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Symbol-by-Symbol MAP Demodulation of CPM
and PSK Signals on Rayleigh Flat-Fading Channels
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Abstract—Demodulation using the symbol-by-symbol maxi-
mum a posterioriprobability (MAP) algorithm is presented. The
algorithm is derived for the case of continuous phase modulation
(CPM) signals transmitted over Rayleigh flat-fading channels,
and a corresponding receiver structure is specified. It is shown
that the MAP algorithm requires computing, for each trellis
branch, the sum of the products of the weights of all paths
through the trellis which pass through that branch, and that this
generic computational problem can be solved efficiently by an
approach that uses a forward and backward recursion through
the trellis. Simulation results are presented which show both the
hard and soft decision performance of the MAP receiver to be
robust, even in the presence of fade rates of up to 30% of the
symbol rate. The application of the receiver concept to phase-
shift keying (PSK) signals is also discussed, and then evaluated via
simulation. The concept of joint demodulation and decoding using
iterative processing techniques is introduced. It is shown that the
MAP receiver is well suited for iterative processing applications
due to its use ofa priori symbol probabilities and its production
of optimal soft decisions. Simulation results for the reception
of quaternary PSK (QPSK) show that the bit error rate (BER)
performance of the iterative MAP receiver can approach that of a
receiver operating with perfect knowledge of the fading process.

Index Terms—Iterative decoding, MAP detection, Rayleigh
channels.

I. INTRODUCTION

I NTEREST in terrestrial mobile communications is ex-
panding rapidly. While studies vary considerably in their

predictions, it is clear that contention for spectrum allocation
will necessitate the increasingly efficient usage of bandwidth
[1]. Cost, size, and interference considerations will place
similar requirements on signal power. To meet these and other
challenges, digital transmission has emerged as the technique
of choice due to its robustness and more efficient power and
bandwidth utilization [2], [3].

Bandwidth limitations have motivated considerable investi-
gation into continuous phase modulation (CPM) techniques
[4]–[6]. CPM signals are of interest due to the spectral
efficiency which they can achieve, coupled with their constant
envelope property. These properties are particularly attractive

Paper approved by A. Goldsmith, the Editor for Wireless Communication
of the IEEE Communications Society. Manuscript received May 27, 1996;
revised September 15, 1996 and December 16, 1996. This work was supported
in part by the Spectrum Research Funds of Industry Canada. This paper was
presented in part at Wireless’95, Calgary, Alta., Canada, July 1995.

M. J. Gertsman is with Square Peg Communications Inc., Ottawa, Ont.,
K2H 8S2 Canada (e-mail: michael.gertsman.squarepeg@crc.doc.ca).

J. H. Lodge is with the Communications Research Centre, Ottawa, Ont.,
K2H 8S2 Canada.

Publisher Item Identifier S 0090-6778(97)05185-4.

for mobile communications systems, which are interference
limited (demanding stringent adjacent channel interference
specifications) and cost driven, since nonlinear amplifiers may
be used without producing spectral regrowth.

Bandwidth limitations also have motivated the trend toward
the use of higher frequency bands. While current mobile
communications systems operate at frequencies atband (1–2
GHz) or below, systems utilizing spectrum at up to band
(27–40 GHz) are being investigated [7]. A significant amount
of spectrum is allocated for mobile communications services
in these higher frequency bands.

Commensurate with the higher frequencies are higher fading
rates. Fading rates are proportional to both vehicle speed and
carrier frequency; therefore, future systems could experience
fading rates one or two orders of magnitude higher than those
found at band. In this paper, we wish to consider fast-fading
channels, which are defined as channels where the phase of
the fading process can vary significantly over a symbol period,
i.e., where the symbol duration is a significant fraction of the
coherence time of the channel [8, p. 715]. This corresponds
to channels where the single-sided fading bandwidth is a
significant proportion of the symbol rate, with fade rates as
high as 30% of the symbol rate being considered, herein.

Terrestrial mobile communications channels often are mod-
eled as Rayleigh flat-fading channels [9]. Detection of signals
on such channels traditionally has been performed in a non-
coherent or differentially coherent manner. The techniques
utilized exhibit irreducible error floors at high fade rates,
generate suboptimal soft decisions leading to power ineffi-
ciency, or in the case of pilot symbol approaches [10], [11]
on fast-fading channels, require greater bandwidth.

In [12], a receiver structure for fading channels is developed
which uses maximum-likelihood sequence estimation (MLSE)
to determine the data sequence which produces the most likely
channel samples. This receiver overcomes both the error floor
limitation of differential detection and the power/bandwidth
limitation of pilot symbol approaches. Its major drawback is
that it produces hard decisions via the Viterbi algorithm. This
makes it unsuitable for applications requiring soft decisions in
subsequent stages. This limitation is particularly severe given
the trend in digital transmission systems toward concatenated
processing structures [13] (e.g., modems utilizing forward
error-correction codes with interleaving) where performing
joint demodulation and decoding in a single stage is impracti-
cal due to the number of states required.

