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Symbol Error Rate Minimization Precoding for

Interference Exploitation

Ka Lung Law, Member, IEEE, and Christos Masouros , Senior Member, IEEE

Abstract— This paper investigates a new beamforming
approach for interference exploitation, which has recently
attracted interest as an alternative to conventional interference-
avoidance beamforming for the downlink of multiple-input
multiple-output systems. Contrary to existing interference
exploitation approaches that focus on signal-to-noise ratio per-
formance, we adopt an approach based on the detection region
of the signal constellation. Focusing on quality of service, we then
formulate the optimization for minimizing the error probability
(EP) for the worst user, subject to power constraints. We do this
by employing the knowledge of channel state information at the
transmitter, along with all downlink users’ data that are readily
available at the base station during downlink transmission.
In this context, we also show that the detection-region-based
beamforming and the worst user EP downlink beamforming are
equivalent problems. Finally, we further propose a sum EPs
approach and provide an analytic bound of average symbol
error rate performance. Our simulations verify that the proposed
techniques provide significantly improved performance over con-
ventional downlink beamforming techniques.

Index Terms— Downlink beamforming, error probability, con-
vex optimization, constructive interference.

I. INTRODUCTION

W ITH the aid of channel state information (CSI) at the

transmitter, downlink beamforming can serve multiple

users at the same time using spatially selective transmission

[2]–[4]. Complementary to the urge for high throughputs under

resource-limited communication systems, quality of service

(QoS) is a vital requirement in modern communications.

Designing the adaptive beamformers to optimize the QoS the

for downlink channel has been extensively studied [4]–[10].

QoS is usually measured as a function of signal to interference

plus noise ratio (SINR).

In addition to the above linear beamforming approaches,

non-linear precoders such as Dirty paper coding (DPC) and

Tomlinson-Harashima Precoding (THP) exploit the symbol

information to pre-cancel potential interference at the trans-

mitter [11]–[13]. Vector perturbation (VP) precoding presents
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a complementary approach that employs a non-linear symbol

perturbation at the transmitter to further improve perfor-

mance [14]–[19]. Nevertheless, both families of techniques

involve non-linear designs, while VP in particular necessi-

tates sophisticated search algorithms with a complexity that

grows exponentially with the number of users [14], [15].

To reduce the complexity, several heuristic approaches have

been studied [13], [20], [21]. However, none of the above

are practical in current communication standards due to their

high computational complexity. On the other hand, the zero-

forcing (ZF) precoding [22], [23] is well known to have the

least complexity amongst multi-user precoding approaches due

to its closed form operation that involves an inversion of

the channel matrix, but it performs far from the optimum

in most scenarios. Accordingly, optimization-based downlink

beamforming problems are considered. One approach is to

minimize the total transmit power subject to the minimum

SINR requirements at each user [5]. The uplink-downlink

duality theory was established in [5] and [6]. Under the duality

theorem, the downlink beamforming problem was efficiently

solved using an iterative algorithm. In [6], an alternative

downlink beamforming problem of maximizing the minimum

SINR subject to a total power constraint was also developed

and can be solved using the similar iterative algorithm. Conic

optimization approaches to solving the downlink beamforming

problem have also been explored [7]–[9]. Using semidefinite

relaxation (SDR) technique [24], the rank-relaxed downlink

beamforming problem becomes a convex optimization, which

can be efficiently solved by contemporary linear or nonlinear

programming methods such as the subgradient projection and

barrier methods to obtain an optimal solution [25]. It is proved

that a rank-one solution exists when the problem is feasible

[7], [8]. In [26] and [27], the authors provided a rank-reduction

algorithm to reduce the rank of the relaxed solution. For

downlink beamforming with additional shaping constraints,

it has been shown in [26] and [27] that if the number of

additional shaping constraints is less than or equal to two, then

rank-one solution can be obtained. A more advanced scheme

was proposed in [28], which combines beamforming with high

dimensional real-value orthogonal space time block coding

(OSTBC) to increase the degrees of freedom in the optimiza-

tion design. The authors in [9] formulated the problem into

a second order cone program (SOCP) which allows the use of

efficient solvers with reduced complexity. The channel robust

worst-case downlink beamforming optimization designed to

resist CSI errors was considered in [7] and [29]–[31]. As a
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further step, outage probability (OP)-constrained downlink

beamforming has been developed and it has been proved that

both the worst channel robust and outage probabilistically

constrained problems are equivalent [31], [32]. In particular,

for a given radius of uncertainty set, one can obtain the

OP such that both problems can be derived to the same

formulation and vice versa.

In the SINR-based downlink problem, beamformers are

designed to guarantee that the SINR constraints are satisfied.

However, the disadvantage of the conventional SINR criteria

that treat interference as harmful is that critical power is

wasted by suppressing, eliminating and avoiding the interfer-

ence. Making use of both the CSI and data information, rather

than mitigating it, one can exploit the constructive part of

interference to enhance the useful signal. The concept of inter-

ference exploitation was introduced in [20] and [33]–[43]. This

is also referred to as a constructive interference precoding.

In [20], [34]–[39], and [44], the closed-form linear and non-

linear precoders were discussed by exploiting the construc-

tive interference to achieve higher SINRs without additional

transmit power. Nevertheless, these precoders are not fully

optimized. In more recent work, the authors in [16], [40],

and [41] developed optimization-based precoders by designing

beamforming which exploits constructive interference and can

further reduce the transmit power. One particular optimization

problem is to minimize the transmit power while guaranteeing

certain signal to noise ratio (SNR) thresholds for all users and

at the same time accommodate constructive interference to

enhance the useful signal. This was first introduced in [16]

as a linear adaptation of VP, and then applied to beam-

forming optimization. A conservative approach was offered

in [41], by restricting the resultant interference to shift the

received symbol in the exact same angle with the intended

symbol, while a relaxed method was developed [40] A related

transmitter-side precoding technique, namely directional mod-

ulation, exploits the constellation formats to achieve physical-

layer security [45]–[47].

In line with the above, this paper is based on the downlink

beamforming optimization by exploiting constructive inter-

ference to enhance the useful signal [40], [41], [48], [49].

In line with the above, we assume a TDD transmission,

and the availability of CSI and instantaneous data at the

transmitter. We investigate different quantitative measures of

QoS as objective functions and optimize these subject to power

constraints. While closed-form sum rate expressions do not

apply to the modulation-dependent concept of interference

exploitation [40], motivated by the error rate comparisons in

the relevant literature [34]– [41], we focus on error rate related

metrics detailed in the sequence. All proposed approaches can

be formulated into convex optimizations. The contributions of

this paper can be summarized as follows:

1) We propose a detection-region based downlink beam-

forming problem in Section IV by introducing a new

geometrical analysis to the optimization problem studied

in [40].

2) We reformulate the optimization to address the worst

user EP downlink beamforming problem in Sections V

and VI and show the detection-region based and

EP-based problems exhibit a one to one correspondence

in Section V.

