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Abstract—The maximum-likelihood (ML) decoder for sym-
bol detection in large multiple-input multiple-output wireless
communication systems is typically computationally prohibitive.
In this paper, we study a popular and practical alternative,
namely the Box-relaxation optimization (BRO) decoder, which
is a natural convex relaxation of the ML. For iid real Gaus-
sian channels with additive Gaussian noise, we obtain exact
asymptotic expressions for the symbol error rate (SER) of the
BRO. The formulas are particularly simple, they yield useful
insights, and they allow accurate comparisons to the matched-
filter bound (MFB) and to the zero-forcing decoder. For BPSK
signals the SER performance of the BRO is within 3dB of
the MFB for square systems, and it approaches the MFB as
the number of receive antennas grows large compared to the
number of transmit antennas. Our analysis further characterizes
the empirical density function of the solution of the BRO, and
shows that error events for any fixed number of symbols are
asymptotically independent. The fundamental tool behind the
analysis is the convex Gaussian min-max theorem.

I. INTRODUCTION

The problem of recovering an unknown vector of symbols

that belong to a finite constellation from a set of noise

corrupted linearly related measurements arises in numerous

applications, and in particular in multiple-input multiple output

(MIMO) wireless communication systems [1, 2, 3, 4]. As a re-

sult, a large host of exact and heuristic optimization algorithms

have been proposed over the years. Exact algorithms, such

as sphere decoding and its variants, become computationally

prohibitive as the problem dimension grows, a scenario that is

typical in modern massive MIMO systems, e.g., [2]. Heuristic

algorithms such as zero-forcing, MMSE, decision-feedback,

etc., [5, 6, 7, 8] have inferior performances that are often

difficult to precisely characterize. One popular heuristic is

the so called box-relaxation optimization decoder, which is

a natural convex relaxation of the maximum-likelihood (ML)

decoder, and which allows one to recover the signal via

efficient convex optimization followed by hard thresholding,

e.g., [9, 10, 11]. Despite its popularity, very little is known

analytically about the decoding performance of this method.

In this paper, we close this gap by deriving exact asymptotic

error-rate characterizations under the assumption of real Gaus-

sian wireless channel and additive Gaussian noise.
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A. Problem formulation

We consider the problem of recovering an unknown vector

x0 of n transmitted symbols each belonging to a finite constel-

lation from the noisy multiple-input multiple-output relation,

y = Ax0+z ∈ R
m, where A ∈ R

m×n is the MIMO channel

matrix (assumed to be known) and z ∈ R
m is the noise

vector. We assume iid real Gaussian channel with additive

Gaussian noise. In particular, A has entries iid N (0, 1/n) and

z has entries iid N (0, σ2). The normalization is such that the

signal-to-noise ratio (SNR) varies inversely proportional to the

noise variance σ2. We are interested in the large-system limit,

where both the number n of transmit antennas and the number

m of receive antennas are large. For simplicity of exposition

we assume, for the most part of the paper, that x0 is an n-

dimensional BPSK vector, i.e., x0 ∈ {±1}n. Extensions to

M-ary constellations are also provided.

Maximum-Likelihood decoder. The ML decoder for BPSK

signal recovery, which maximizes the block error proba-

bility (assuming the x0,i are equally likely) is given by

minx∈{±1}n ‖y−Ax‖2. Solving for the exact ML solution is

often computationally intractable, especially when n is large,

and therefore a variety of heuristics have been proposed (zero-

forcing, mmse, decision-feedback, etc.) [12, 8].

Box-relaxation optimization decoder. The heuristic we con-

sider in this paper is the box-relaxation optimization (BRO)

decoder [9, 10, 11]. It consists of two steps. The first one

involves solving a convex relaxation of the ML algorithm,

where x ∈ {±1}n is relaxed to x ∈ [−1, 1]n. The output of the

optimization is hard-thresholded in the second step to produce

the final binary estimate. Formally, the algorithm outputs an

estimate x∗ of x0 given as

x̂ = arg min
−1≤xi≤1

‖y −Ax‖2, (1a)

x∗ = sign(x̂), (1b)

where the sign(·) function returns the sign of its input and acts

element-wise on input vectors. The BRO decoder naturally

extends to the case of recovering signals from higher-order

constellations; see Section III.

Symbol error rate. We evaluate the performance of the

decoder by the symbol error rate (SER), defined as

SER :=
1

n

n∑

i=1

1{x∗
i
6=x0,i}, (2)

with 1{} used to denote the indicator function. A closely

related quantity that is also of interest is the symbol-error
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probability Pe, which is defined as the expectation of the

SER averaged over the noise, over the channel, and over the

constellation. Formally,

Pe := E [SER] =
1

n

n∑

i=1

Pr (x∗
i 6= x0,i) . (3)

B. Contribution and related work

In this paper, we derive the first rigorous precise char-

acterization of the SER for the BRO decoder in the large-

system limit, where the numbers m and n of receive and

transmit antennas grow proportionally large at a fixed rate

δ = m/n. We complement the precise error formulas with

closed-form, tight, upper and lower bounds that are simple

functions of the SNR and of δ. These bounds allow useful

insights on the decoding performance of the BRO, and they

allow a quantitative comparison to the matched-filter bound

(MFB) and to the zero-forcing (ZF) decoder. As a concrete

example, for BPSK signals the SER of the BRO at high-

SNR is Q(
√

(δ − 1/2)SNR), where the Q-function is the tail

probability of the standard normal distribution. This value is

within 3dB of the MFB for square systems, and it approaches

the MFB as m approaches n. Finally, we evaluate the large-

system empirical distribution of the output of the BRO, and we

show that error events for any fixed number of symbol-errors

are asymptotically independent.

To the best of our knowledge, a precise formula for the

SER was unknown for the BRO. We remark that the replica

method developed in statistical mechanics can be used to

give formulas for the SER of various detectors in multiuser

detection for code-division multiple access (CDMA) or mas-

sive MIMO systems. However, the replica method involves a

set of conjectured assumptions that remain mostly unverified

by rigorous means; please see [13, 8, 14] and references

therein. In contrast, our analysis is rigorous, and the techniques

used are fundamentally different. They are based on recent

advances in comparison inequalities for Gaussian processes;

in particular, the convex Gaussian min-max theorem [15, 16].

The present paper is a significantly extended version of our

conference paper in [17] 1. In a related recent line of work

[20, 21, 22], the authors have proposed and have investigated

the performance of a new class of iterative decoding methods

for signal detection in large MIMO systems, which rely

on approximate message passing (AMP) [23]. The decoding

methods that these papers discuss are different than the BRO

decoder, and the analysis tools used are also different than

the ones presented here. Interestingly, after our paper [17]

appeared, the authors of [22] used our results to show that their

proposed algorithm achieves the same error-rate performance

as the BRO decoder.

C. Paper Organization

In Section II we analyze the performance of the BRO for

BPSK signals. The main theorem of this section, namely

1The analysis framework that we present here is general and can be used
to analyze the performance of other decoders as well. For example, see our
recent papers with co-authors [18, 19], which build upon the framework of
this work.

Theorem II.1, characterizes the SER and leads to an accurate

comparison of the BRO to the MFB and to the ZF decoder.

We extend the results to M-PAM constellations in Section III.

Section IV includes the main technical result of the paper,

namely Theorem IV.1, as well as its detailed proof. The paper

concludes in Section V with a discussion on future research

directions. Finally, some technical proofs are deferred to the

Appendix.

II. THE BRO DECODER FOR BPSK SIGNALS

We precisely analyze the error-rate performance of the BRO

decoder for BPSK signals. Our main Theorem II.1 in Section

II-A evaluates its symbol error rate, and simple, closed-form

(upper and lower) bounds are computed in Section II-B. In

Sections II-C and II-D we use these bounds to compare the

BRO decoder to the matched-filter bound, and to the zero-

forcing decoder, respectively.

A. Precise SER performance

Our main result explicitly characterizes the limiting behav-

ior of the SER of the BRO in (1), under a large-system limit

in which m,n→ +∞ at a proportional (constant) rate δ > 0.