As is well known, the symbol-by-symbol maximuma pos-
teriori probability (MAP) algorithm is the optimum decoding

0090–6778/97$10.00 1997 IEEE



GERTSMAN AND LODGE: SYMBOL-BY-SYMBOL MAP DEMODULATION 789

algorithm for codes that can be represented by a trellis of
finite duration [13]–[15]. The algorithm is of interest because
it produces, by definition, optimal soft decisions (decisions
which have the maximuma posterioriprobability). This paper
builds on the work in [12] by examining the use of the MAP
algorithm for demodulation.

Since symbol-by-symbol MAP demodulation is a soft-
in/soft-out process which utilizesa priori symbol probabilities
at its input and produces optimal soft decisions at its output,
the algorithm is well suited to iterative processing applications,
where refined input symbol probabilities are fed back to the
demodulator asa priori information. The resulting refined
soft decisions produce corresponding improvements in the
subsequent processing stages. This approach has demonstrated
significant potential for decoding applications [16]–[18], but
has not been investigated previously for combined demodula-
tion/decoding applications.

In the remainder of this paper, we

• derive the symbol-by-symbol MAP algorithm for the
demodulation of CPM signals on Rayleigh flat-fading
channels;

• determine the performance of the symbol-by-symbol
MAP algorithm relative to that of alternate detection
schemes;

• evaluate the effectiveness of the symbol-by-symbol MAP
algorithm in providing soft decisions for a following
deinterleaver/convolutional decoder;

• evaluate the use of iterative MAP processing techniques
for joint demodulation and decoding.

To accomplish these goals, a combination of theory, anal-
ysis, and Monte Carlo simulation is used. Performance is
evaluated both for a binary CPM scheme and for QPSK,
which is considered to be a discrete-time constant envelope
modulation.

II. SYMBOL-BY-SYMBOL MAP DEMODULATION

In this section, the symbol-by-symbol MAP algorithm is
applied to the demodulation of CPM signals transmitted over
Rayleigh flat-fading channels.

A. Approach

Given a particular sequence of received samples, the goal of
symbol-by-symbol MAP demodulation is to determine, for all
possible symbols and all possible times, the probability that
a particular symbol was transmitted at that time. Once these
probabilities have been determined, the demodulator can use
them directly as symbol soft decisions, or can process them
further to extract bit soft decisions.

The development of symbol-by-symbol MAP demodulation
is presented in four stages. First, it is shown that the problem of
determining the state transition probabilities can be thought of
in terms of a generic computational problem over a trellis with
multiplicative branch weights. Second, an efficient technique
for the required computations is described. Third, obtaining the
soft decisions using state transition probabilities is discussed.
These first three stages are general in nature, but assume
that the demodulator can compute the probability density of

the present received signal sample, conditioned upon the past
received signal samples and the subset of hypothesized input
symbols that form the state vector. The final stage describes
how the demodulator can obtain the required conditional
probability density values for the special case of CPM and
PSK signals on Rayleigh flat-fading channels.

B. State Transition Probabilities

The following notational definitions will be applied.

number of data symbols (-ary modulation);

length of data block, in symbol periods;

number of states in trellis at a given time;
hypothesis;

number of samples/symbol;

discrete-time index, in symbol periods;
—vector of transmitted symbols;

—vector of transmitted symbol samples;

—vector of received symbol samples;
—vector of -ary input symbols for hypoth-

esis ;
—vector of transmitted samples for hypoth-

esis .

Here, it is assumed that the combined memory of the
modulator and the channel is no greater than symbol
periods, so that any given received sample is affected by no
more than consecutive input symbols. Consequently,
a trellis with no more than states, at the start of
each symbol interval, can be used. Each node in the trellis
has input branches and output branches, with a branch
corresponding to one of the data symbols. It also is assumed
that we are operating on a block of data that starts and ends
in a known state. One way to achieve this condition is to start
and end each data block with a “unique” word (i.e., known
symbols), where the length of the unique word is at least
symbols.

The state transition probabilities are intermediate quantities
of great interest because they can be used to compute the
probability that a given symbol was transmitted at time.
Define the set as the subset of the set of hypotheses

that traverse the trellis branch between states
and . The state transition probability is given by

(1)

To compute (1), we need to compute . Using
Bayes’ theorem (e.g., [19, eq. (7-45)]), this can be written

(2)
When (2) is substituted into (1), all terms will have the
identical denominator [i.e., ], which will cancel, and
therefore, can be ignored.
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In evaluating the numerator of (2), we make the assumption
that the -ary input symbols, transmitted at distinct times,
are independent. Therefore, the second factor of the numerator
becomes

(3)

Now, consider the first factor in the numerator
. Note that there is a 1-to-1 correspondence between the

input vector and the transmitted sample vector .
Consequently

(4)

From [12, eq. (3)], we know that the right-hand side of (4)
is given by

(5)

where

The computation of is dependent upon
the channel model and modulation scheme. For the special case
of CPM over a Rayleigh flat-fading channel, the computation
will be described in Section II-E. At this point, we assume only
that it can be computed, and that the computation is dependent
upon at most symbols corresponding to a trellis with

states.
In the trellis formulation, for any given trellis branch,

each possible symbol at a given time is uniquely speci-
fied by the starting and ending states of the correspond-
ing branch at that time. Therefore, there is a 1-to-1 corre-
spondence between the sequence of input symbols

and the sequence of state
transitions ,
where the represent the starting and ending states
for the th hypothesis at time, and at time is the same
as at time . Define

(6)

Substituting (6) into (5) yields

(7)

where the are not dependent upon the hy-
pothesis since the computation of is
dependent upon at most consecutive symbols.