3) We provide an analytic bound of average symbol error

rate (SER) performance by solving the sum EPs opti-

mization. It is observed in the simulations that the

analytic SER results closely match with the experimental

SER results.

4) Computationally-efficient solver algorithms are devel-

oped for each approach in Sections IV, V, and VI,

respectively.

In the following analysis, we focus on phase-shift keying

(PSK) modulation which offers notational simplicity in the

definition of constructive interference. This is further moti-

vated by the fact that the concept of interference exploitation

is most useful in high-interference scenarios where low order

modulation such as BPSK and QPSK is employed to ensure

the reliability [50]. Nevertheless, our analysis and designs

can be readily extended to other modulation schemes such as

quadrature amplitude modulation (QAM) by trivially applying

the approaches in [38] and [43], [51]–[54], which specifi-

cally treat the topic of interference exploitation for QAM

transmission. Regarding the closest literature on interference

exploitation in [40] we note that the contributions in our paper

involve a) a noise robust downlink beamforming problem by

introducing a geometrical analysis to the optimization problem

studied in [40], b) a new formulation of the optimization to

address the worst user error probability, c) derivation of a tight

analytic bound of average SER performance where previously

no such bounds existed, d) computationally-efficient solver

algorithms developed for each of the proposed approaches.

The remainder of the paper is organized as follows.

Section II introduces the signal model and revisits the con-

ventional downlink beamforming problem. Section III outlines

the constructive interference-based optimization. Section IV

formulates the detection-region based downlink beamforming

problem. Section V develops the worst user EP downlink

beamforming problem. Section VI presents the sum EPs down-

link beamforming problem. Simulation results are provided in

Section VII and conclusions are drawn in Section VIII.

Notation: E(·), Pr(·), | · |, ‖ · ‖, (·)∗ï¼Œ (·)T , denote

statistical expectation, the probability, the absolute value,

the Euclidean norm, the complex conjugate, and the transpose,

respectively. Ij , and aj denotes the j×j identity matrix, j×1
vector of all a, respectively. Re(·) and Im(·) are the real part,

and the imaginary part, respectively. ⌈a⌉ is the smallest integer

greater than or equal to a.

II. SYSTEM MODEL AND CONVENTIONAL

DOWNLINK BEAMFORMING

Consider a downlink scenario, where a single N -antenna

BS transmits signals to K single-antenna users. Assume that

the noise ni at the ith user is circularly symmetric complex

Gaussian with zero mean, i.e., ni ∼ CN (0, σ2) where σ2 is

the noise variance. Let bi and hi be the unit amplitude of the

M -order PSK (M -PSK) modulated symbol and N×1 channel

vector for the ith user, respectively. The transmit signal at the
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Fig. 1. In M -PSK, (a) precoding for interference exploitation and generic optimization [40] where the grey area is the constructive area of constellation;
(b) constructive interference yi within correct detection region; (c) after rotation by ∠b∗

i
, Re(yib

∗

i
) and Im(yib

∗

i
) are projected from yib

∗

i
on real and

imaginary axis, respectively; (d) the detection region approach is described using trigonometry.

BS is the N × 1 vector

x =

K∑

i=1

tibi, (1)

where ti is the N × 1 beamforming vector for the ith user.

The signal received by the ith user is given by

yi = hT
i x + ni,

= hT
i tibi

︸ ︷︷ ︸

desired signal

+

K∑

j=1,j �=i

hT
i tjbj + ni.

︸ ︷︷ ︸

interference plus noise

(2)

The received SINR for the ith user is written as

SINRi �
|hT

i ti|2
∑K

j=1
j �=i

|hT
i tj |2 + σ2

. (3)

The mean total transmit power PT over transmit symbols is

defined as

PT � E{‖
K∑

i=1

tibi‖2} =
K∑

i=1

‖ti‖2. (4)

We note that while above we consider a single carrier system

model for notational simplicity in line with our benchmarks

[6], [40], our approach can readily be extended to a MIMO-

OFDM transmission where the involved precoding optimiza-

tion can be applied on a per subcarrier basis. Below we present

the two most common downlink beamforming optimization

problems in the literature [5]–[8].

A. SINR Balancing

Our first benchmark optimization involves maximizing the

minimum SINR subject to a predefined total transmit power.

The problem can be written as [6]

max
ti,γ

γ s.t.
|hT

i ti|2
∑K

j=1
j �=i

|hT
i tj |2 + σ2

≥ γ, ∀i = 1, . . . , K,

K∑

i=1

‖ti‖2 ≤ P0, (5)

where P0 is the predefined total transmit power threshold.

B. Power Minimization

A relevant approach aims to minimize the total transmit

power under the SINR constraints, in the form [6]

min
ti

K∑

i=1

‖ti‖2

s.t.
|hT

i ti|2
∑K

j=1
j �=i

|hT
i tj |2 + σ2

≥ γ0, ∀i = 1, . . . , K, (6)

where γ0 is the minimal acceptable SINR. However, these

problems do not consider the data symbols as a part of the

optimization problem for each transmission. In this paper,

we aim to design the downlink beamforming problem where

we take the given symbols into account, to exploit constructive

interference.

III. CONSTRUCTIVE INTERFERENCE

OPTIMIZATION-BASED PRECODING

Interference is a major limitation in wireless networks.

In conventional downlink beamforming [6], a critical part of

the transmit power is wasted to suppress the interference.

It has recently been shown that, by exploiting the instanta-

neous interference, the received signals can be pushed further

into the correct detection region, which improves the system

performance [34], [35]. With the knowledge of the CSI and

user data available at the transmitter, the constructive interfer-

ence optimization precoder given in [40] improves upon the

above optimizations to design beamformers to maximize the

distance Γσ between the desired detection region in Fig. 1(a)

that the received symbols must fall into, and the decision

thresholds of the corresponding constellation point. This is

done such that the resultant received symbol hT
i x falls within

the corresponding constructive area of constellation, as shown

in Fig. 1(a). That is, the area in the symbol constellation where

the distances to the decision thresholds are increased with

respect to the constellation point of interest. The design moves

the resultant received symbol away from the original decision

thresholds of the constellation, which improves the QoS.

To avoid extensive repetition, the reader is referred to [40]
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for the details of the underlying concept. Here, we recapture

the optimization problem in the mathematical form as [40]

max
x,Γ

Γ

s.t. |φi(x, Γ)| ≤ θ, (7a)

‖x‖2 ≤ P0, ∀i = 1, . . . , K, (7b)

where Γ is a scalar auxiliary variable that is equivalent to the

minimum distance in the constellation region that will become

clear in the following, θ = π/M and P0 is the total transmit

power threshold. The constraints in (7a) come from the fact

that the resultant received symbol for the ith user lays on the

constructive area of the constellation, if and only if

−θ ≤ φi ≤ θ (8)

where φi in Fig. 1(a) is the angle such that

φi(x, Γ)=

⎧

⎨

⎩

tan−1
( Im(b∗i h

T
i x)

Re(b∗i h
T
i x) − Γσ

)

Re(b∗i h
T
i x) > Γσ,

0 b∗i h
T
i x = Γσ.