The SNR is assumed constant; in particular, it does not scale

with n. Note that for x0 ∈ {±1}n, SNR = 1/σ2.

We use standard notation plimn→∞Xn = X to denote that

a sequence of random variables Xn converges in probability

towards a constant X . All limits will be taken in the regime

m,n → +∞,m/n = δ; to keep notation short we simply

write n→ ∞. Finally, we use Q(·) denote the Q-function as-

sociated with the standard normal density p(h) = 1√
2π

e−h2/2.

Theorem II.1 (SER for BPSK signals). Let SER denote the

symbol-error-rate of the box-relaxation optimization decoder

in (1), for some fixed but unknown BPSK signal x0 ∈ {±1}n.

Fix a constant SNR and a constant δ ∈ ( 12 ,+∞). Then, in

the limit of m,n→ +∞, m/n = δ, it holds:

plim
n→∞

SER = Q

(
1

τ∗

)

,

where τ∗ is the unique positive minimizer of the strictly convex

function F : (0,+∞) → R defined as:

F (τ) := τ
(
δ − 1

2

)
+

1/SNR

τ
+
(

τ +
4

τ

)

Q

(
2

τ

)

−
√

2

π
e−

2

τ2 .

(4)

The theorem explicitly characterizes the high-probability

limit of the SER over the randomness of the channel matrix

A, and of the noise vector z. The function F (τ) in (4) is

deterministic, strictly convex, and is parametrized by the value

of the SNR and by the proportionality factor δ.

The proof of the theorem uses the convex Gaussian min-max

theorem (CGMT) [15, 16], which has thus far found major

use in precisely quantifying the squared-error performance

of regularized M-estimators in high-dimensions, such as the

LASSO [16]. In this paper we extend the applicability of the

CGMT to the characterization of the SER performance, to

arrive to Theorem II.1. More than that, along the way we
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Fig. 1: Symbol-error probability of the BRO as a function of

SNR for different values of the ratio δ of receive to transmit

antennas. The theoretical prediction follows from Theorem

II.1. For the simulations, we used n = 512. The data are

sample averages of the SER over 20 independent realizations

of the channel matrix and of the noise vector for each value

of the SNR.

prove a number of even stronger statements regarding the error

performance of the BRO. We:

(i) establish the large-system error performance of the BRO

for a wide class of performance metrics; this class

includes the squared-error and the SER as special cases.

(ii) explicitly characterize the limiting empirical distribution

of the output x̂ of (1a).

(iii) show that error events for any fixed number of bits are

asymptotically independent.

Please refer to Theorem IV.1 and to Corollary IV.1 for the

formal statements of these results. The detailed proof of

Theorem II.1 is also deferred to Section IV.

Some further remarks on Theorem II.1 are given below.

1) On δ > 1
2 : The theorem holds as long as the ratio of

proportionality δ is (strictly) greater than 1/2. To begin with,

note that this allows for the number of receive antennas to

be less than the number of transmit antennas, and as low

as (almost) half of them. When δ < 1 the system of linear

equations y = Ax is underdetermined; hence, recovering the

true solution is generally ill-posed even in the the absence

of noise. However, in the problem of interest it is a-priori

known that the true solution x0 only takes values {±1}n.

The BRO decoder uses that information by enforcing an

ℓ∞-norm constraint in (1a). Of course, this idea of using

convex optimization with (typically non-smooth) constraints

that promote the particular structure of the unknown signal

x0 to solve underdetermined system of equations, is one of

the core ideas that emerged from the Compressed Sensing

literature (e.g. [24]). In fact, it is by now well-understood

that in the noiseless case the program in (1a) successfully

recovers the true x0 ∈ {±1}n with high probability over the

randomness of A if and only if δ > 1/2 ([24, 25]). The

same necessary condition naturally arises out of our proof of

Theorem II.1.

2) Probability of error: Recall from (3) that the symbol-

error probability is given as Pe = E[SER]. Also, the SER is

bounded between 0 and 1. Thus, using Theorem II.1 we show

in Appendix A1 that Pe converges (deterministically) to the

same value Q(1/τ∗).

Corollary II.1 (Pe). Under the setting of Theorem II.1, let Pe

denote the symbol-error probability of the BRO and τ∗ be the

minimizer of (4). Then,

lim
n→∞

Pe = Q (1/τ∗) .

3) Solving for τ∗: In order to evaluate the large-system

limit of the SER, one needs to compute the unique positive

minimizer of F (τ) in (4). The function F is strictly convex,

hence this can be done numerically in an efficient way. Due

to convexity, τ∗ can also be described as the unique solution

to the first order optimality conditions of the minimization

program (see Lemma A.2). By further analyzing the properties

of τ∗, we derive in Section II-B simple closed-form (upper and

lower) bounds on the quantity of interest, namely Q(1/τ∗).

4) Numerical illustration: Figure 1 illustrates the accuracy

of the prediction of Theorem II.1. Note that although the

theorem requires n → ∞, the prediction is already accurate

for n on the scale of a few hundreds.

B. Simple bounds and high-SNR regime

We derive simple, closed-form upper and lower bounds on

Q(1/τ∗), the limiting value of the SER. We further show that

these bounds are tight. The proof is deferred to Appendix A2.

Theorem II.2 (Closed-form bounds). Let τ∗ be the unique

minimizer of (4). Then, for all values of δ > 1/2 and all

values of SNR > 0, it holds,

Q(
√
δ · SNR) < Q(1/τ∗) ≤ Q(

√

(δ − 1/2) · SNR). (5)

Furthermore, the upper bound becomes tight as SNR → +∞.

In view of Theorem II.1, the statement in (5) directly

establishes upper and lower bounds on the (asymptotic) SER
performance of the BRO. These bounds are given in closed-

form and are simple functions of δ and of SNR.

As stated in the theorem, the upper bound in (5) becomes

tight in the high-SNR regime. Hence, for SNR ≫ 1, in the

limit of n→ ∞,

SER ≈ Q(
√

(δ − 1/2) · SNR). (6)

A formal statement of this result is given in Theorem A.1 in

Appendix A2. The fact that τ∗ ≈ 1/
√

(δ − 1/2)SNR when

SNR ≫ 1, can be intuitively understood as follows: at high-

SNR we expect τ∗ to be going to zero (correspondingly SER
or Q(1/τ∗) to be small). When this is the case, the last two

summands in (4) are negligible; then, τ∗ is the solution to

minτ>0 τ
(
δ − 1

2

)
+ 1/SNR

τ , which gives the derided result.

For illustration, in Figure 2 we have plotted the high-

SNR expression for the SER in (6) versus its exact value as

predicted by Theorem II.1. It is seen that, as already discussed,
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Fig. 2: Symbol-error probability of the BRO (in red, see

Theorem II.1) in comparison to high-SNR approximation (in

green, see (6)) and to the matched filter bound (in blue, see

(7)), for δ = 0.7 (dashed lines) and δ = 1 (solid lines).

Theorem II.2 successfully predicts that the red curves are

sandwiched between the corresponding green (upper-bound)

and blue ones (lower-bound).

the high-SNR expression is an upper bound, and in fact a good

proxy, for the true probability of error at all values of SNR.

The approximation becomes better with increasing δ.

Finally, in Section II-C, we show that the lower bound

Q(
√
δ · SNR) has an operational meaning: it is equal to the

bit error probability of an isolated bit transmission over the

channel, which is also known as the matched filter bound in

digital communications.

C. Comparison to the matched filter bound

Here, we compare the performance of the BRO to an

idealistic case, where all n−1, but 1, bits of x0 are known to

us. As is customary in the field, we refer to the symbol error

probability of this case as the matched filter bound (MFB) and

denote it by PMFB
e . The MFB corresponds to the probability

of error in detecting (say) x0,n ∈ {±1} from: ỹ = x0,nan+z,
where ỹ = y − ∑n−1

i=1 x0,iai is assumed known, and, ai
denotes the ith column of A. (This can be equivalently thought

of as the error probability of an isolated transmission of only

the last bit over the channel.) The ML estimate is equal to the

sign of the projection of the vector ỹ to the direction of an.