Using (3), (4), and (7), the numerator of (2) becomes

(8)

where

(9)

Again, while the sequence of multiplicative branch weights
is a function of the hypothesis, individual multiplicative
branch weights are not functions of the hypothesis

because each branch is associated with a specific symbol.
Consequently, all hypotheses that pass through a given branch
will include the specific symbol in that time period.

In terms of the multiplicative branch weights, the state
transition probability of (1) becomes

(10)
where denotes theth element of the hypothesized path
through the trellis .

C. Efficient Computation of the State Transition Probabilities

The quantity on the right-hand side of (10) is recognized to
be a generic computational problem. That is, for each branch
in the trellis, we wish to compute the ratio

sum of the products of the weights of all paths through
the trellis which pass through the given branch
sum of the products of the weights of all paths

through the trellis
Here, we briefly describe a computationally efficient approach
to the above problem.

As an example, consider the length trellis shown in
Fig. 1(a) where the nodes correspond to one of states
and the branches represent possible transitions. Assume that
we wish to compute the sum of the products of the weights of
all paths through the trellis (there are paths which start and
end in state 0). An efficient way to perform this computation
is via a recursion of the form

(11)

where is the sum of the products of the weights along
all paths which terminate in state at time and ,

are known initial conditions. The sum over is
for all cases for which a branch exists from stateto state
at time , and is the corresponding branch weight.

Now, consider the case where we wish to solve for the
sum of the products of the weights for only those paths which
traverse a particular branch in the trellis. In this case, it is
advantageous to split the trellis into two parts. This is shown
in Fig. 1(b) for the case of the branch from to .
From (11), gives us the sum of the products of the
weights along all subpaths which terminate in state 0 at time

. The weight on the branch itself is . To compute
the summation for the second half of the trellis, a backward
recursion can be used. This recursion has the form

(12)

where is the sum of the products of the weights along all
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(a)

(b)

Fig. 1. (a) Trellis of the example Markov process. (b) Equivalent trellis when only those paths passing through the branch from stateS3 = 0 to
state S4 = 0 are considered.

paths to the end of the trellis which originate from stateat
time and , are known final conditions.
Here, the sum over is for all cases for which a branch
exists from state to state at time , and is the
corresponding branch weight.

In general, if we define as the sum of the
products of the weights of all paths which pass through the
branch delineated by and , then

(13)

Note that to solve (13) for all branches of the trellis, the
forward and backward recursions (over the whole trellis) only
need to be performed once.

Equations (11)–(13) represent an efficient recursive ap-
proach for addressing the generic computational problem
posed at the beginning of this subsection. The form of this
approach is essentially that of the algorithm introduced by
Bahl et al. [14], but differs from it in two important respects.

1) While the Bahl algorithm was derived for the specific
case of probabilities governing a discrete-time finite-
state Markov process, in this paper, we recognize that the
algorithm in [14], and others like it, are simply efficient
ways to solve the generic computation problem stated at
the beginning of this subsection.

2) The definitions of and presented herein
are symmetric, while those in [14] are asymmetric.

D. Computation of Soft Decisions

For demodulation purposes, the quantity of interest is
where is one of the -ary input symbols. This

quantity is calculated by summing the transition probabilities
that correspond to branches associated with the symbolat
time .

Define a set of all state transitions for which :

where is the transmitted symbol corresponding to
the branch from state to state . Then

(14)

Making use of the fact that the numerator of (10) is given by
, the desired probability becomes

(15)

Note that the denominator of (15) is, in fact, the sum of the
products of the weights of all paths through the trellis, and is
therefore, the same at all times. In fact, from the definition
of , (14) also can be written

(16)

where the summation in the denominator is over the possible
final states of the trellis.

E. The Special Case of CPM and PSK Signals
on Rayleigh Flat-Fading Channels

From (11) to (13), we can see that the computation of
the branch probabilities (and thus the symbol probabilities)
revolves around the determination of the branch weights

and the structure of the trellis. The trellis is straight-
forward since it is simply determined by the bit (or symbol)
sequence which is affected by the memory of the channel.
The value of is a function of thea priori symbol
probabilities and the probability distribution function of the
received channel samples conditioned on the input and the
previously received samples, i.e., .
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(a)

(b)

Fig. 2. Statistically equivalent transmission models (from [12]). WGN(�)
refers to a white Gaussian noise process with variance�.

