defined on more complicated physical domains (using a geometry map).
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8. Conclusion and perspectives. In this paper we have proposed two-grid and
multigrid methods for the solution of linear systems associated with certain stiffness
matrices arising from the Galerkin B-spline IgA approximation of 1D and 2D elliptic
problems. Through numerical experiments, we have provided evidence of their opti-
mality and we have formally proved their optimality in certain cases. In particular,
we have observed that, when using a few PCG smoothing steps at the finest level
and adopting a properly chosen Toeplitz preconditioner, the resulting two-grid and
V-cycle methods present an optimal convergence rate with respect to both the fineness
parameter h = 1

n and the spline degree p. It is important to point out that
• the proposals and the analysis of the methods are based on the spectral sym-
bol and on the corresponding techniques for τ -matrices and Toeplitz matrices
(see [19, 20, 32]);
• the optimality proofs are based on classical tools (see [29, 32]);
• the spectral properties of the considered matrices, as well as the properties
of the associated symbol, were analyzed in a previous work [23].

From a theoretical viewpoint, the key result that allowed us to prove the optimal-
ity of the two-grid methods both in the 1D and 2D setting is the matrix inequality
(3.8). If (3.8) were true for all p ≥ 1, then it would be easy to give a formal proof
of optimality for all p ≥ 1 (in the 1D setting) and for all p1, p2 ≥ 1 (in the 2D set-
ting). Indeed, the former would be a direct consequence of Corollary 3.3, whereas the
latter would follow by replicating the argument used in Theorem 6.3. Furthermore,
the matrix inequality (3.8) would be also of interest in the context of preconditioning
connected with the CG method and the GMRES method. Indeed, in the light of
the Axelsson-Lindskog theorems [3], it can be shown that (3.8), which is equivalent
to (3.9) by Remark 3.5, ensures that τn+p−2(2 − 2 cos θ) = Tn+p−2(2 − 2 cos θ) is

an optimal CG preconditioner for K
[p]
n . Hence, for p = 1, 2, 3, Theorem 3.4 ensures

τn+p−2(2− 2 cos θ) to be an optimal CG preconditioner for K
[p]
n .

Summarizing, a plan for a next future research should include the following topics.
• Proving (3.8) for all p ≥ 1 would give at once the optimality proof of the
two-grid and – with little more efforts – the optimality proof of the W-cycle.
• We need more results on the asymptotic behavior with respect to p of the
extreme eigenvalues of the preconditioned matrix reported in Theorem 5.1
and Theorem 6.4, for studying in more detail the p independence of the
smoother, used in the multi-iterative scheme of Section 5.
• A complete theoretical proof of optimality for the V-cycle in all the different
proposals given so far.
• We would like to extend the presented machinery towards a more general
problem setting involving more complicated geometries, variable coefficient
operators, etc. Some promising numerical experiments are provided in the
twin paper [14] for testing the effectiveness of the multi-iterative technique
illustrated in Section 5 beyond the formulation of problem (1.1).

With regard to the last item, we expect that the global symbol of the associated
matrix sequences can be formed, in analogy with the FD/FE/IgA collocation contexts
[4, 33, 15, 34], by exploiting the information from the main operator (the principal
symbol in the Hörmander theory [25]), the used approximation techniques, and the
involved physical domain via a geometric map.
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Appendix A. This appendix collects the proofs of Propositions 4.4, 4.5 and 4.6
in Section 4.2.

Proposition 4.4. For every p ≥ 1 we have fp
(
π
2

)
= 2p−2fp(π).

Proof. From Lemma 3.2 we know that

fp(θ) = (2− 2 cos θ)
∑

k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣
2

= (2− 2 cos θ)
∑

k∈Z

(
2− 2 cos θ

(θ + 2kπ)2

)p

.