Without loss of generality we assume that x0,n = +1. Then,

the output of the matched filter becomes sign(X̃), where

X̃ = ‖an‖2 + σ2z̃n,

and z̃n ∼ N (0, 1). Recall that the entries of the m-

dimensional vector an are iid N (0, 1/n), so it holds

plimn→∞ ‖an‖ = δ. Hence,

lim
n→∞

PMFB
e = lim

n→∞
P(X̃ < 0) = Q(

√
δ · SNR). (7)

First, observe that this formula coincides with the lower

bound on the probability of error of the BRO derived in

Theorem II.2. Combined, they establish formally that the MFB

is (strictly) better than the BRO. Of course, this is naturally

expected since the former is an idealistic scheme.

Next, when compared to the upper-bound on the probability

of error of the BRO derived in Theorem II.2, the formula in

(7), leads to the following conclusion:

The BRO achieves a desired symbol-error probability at a

higher SNR value by at most 10 log10
δ

δ−1/2dB than that

predicted by the MFB.

In particular, in the square case (δ = 1), where the number

of receive and transmit antennas are the same, the BRO

is 3dB off the MFB (cf., Figure 2). When the number of

receive antennas is much larger, i.e., when δ ≫ 1, then the

performance of the BRO approaches the MFB.

D. Box-relaxation vs Zero-forcing

In this section, we use Theorem II.1 to compare the perfor-

mance of the BRO to another widely used decoder, namely the

zero-forcing (ZF) decoder. The ZF decoder obtains an estimate

x∗
ZF of x0 as follows

x̂ZF = arg min
x∈Rn

‖y −Ax‖2, (8a)

x∗
ZF = sign(x̂ZF). (8b)

Observe that this is very similar to the BRO, only that in

(8a) the minimization is unconstrained. Therefore, in contrast

to the BRO, for the ZF decoder we require δ > 1, i.e., the

number of receive antennas be larger than the number of

transmit antennas. When this is the case and n is large, A is

full column-rank with probability one, and (8a) has a unique

closed-form solution:

x̂ZF = (ATA)−1ATy. (9)

In particular, it is a well-known result in the literature how

to use standard tools from random matrix theory to derive

the symbol-error probability of the ZF decoder (e.g. [7]). For

convenience of the reader, we briefly summarize the main idea

here. Without loss of generality, consider the last bit xn of x.

Further let A = QR be the QR decomposition of A, such

that Q ∈ R
m×n is a matrix with orthogonal columns and R ∈

R
n×n is upper triangular. Define ỹ := QTy and z̃ := QT z

and note that

ỹn = Rnnxn + z̃n,

where Rnn is the nth diagonal element of R. From the

rotational invariance of the Gaussian distribution, it holds

z̃n ∼ N (0, σ2). Next, we use the following well-known facts,

e.g., [7, Lem. 1]: (i) Q and R are independent matrices. Hence,

z̃n is independent of Rnn; (ii) Rnn is such that nR2
nn is χ2

random variable with (m− n+ 1) degrees of freedom. Thus,

by the corresponding formula for BPSK single-input single-

output (SISO) Gaussian channel, the symbol-error probability

of the zero-forcing decoder is

PZF
e = Eγ1,...,γm−n+1

[

Q
(

√

1
n

∑m−n+1
i=1 γ2i
σ2

)]

,
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where γi’s are iid standard Gaussians N (0, 1). But,

plimn→∞
∑m−n+1

i=1
γ2
i

n = (δ − 1), giving

lim
n→∞

PZF
e = Q(

√

(δ − 1) · SNR). (10)

Comparing this formula to the upper bound on the probabil-

ity of error of the BRO derived in Theorem II.2, we formally

quantify the superiority of the BRO over the ZF decoder:

The BRO achieves the same performance as the ZF decoder

at a lower SNR value by at least 10 log10

(
δ− 1

2

δ−1

)

dB .

This holds for δ > 1. However, Theorem II.1 further shows

that the BRO can successfully decode even when δ < 1, and

in particular as low as 1/2.

Above, we derived formula (10) using tools from random

matrix theory. Alternatively, we can obtain the same result

using the CGMT, and the proof technique is very similar to

that of Theorem II.1. The use of random-matrix-theory tools

for the analysis of the ZF decoder is in large possible because

the minimizer x̂ZF of (8a) can be expressed in closed-form as

a function of A and z (see (9)). On the contrary, this is not

the case with the BRO decoder and the use of the CGMT is

critical for establishing Theorem II.1.

III. EXTENSION TO M-PAM CONSTELLATIONS

A. Setting

Each transmit antenna sends a symbol x0,i that take values

x0,i ∈ C := {±1,±3, . . . ,±(M − 1)},
for some M = 2b and b a positive integer. When each antenna

transmits a single bit, i.e. b = 1, then x0 ∈ {±1}n and the

setting is the same as in Section II. As always, we assume

additive Gaussian noise of variance σ2.

The ML decoder is given by minx∈Cn ‖y − Ax‖2, but

it is often computationally intractable for large number of

receive/transmit antennas. We consider, the natural extension

of the box-relaxation decoder for BPSK in (1). Specifically,

for M-PAM symbol transmission, the BRO outputs an estimate

x∗ of x0 as follows:

x̂ = arg min
−(M−1)≤xi≤(M−1)

‖y −Ax‖2, (11a)

x∗
i = argmin

c∈C
|x̂i − c|. (11b)

The optimization in (11a) is convex, and (11b) simply selects

the symbol value c that is closest to the solution x̂i among

a total of M choices: {±1,±3, . . . ,±(M − 1)}. Therefore,

the proposed decoder is computationally efficient. In the next

section, we evaluate its error-rate performance.

B. SER performance

Theorem III.1 below precisely characterizes the large-

system limit of the SER of the BRO in (11) under an M-PAM

transmission. We assume that a typical sequence of symbols is

sent over the channel, i.e., each transmitted symbol x0,i takes

values {±1,±3, . . . ,±(M − 1)} with equal probability 1/M .

The result extends to other distributions over the constellation,

5 10 15 20
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0
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theory

BPSK

4-PAM

8-PAM

Fig. 3: Symbol error probability of the Box Relaxation Opti-

mization (BRO) in (11) as a function of the SNR for BPSK,

4-PAM and 8-PAM signals. The theoretical prediction follows

from Theorem III.1. For the simulations, we used n = 512

and δ = 1.2. The data are averages over 20 independent

realizations of the channel matrix and of the noise vector for

each value of the SNR.

but for simplicity we focus on this typical case. For a typical

sequence, the average power of the transmitted vector x0 is

E[x2
0,i] = (2/M)

∑

i=1,3...,M−1

i2 = (M2 − 1)/3.

Therefore, the SNR of the system becomes

SNR = (M2 − 1)/3σ2. (12)

Theorem III.1 (SER for M-PAM). Let SER denote the

symbol error rate of the detection scheme in (11), for a typical

transmitted signal x0 such that each symbol x0,i takes values

{±1,±3, . . . ,±(M − 1)} with equal probability 1/M . Fix

a constant noise variance σ2 (eqv., a constant SNR as in

(12)) and a constant δ ∈ (1− 1
M ,+∞). Then, in the limit of

m,n→ ∞, m/n = δ, it holds:

plim
n→∞

SER = 2

(

1− 1

M

)

Q

(
1

τ∗

)

,

where τ∗ is the unique positive minimizer of the strictly convex

function FM : (0,+∞) → R defined as:

FM (τ) :=
τ

2

(

δ − M − 1

M

)

+
σ2

2τ
+

1

M

∑

k=2,4,...,2(M−1)

S(τ ; k),

(13)

with,

S(τ ; k) :=

(

τ +
k2

τ

)

Q

(
k

τ

)

− k√
2π
e−

k2

2τ2 . (14)

Theorem III.1 generalizes Theorem II.1, and the former

reproduces the latter for M = 2. Figure 3 illustrates the

accuracy of the prediction. The proof of the theorem is defered

to Appendix C.