While the previous results of this section are generally
applicable to the demodulation of signals in any system
which has memory, we now restrict ourselves to the case
of CPM signals transmitted over Rayleigh flat-fading chan-
nels. Consider a system such as that shown in Fig. 2(a),
where represents the transmitted symbol sample for
hypothesis at time represents the power spectral
density of the fading process filter, and represents
the corresponding received symbol sample. If the receiver
removes the modulation corresponding to hypothesis, we
are left with which represents the combined effect
of the multiplicative fading and the additive noise. Note that
removing the modulation is a linear transformation, with a
Jacobian of magnitude one for CPM; therefore,

(17)

In [12], it is shown that for constant envelope signals whose
signal amplitude is 1 (for convenience only), is a zero-mean
complex Gaussian process with covariancewhere is the
Toeplitz covariance matrix whose elements correspond to the
autocorrelation coefficients of the composite fading plus noise
power spectral density function shown in Fig. 2(b). The
conditional pdf of , the fading plus noise, given the input

then can be written as

where represents the conjugate transpose of a matrix or
vector.

The representation shown in Fig. 2(b) suggests a receiver
structure which uses a predictor to estimate the composite
fading plus noise process. In [12, Theorem 1] it is shown how
to compute from the outputs of an all-pole linear predictor,
given a hypothesized transmitted sequence.

It is shown in [12, Theorem 2] that

(18)

where

(19)

(20)

is the th coefficient of the ( )th-order linear predictor,
is the corresponding expected normalized squared pre-

diction error ( ), and is the zero-lag autocorrelation
coefficient.

If it is assumed that the composite fading plus noise
filter can be approximated accurately by an all-pole model
of order , all linear predictors of order and greater
have essentially the same coefficients, and therefore the same
expected normalized squared prediction error. Assuming a
known preamble, the contribution of predictor orders less than

can be ignored. Therefore, using (18)–(20) and the fact that
for , we can rewrite (6) as

(21)

where

(22)

and . Note that the summation term in (22) represents
the output of a prediction error filter for combined with the
removal of the hypothesized modulation over a sequence of

received samples.
Since the computation of the soft decision (15) is a ratio of

sums, with each term composed of the product offactors of
the form of (21), the common factor can be omitted,
yielding

(23)
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Fig. 3. Filter bank structure used by the MAP demodulator.

Then the MAP processing used to produce soft decisions
employs in place of in (9), and then
uses (11)–(13) and (15).

The calculation of the values for can be imple-
mented using the matched filter bank shown in Fig. 3. Each
filter combines the removal of the hypothesized modulation
with the prediction error filter function required for the com-
putation of . The form and length of these filters are
derived in [12]. It is shown that all calculations required for
the computation of the ’s for a single symbol period
are affected by no more than symbols where
represents the pulse length in symbol periods andrepresents
the predictor length in symbol periods. Since this span of
symbols represents the memory required in the demodulator,
the number of states required for-ary modulation is given
by .

Referring again to Fig. 3, the outputs of the filters for a
given symbol period and hypothesis are combined (if the
number of samples/symbol is greater than 1), the result is
divided by the expected prediction error , and then the
exponent is taken.

A few points should be noted.

• The amount of storage required is proportional to the
number of states, and to the length of the trellis in symbols
( ).

• The computational complexity is dominated by the num-
ber of states.

• Because the computation of the terms involves the
magnitude of the matched filter output, one may be able
to reduce the number of filters for a given modulation
scheme by identifying filters which will produce the same
output.

For a given composite fading plus noise power spectral
density, the matched filters are FIR filters with fixed coeffi-

cients. Under changing channel conditions, these filters will
have to be updated periodically by some sort of adaptive
channel estimator. The sensitivity of the algorithm to errors
in the model was investigated in [20]; it was found to be
largely insensitive to errors in the modeled additive noise
level, and moderately sensitive to errors in the modeled fading
bandwidth.

III. D EMODULATION PERFORMANCE

A. Description of Simulation

The performance of the symbol-by-symbol MAP demod-
ulator was evaluated using Monte Carlo simulation. Three
different receivers were implemented, allowing the perfor-
mance of the MAP receiver to be compared to that of the linear
predictive (MLSE) receiver [12] and that of conventional
differential detection.

B. Demodulation of Binary CPM Signals

For binary CPM, the bandwidth-efficient N32FM pulse
shape described in [21] was used. This pulse shape satisfies
Nyquist’s second and third criteria for no intersymbol interfer-
ence and, because CPM is inherently differentially encoded,
it can be demodulated effectively via differential detection.
It was assumed that the receiver downconverts the signal to
complex baseband, passes it through an ideal antialiasing filter,
and then samples it at samples/symbol.