(9)

and the physical meaning of Γσ in (9) is the distance of the

correct detection region in Fig. 1(a) away from origin along

with the direction of the corresponding constellation point.

By substituting (9) into (7) and taking both sides by tan, the

problem (7) can be equivalently written as

max
x,Γ

Γ s.t. | Im(b∗i h
T
i x)| ≤ (Re(b∗i h

T
i x) − Γσ)tan θ,

‖x‖2 ≤ P0, ∀i = 1, . . . , K. (10)

The corresponding power minimization is written as [40]

min
x

‖x‖2 s.t. | Im(b∗i h
T
i x)| ≤ (Re(b∗i h

T
i x) − Γ0σ)tan θ,

∀i = 1, . . . , K, (11)

where Γ0σ is the minimal acceptable distance of the correct

detection region. We note that (10),(11) correspond to the

conventional SINR balancing and Power minimization prob-

lems (5),(6) where the SINR objsectives/constraints have been

reformulated to accommodate constructive interference.

From Fig. 1(a), we can see the real projection of the resul-

tant symbol is parallel to the signal and imaginary projection of

the resultant symbol is perpendicular to the signal. Therefore,

the approach in [40] treats Γ as an SNR-related variable, where

it is shown that the SNR can defined as the instantaneous

power of the real projection of the resultant symbol over the

expectation of noise power, i.e., Γ2 =
minK

i=1
{Re(b∗i hT

i x⋆
CI)

2
}

σ2

where x⋆
CI is an optimal solution of transmit signal in (10).

In the following section, instead of using the SNR as a measure

of QoS, we introduce a detection-region based adaptation of

the above constructive interference-based beamformers.

IV. DETECTION-REGION BASED BEAMFORMING

OPTIMIZATION

In this section, we improve upon optimizations (10) and (11)

by introducing a detection-region based adaptation. First we

introduce an alternative systematic treatment of constructive

interference as per Fig. 1. For PSK modulation, interference

is constructive if the received signal yi falls within the correct

detection region, which is the shaded area shown in Fig. 1(b).

It is important to note that, here we consider the resultant

received symbol yi including noise is considered, whereas

the resultant received symbol hT
i x excluding is discussed

in [40]. Accordingly, we are interested in the constraints that

the received symbol yi falls inside the correct detection region

in the constellation, given a certain noise variance. Under this

new definition, we have the following lemma.

Lemma 1: The received signal yi benefits from constructive

interference, if and only if

−θ ≤ ψi ≤ θ (12)

where ψi in Fig. 1(b) is the angle between the received signal

yi and the transmit symbol bi and is also treated as a function

in terms of x and ni such that

ψi(x, ni) =

⎧

⎨

⎩

tan−1
( Im(yib

∗
i )

Re(yib∗i )

)
Re(yib

∗
i ) > 0,

0 yib
∗
i = 0.

(13)

Proof: To find out the angle ψi that ensures constructive

interference, we first rotate Fig. 1(b) to Fig. 1(c) by shifting the

constellation by a phase equal to −∠bi, i.e., by multiplying b∗i .

Since bi has unit power, yib
∗
i does not change the magnitude of

the complex number. Then we obtain (13) where Im(yib
∗
i ) and

Re(yib
∗
i ) are the projection of yib

∗
i onto the real and imaginary

axis, respectively.

Based on the above, the classification criterion (12) can be

reformulated as the following constraints

| Im(yib
∗
i )|

Re(yib∗i )
≤ tan θ, (14)

Re(yib
∗
i ) > 0, (15)

which is equivalent to the following single constraint

| Im(yib
∗
i )| − Re(yib

∗
i ) tan θ ≤ 0. (16)

A. Noise Uncertainty Radius Maximization

As shown in Fig. 1(d), for a given received signal excluding

noise (denoted by the red arrow in the figure) one has to apply

the noise uncertainty region such that the received symbols

including noise obey the required SNR Γ with respect to the

detection thresholds of the modulation constellation, denoted

by the bounds of the grey region in the figure. The idea of the

detection-region based downlink beamforming problem is to

design the beamforming weight vector and the radius Γσ of the

noise uncertainty set such that if the noise is within the noise

uncertainty set, then it guarantees that the given received signal

falls into the constructive area of the constellation and can be

decoded without any error, i.e., yi benefits from constructive

interference. Given the noise variance σ2, the optimization

aims to maximize the radius Γσ of the noise uncertainty set

such that it can still satisfy the constraints (16) under the
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power budget. The resulting detection-region based downlink

beamforming problem can be expressed as

max
x,Γ

Γ (17)

s.t. max
‖ni‖≤Γσ

|ψi(x, ni)| ≤ θ, ∀i = 1, . . . , K,

‖x‖2 ≤ P, (18)

where P is the maximum allowable total transmit power.

By Lemma 1 and (16), problem (18) can be rewritten as

max
x,Γ

Γ

s.t. max
‖ni‖≤Γσ

| Im(yib
∗
i )| − Re(yib

∗
i ) tan θ ≤ 0, (19a)

‖x‖2 ≤ P, ∀i = 1, . . . , K. (19b)

We can first solve the inner maximization on the left side

of (19a).

Corollary 1: For a fixed x̃, the optimal solution of the inner

maximization in (19) is given by

| Im(b∗i h
T
i x̃)| + Γσ/ cos θ − Re(b∗i h

T
i x̃) tan θ. (20)

Proof: See Appendix A.

According to Corollary 1, problem (19) can be rewritten as

a function Γ⋆(·) for any given P ≥ 0 such that

Γ⋆(P ) : max
x,Γ

Γ

s.t. | Im(b∗i h
T
i x)| + Γσ/cos θ ≤ Re(b∗i h

T
i x) tan θ,

‖x‖2 ≤ P, ∀i = 1, . . . , K. (21)

The problem in (21) can be solved using available convex

optimization tools [55]. Finally, we can set the optimal beam-

forming vector t⋆
i in (1) as

t⋆
i =

x⋆b∗i
K

, (22)

where x⋆ is an optimal solution of transmit signal in (21). Note

that (10) and (21) are only different by a constant. Suppose

x⋆
SD and x⋆

NR are optimal solutions of transmit signal in (10)

and (21), respectively. Then sin θx⋆
NR = x⋆

SD. Therefore we

can treat them as equivalent problems.

B. Trigonometrical Equivalence

The optimization problem (21) can also be explained using

trigonometry. The Fig. 1(d) uses a trigonometrical approach

by maximizing the radius Γσ of the noise uncertainty set

within the shaded region. As seen in the figure, Γσ/cos θ is

the projection of Γσ on the imaginary axis. By observing the

trigonometry in Fig. 1(d), we have

| Im(b∗i h
T
i x)| + Γσ/cos θ

Re(b∗i h
T
i x)

≤ tan θ, (23)

Re(b∗i h
T
i x) > 0, (24)

or

b∗i h
T
i x = 0, (25)

Γ = 0, (26)

which is equivalent to

| Im(b∗i h
T
i x)| + Γσ/cos θ ≤ Re(b∗i h

T
i x) tan θ. (27)

which yields directly (21).