6

Most of the remarks that followed the statement of Theorem

II.1 in Section II, are readily extended to general M-PAM

constellations. The guarantees of Theorem III.1 hold as long

as the ratio of transmit to receive antennas δ is larger than

1−1/M . Thus, successful transmission is possible with fewer

number of receive than transmit antennas. The minimum

allowed ratio increases for higher-order constellations. Similar

to Theorem II.2, we can show the following simple upper

bound on probability of error Pe for all values of SNR:

lim
n→∞

Pe ≤ 2
(

1− 1

M

)

Q

(√
(

δ − 1 +
1

M

)( 3

M2 − 1

)

SNR

)

.

(15)

Moreover, the bound is tight at high-SNR. Of course, for M =
2, this coincides with the upper bound in (5).

IV. PROOF OF MAIN RESULT

This section includes the proof of Theorem II.1. In fact,

towards proving the theorem, we obtain a more general result

which is stated as Theorem IV.1 below.

For simplicity, we make use of the following notation

onwards. We say that an event E holds with probability

approaching 1 (w.p.a.1) if limn→∞ P(E) = 1. Also, we use

the following shorthands: Xn
P−→ X to denote convergence

in probability; X
d
= Y to denote that the random variables

X and Y have the same distribution; and, ‖ · ‖ to denote the

n-dimensional Euclidean norm.

A. Main technical result

As far as the performance is concerned, we can assume

without loss of generality that x0 = +1n = (1, 1, . . . , 1).
Also, it is convenient to re-write (1a) by changing the variable

to the error vector w := x− x0 = x− 1:

ŵ := arg min
−2≤wi≤0

‖z−Aw‖. (16)

Then, observe that the SER defined in (2) is written in terms
of the error vector w as:

SER =
1

n

n∑

i=1

1{ŵi≤−1}. (17)

The following theorem characterizes the limit of the empir-

ical distribution of the optimal solution ŵ in (16), and yields

Theorem II.1 as a corollary.

Theorem IV.1 (Lipschitz metrics and empirical distribution).

Recall the definition of τ∗ in Theorem II.1, and assume, without

loss of generality, that x0 = +1. Let ŵ be as in (16) and

consider its (normalized) empirical density function

µŵ := n−1
n∑

i=1

δŵi
.

Further, consider the function θ : R → [−2, 0]:

θ(γ) :=







0 , if γ ≥ 0,

τ∗γ , if − 2
τ∗

≤ γ < 0,

−2 , if γ < − 2
τ∗
,
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Fig. 4: Empirical distribution of the error vector w := x̂−x0

(conditioned on x0 = +1) for the solution x̂ of the BRO. The

empirical histograms shown are averages over 200 realizations

of the channel matrix and of the noise vector for n = 256
number of transmit antennas. They are compared to the

asymptotic limiting distribution predicted by Theorem IV.1,

see (18). The limiting density is supported in the interval

[−2, 0] and has point masses both at −2 and 0. Different values

of δ and of SNR are shown.

and let µW be the density measure of a random variable W

W
d
= θ(N (0, 1)). (18)

The following are true:

(a). µw̃ converges weakly in probability to µW . 2

(b). For all Lipschitz functions ψ : R → R with Lipschitz

constant L (independent of n), it holds

1

n

n∑

i=1

ψ(ŵi)
P−→ EW [ψ(W )].

Theorem IV.1 is the main technical result of this paper. In

Section IV-B we show how it can be used to prove Theorem

II.1. Next, in Section IV-C we rely again on Theorem IV.1

to prove that error events for any fixed number of bits are

asymptotically independent. The rest of Section IV is devoted

to the proof of Theorem IV.1.

B. Proof of Theorem II.1

On the one hand, by (17), it suffices to prove that
1
n

∑n
i=1 1{ŵi≤−1}

P−→ Q(1/τ∗). On the other hand, it is easily

checked that EW [1{W≤−1}] = Eγ∼N (0,1)[1{γ≤−1/τ∗}] =
Q(1/τ∗). Note that the indicator function 1{W≤−1} is not Lip-

schitz, so we cannot directly apply Theorem IV.1(b). However,

since the discontinuity point (i.e., −1) of the indicator function

has µW -measure zero, and also W is a continuous random

variable, one can appropriately approximate the indicator

with Lipschitz functions and conclude the desired based on

Theorem IV.1(b). This is a somewhat standard argument, but

2Note that µ
w̃

defines a (sequence of) random probability measure(s); on
the other hand, µW is a deterministic measure. We use terminology that is
standard in the theory of random matrices and say that a sequence of random
measures µn converges weakly to a deterministic measure µ if for every

continuous compactly supported ψ:
∫
ψdµn

P
−→

∫
ψdµ (see for example

[26, pg. 160]).
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we reproduce a detailed proof of the claim in Lemma A.3 in

Appendix B for completeness.

C. Independence of Error Events

Here, we obtain as a corollary of Theorem IV.1 that error

events for any fixed number of bits are asymptotically inde-

pendent. We defer the proof of the corollary to Appendix B2.

Corollary IV.1 (Independence of error events). Under the

notation and definition of Theorem IV.1, let ψi : R → R, i =
1, . . . , k be bounded Lipschitz functions for fixed k ≥ 2. Then,

it holds

n−k
∑

1≤i1,...,ik≤n

ψ1(ŵi1) · · ·ψk(ŵik)
P−→

k∏

ℓ=1

E[ψℓ(Wℓ)],

where the expectations of the right-hand side are with respect

to W1, . . . ,Wk that are iid random variables distributed as

θ(N (0, 1)). Moreover, it holds

n−k
∑

1≤i1,...,ik≤n

1{ŵi1
≤−1,...,ŵik

≤−1}
P−→ (Q(1/τ∗))

k.

D. The convex Gaussian min-max theorem

The fundamental tool behind our analysis is the convex

Gaussian min-max theorem (CGMT) [16, 15]. The CGMT

associates with a primary optimization (PO) problem a sim-

plified auxiliary optimization (AO) problem from which we

can tightly infer properties of the original (PO), such as the

optimal cost, the optimal solution, etc.. In particular, the (PO)

and (AO) problems are defined respectively as follows:

Φ(G) := min
w∈Sw

max
u∈Su

uTGw + ψ(w,u), (19a)

φ(g,h) := min
w∈Sw

max
u∈Su

‖w‖gTu− ‖u‖hTw + ψ(w,u),

(19b)

where G ∈ R
m×n,g ∈ R

m,h ∈ R
n, Sw ⊂ R

n,Su ⊂ R
m

and ψ : R
n × R

m → R. Denote wΦ := wΦ(G) and

wφ := wφ(g,h) any optimal minimizers in (19a) and (19b),

respectively. Further let Sw,Su be convex and compact sets,

ψ be continuous and convex-concave on Sw × Su, and, G,g
and h all have entries iid standard normal.

Theorem IV.2 (CGMT, [16]). Let S be an arbitrary open

subset of Sw and Sc = Sw/S . Denote φSc(g,h) the optimal

cost of the optimization in (19b), when the minimization over

w is now constrained over w ∈ Sc. Suppose there exist

constants φ and η > 0 such that in the limit of n → +∞ it

holds w.p.a.1: (i) φ(g,h) ≤ φ+η, and, (ii) φSc(g,h) ≥ φ+2η.

Then, limn→∞ Pr(wΦ ∈ S) = 1.

It is not hard to argue that the conditions (i) and (ii)

regarding the optimal cost of the (AO) imply the following

for its solution: wφ ∈ S w.p.a.1. The non-trivial and powerful

part of the theorem is that the same conclusion is true for

the optimal solution wΦ of the (PO) as well. The CGMT

builds upon a classical result due to Gordon [27]. Gordon’s

original result is classically used to establish non-asymptotic

probabilistic lower bounds on the minimum singular value of

Gaussian matrices [28], and has a number of other applications

in high-dimensional convex geometry [29, 30]. The idea of

combining the GMT with convexity is attributed to Stojnic

[31]. Thrampoulidis et. al. built and significantly extended on

this idea arriving at the CGMT as it appears in [16, Thm. 6.1].