Hence,

fp

(π
2

)
= 2

∑

k∈Z

(
2

(π2 + 2kπ)2

)p

=
23p+1

π2p

∑

k∈Z

1

(4k + 1)2p
,(A.1)

fp(π) = 4
∑

k∈Z

(
4

(π + 2kπ)2

)p

=
22p+2

π2p

∑

k∈Z

1

(2k + 1)2p
.(A.2)

By splitting the latter sum into a sum over the even integers and a sum over the odd
integers, we get

∑

k∈Z

1

(2k + 1)2p
=

∑

l∈Z

1

(4l+ 1)2p
+

1

(4l + 3)2p
=

∑

l∈Z

1

(4l + 1)2p
+

∑

m∈Z

1

(−4m− 1)2p

=
∑

l∈Z

1

(4l+ 1)2p
+

∑

m∈Z

1

(4m+ 1)2p
= 2

∑

k∈Z

1

(4k + 1)2p
.(A.3)

Therefore, by combining (A.3) with (A.1) and (A.2), we obtain

fp
(
π
2

)

fp(π)
=

23p+1

22p+2

∑
k∈Z

1
(4k+1)2p

2
∑

k∈Z

1
(4k+1)2p

= 2p−2.

Proposition 4.5. Let p ≥ 1. Then, independently of the choice of ω[p] ∈ R,

ρ̃[p]∞ ≥
2p−2 − 1

2p−2 + 1
=: σ[p].

In particular, ρ̃
[p],∗
∞ ≥ σ[p].

Proof. We start with showing that for each fixed threshold σ ≥ 0 and for any

ω[p] ∈ R, if ρ̃
[p]
∞ ≤ σ then it holds

(A.4) (1− σ)2p−2 − 1 ≤ ρ̃[p]∞ ≤ σ.
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Fix σ ≥ 0 and choose arbitrarily ω[p] ∈ R. By (4.2) we have

ρ̃[p]∞ = ‖tp‖∞ ≥ tp(0) = 1− ω[p]fp(π),

and if ρ̃
[p]
∞ ≤ σ then

ω[p] ≥ 1− σ

fp(π)
.(A.5)

ρ̃[p]∞ ≥ |tp (π/2)| = |sp (π/2)| =
∣∣∣1− ω[p]fp (π/2)

∣∣∣ ≥ ω[p]fp (π/2)− 1.(A.6)

Hence, by combining (A.6) with (A.5) and by Proposition 4.4, we find that

ρ̃[p]∞ ≥ ω[p]fp (π/2)− 1 ≥ 1− σ

fp(π)
fp (π/2)− 1 = (1 − σ)2p−2 − 1,

resulting in (A.4). Note that both the lower and upper bound in (A.4) are independent
of the choice of ω[p].

Since the interval [(1− σ)2p−2 − 1, σ] is empty for σ < σ[p], it follows from (A.4)

that ρ̃
[p]
∞ ≥ σ[p], and the proposition is proved.

In order to prove Proposition 4.6, we introduce the definition of some specific
functions and three auxiliary lemmas. By defining

(A.7) gp(θ) :=
q2(π − θ)

fp(θ)
=

(1 − cos θ)2

fp(θ)
, gp(0) := lim

θ→0
gp(θ) = 0,

and

(A.8) vp(θ) :=
q2(θ) + q2(π − θ)

gp(θ) + gp(π − θ)
=

2 + 2 cos2(θ)

gp(θ) + gp(π − θ)
,

it follows that

(A.9) tp(θ) = 1− ω[p] vp(θ).

Note that vp(θ) > 0 for all θ, because fp(θ) ≥ 0 for all θ, see Lemma 3.2.
Lemma A.1. Let p ≥ 1 and assume that

(A.10) 0 ≤ L[p] ≤ vp(θ) ≤ U [p], θ ∈
[
0,

π

2

]
.

Then, for the optimal value ρ̃
[p],∗
∞ defined in (4.6) we have the following upper bound

ρ̃[p],∗∞ ≤ 1− 2L[p]

L[p] + U [p]
=

U [p] − L[p]

U [p] + L[p]
.

Proof. Using the bounds (A.10) we obtain

|tp(θ)| = |1− ω[p]vp(θ)| ≤ max
{
|1− ω[p]L[p]|, |1− ω[p]U [p]|

}
.