C. The Power Minimization Problem

In this subsection, we present the power minimization that

is related to (21), and employ this formulation to design an

efficient solver. The downlink beamforming optimization is

to minimize the total transmit power such that noise in the

given uncertainty set falls within the constructive area of the

constellation. Based on (21) the problem can be written as

min
x

‖x‖2 s.t. max
‖ni‖≤Γσ

|ψi(x, ni)| ≤ θ, ∀i = 1, . . . , K.

(28)

Using a similar approach as in Subsection IV-A, we can

reformulate problem (28) as a function P ⋆(·) for any given

Γ ≥ 0 such that

P ⋆(Γ) : min
x

‖x‖2

s.t. | Im(b∗i h
T
i x)| + Γσ/cos θ ≤ Re(b∗i h

T
i x) tan θ,

∀i = 1, . . . , K. (29)

Similarly, we notice that (11) and (29) can be treated as

equivalent problems. To obtain a real-valued representation of

the optimization that allows efficient solvers following [40],

let us denote

x̄ � [Re(x)T Im(x)T ]T , (30)

h̄i � [Im(b∗i hi)
T Re(b∗i hi)

T ]T , (31)

ΠK � [0K,K − IK ; IK 0K,K ], (32)

where 0K,K is the K ×K zero matrix. Then we can express

the real part and imaginary part in (29) as follows

Re(b∗i h
T
i x) = h̄T

i ΠK x̄, (33)

Im(b∗i h
T
i x) = h̄T

i x̄. (34)

Using (30), (33) and (34), we can rewrite (29) as

min
x̄

‖x̄‖2 s.t. − Tx̄ + Γ12K ≤ 02K , (35)

where T is a 2K × 2N matrix such that

T �
cos θ

σ

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−h̄T
1 + tan θh̄T

1 ΠK

h̄T
1 + tan θh̄T

1 ΠK

...

−h̄T
K + tan θh̄T

KΠK

h̄T
K + tan θh̄T

KΠK

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (36)

The Lagrangian associated with (35) is given by

L(x̄,u) = ‖x̄‖2 + uT (−Tx̄ + Γ12K), (37)

where u is a 2K × 1 vector. Setting ∂L(x̄,u)/∂x̄ = 02K ,

we obtain

x̄⋆ =
1

2
TT u⋆. (38)
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Substituting (36) into (37), we write the dual problem of (35)

as

max
u≥02K

− ‖TTu‖2

4
+ Γ1T

2Ku, (39)

which is equivalent to

− min
u≥02K

f(u) �
‖TTu‖2

4
− Γ1T

2Ku. (40)

The above optimization can be solved effieicntly using the

gradient descent algorithm with simple bound constraints [56].

The gradient of f(u) is given by

▽f(u) =
TTT u

2
− Γ12K . (41)

By substituting (38) into (35), problem (35) can be reformu-

lated as

min
u≥02K

‖1

2
TTu‖2 s.t. −▽f(u) ≤ 02K . (42)

Therefore, we need to guarantee at the optimal dual solution

u⋆ of problem (40) that

▽f(u⋆) ≥ 02K . (43)

If the condition of (43) is violated, then either the gradient

descent algorithm has a low convergence rate or (42) is

infeasible. The feasibility of (42) can be examined by solving

the following problem:

find u s.t. −▽f(u) ≤ 02K , u ≥ 02K . (44)

which is a linear programming problem.

Algorithm 1 outlines the gradient descent method to solve

(29) where imax and ∆t are the given maximum number of

iterations and error tolerance, respectively. According to [57],

the gradient descent method requires at most O(∆−2
t ) iter-

ations for ∆t > 0 arbitrarily small. However, it is an open

question whether the above bound is tight or not. For the ill-

conditioned problems, the convergence rate of gradient descent

may be poor. It is important to note at this point that that com-

putational complexity is key for all interference exploitation

approaches. Indeed, while conventional beamforming needs

to be optimized whenever the channel changes, interference

exploitation optimizations are data-dependent, and need to

be performed on a symbol-by-symbol basis. Accordingly,

efficient solvers for reducing the complexity of obtaining the

beamformers are indispensable, and we derive a number of

efficient approaches in the following.

D. An Efficient Algorithm for Power Minimization of (29)

Based on the Barrier Method

It will be shown in the simulation results that Algorithm 1

can have a low convergence rate. In this subsection, we pro-

pose the barrier method as an alternative to compute the

optimal solution of the power minimization in (29). Let

φ(u) = −1T
2K ln(u) (45)

be the logarithmic barrier function where natural logarithm

ln(·) is an elementwise operator. We note that the barrier

Algorithm 1 Gradient Descent Algorithm to Solve (29)

Input: {hi}K
i=1, {bi}K

i=1, Γ0, σ
Output: The optimal solution x̄⋆ of problem (29)

Initialize randomly u(0) and i = 0;

repeat

i = i + 1;

if i > imax then

Exit and output no solution;

end if

Compute the gradient descent direction ▽f(u(i−1));
Choose ai via backtracking linear search;

u(i) = max
(

02K ,u(i−1) − ai ▽ f(u(i−1))
)

;

until ‖u(i) − u(i−1)‖ < ∆t and min▽f(u(i)) > −∆t;

Output x̄⋆ = TT u(i)/2;

method based on the logarithmic barrier function, as above,

is identical to the primal-dual interior point method [54]. For

s > 0, define u⋆(s) as the solution of

min
u

sf(u) + φ(u). (46)

Problem (46) can be solved using the gradient descent algo-

rithm. It has been shown in [25] that the number of gradient

descent iterations is of the order O( log(K/∆t)
log µ ) for the barrier

method. In general, the barrier method is a more practical

approach to solve a convex optimization problem as it provides

a guarantee on the convergence rate compared to the gradient

descent method. The algorithm to efficiently solve (29) is

shown in Algorithm 2. It will be shown in the simulations

that this provides much faster convergence than Algorithm 1.

Algorithm 2 Efficient Barrier Method Algorithm to Solve (29)

Input: {hi}K
i=1, {bi}K

i=1, Γ0, σ, µ
Output: The optimal solution of transmit signal x̄⋆ in

problem (29)

if (44) has no solution then

Exit and output infeasible;

else

Set u⋆(1) to be the solution of (44);

end if

repeat

Compute u⋆(s) of (46) ;

Set s = µs;

until ‖u⋆(s) − u⋆(s − 1)‖ < ∆t and min▽f(u⋆(s)) >
−∆t;

Output x̄⋆ = TT u⋆(s)/2;

E. An Efficient Detection-Region Based Algorithm

Based on the above formulation, in this subsection we

refocus our attention to problem (21) and provide an efficient

algorithm for solving the detection-region based beamforming

problem. First of all, we show that the solution of (21) can be

obtained by solving (29). Then based on this fact, we present

an efficient algorithm to solve (21).
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Let x =
√

P x̌ such that ‖x̌‖2 = 1. Then problem (21) can

be rewritten as

max
x̌,Γ

Γ

s.t. | Im(b∗i h
T
i x̌)| + Γσ√

P cos θ
≤ Re(b∗i h

T
i x̌) tan θ,

‖x̌‖2 ≤ 1, ∀i = 1, . . . , K. (47)

Problem (47) implies that Γ is directly proportional to
√

P .