E. Proof of Theorem IV.1

1) Strategy: We will first prove Theorem IV.1(b); Part (a)

will then follow by standard arguments from the theory of

weak convergence.

As mentioned the proof is based on the use of the CGMT.

The first step is to identify the (PO) and the (AO), such that

ŵ is optimal for the (PO). Then, our goal is to apply Theorem

IV.2 to the following set

Sǫ := {v :
∣
∣n−1

n∑

i=1

ψ(vi)− EW [ψ(W )]
∣
∣ < ǫ}, (20)

where ǫ > 0 is arbitrary. To see that this is desired note

that if for all ǫ > 0 it holds w ∈ Sǫ w.p.a.1, then

n−1
∑n

i=1 ψ(wi)
P−→ EW [ψ(W )]. Thus, the bulk of the proof

amounts to checking that the conditions of Theorem IV.2 are

satisfied for Sǫ in (20). For the rest of the proof, we fix ǫ > 0
and denote S := Sǫ, for convenience

2) Identifying the (PO) and the (AO): Using the CGMT

for the analysis of the SER, requires as a first step expressing

the optimization in (1a) in the form of a (PO) as it appears in

(19a). It is easy to see that (16) is equivalent to

1√
n

min
−2≤wi≤0

max
‖u‖≤1

uTAw − uT z. (21)

Observe that the constraint sets above are both convex and

compact; also, the objective function is convex in w and

concave in u. These are consistent with the requirements of

the CGMT. The corresponding (AO) problem becomes:

φ(g,h) :=
1

n
min

−2≤wi≤0
max
‖u‖≤1

(‖w‖g −√
nz)Tu− ‖u‖hTw.

(22)

Note the normalization to account for the variance of the

entries of A. Onwards, we refer to the optimization in (22) as

the (AO) problem.

3) Simplifying the (AO): We begin by simplifying the (AO)

problem as it appears in (22). First, since both g and z have

entries iid Gaussian, then, the vector ‖w‖g−√
nz has entries

iid N (0,
√

‖w‖2 + nσ2). Hence, for our purposes and using

some abuse of notation so that g continues to denote a vector

with iid standard normal entries, the first term in (22) can be

treated as
√

‖w‖2 + nσ2gTu, instead. As a next step, fix the

norm of u to say ‖u‖ = β. Optimizing over its direction is

now straightforward, and gives

min
−2≤wi≤0

max
0≤β≤1

β

n

(√

‖w‖2 + nσ2‖g‖ − hTw
)

.

In fact, it is easy to now further optimize over β as well: its

optimizing value is 1 if the term in the parenthesis is non-
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negative, and, is 0 otherwise. With this, the (AO) simplifies to

the following:

φ(g,h) = min
−2≤wi≤0

(
√

‖w‖2
n

+ σ2
‖g‖√
n

− 1

n
hTw

)

+
, (23)

where we used the notation (·)+ := max{·, 0}.

In order to perform the optimization over w, we will express

the “square-root term” χ := χ(w) :=
√

‖w‖2/n+ σ2 in a

variational form. First, observe that all w ∈ [−2, 0]n satisfy

σ2 ≤ χ ≤ 4 + σ2 := T . Hence, we can write

χ = min
0≤τ≤T

τ

2
+
χ2

2τ
.

With this trick, the minimization over the entries of w becomes

separable as follows:

min
0≤τ≤T

τ‖g‖
2
√
n

+
σ2‖g‖
2τ

√
n

+
1

n

n∑

i=1

min
−2≤wi≤0

{ ‖g‖
2τ

√
n
w2

i − hiwi

}

.

(24)

In particular, the optimal w̃i := w̃i(g,h) of (22) satisfies

w̃i =







0 , if hi ≥ 0,
τ̃
√
n

‖g‖ hi , if − 2‖g‖
τ̃
√
n
≤ hi < 0,

−2 , if hi < − 2‖g‖
τ̃
√
n
.

(25)

where, τ̃ := τ̃(g,h) is the solution to the following:

φ(g,h) =
(

min
0≤τ≤T

τ‖g‖
2
√
n

+
σ2‖g‖
2τ

√
n

+
1

n

n∑

i=1

υn

(
τ
√
n

‖g‖ ;hi

))

+
,

(26)

with, υn :

υn(α;h) :=







0 , if h ≥ 0,

−α
2 h

2 , if − 2
α ≤ h < 0,

2
α + 2h , if h ≤ − 2

α ,

for all α > 0 and h ∈ R. We remark that the minimization in

(26) is convex. (The easiest way to see this is noting that the

objective function in (24) is jointly convex in w and τ ).

4) Convergence properties of the (AO): Now that the (AO)

is simplified as in (26), we study here its behavior in the limit

of m,n→ ∞ with m/n = δ.

First, we compute the point-wise (in τ ) limit of the objective

function in (26). Clearly,

‖g‖/√n P−→
√
δ. (27)

Also, conditioned on the value of n−1/2‖g‖, the random vari-

able
∑n

i=1 υn(τ
√
n/‖g‖;hi) is a sum of absolutely integrable

iid random variables. Hence, combining the WLLN with (27)

it follows that, for all τ > 0,

1

n

n∑

i=1

υn

(
τ
√
n

‖g‖ ;hi

)

P−→ Y

(
τ√
δ

)

where,

Y (α) := −α
2

∫ 2
α

0

h2p(h)dh+
2

α
Q

(
2

α

)

− 2

∫ ∞

2
α

hp(h)dh

= −α
4
+
α

2

∫ ∞

2
α

(

h− 2

α

)2

p(h)dh. (28)

Next, the point-wise convergence implies uniform conver-

gence, thanks to convexity. This follows from [32, Cor.. II.1],

which is also known in the literature of estimation theory as the

convexity lemma: point wise convergence of convex functions

implies uniform convergence in compact subsets (see also [33,

Lem. 7.75]). Hence, the random optimization in (26) converges

to the following deterministic optimization (for convenience

we rescale the optimization variable τ as follows: τ := τ√
δ

):

φ := min
0≤τ≤(T/

√
δ)

τδ

2
+
σ2

2τ
+ Y (τ). (29)

Expanding the square in the second summand in (28) and

applying integration by parts, it can be checked that the

objective function in (29) is exactly 2F (τ), where F (τ) is

defined in (4).

When δ > 1/2, all summands in the objective function

in (29) are non-negative for all τ > 0. Thus, φ ≥ 0, and

consequently (recall (26)),

φ(g,h)
P−→ φ. (30)

We remark that the objective function in (29) is strictly

convex in the optimization variable τ . (Its convexity follows

directly as it is the point-wise limit of convex functions in

(26), which is known to be convex. Alternatively, and to

further check strict convexity, it can be shown that the second

derivative is positive.) Hence, there is a unique minimizer, call

it τ∗. With these, it only takes a standard argument (e.g., see

[34, Thm. 2.1]) to further conclude that the minimizer τ̃(g,h)
of (26) converges in probability to τ∗

√
δ, i.e.

δ−1/2τ̃(g,h)
P−→ τ∗. (31)

5) The optimal solution of the (AO): We now have all the

tools necessary to study the properties of the optimal solution

w̃ of the (AO). The lemma below establishes that for Lipschitz

functions, w̃ ∈ S (recall the definition of S in (20)).

Lemma IV.1 (Lipschitz convergence of the (AO)). Let ψ :
R → R be L-Lipschitz, w̃ = w̃(g,h) as in (25), and random

variable W as in the statement of Theorem IV.1. It holds,
1
n

∑n
i=1 ψ(w̃i)

P−→ EW [ψ(W )].