Simulations were performed to compare the performance of
the MAP demodulator with that of the MLSE-based linear
predictive receiver and that of differential detection. Two
fading channel rates were investigated, and , where

is the symbol rate. The general simulation parameters were
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Fig. 4. BER performance of the MAP and MLSE demodulators as compared
to that of differential detection for the reception of binary CPM signals. The
fading rate is0:05R. Coded MLSE results utilize hard decision inputs to the
decoder, while the coded MAP and differential detection results utilize soft
decisions.

as follows:
fading rate: 0.05 , 0.3
sample rate: 2 samples/sysmbol
CPM pulse shape: N32FM ( 2.5 symbol periods)
predictor: fifth order ( 2.5 symbol periods)
block length ( ): 1024 bits.

The number of MAP states was . The
resulting BER performance is shown in Figs. 4 and 5, respec-
tively. A number of points can be noted.

• Differential detection results in an irreducible error floor
that cannot be improved upon by increasing the signal-
to-noise ratio.

• Differential detection is essentially useless at a fading
rate of .

• There is no sign of an error floor in the MAP results,
even at an of 30 dB.

Although not shown in Figs. 4 and 5, the uncoded perfor-
mance of the MLSE demodulator also was simulated. The
difference between the uncoded performance of the MAP and
MLSE processing is negligible, which is expected given the
known performance of the Viterbi algorithm.

Also not shown in Figs. 4 and 5 are the BER estimates
produced by the MAP demodulator. Because the symbol-by-
symbol MAP algorithm inherently produces reliability esti-
mates on each symbol, it is a simple matter to generate a raw
BER estimate by transforming the symbol reliability estimates
into bit reliability estimates. In the simulations of Figs. 4 and
5, the BER estimates produced by the MAP algorithm closely
matched the BER’s measured in the simulation, indicating that
the assumptions upon which the MAP processing is based are
generally valid. The BER estimation capability may be useful
for applications requiring channel performance monitoring or
power control.

In order to evaluate the effectiveness of the soft decisions
produced by the symbol-by-symbol MAP demodulator, the

Fig. 5. BER performance of the MAP and MLSE demodulators as compared
to that of differential detection for the reception of binary CPM signals. The
fading rate is0:3R. Coded MLSE results utilize hard decision inputs to the
decoder, while the coded MAP and differential detection results utilize soft
decisions.

output probabilities from the demodulator were fed to a
convolutional decoder. The code utilized was the industry
standard rate-1/2, constraint length-7 convolutional code [22].
A 128 row 8 column interleaver was used to decorrelate
the bit errors prior to decoding. While this interleaver does
not represent ideal interleaving, it does provide most of the
associated gain while remaining a practical length.

The performance of MAP demodulation is compared with
that of soft decision decoding of differentially detected CPM in
Figs. 4 and 5. As a reference, the performance of hard decision
decoding using the outputs of the linear predictive receiver is
also shown. From Fig. 4, a number of points are apparent.

• The simple soft decisions from a differential detector
work quite well at a fading rate of .

• The improved soft decisions from the MAP demodulator
provide over 4 dB of additional gain at an error rate of
10 .

• The soft decisions from the MAP demodulator provide
over 7 dB of gain relative to the hard decisions from the
MLSE demodulator.

When the results shown in Fig. 5 for the fast fading channel
are examined, we can see the following.

• The soft decisions from the differential detector no longer
are capable of driving the Viterbi decoder.

• The soft decisions from the MAP demodulator continue to
provide good performance, exhibiting over 5 dB of gain
relative to the hard decisions from the MLSE demodulator
at an error rate of 10 .

C. Demodulation of QPSK Signals

In this section, we consider the performance of symbol-
by-symbol MAP demodulation of QPSK signals. At 1 sam-
ple/symbol, QPSK can be considered to be a discrete-time
form of CPM.
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Fig. 6. BER performance of the MAP demodulator as compared to that of
differential detection for the reception of QPSK signals. The fading rate is
0:05R.

An important consideration in dealing with QPSK signals
(in the absence of a phase reference, or differential encoding) is
how to deal with the fourfold phase ambiguity. One approach,
chosen here, is to periodically insert known pilot symbols into
the transmitted symbol stream. Note that, unlike the case of
pilot-symbol-assisted modulation [10], the pilot symbol rate
is not a function of the fading rate. This will reduce the
bandwidth penalty which is incurred by the pilot symbols on
fast fading channels.

A number of simulations were performed to evaluate the
optimum pilot symbol spacing. As a compromise between
performance and bandwidth overhead, a pilot symbol rate of
1 in 9 (1 : 8) was chosen for further study.

Simulations were performed to compare the performance of
the MAP demodulator with that of differential detection of
differentially encoded QPSK. The simulation parameters were
as follows:

fading rate: 0.05
sample rate: 1 sample/sysmbol
symbol encoding: Gray coding
QPSK pulse shaping: none ( 1 symbol period)
MAP predictor order: third order ( 3 symbol

periods)
MAP pilot symbol rate: 1:8
block length ( ): 4096 bits.

The number of MAP states was . The
resulting BER performance is shown in Fig. 6.

A number of points can be noted.

• As with the binary CPM case, differential detection results
in an irreducible error floor that cannot be improved upon
by increasing the signal-to-noise ratio.