Hence, we have the following relations:

Γ⋆(P ) =
√

PΓ⋆(1), (48)

x⋆
Γ(P ) =

√
Px⋆

Γ(1), (49)

where x⋆
Γ(P̃ ) is an optimal solution of transmit signal in (21)

for a given total transmit power P̃ . Similarly, if P ⋆(1) is

feasible, then we have the following relations:

P ⋆(Γ) = Γ2P ⋆(1), (50)

x⋆
P (Γ) = Γx⋆

P (1), (51)

where x⋆
P (Γ̃) is an optimal solution of transmit signal in (29)

for a given noise uncertainty set radius Γ̃σ.

Remark: Problem (21) is always feasible for any given

power P0 as the trivial solution is one of the candidate

solutions. Suppose Γ⋆(1) �= 0. Then, using a similar argument

as in [6] we have that

‖x⋆
Γ(P )‖2 = P. (52)

The following two Corollaries show the we can obtain the

solution of (21) by solving (29) and vice versa.

Corollary 2: Let Γ0σ and P0 be the given positive noise

uncertainty set radius and total transmit power. Suppose P ⋆(1)
is feasible. Then we obtain

Γ⋆(P ⋆(Γ0)) = Γ0, (53)

x⋆
Γ(P ⋆(Γ0)) = x⋆

P (Γ0). (54)

Conversely, suppose Γ⋆(1) �= 0. Then we can also obtain

P ⋆(Γ⋆(P0)) = P0, (55)

x⋆
P (Γ⋆(P0)) = x⋆

Γ(P0). (56)

Proof: See Appendix B.

Corollary 3: Suppose Γ⋆(1) �= 0. Then problem (29)

always has non-trivial solution for any given Γ0.

Proof: See Appendix C.

According to Corollary 2 and Corollary 3, once the optimal

solution of (29) is known, which can be efficiently found

through Algorithms 1-2, the solution to (21) can be found

in closed form. Accordingly, we can derive an efficient algo-

rithm for solving (21) using Algorithm 2. Algorithm 3 below

presents the algorithm used to compute the optimal solution

of (21).

V. WORST USER ERROR PROBABILITY APPROACH

In this section, we propose a new approach to downlink

beamforming based on the error probability. The main con-

cept is to replace the detection-region based downlink beam-

forming constraints by more flexible probabilistic constraints.

Algorithm 3 Algorithm to Solve (21)

Input: {hi}K
i=1, {bi}K

i=1, P0, σ
Output: The solution x⋆ of problem (21)

(P ⋆(1),x⋆
P (1)) be the solution of (29) by Algorithm 2;

if P ⋆(1) is feasible and it is not a trivial solution then

Set Γ̃ =
√

P0/P ⋆(1);
(Γ̃x⋆

P (1), Γ̃) be the optimal solution of (21);

else

Output the trivial solution: Γ̃ = 0,x⋆
P = 0K ;

end if

We define the EP for ith user as the probability that the

received signals of ith user fall inside the left or right half

plane of Fig. 1(b), i.e., regions bounded between θ and

π + θ or between −θ and −π − θ, respectively, for which

case incorrect detection occurs. The EP optimization problem

for the worst user minimizes the maximum EP and can be

written as

min
x,p

p

s.t. Pr
(

π + θ ≥ ψi(x, ni) ≥ θ
)

≤ p, ∀i = 1, . . . , K,

(57a)

Pr
(

−π − θ ≥ ψi(x, ni) ≥ −θ
)

≤ p, ∀i = 1, . . . , K,

‖x‖2 ≤ P. (57b)

Remark: Problem (57) is different from the channel outage

probability based downlink beamforming problem in [31]

and [32]. The constraints in [31] and [32] are probabilistic

SINR-based with respect to the channel random variables,

while the constraints in our constructive interference-based

optimization are adapted to reflect the EP due to noise random

variables, in which the received signal falls outside the desired

region of the constellation, in order to have a reliable detection.

According to Lemma 1 and (16), problem (57) reduces to

min
x,p

p

s.t. Pr
(

Im(yib
∗
i ) ≥ Re(yib

∗
i ) tan θ

)

≤ p, (58a)

Pr
(

Im(yib
∗
i ) ≤ −Re(yib

∗
i ) tan θ

)

≤ p,

‖x‖2 ≤ P, ∀i = 1, . . . , K. (58b)

Let

zj = (−1)(j+1) Im(b∗i h
T
i x) − Re(b∗i h

T
i x) tan θ, (59)

ñj = (−1)(j+1) Im(b∗i ni) − Re(b∗i ni) tan θ, (60)

for i = ⌈j/2⌉ and j = 1, . . . , 2K . The constraints in (58a)

and (58b) can be reformulated as

Pr(zj + ñj ≥ 0) ≤ p, ∀j = 1, ...., 2K. (61)

Since ni is a circularly symmetric complex Gaussian random

variable, we get

E{Re(b∗i ni)
2} = E{Im(b∗i ni)

2}

= b2
Ri

σ2

2
+ b2

Ii

σ2

2
=

σ2

2
, (62)

E{Re(b∗i ni) Im(b∗i ni)} = bRibIi − bRibIi = 0. (63)
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Then ñj is a real-valued Gaussian random variable with zero

mean such that

E{ñ2
j} =

(1 + tan2 θ)σ2

2
=

σ2

2 cos2 θ
, (64)

i.e., ñj ∼ N (0, σ2

2 cos θ2 ). Thus we have [32]

Pr(zj + ñj ≥ 0) =

∫ ∞

−zj

cos θ√
πσ

e
ñ2

cos
2 θ

σ2 dñ.

Using the Gaussian error function erf(·), we can write

Pr(zj + ñj ≥ 0) =

⎧

⎪⎨

⎪⎩

1

2
+

1

2
erf

(zj cos θ

σ

)

, −zj ≤ 0,

1

2
− 1

2
erf

(−zj cos θ

σ

)

, −zj ≥ 0.

(65)

Since erf(−x) = − erf(x), we rewrite it as

1

2
− 1

2
erf

(−zj cos θ

σ

)

≤ p, (66)

which is equivalent to

| Im(b∗i h
T
i x)| + erf−1(1 − 2p)σ

cos θ
≤ Re(b∗i h

T
i x) tan θ, ∀i.