Proof. For i = 1, . . . , n, define vi := θ(hi) (recall the

definition of θ in the statement of Theorem IV.1). The WLLN

gives

n−1
n∑

i=1

ψ(vi)
P−→ Eγ∼N (0,1)[ψ(θ(γ))] = EW [ψ(W )], (32)

where we also used the Gaussianity of hi and (18). Hence, it

will sufficec for the proof to show that |n−1
∑n

i=1(ψ(w̃i) −
ψ(vi))| P−→ 0. We show this using the Lipschitz assumption

and (31). First, by the Lipschitz property:

|ψ(w̃i)− ψ(vi)| ≤ L|w̃i − vi|. (33)

Next, the expression of w̃ in (25), along with (27) and with

(31), they can be used to show that the RHS in (33) is

appropriately small. Formally, writing ξ := ξ(g,h) = τ̃
√
n

‖g‖
for simplicity, it follows from the continuous mapping theorem
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that for some η > 0 (the value of which to be chosen later) we

have w.p.a.1: |ξ− τ∗| ≤ η, and, | 2ξ − 2
τ∗
| ≤ η. Hence, w.p.a.1:

|w̃i − vi| ≤ max
{

|τ∗ − ξ||hi|1{hi≥max {−2/τ∗,−2/ξ}},

|τ∗hi + 2|1{−2/τ∗≤hi≤−2/ξ},

|ξhi + 2|1{−2/ξ≤hi≤−2/τ∗}
}

≤ η(η + 2/τ∗) + η + η(η + τ∗).

For any ζ > 0, choose η = min{
√
ζ
2 , ζ

4 (
1
τ∗

+ 1+τ∗
2 )}, such

that in view of (33) |ψ(w̃i)− ψ(vi)| ≤ Lζ, which completes

the proof.

6) Satisfying the conditions of the CGMT: The following

result uses Lemma IV.1 and strong-convexity of the (AO) to

show that the optimal cost of the (AO) strictly increases when

the optimization is constrained outside the set S defined in

(20). The proof is deferred to Appendix B3.

Lemma IV.2 (Strong convexity of the (AO)). Let ψ : R → R

be L-Lipschitz, W a random variable as in the statement of

Theorem IV.1, and S := Sǫ the set defined in (20). Finally,

denote f(w) := f(w;g,h) the objective function in (23).

There exists constant C > 0, such that the following statement

holds w.p.a.1,

min
w∈[−2,0]n

w∈Sc

f(w;g,h) ≥ φ(g,h) +
Cǫ

L
.

The lemma above essentially verifies conditions (i) and (ii)

of the CGMT Theorem IV.2. To be specific, let C as in the

statement of Lemma IV.2, φ as in (29), and, choose η := Cǫ
3L .

From (30) it holds w.p.a.1: |φ(g,h) − φ| ≤ η. Combine this

with Lemma IV.2 to conclude that φSc(g,h) ≥ φ+2η w.p.a.1,

as desired.

7) Completing the proof: At the end of last section we

showed that the conditions of the CGMT Theorem IV.2 are

satisfied. Hence, its application yields that any minimizer ŵ

of the (PO) in (16) satisfies ŵ ∈ Sǫ w.p.a.1. This proves part

(b) of Theorem IV.1. It remains to prove Part (a). Recall the

note in Footnote 2: it suffices to prove that

1

n

n∑

i=1

ψ(ŵi)
P−→ EW [ψ(W )], (34)

for all continuous functions with compact support. Of course,

the statement in (34) is true for Lipschitz continuous functions

from part (b) of the theorem. But, continuous compactly

supported functions are also bounded. The implication from

Lipschitz bounded functions to continuous bounded functions

is standard and is part of what is known in the literature as

the Portmanteau Theorem; see for example [35, Thm. 13.16].

V. DISCUSSION AND FUTURE WORK

In this paper we have used the recently developed CGMT

framework in [15, 16] to precisely compute the large-system

error-rate performance of the popular box-relaxation optimiza-

tion method for recovering signals from M-ary constellations,

when the channel matrix and additive noise are both iid real

Gaussians. The derived formulas were previously unknown.

Also, the CGMT was previously only used to analyze squared-

error performance; here, we illustrate for the first time its use

to analyze the error-rate performance of convex optimization-

based massive MIMO decoders.

In future work, we seek to extend the analysis to complex

Gaussian channels with symbols originating from complex-

valued constellations. At its core, this task requires extending

the CGMT to complex-valued Gaussian matrices, an extension

that is currently unavailable; thus, it poses a challenging, yet

practically important, research direction. What appears more

accessible is establishing the universality of our results for iid

channels beyond Gaussians. We believe that this is possible

by combining the ideas of our paper for extended use of the

CGMT with the techniques in [36], where the universality

property has been proven for the squared-error (rather than

for the symbol-error-rate).

For BPSK signal recovery using the BRO, we proved in

Corollary IV.1 that error events for any fixed number of bits

in the solution of the BRO are iid. This fact has potentially

significant consequences to be explored. For example, it im-

plies that, when a block of data is in error, only a few of its

bits are. This means that the output of the BRO can be used

by various local methods to further reduce the SER. We are

planning to explore such implications further in future work.
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APPENDIX

A. Supplementary proofs for Section II

1) Corollary II.1: The corollary follows from Theorem II.1

when combined with the following statement, which we prove

here:“If SER(A, z)
P−→ c, for some deterministic constant c,

then, Pe → c. ”

For convenience, let us define the random variable X :=
X(A, z) := SER(A, z). With this notation, Pe = EA,z[X].
Thus, for any ǫ > 0,

Pe ≤ E [X | |X − c| ≤ ǫ] +

E [X | |X − c| > ǫ] · P (|X − c| > ǫ) .

≤ (c+ ǫ) + P(|X − c| > ǫ),

where in the second inequality we used the fact that X ≤ 1.

Notice that (c + ǫ) + P (|X − c| > ǫ) → (c + ǫ) as n → ∞,

since X
P−→ c, by assumption. In a similar vein,

Pe ≥ E [X | |X − c| ≤ ǫ] · P (|X − c| ≤ ǫ)

≥ (c− ǫ) · P(|X − c| > ǫ),

where, again, (c − ǫ)P(|X − c| ≤ ǫ) → (c − ǫ) as n → ∞,

since X
P−→ c. Since the above hold for all ǫ, we have shown

that Pe → c, as desired.

2) Proof of Theorem II.2: Here, we prove the first part of

the theorem, namely the lower and upper bounds on Q(1/τ∗).
The tightness of the upper bound at high-SNR is shown later

in Section A3. Due to the decreasing nature of the function

Q, it suffices to prove that
√

(δ − 1/2) · SNR < τ−1
∗ <

√
δ · SNR. (35)

This is shown in Lemma A.2(b) below. The proof of the lemma

builds on understanding the behavior of the function F (τ) in

(4). The function F is composed of 4 additive terms. The

first is linear in τ and the second is simply 1/τ . We view the

remaining terms as a single function of τ , namely S2(τ) :=(

τ + 4
τ

)

Q
(
2
τ

)
−
√

2
π e

− 2

τ2 , and we gather its properties in

Lemma A.1 below.

Lemma A.1. Fix a positive integer ℓ > 0 and consider the

function S : (0,∞) → R defined as follows:

Sℓ(α) := S(α; ℓ) :=
(
α+

ℓ2

α

)
Q
( ℓ

α

)

− 1√
2π
ℓe−

ℓ2

2α2 . (36)
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The following statements are true.

(a) The first two derivatives S′
ℓ(α) and S′′

ℓ (α) are given as

follows

S′
ℓ(α) =

ℓ

α
√
2π
e−

ℓ2

2α2 +
(

1− ℓ2

α2

)

Q
( ℓ

α

)

. (37)

S′′
ℓ (α) = 2

ℓ2

α2
Q
( ℓ

α

)

.

(b) The function Sℓ(α) is strictly convex.

(c) The derivative S′
ℓ(α) is strictly increasing. Moreover

lim
α→0+

Sℓ(α) = 0 < S′
ℓ(α) <

1

2
= lim

α→+∞
Sℓ(α).