• There is no sign of an error floor in the MAP results,
even at an of 30 dB.

Not shown in Fig. 6 are the BER estimates produced by the
MAP demodulator. As with the binary CPM case, the BER
estimates computed from the reliability estimates produced by

the MAP algorithm closely matched the BER’s measured in
the simulation.

The error bursts produced by the MAP demodulator are
longer in duration than those obtained using differential de-
tection. This suggests that the MAP error bursts are not just
caused by the channel entering a deep fade, but are instead
caused by phase slips. The resulting error runs dominate the
bit error rate. Note that the length of an error run due to a
phase slip can exceed the pilot symbol spacing since the pilot
symbol only reduces the number of possible states from 64
to 16. Three contiguous pilot symbols would be required to
guarantee resolution of the phase ambiguity every pilot symbol
period.

Fig. 6 also illustrates the performance of the symbol-by-
symbol MAP demodulator when utilized with a following
convolutional decoder. Once again, the code utilized was the
industry standard rate-1/2, constraint length-7 convolutional
code [22]. A 128 row 32 column interleaver was used to
decorrelate the bit errors prior to decoding (the interleaver
size was chosen to minimize loss in the iterative configuration
of Section IV-C). The results show that the improved soft
decisions from the MAP demodulator provide approximately
3 dB of gain at an error rate of 10.

While rectangular pulse-shaped QPSK was used for the
above simulations, the results generally are applicable to any
scenario where the fading does not decorrelate the pulse after
matched filtering at the receiver, i.e., where a sample rate of 1
sample/symbol is valid. From [23], a fading rate of
requires roll-offs of approximately 50% or greater for this
assumption to be valid. This requirement is consistent with
the modulations employed in many mobile communications
systems.

IV. I TERATIVE MAP PROCESSING FOR

JOINT DEMODULATION AND DECODING

In this section, we examine the possibility of using iterative
demodulation and decoding to improve the performance of
the symbol-by-symbol MAP demodulator. Because it utilizes
a priori probabilities, and because the soft decisions produced
by the demodulator are inherently symbol (or bit) probabilities,
the MAP demodulator is well suited to iterative processing
applications where the demodulator is explicitly included in
the iterative processing.

A. Motivation

Increasingly, communications systems are being composed
of a long cascade of signal processing intensive subsys-
tems. Fig. 7 illustrates an example that is typical of the
type of cascaded arrangement being introduced for many
radio applications. In general, the subsystems in the receiver
perform inverse operations to corresponding subsystems in
the transmitter. In a “conventional” receiver, each subsystem
passes a sequence of bits to the following subsystem. The
problem with this approach is that by outputting bits (i.e.,
hard decisions), information is lost in each subsystem. This is
because, while the subsystem only indicates whether it believes
that a given bit is a 0 or a 1, it usually has sufficient information
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Fig. 7. Example of a system utilizing concatenated processing techniques.

to estimate the degree of confidence in its decisions. One
straightforward way to reduce the loss of information, and
the resulting loss in performance, is to pass the confidence
level along with the decision (i.e., soft decisions). This is
often done when passing information from a demodulator to an
inner decoder, which is known to result in approximately a 2-
dB performance benefit in the additive white Gaussian noise
(AWGN) channel [24]. However, even if optimal bit-by-bit
soft decisions are passed between all of the subsystems in the
receiver, the overall performance can be far from optimal.
This results from the fact that, while later stages can use
the information gleaned from previous stages, the reverse is
not generally true. While one means of achieving optimal
performance is to perform a joint detection, taking all receive
processing into account simultaneously, the complexity of such
an overall approach is usually prohibitive. This motivates an
iterative processing approach which allows earlier stages to
refine their processing based on information from later stages.

B. General Concept

The operation of an iterative processing system can be
thought of in terms of the information that each stage adds
to the final result. As an example, consider the operation of
a demodulator. The goal of the demodulator is to produce
soft decisions which reflect the probability that a given bit is
a 0 or a 1. The information available to the demodulator is
the received signal and the initiala priori probabilities
of the input bits (which are generally 1/2). The demodulator
uses this information, combined with knowledge of the chosen
modulation and of the channel structure, to produce its soft
decisions.

Viewed mathematically on a bit-by-bit basis, the demodu-
lator wishes to determine thea posterioribit probabilities

(24)

and

(25)

for all (this is essentially the same as (2) in the derivation
of the symbol-by-symbol MAP demodulator). Equation (25)
embodies the bit soft decision as represented thus far in

this paper. Two other equally valid representations are the
likelihood ratio and the log-likelihood ratio. Consider the
likelihood ratio formed from thea posteriori probabilities of
(24) and (25):

(26)

We can see that this ratio is, in fact, the product of two distinct
quantities. The first term, being conditioned on a particular
value of , is independent of thea priori probabilities for the
bit at time , although it may be dependent upon thea priori
probabilities for bits transmitted at times other than time.
The second term embodies thea priori probabilities for .