(67)

Thus, the worst user EP problem (58) can be written as

min
x,p

p

s.t. | Im(b∗i h
T
i x)| + erf−1(1 − 2p)σ

cos θ
≤ Re(b∗i h

T
i x) tan θ,

‖x‖2 ≤ P, ∀i = 1, . . . , K. (68)

Remark: By observation of (21) and (68) it can be seen that

the optimal values of the two problems have the following

relations:

Γ⋆(P ) = erf−1(1 − 2 p⋆(P )), (69)

p⋆(P ) =
1

2
− 1

2
erf(Γ⋆(P )), (70)

x⋆
p(P ) = x⋆

Γ(P ), (71)

where (x⋆
p(P̃ ), p⋆(P̃ )) is an optimal solution of (68) for a

given power P̃ . The above relations show that given a radius

of noise uncertainty set of (21), one can obtain the worst user

EP of (68). In reverse, given an EP of (68), we can also obtain

the radius of noise uncertainty set of (21). Therefore, we can

treat the detection-region based problem (21) and the worst

user EP-based problem (68) as equivalent problems. Using

(49), we can express the worst user EP in terms of the total

transmit power P as

p⋆(P ) =
1

2
− 1

2
erf

(√
PΓ⋆(1)

)
, (72)

x⋆
p(P ) =

√
Px⋆

Γ(1). (73)

VI. SUM EPS APPROACH

In this section, we build upon the EP optimization above

to derive the sum EPs-based downlink beamforming problem.

The important benefit here is that the sum EPs approach facil-

itates the derivation of an analytical bound, which is shown to

be tight in our results section. Accordingly, we replace the EP

for the worst user in (57), by the sum of the EPs for all users,

in which the optimization problem provides an analytic bound

of the average SER. The optimization aims to minimize the

sum of the EPs for all users subject to the power constraint,

which can be written as

min
x,p

1T
2Kp

s.t. Pr
(

π + θ ≥ ψi(x, ni) ≥ θ
)

≤ p2i−1, ∀i = 1, . . . , K,

Pr
(

−π − θ ≥ ψi(x, ni) ≥ −θ
)

≤p2i, ∀i = 1, . . . , K,

‖x‖2 ≤ P, 0 ≤ pj , ∀j = 1, . . . , 2K, (74)

where p = (p1 p2 . . . p2K)T is a 2K × 1 vector and the

sum EPs for all users is defined to be 1T
2Kp. Similarly to the

approach of Section V, we can rewrite (74) as a function p⋆(·)
for any given P ≥ 0 such that

p⋆(P ) : min
x̄,p

1T
2Kp

s.t. − Tx̄ + erf−1(1 − 2p) ≤ 02K ,

‖x̄‖2 ≤ P, 0 ≤ pj ≤ 0.5, ∀j = 1, . . . , 2K,

(75)

which can be expressed as

min
x̄,q

K − 1T
2Kerf(q)

2
s.t. − Tx̄ + q ≤ 02K ,02K ≤ q,

‖x̄‖2 ≤ P, (76)

where erf−1(·) and erf(·) are elementwise inverse error and

error functions and q is a 2K × 1 vector such that p = 1
2 −

1
2erf(q).

Remark: Function erf(x) is concave for x ≥ 0. This implies

that the objective function of (76) is a convex function. Hence,

problem (76) is a convex optimization. Furthermore, a feasible

point of (68) is also a feasible point of (76). Thus it can

be shown that (76) contains an interior point. By Slater’s

condition, the strong duality holds for (76).

By multiplying the objective function by a constant,

the optimal solution of (76) will remain unchanged. Hence,

we can equivalently solve the following problem

min
x̄,q

√
π
(

K − 1T
2Kerf(q)

2

)

s.t. − Tx̄ + q ≤ 02K ,02K ≤ q, ‖x̄‖2 ≤ P. (77)

The Lagrangian of (77) is given by

L(x̄,q,u,v, r) =
√

π
(

K − 1T
2Kerf(q)

2

)

+ uT (−Tx̄ + q)

−vT q + r(‖x̄‖2 − P ), (78)

where u and v are 2K × 1 unknown variable vectors.
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Remark: If v⋆
i �= 0, then Slater’s condition leads to q⋆

i = 0
and implies that p⋆

i = 0.5.

Taking the derivative of (78) with respect to x̄ and setting

to zeros, we can write x̄⋆ as

x̄⋆ =
1

2r⋆
TTu⋆. (79)

Furthermore, if x̄⋆ is an optimal solution of transmit signal in

(77), then using the similar argument in [6] it can be shown

that

‖x̄⋆‖2 = P. (80)

Using (80) and (79), we can express r⋆ as

r⋆ =
‖TTu⋆‖

2
√

P
. (81)

Thus, the optimal solution of transmit signal x̄⋆ for (77) can

be rewritten as

x̄⋆ =

√
P

‖TT u⋆‖TT u⋆. (82)

Taking the derivative of (78) with respect to q, and setting to

zero, we reach −e−q⋆2

+ u⋆ − v⋆ = 02K or equivalently,

q⋆ =
√

− ln (u⋆ − v⋆). (83)

Using (82) and (83), the dual problem of (77) can be refor-

mulated as

max
u,v

√
πK −

∫ 12K

u−v

1T
2K

√
− ln z dz −

√
P‖TT u‖

s.t. 02K ≤ u, 02K ≤ v, 02K ≤ u − v ≤ 12K , (84)

where
∫ 1

ζ

√
− lnxdx =

√
π

2
erf

(√

− ln ζ
)

− ζ
√

− ln ζ (85)

using the integration by parts [58]. We can rewrite (84) as a

corresponding standard minimization problem:

min
02K≤u,v

f(u,v) s.t. 02K ≤ u− v ≤ 12K , (86)

where

f(u,v) � −√
πK +

∫ 12K

u−v

1T
2K

√
− ln z dz +

√
P‖TTu‖.

To solve (86), we need to show the objective function of (86)

is convex. Note that for the double derivative

(∫ 1

ζ

√
− lnxdx

)′′

=
(

2ζ
√

− ln ζ
)−1

≥ 0. (87)

Thus it is a convex function. Since norm is a convex function

and f(u,v) is a sum of convex functions, it is also convex.

Therefore, problem (86) is a convex optimization problem.

Putting (82), (83) into (77), we can reformulate (77) as

min
u,v

√
π
(

K − 1T
2Kerf(

√

− ln (u− v))

2

)

s.t. −▽f(u,v) ≤ 02K (88)

where the gradient of f(u,v) in (86) are given by

▽f(u,v) =

⎡

⎣
−

√

− ln (u − v) +

√
P

‖TTu‖TTT u
√

− ln (u − v)

⎤

⎦. (89)

Hence, we need to ensure that ▽f(u⋆,v⋆) ≥ 02K . To

efficiently compute (86), similarly to the approach in Section V

we propose to use the barrier method to obtain the optimal

solution. Let

φ(u,v) = −1T
2K ln(u) − 1T

2K ln(v) − 1T
2K ln(u − v)

− 1T
2K ln(12K − u + v) (90)

be the logarithmic barrier function. For s > 0, define u⋆(s)
and v⋆(s) as the solution of

min
u,v

sf(u,v) + φ(u,v). (91)

The barrier method for solving (75) is summarized as Algo-

rithm 4. As the barrier method yields globally optimal solu-

tions, and similar to the barrier method in Algorithm 2,

Algorithm 4 also gives globally optimal solutions. Our results

in the following section show that Algorithm 4 provides the

best SER performance amongst the proposed optimizations.