Proof. Statement (a) follows easily by direct calculations. It

can be readily observed that S′′
ℓ (α) is strictly greater than 0

for all α > 0. This proves statement (b). For the last statement,

we argue as follows: S′
ℓ(α) is strictly increasing by strict

convexity of Sℓ(α). Thus, it suffices to compute the limits

of S′
ℓ(α) at 0 and +∞. Easily,

lim
α→+∞

S′
ℓ(α) = lim

α→+∞
Q(ℓ/α) = 1/2.

For the limit α→ 0+, use the following facts: (i) in the limit of

x → +∞: Q(x) ∼ p(x)/x, and, (ii) limx→+∞ xe−x2/2 = 0,

to conclude with the desired.

Observe that F (τ) in (4) can be written as

F (τ) = τ(δ − 1

2
)− 1/SNR

τ
+ S(τ ; 2). (38)

We are now ready to state and prove Lemma A.2.

Lemma A.2. [Properties of τ∗] Let τ∗ be defined as in The-

orem II.1, i.e. the (unique) positive minimizer of the function

F (τ) in (4). The following hold.

(a) τ∗ is the unique positive solution of the equation

δ − 1

2
− 1/SNR

τ2
+G(τ−1) = 0, (39)

where

G(u) :=
√

(2/π)ue−2u2

+ (1− 4u2) ·Q(2u). (40)

(b) τ∗ satisfies (35).

Proof. Recall from Theorem II.1 that the function F (τ) in (4)

is strictly convex. Hence, τ∗ is the unique positive solution to

the first-order optimality condition: F ′(τ) := d
dτ F (τ) = 0.

It is convenient for the rest of the proof to define a function

H : (0,∞) → R as follows:

H(u) := F ′(u−1).

Also, note from (37) that G in (40) satisfies

G(u) = S′
2(u

−1). (41)

In particular, properties of G to be used later in the proof

follow from Lemma A.1.

Starting with (38) and using Lemma A.1(a) and (41):

H(u) := δ − 1

2
− u2

SNR
+

√

2

π
ue−2u2

+ (1− 4u2)Q(2u)
︸ ︷︷ ︸

:=G(u)

.

This proves the first statement. Moreover, since F (τ) is

strictly convex, we have that F ′(τ) is strictly increasing, and

equivalently that H(u) is a decreasing function of u.

Next, we prove that,

τ−1
∗ ≥

√

(δ − 1/2)SNR =: τ−1
0 . (42)

From Lemma A.1(c) and (41),

G(u) > 0, for all u > 0.

Hence, H(τ−1
0 ) = G(τ−1

0 ) > 0. But, H(u) is decreasing and

τ−1
∗ is its unique zero, from which (42) follows.

Finally, we show that

τ−1
∗ <

√
δ · SNR := τ−1

1 . (43)

Note that,

H(τ−1
1 ) = −1

2
+G(τ−1

1 ).

Again, from Lemma A.1(c) and (41), it follows that G(u) <
1/2. Therefore, H(τ−1

1 ) < 0. Combine this with the fact that

H(u) is decreasing and τ−1
∗ is its unique zero, to conclude

with (43), as desired.

3) High-SNR regime: Theorem A.1 below formalizes and

proves (6).

Theorem A.1 (High-SNR regime). As in the statement of

Theorem II.1, fix δ ∈ ( 12 ,∞) and let SER denote the bit

error probability of the detection scheme in (1) for some fixed

but unknown BPSK signal x0 ∈ {±1}n. For any ǫ > 0,

there exists constant SNR := SNR(ǫ) such that for all values

SNR > SNR, it holds

lim
m,n→∞
m/n→δ

P
(
∣
∣
∣

SER

Q
(√

(δ − 1/2) SNR
) − 1

∣
∣
∣ > ǫ

)
= 0.

Proof. Fix any ǫ > 0. Recall τ∗ := τ∗(SNR), the minimizer

of (4), and define for convenience:

τ0 := τ0(SNR) =
(√

(δ − 1/2)SNR
)−1

. (44)

We will prove that there exists SNR(ǫ), such that

∣
∣
∣
Q
(
τ∗−1

)

Q (τ0−1)
− 1
∣
∣
∣ ≤ ǫ

2
, (45)

for all SNR ≥ SNR(ǫ). This would suffice to complete the

proof of the theorem. To see this, write

∣
∣

SER

Q(τ0−1)
− 1
∣
∣ =

∣
∣
SER−Q(τ∗−1)

Q(τ0−1)
+
Q(τ∗−1)

Q(τ0−1)
− 1
∣
∣

≤ |SER−Q(τ∗−1)|
Q(τ0−1)

+
∣
∣
Q(τ∗−1)

Q(τ0−1)
− 1
∣
∣,

and observe the following. (a) The last term above is further

upper bounded by ǫ/2 using (45) for large enough SNR >
SNR(ǫ). (b) From Theorem II.1, for all values of SNR, there

exist large enough m,n such that the nominator of the first

term is upper bounded by (ǫ/2)Q(τ0
−1) with probability 1.

In what follows, we show (45), which is a deterministic

statement about the minimizer τ∗ := τ∗(SNR) of (4). We use

Lemma A.2.
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From (35), we have that

lim
SNR→+∞

τ−1
∗ = +∞. (46)

Also, recall from (44) that (δ− 1/2) =
τ−2

0

SNR . Substituting this

in (39) we find that

0 ≤ τ−2
∗ − τ−2

0 = SNR ·G(τ−1
∗ ) (47)

for G as in (40) (also, recall (41)). The non-negativity above

follows from the lower bound in (35). From Lemma A.1(c)

and (41), G is decreasing in (0,∞). Using this, and applying

the lower bound in (35) once more, (47) leads to the following:

0 ≤ τ−2
∗ − τ−2

0 ≤ SNR ·G(τ−1
0 ) = SNR ·G(

√

(δ − 1/2)SNR).
(48)

But, from Lemma A.1(c) the limit of the right-hand side as

SNR → +∞ is equal to 0. Combining,

lim
SNR→+∞

(τ−2
∗ − τ−2

0 ) = 0. (49)

Next, write τ−2
∗ − τ−2

0 = τ−2
∗ (1− τ2

∗

τ2
0

) and combine (46) with

(49) to further show that

lim
SNR→+∞

τ∗
τ0

= 1. (50)

We are now ready to prove (45). For simplicity, we write

f(x) ∼ g(x) instead of limx→+∞
f(x)
g(x) = 1. It is well known

that Q(x) ∼ p(x)/x. Therefore,

Q(τ−1
∗ )

Q(τ−1
0 )

∼ p(τ−1
∗ )

p(τ−1
0 )

τ0
τ∗

=
τ0
τ∗

exp

(

−τ
−2
∗ − τ−2

0

2

)

∼ 1,

where the second line follows from (49) and (50).

B. Supplementary proofs for Section IV

1) From Lipschitz to the indicator function:

Lemma A.3 (Approximating the indicator). Let µ be a

continuous measure on the real line such that c ∈ R is a point

of measure zero. Further let {µn} be a sequence of random

measures indexed by n such that as n→ +∞,
∫

ψdµn
P−→
∫

ψdµ,

for all Lipschitz functions ψ : R → R. For the indicator

function χc(α) := 1{α≤c} it holds that,
∫

χcdµn
P−→
∫

χcdµ.

Proof. Fix any ǫ, ζ > 0 and consider the random variable

X =
∣
∣
∫
χcdµn −

∫
χcdµ

∣
∣. Note that is random since the

measures µn are random. It will suffice to show that there

exists N∗ such that for all n > N∗: P(X > ǫ) ≤ ζ.

Let η > 0, the exact value of which to be determined later,

and, consider the following functions parametrized by η:

ψη(α) :=







1, α ≤ c

1− 1
η (α− c), c ≤ α ≤ c+ η

0, α ≥ c+ η,

and

ψ
η
(α) :=







1, α ≤ c− η

− 1
η (α− c), c− η ≤ α ≤ c

0, α ≥ c.