For clarity of exposition, it is useful to rewrite (26) using
logarithms of the likelihood ratios. Converting to a vector
notation to eliminate the subscript, we get

(27)

where is the composite log-likelihood ratio, is the
log-likelihood ratio of the so-calledintrinsic information (a
term introduced in [18] to refer to the information that the
demodulator gleans about from the input signal and poten-
tially the a priori probabilities of the other transmitted bits,
without utilizing the a priori probability for ), and is
the log-likelihood ratio of thea priori information.

As an example, consider the receiver portion of Fig. 7 where
the demodulator is stage 0, the first decoder is stage 1, and
the second decoder is stage 2. The inputs to the first decoder
are the soft decisions embodying thea priori bit probabilities
and theintrinsic information obtained by the demodulator. The
decoder utilizes its knowledge of the code structure to produce
a refined set of soft decisions (input bit probabilities). From
an information perspective, the output of this stage can be
represented as

(28)

where is the composite log-likelihood ratio after the
processing of stage 1 (the first decoder), and is the
extrinsic information added by stage 1 (information added by
a stage other than the demodulator which is independent of
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the input soft decision at time, but utilizes the soft decisions
for other bits). When is passed as the input to stage 2
(the second decoder), the sum can be viewed as
augmenteda priori information to be utilized by stage 2.

It is important to note that (28) only holds if the inputs to
the decoder are independent. If the inputs are not indepen-
dent, then the log-likelihood ratios may not be factored into
separate terms. If the channel has memory, this independence
assumption will not be valid; therefore, interleaving must
be present between the demodulator and the decoder. The
same argument holds for subsequent decoder stages. Since the
extrinsicinformation produced by a decoder for the bit at time

utilized the data bita priori probabilities and theintrinsic
information from the demodulator for all times , the
extrinsic information for the bits at any two times and

may be correlated. Fortunately, this correlation decreases
as increases; therefore, interleaving can be utilized
to spread correlated information outside the memory of the
subsequent decoder stage. In essence, a diversity effect is
achieved since theextrinsic information at time is only
weakly correlated to thea priori bit probability and the
intrinsic information at time .

The above concepts can be extended for any-stage system
utilizing soft-in soft-out processing, i.e., the composite log-
likelihood ratio out of stage can be written

(29)

for .
Consider now an iterative processing approach which in-

cludes the demodulator.In iterative processing, the information
input to a stage on the second and subsequent iterations
must not include the information added by that stage in the
previous iteration. In the case of the demodulator, thea
priori information utilized therefore includes the initiala
priori information and theextrinsic information added by
the subsequent stages on the previous iteration, but does not
include theintrinsic information previously determined by the
demodulator. One way that this can be achieved is for the
demodulator to store itsintrinsic information vector from the
most recent iteration and to subtract it from the composite
information vector, received from the th stage, prior to
computing the newintrinsic information vector. For the th
iteration, the augmenteda priori information input to the
demodulator therefore can be written

(30)

while the corresponding composite log-likelihood ratio out of
the demodulator becomes

(31)

where is the augmentedintrinsic information provided by
the demodulator on theth iteration.

The inputs to stage on the th iteration are and the
augmenteda priori information is given by

(32)

Note that the augmenteda priori information includes the
initial a priori information and the most recentextrinsic
information available from all other stages, but does not
include any extrinsic information from stage . One way
that this can be achieved is for stageto store itsextrinsic
information vector from the most recent iteration and to
subtract it from the composite information vector, received
from the ( )th stage, prior to computing the newextrinsic
information vector.

The corresponding composite log-likelihood ratio out of
stage is then

(33)

C. Performance with QPSK Signals

Simulations were performed to determine the performance
of the iterative MAP receiver with QPSK signals. The sim-
ulation parameters were the same as for the noniterative
simulations. The convolutional code is processed using a MAP
filter for all iterations except the last, where a MAP decoder is
used. A MAP filter refers to the application of MAP processing
to determine thea posteriori probability of the coded bits
rather than of theinformation bits [16], [17].

As in Section III-C, the pilot symbols are simply treated as
symbols whosea priori probability is known to be one. The
iterative processing makes use of theextrinsic information
generated by the MAP filter from its knowledge of the
convolutional code structure to improve the augmenteda priori
probabilities for nonpilot symbols fed to the demodulator on
subsequent passes. The improved soft decisions output by the
demodulator help to refine theextrinsic information generated
by the MAP filter, and so on, until the MAP decoder is used
to output the final information bits.

The resulting BER performance is shown in Fig. 8. Note
that “1 iteration” refers to the normal noniterative approach,
i.e., the results illustrated in Section III. Also shown in the
figure is the performance of a fictitious reference receiver
utilizing ideal channel state information. This receiver pro-
duces perfect soft decisions, i.e., soft decisions which have no
phase ambiguity and whose magnitude is proportional to the
square of the amplitude change introduced by the channel. No
differential encoding or pilot symbols are required.

A number of points can be noted.

• Most of the improvement (1–1.5 dB in the range of
interest) is obtained with a single additional iteration.