Hence,

ρ̃[p],∗∞ = min
ω[p]∈R

‖tp‖∞ ≤ min
ω[p]∈R

max
{
|1− ω[p]L[p]|, |1− ω[p]U [p]|

}
= 1− 2L[p]

L[p] + U [p]
.
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To provide suitable bounds for vp (in Lemma A.3), we make use of the following
property of hp defined in (3.2).

Lemma A.2. For p ≥ 1, hp decreases monotonically in [0, π].
Proof. Clearly, h1(θ) =

2
3 +

1
3 cos θ is monotone decreasing in [0, π]. We now show

that h′
p(θ) < 0 for p ≥ 2 and θ ∈ (0, π). From (3.4) we get

hp(θ) =
∑

k∈Z

(
2− 2 cos θ

(θ + 2kπ)2

)p+1

=
∑

k∈Z

(
sin(θ/2)

θ/2 + kπ

)2p+2

.

Let ω := θ/2 ∈ (0, π/2). We consider the series of derivatives 3

h′
p(θ) = (p+ 1)

∑

k∈Z

(
sinω

ω + kπ

)2p+1 [
cosω

ω + kπ
− sinω

(ω + kπ)2

]

= (p+ 1)(sinω)2p+1 cosω
∑

k∈Z

[
1

(ω + kπ)2p+2
− tanω

(ω + kπ)2p+3

]

= (p+ 1)(sinω)2p+1 cosω

[
1

ω2p+2
− tanω

ω2p+3
+ xp(ω)

]
,

where

xp(ω) :=

∞∑

k=1

x
(1)
p,k(ω) + tanω

∞∑

k=1

x
(2)
p,k(ω).

and

x
(1)
p,k(ω) :=

1

(kπ + ω)2p+2
+

1

(kπ − ω)2p+2
, x

(2)
p,k(ω) :=

1

(kπ − ω)2p+3
− 1

(kπ + ω)2p+3
.

For p ≥ 2 and k ≥ 1, one can check that the functions x
(1)
p,k(ω) and x

(2)
p,k(ω) are

monotone increasing, and

x
(1)
p,k(ω) ≤

1

(kπ + π/2)2p+2
+

1

(kπ − π/2)2p+2
≤

(

2

π

)2p+2 [
1

(2k + 1)6
+

1

(2k − 1)6

]

,

x
(2)
p,k(ω) ≤

1

(kπ − π/2)2p+3
−

1

(kπ + π/2)2p+3
=

(

2

π

)2p+3 [
1

(2k − 1)2p+3
−

1

(2k + 1)2p+3

]

.

Hence,

xp(ω) ≤
(
2

π

)2p+2 (
π6

480
− 1 +

2

π
tanω

)
,

and the derivative of hp is bounded above by

(A.11) h′
p(θ) ≤ (p+ 1)

(
sinω

ω

)2p+1
cosω

ω
yp(ω),

where

yp(ω) := 1− tanω

ω
+

(
2ω

π

)2p+2 (
π6

480
− 1 +

2

π
tanω

)
.

3 The equality holds due to the uniform convergence in [−π, π].
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Moreover, for ω ∈ (0, π/2) and p ≥ 2,

(A.12) yp(ω) ≤ 1− tanω

ω
+

(
2ω

π

)6 (
π6

480
− 1 +

2

π
tanω

)
< 0.

From (A.11)–(A.12) we conclude that hp decreases monotonically in [0, π] for p ≥ 2.

We now propose a suitable upper and lower bound for vp.
Lemma A.3. For every p ≥ 1, let

L[p] :=
2

(2p + 1)gp(π/2)
=

2fp(π/2)

2p + 1
and U [p] :=

4

gp(π/2)
= 4fp(π/2).

Then, we have

(A.13) L[p] ≤ vp(θ) ≤ U [p], θ ∈
[
0,

π

2

]
.

Proof. From (A.7) and Lemma 3.2 we have

gp(θ) =
1− cos θ

2hp−1(θ)
.