Algorithm 4 Efficient Barrier Method Algorithm to Solve (75)

Input: {hi}K
i=1, {bi}K

i=1, P0, σ, µ
Output: The optimal solution (x̄⋆, p̄⋆) of problem (75)

repeat

Compute (u⋆(s), v⋆(s)) of (91) ;

Set s = µs;

until ‖u⋆(s) − u⋆(s − 1)‖2 + ‖v⋆(s) − v⋆(s − 1)‖2 < ∆2
t

and min▽f(u⋆(s),v⋆(s)) > −∆t;

Output

x̄⋆ =

√
P0

‖TTu⋆(s)‖TTu⋆(s)

p̄⋆ =
1

2
−

erf
(√

− ln
(
u⋆(s) − v⋆(s)

))

2
;

VII. SIMULATIONS

In our simulations, we consider a downlink beamforming

network with N = 10 antennas, while it is intuitive that

the benefits shown extend to different numbers of antennas.

In line with our benchmark techniques [6], [40] we assume

an uncoded transmission, while it would be interesting to

examine the joint design of precoding and forward error

correction (FEC) for practical modulation schemes as the

focus of future work. The system with QPSK modulation is

considered, i.e., θ = π/4, while it is obvious that the benefit of

the proposed approaches extend to BPSK, or higher order PSK

modulation, similarly to the approaches in [40] and [41]. The

circularly symmetric complex Gaussian noise ni is complex

zero-mean with the variance σ2 = 1. Let ωi be a uniformly

distributed random number between −π/2 and π/2. Then the
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downlink channel between the BS and ith user are modeled

as

hi =
[
1, ejπ sin ωi , . . . , ejπ(N−1) sin ωi

]T
, (92)

i.e., the identical path loss line-of-sight channel model is

assumed [26]. All results are averaged over 10000 Monte Carlo

runs. The maximum iteration number imax = 1000 and error

tolerance ∆t = 10−4 are used in Algorithm 1. For the barrier

methods, we set µ = 100 and the maximum number of inner

iterations in the gradient descent method is set to iGD = 100.

In the simulations, we omit the power minimization

approaches and focus on the SINR-, SNR- and EP- based

optimizations that can be compared by SER results, as a

common metric between constructive interference-based and

conventional optimizations for a given power. It is intu-

itive however, that the symmetrical versions of the problems

where power is minimized subject to our new SNR/detection

region/error probability constraints, similarly outperform con-

ventional power minimization as per the benefits of our

relaxed optimization regions. Based on our analysis in

Section V, since the detection-region based approach of

(21) and the worst user EP approach of (68) are equiv-

alent, in the following simulations, we only consider the

detection-region based approach. We compare the following

techniques:

• ‘SINR Balancing [6]’ refers to the conventional SINR

balancing problem in [6];

• ‘Gradient descent DRB (∼= [40])’ stands for using the

gradient descent approach to solve the decision-region

based optimization in Algorithm 3 and problem (21),

which is equivalent to (10) proposed in [40];

• ’CIMM [41]’ refers to the interference exploitation

approach of [41];

• ‘Barrier method DRB’ refers to use the barrier method

in Algorithm 3 to solve the detection-region based

problem (21);

• ‘Barrier method sum EPs’ refers to the barrier method in

Algorithm 4 to solve (75);

• ‘Analyt-DRB’ and ‘Analyt-sum EPs’ refer to the analyti-

cal bounds for using the barrier method of (68) and (75),

respectively;

• ‘Analyt-sum EPs’ is the analytic bound of the average

SER.

A. Complexity

Fig. 2 compares the trend of the average execution time

of our proposed methods and the gradient descent detection-

region based method for different number of users with a

transmit SNR of Eb

σ2 = 20dB, where Eb is the energy per

transmitted bit. As shown in Fig. 2, when the number of users

is small, the average execution time of the gradient descent

detection-region based method is faster than the both barrier

methods of detection-region based approach and sum EPs

approach. Nonetheless, when the number of users increases,

the barrier detection-region based approach has a higher com-

putational efficiency than the gradient descent detection-region

based approach.

Fig. 2. Average execution time versus number of users with N = 10, and
SNR = 20dB.

Fig. 3. SER performance versus SNR with N = 10, and K = 10.

B. Performance Comparison

Fig. 3-4 compare the SER performance for the different

techniques. In Fig. 3, we fix the number of users and com-

pare both experimental and analytic SER performance of all

approaches versus the SNR for K = 10. It can be seen from

these figures that the the sum EPs approach given in (75) out-

performs the detection-region based (DRB) approach, the con-

ventional method of (5), and the CIMM scheme of [41]

in terms of the experimental SER performance. As per our

derivations above we reiterate that the DRB approach is equiv-

alent to the worst EP approach, which is still outperformed

by the sum EP optimization. Indeed, we have observed that

while the worst EP approach provides a slightly better worst

EP compared to the sum EP approach, the EP obtained for

the rest of the users (second worst onwards) is significantly

inferior to the sum EP approach. Accordingly the average EP

obtained (the one shown in our results) is typically lower for

the sum EP approach. We also notice that the detection-

region based technique outperformns the technique in [40],

and CIMM in [41] at higher transmit power. Importantly, it can

be observed that our analytic SER performance calculations

match the simulated SER results. Furthermore, the proposed

sum EPs approach achieves the analytic bound of the average
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Fig. 4. SER performance versus number of users with N = 10, and
SNR= 20dB.

Fig. 5. Histogram of normalized constraint value with N = 10, K = 10
and SNR = 5dB.

SER performance. The gradient method detection-region based

approach is characterized by an error floor as it is not

guaranteed to converge. In Fig. 4, we illustrate both simulated

and analytic SER performance for increasing numbers of users

when we set the transmit SNR to be 20dB. We observe that

the SER performance of our proposed approaches are better

than the conventional approach of [6] and the gradient descent

approach given in [40], respectively. The proposed sum EPs

approach using the barrier method has the best performance.

In Fig. 5 and Fig. 6, we look at the distribution of the

received signals. We introduce the normalized constraint value

ηi =

⎧

⎨

⎩

Im(yib
∗
i )

Re(yib∗i )
Re(yib

∗
i ) > 0,

∞ otherwise,
(93)

As a measure of the resulting deviation from the angle

of the desired symbol bi, to evaluate the performance of

the different approaches. Fig. 5 displays the histograms of

ηi with K = 10 and SNR= 5dB. According to Lemma 1,

the receive signal can be correctly classified if it is within the

region between − tan θ and tan θ. As can be observed from

Fig. 5, the conventional and the worst user EP approaches

satisfy about 75% and 80% of the normalized constraints,

Fig. 6. Distribution of received signals on complex plane where N = 10,
and K = 10 with SNR= 5dB and SNR = 15dB, respectively.