• While iterating provides some performance improvement
at low , the additive noise clearly inhibits the
ability of the iterative processing to converge to accu-
rate channel estimates (this can be seen by noting the
significantly better performance of the ideal channel state
receiver at these ).
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Fig. 8. BER performance of iterative MAP demodulation/decoding as com-
pared to that of conventional differential detection and convolutional decoding
for the reception of QPSK signals. Also shown is the performance of a
fictitious reference receiver utilizing ideal channel state information. The
fading rate is0:05R; and the pilot symbol rate used in the MAP simulations
is 1 : 8.

• At an error rate of 10 , the performance of the MAP re-
ceiver utilizing two iterations approaches that of decoding
with ideal channel state information.

This last result is particularly impressive. When the 0.5
dB overhead due to power in the pilot symbols is taken
into account, the performance of the iterative MAP receiver
matches, within error bars, that of the receiver utilizing ideal
channel state information.

Since the performance delta between the iterative MAP
receiver and the reference receiver is essentially wholly due to
the power in the pilot symbols, it is desirable to reduce the pilot
symbol rate, and therefore the corresponding power penalty.
To this end, a system utilizing a 1 : 16 pilot symbol rate
was investigated. The resulting BER performance is shown
in Fig. 9. A number of points can be noted.

• The single iteration performance is worse than that ob-
tained using simple differential detection.

• Most of the improvement (4–5 dB in the range of interest)
is obtained with two or three additional iterations.

• At an error rate of 10 , the performance of the MAP re-
ceiver utilizing four iterations approaches that of decoding
with ideal channel state information.

Once again, this last result is particularly impressive. When
the 0.26 dB of power in the pilot symbols is taken into account,
the performance of the iterative MAP receiver matches, within
error bars, that of the receiver utilizing ideal channel state
information.

The difference in the results for the 1 : 8 and 1 : 16 pilot
symbol rates shows that the iterative processing is particularly
effective in combating the effect of phase slips; this was a
result which was anticipated. To see why, one can look at
the performance of a convolutional decoder in a noniterative
system. When a decoder is operating above its threshold

, its decisions tend to have occasional error bursts

Fig. 9. BER performance of iterative MAP demodulation/decoding as com-
pared to that of conventional differential detection and convolutional decoding
for the reception of QPSK signals. Also shown is the performance of a
fictitious reference receiver utilizing ideal channel state information. The
fading rate is0:05R; and the pilot symbol rate used in the MAP simulations
is 1 : 16.

interspersed with largely correct data; this property is amplified
as the increases. Since a MAP filter is essentially a
decoder without its final decoding stage, its output exhibits
the same characteristic, except that the error bursts are bursts
of bits whose confidence level is low (i.e., bits with

). When the output of the MAP filter is reinterleaved,
both the low-confidence and high-confidence probabilities are
distributed across the interleaver block. Bits with probabilities
near 0.5 generally will be associated with bits which had
similar probabilities out of the demodulator or occurred during
phase slips (and therefore failed to line up with the FEC code).
More importantly, the majority of the bits (which should have
probabilities near one) serve as almost-known symbols, and
aid in resolving phase ambiguities in the same way that pilot
symbols do.

V. SUMMARY

The symbol-by-symbol MAP demodulator exhibits good
performance over the range of channel conditions studied. In
an uncoded system, no irreducible error rate is observed, even
for an of 30 dB at a fading rate of and the
BER estimates produced by the demodulator closely match
the measured BER. While pilot symbols are required for use
with QPSK, their rate is determined only by phase ambiguity
considerations, and not the fading rate.

The performance results for the symbol-by-symbol MAP
demodulator feeding a convolutional decoder indicate that the
demodulator’s soft decisions produce a 3–4 dB performance
improvement over differential detection at the lower fading
rate ( ) and remain robust at the higher fading rate
( ) when the differential detector is unusable. For a 1 : 8
pilot symbol rate, a further 1–1.5 dB of improvement was
observed when a single additional iteration of the demodula-
tion/decoding process was performed on a QPSK signal, while
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up to 5 dB of improvement was obtained with three additional
iterations at a 1 : 16 pilot symbol rate. In both cases, the
resulting performance is within a small fraction of a decibel of
that of a receiver utilizing ideal channel state information! No
other published technique is capable of providing performance
so close to ideal in fast-fading environments.

While significantly more computationally intensive than an
MLSE approach, iterative processing of multiple MAP stages
can approximate jointly optimal decoding closely without the
corresponding increase in complexity required by the latter.
Low-complexity techniques for soft-in/soft-out processing is
an active and important field of research, and techniques such
as the soft-output Viterbi algorithm [27] can be used to de-
crease the complexity with only small impacts on performance.

The techniques reported in this paper follow from those of
[12], which assumes constant modulus signaling and flat fad-
ing. It is anticipated that these techniques can be generalized to
nonconstant modulus signaling and frequency-selective fading
in ways similar to the generalizations of [12] published in
[25] and [26].
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