It follows that gp is monotone increasing in [0, π], because hp−1 is monotone decreasing
in the same interval if p ≥ 2 (Lemma A.2) and is constant if p = 1. Then,

(A.14) gp(0) + gp(π/2) ≤ gp(θ) + gp(π − θ) ≤ gp(π/2) + gp(π), θ ∈
[
0,

π

2

]
.

Moreover, we have gp(0) = 0 and, in view of Proposition 4.4,

(A.15)
gp(π)

gp(π/2)
=

4

fp(π)
fp(π/2) = 2p.

By combining (A.14)–(A.15) and 2 ≤ 2 + 2 cos2(θ) ≤ 4 with (A.8), we obtain (A.13).

Proposition 4.6. Let p ≥ 1, then

ρ̃[p],∗∞ ≤ 2p+1 + 1

2p+1 + 3
=: ς [p].

Proof. The upper bound for ρ̃
[p],∗
∞ follows immediately from Lemmas A.1 and A.3.

Appendix B. In this appendix we formulate a stronger conjecture than (4.10),
namely

(B.1) v′p(θ) ≥ 0, θ ∈
[
0,

π

2

]
, p ≥ 3.

Lemma B.1. If the conjecture (B.1) is true, then (4.10) is also true.
Proof. By assuming (B.1) and recalling (A.9), we deduce that tp is monotone over[

0, π2
]
for every p ≥ 3 and every ω[p] ∈ R. Hence,

ρ̃[p]∞ = max
(
|tp(0)| ,

∣∣∣tp
(π
2

)∣∣∣
)
= max

(∣∣∣1− ω[p]fp(π)
∣∣∣ ,
∣∣∣1− ω[p]fp

(π
2

)∣∣∣
)
,
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Table B.1
Values of fp(π) for p = 1, . . . , 9.

p 1 2 3 4 5 6 7 8 9

fp(π) 4 4
3

8
15

68
315

248
2835

5528
155925

87376
6081075

3718276
638512875

25618328
10854718875

and by using Proposition 4.4,

(B.2) ρ̃[p]∞ = max
(∣∣∣1− ω[p]fp(π)

∣∣∣ ,
∣∣∣1− ω[p]2p−2fp (π)

∣∣∣
)
.

In particular, the best value ω̃[p],∗ that minimizes ρ̃
[p]
∞ is the solution of the equation

1− ω̃[p],∗ fp(π) = −
(
1− ω̃[p],∗ 2p−2fp(π)

)
, i.e.,

(B.3) ω̃[p],∗ =
2

fp(π) · (2p−2 + 1)
=

2

fp(π) + fp
(
π
2

) ,

and the best asymptotic spectral radius is

(B.4) ρ̃[p],∗∞ = ρ̃[p]∞ |ω[p]=ω̃[p],∗ =

∣∣∣∣
2p−2 − 1

2p−2 + 1

∣∣∣∣ = |σ[p]|,

which is equal to σ[p] for p ≥ 2.
The validity of (B.1) has been observed experimentally for p = 3, . . . , 9. Con-

sequently, the formulas (B.2)–(B.4), as well as (4.10), hold for these values of p, see
Table 4.1 and also Table B.1 for the values of fp(π). For p ≥ 10, the validity of (B.1)
has not been proved and so we cannot assert that (4.10) certainly holds for all p ≥ 10.
However, we know from Propositions 4.5 and 4.6 that

σ[p] ≤ ρ̃[p],∗∞ ≤ ς [p], ∀p ≥ 1,

and the gap between σ[p] and ς [p] is quite small. Recall that σ[p] and ς [p] converges
to 1 with the same asymptotic speed, see (4.8). For instance, if p = 10 we have
σ[10] ≈ 0.9922 and ς [10] ≈ 0.9990.

It is worth noting that the formulas (B.2)–(B.4) hold even for p = 1, see Tables 4.1
and B.1. In fact, the above derivation of (B.2)–(B.4) only requires the monotonicity
of tp, which is verified for p = 1 too. On the other hand, in the case p = 2 the formulas
(B.2)–(B.4) do not hold. The case p = 2 is actually somewhat peculiar and can be
interpreted as a ‘case of resonance’, see Section 4.3.