Fig. 7. SER performance versus SNR with N = 10, and K = 10,
imperfect CSI.

respectively. However, the sum EPs approach achieves about

90% of the normalized constraints with normal-like distribu-

tion. Fig. 6 depicts the distribution of the received signals on

the modulation constellation using different techniques with

SNR= 5dB and SNR= 15dB. Here, we set the transmit

symbol to 1. We observe from these figures that the received

signals of our proposed methods can better center the received

symbol into the correct detective region compared to the

conventional method. We also notice that when the power

increases, our techniques can shift the received signals further

away from the decision threshold which further improves the

error rate performance.

C. Imperfect CSI

Finally, in Fig. 7 we illustrate the comparison of our

proposed schemes and the conventional scheme in [6] under

imperfect CSI. To keep the CSI imperfections generic,

we model the estimated CSI as [15], [16]

ĥT
i = hT

i + ei (94)
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where ei ∼ CN (0, a
(

P
σ2

)−1
I), and a is a constant. It can

be seen in the results that the performance of both proposed

and conventional schemes deteriorates with imperfect CSI,

while the performance gains of the proposed w.r.t. conven-

tional beamforming persist. We note however, that existing

CSI-robust approaches [31] can be adapted to the proposed

optimization, to further improve performance against CSI

errors. We designate this as the focus of our future work.

VIII. CONCLUSION

In this paper, we exploit constructive interference by making

use of CSI and data information jointly. We propose beam-

forming optimizations for QoS based on the detection regions

of the symbol constellation, in terms of the worst user EP,

and sum EPs, respectively. The detection-region based and

the worst user EP downlink beamforming are shown to be

equivalent problems. Using the sum EPs approach, we obtain

an analytic bound of the average SER performance. Simulation

results have demonstrated that our proposed methods have

substantially improved performance compared to conventional

downlink beamforming and constructive interference-based

optimizations. Our future work will focus on reducing the

complexity of the algorithm of the sum EPs approach by pro-

viding a heuristic algorithm. Other interesting research topics

are to jointly optimize beamforming and FEC for interference

exploitation, and to develop CSI-robust approaches as detailed

above. Communication theoretic future work will focus on

deriving modulation-dependent sum rate bounds for the con-

cept of interference exploitation, using finite constellation sum

rate analysis.

APPENDIX

A. Proof of Corollary 1

The dual Lagrange function is given by

L(κi, ni) = − | Im(ỹi)| + Re(ỹi) tan θ + κi(‖ni‖2 − Γ2σ2),

(95)

where ỹi = b∗i (h
T
i x̃ + ni) and κi ≥ 0. We define ni � nRi +

inIi, and bi � bRi + ibIi. By using chain rule [58] and setting
∂L

∂nRi
= 0 and ∂L

∂nIi
= 0, we get

bRi tan θ + bIiαi + 2κ⋆
i n

⋆
Ri = 0, (96a)

−bRiαi + bIi tan θ + 2κ⋆
i n

⋆
Ii = 0, (96b)

where a⋆ is the optimal value of a, and αi = Im(ỹi)/| Im(ỹi)|.
Suppose κ⋆

i = 0. Then (96) implies that bRi = bIi = 0, which

leads to the contradiction. Thus it is always true that κ⋆
i > 0

and

‖n⋆
i ‖2 = Γ2σ2 (97)

by the complementary slackness [25]. By (96), we obtain

n⋆
Ri = −(bRi tan θ + bIiαi)/2κ⋆

i , (98a)

n⋆
Ii = (bRiαi − bIi tan θ)/2κ⋆

i . (98b)

Putting (98) into (97), we can write (97) as
(bRi tan θ+bIiαi

2κ⋆
i

)2

+
(bRiαi − bIi tan θ

2κ⋆
i

)2

=Γ2σ2. (99)

Since bi is an unit power symbol, we can express (99) as

1 + tan2 θ

4κ⋆
i
2 = Γ2σ2. (100)

Thus, we have the following relation:

κ⋆
i =

1

2Γσ cos θ
. (101)

We put (101) back into (98), then we have

n⋆
Ri = −(bRi tan θ + bIiαi)Γσ cos θ, (102a)

n⋆
Ii = (bRiαi − bIi tan θ)Γσ cos θ. (102b)

Substituting (102) into problem (19), we reformulate the

constraint (19a) as

max
‖ni‖≤Γσ

| Im(ỹi))| − Re(ỹi) tan θ

= αi Im(b∗i h
T
i x̃) + αi Im(b∗i n

⋆
i )

− Re(b∗i n
⋆
i ) tan θ − Re(b∗i h

T
i x̃) tan θ

= αi Im(b∗i h
T
i x̃) − n⋆

Ri(bRi tan θ + bIiαi)

+ n⋆
Ii(bRiαi − bIi tan θ) − Re(b∗i h

T
i x̃) tan θ

= | Im(b∗i h
T
i x̃)| + Γσ/cos θ − Re(b∗i h

T
i x̃) tan θ, (103)

where Im(ỹi) and Re(b∗i h
T
i x̃) have the same sign as the noise

cannot dominate the received signal. �

B. Proof of Corollary 2

Since (Γ0,x
⋆
P (Γ0)) is a candidate solution of (29), it implies

that Γ⋆(P ⋆(Γ0)) ≥ Γ0. Suppose Γ⋆(P ⋆(Γ0)) > Γ0. Let

Γ⋆(P ⋆(Γ0)) = βΓ0 for some β > 1. By (21) and (52), it can

guarantee that

| Im(b∗i h
T
i x⋆

P (Γ0))| +
βΓ0σ

cos θ
≤ Re(b∗i h

T
i x⋆

P (Γ0)) tan θ,

(104)

‖x⋆
P (Γ0)‖2 = P ⋆(Γ0), ∀i. (105)

Let x̂ = x⋆
P (Γ0)/β. Then we can rewrite as

| Im(b∗i h
T
i x̂)| + Γ0σ/cos θ ≤ Re(b∗i h

T
i x̂) tan θ, ∀i, (106)

‖x̂‖2 = P ⋆(Γ0)/β2, (107)

which contradicts that P ⋆(Γ0) is the minimum power for the

given Γ0. Similarly, we can use the same approach to show

the second half of Corollary 2. �

C. Proof of Corollary 3

Let Γ0 be any given positive number. Since (21) has a non-

trivial solution, we obtain a solution (Γ⋆(1),x⋆
Γ(1)) of (21)

for P = 1. Then there exists P0 such that

Γ0 =
√

P0Γ
⋆(1) = Γ⋆(P0). (108)

Then by Corollary 2, we have

P ⋆(Γ0) = P ⋆(Γ⋆(P0)) = P0, (109)

x⋆
P (Γ0) = x⋆

P (Γ⋆(P0)) = x⋆
Γ(P0) =

√

P0x
⋆
Γ(1). (110)

This shows that problem (29) is feasible for the given Γ0. �
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