These functions are both Lipschitz with Lipschitz constant

1/η. Define, the random variable Yη as

Yη := max{
∣
∣

∫

ψηdµn −
∫

ψηdµ
∣
∣ ,
∣
∣

∫

ψ
η
dµn −

∫

ψ
η
dµ
∣
∣}.

From the assumption of the lemma there is N(ǫ, ζ, η) such

that for all n ≥ N(ǫ, ζ, η):

P(Yη > ǫ/2) ≤ ζ. (51)

Moreover, ψ
η
(α) ≤ χc(α) ≤ ψη(α). Thus,

X ≤ Yη +

∫

|ψη − ψ
η
|dµ ≤ Yη + µ{[c− η, c+ η]}, (52)

where for the second inequality we further used the fact that

|ψη−ψη
| is upper bounded by 1 and has support [c−η, c+η].

Finally, from continuity of µ and the fact that c is µ-measure

zero, we can choose η = η∗(ǫ) such that

µ{[c− η, c+ η]} ≤ ǫ/2. (53)

Combining, (51)–(53), we conclude, as desired, that there

is N∗ := N(ǫ, ζ, η∗(ǫ)) such that for all n > N∗ it holds

P(X > ǫ) ≤ P(Yη > ǫ/2) ≤ ζ.

2) Proof of Corollary IV.1: On the one hand, by Theorem

IV.1(b), it holds for all ℓ = 1, . . . , k that

ψℓ(ŵ) := n−1
n∑

i=1

ψℓ(ŵi)
P−→ EWℓ

[ψℓ(Wℓ)].

On the other hand, for some constant C > 0

∣
∣
∣

k∏

ℓ=1

ψℓ(ŵ)− n−k
∑

1≤i1,...,ik≤n

ψ1(ŵi1) · · ·ψk(ŵik)
∣
∣
∣ ≤ C

n
.

To see this, expand the product term on the left-hand side and

use the boundedness of the functions ψℓ.

Combining the above proves the first statement of the

corollary. The second statement follows with the exact same

argument starting from Theorem II.1 and observing that

1{ŵi1
≤−1,...,ŵik

≤−1} =
∏k

ℓ=1 1{ŵiℓ
}.

3) Proof of Lemma IV.2: Denote, ψ := EW [ψ(W )]. From

Lemma IV.1, it holds w.p.a.1: | 1n
∑n

i=1 ψ(w̃i) − ψ| ≤ ǫ/2.
Hence, by definition of the set S and the triangle inequality,

it holds w.p.a.1 that for all w ∈ Sc: | 1n
∑n

i=1 ψ(wi) −
1
n

∑n
i=1 ψ(w̃i)| ≥ ǫ/2. Then, the Lipschitz property of ψ

guarantees that

‖w − w̃‖√
n

≥ ǫ

2L
. (54)

In what follows we show that n ·f(w) is C-strongly convex

for appropriate constant C > 0. In view of (54) and recalling

φ(g,h) = f(w̃), this will suffice to complete the proof.
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It can be checked that the Hessian ∇2f(w) satisfies

n∇2f(w) <
‖g‖2√

n
σ2

√

‖w‖2

n
+σ2

I. Further use the fact that

‖g‖2/
√
n ≥

√
δ/2 w.p.a.1 and ‖w‖2 ≤ 4n, to conclude

that w.p.a.1 F is C
n -strongly convex with C := σ2

√
δ

2
√
σ2+4

, or

f(w) ≥ f(w̃) + C
2

‖w−w̃‖√
n

.

C. Proof of Theorem III.1

The proof of the theorem requires repeating, mutatis mutan-

dis, the line of arguments detailed in Section IV for the proof

of Theorem II.1. We omit most of the details for brevity, and

only show the necessary calculations that yield to function

FM in (13). The idea is the same as in Section IV: thanks to

the CGMT, it suffices to analyze a corresponding Auxiliary

Optimization (AO) instead of the original optimization in

(11a). Repeating the steps in Section IV-E3, the corresponding

(AO) becomes (compare to Eqn. (24)):

min
τ≥0

τ‖g‖
2
√
n

+
σ2‖g‖
2τ

√
n

+
1

n

n∑

i=1

min
x
−
0,i

≤wi≤x
+

0,i

{ ‖g‖
2τ

√
n
w2

i − hiwi

}

,

where, as always w = x0 − x denotes the “error-vector” and

we further defined

x−
0,i := −(M − 1)− x0,i and x+

0,i := (M − 1)− x0,i.

For simplicity in notation, further denote A = ‖g‖
τ̃
√
n

. Then, the

optimal w̃i := w̃i(g,h,x0) satisfies

w̃i =







x−
0,i , if hi < Ax−

0,i,
1
Ahi , if Ax−

0,i ≤ hi ≤ Ax+
0,i,

x+
0,i , if hi > Ax+

0,i.

(55)

where, τ̃ := τ̃(g,h,x0) is the solution to the following:

(

min
τ>0

τ‖g‖
2
√
n

+
σ2‖g‖
2τ

√
n

+
1

n

n∑

i=1

υn

( τ̃
√
n

‖g‖ ;hi,x
−
0,i,x

+
0,i

))

+
,

(56)

with

υn(α;h, ℓ, u) :=







1
2αℓ

2 − hℓ , if αh < ℓ,

−α
2 h

2 , if ℓ ≤ αh ≤ u,
1
2αu

2 − hu , if αh > u.

This is of course very similar to Equation (26). Next, we

follow the same steps as in Section IV-E4 and study the

convergence of the (AO) in (56). For the first two summands in

(56), we use the fact that
‖g‖√

n

P−→
√
δ. For the third summand,

recall that each x0,i takes values ±1,±3, . . . ,±(M − 1) with

equal probability 1/M . Let j = 1, 3, . . . ,M − 1 and denote,

ℓj := (M − 1)− j and uj := (M − 1) + j.

Then, the pairs (x−
0,i,x

+
0,i) take values (−uj , ℓj) and

(−ℓj , uj) with equal probability 1/M each. With these,
1
n

∑n
i=1 υn

(
τ
√
n

‖g‖ ;hi,x
−
0,i,x

+
0,i

)
P−→ Y

(
τ√
δ

)

, where

Y (α) :=
1

M

∑

j=1,3,...,M−1

Eh∼N (0,1)[υn(α;h,−uj , ℓj)]

+
1

M

∑

j=1,3,...,M−1

Eh∼N (0,1)[υn(α;h,−ℓj , uj)]. (57)

Simple calculations show that

Eh∼N (0,1)[υn(α;h, ℓ, u)] =

− α

2
+
α

2

∫ ∞

ℓ
α

(h− ℓ

α
)2p(h)dh+

α

2

∫ ∞

u
α

(h− u

α
)2p(h)dh.

For convenience, define (see also Lemma A.1)

S(α; ℓ) := α

∫ ∞

ℓ
α

(h− ℓ

α
)2p(h)dh

=

(

α+
ℓ2

α

)

Q
( ℓ

α

)

− 1√
2π
ℓe−

ℓ2

2α2 . (58)

Putting all these together with (57) and grouping terms we

find that

Y (α) =
1

M

∑

j=1,3,...,M−3

(

− α+ S(α; ℓj) + S(α;uj)
)

+
1

M

(

−α
2
+ S(α;uM−1)

)

= −α
2

(
M − 1

M

)

+
1

M

∑

j=1,3,...,M−3

{S(α; ℓj) + S(α;uj)}+
1

M
S(α;uM−1).

Observe that Y (α) is nonnegative for α > 0 as long as

δ > M−1
M . Therefore, we can repeat the technical arguments

of Section IV-E4, to conclude that the random optimization

in (56) converges to the following deterministic optimization

(where, for convenience, we have rescaled the optimization

variable τ as follows τ := τ√
δ

):

min
τ>0

τδ

2
+
σ2

2τ
+ Y (τ). (59)

The objective function in (59) can be identified with the

function FM (τ) in the statement of the theorem. From Lemma

A.1(b) the second derivative of FM (τ) is strictly positive for

τ > 0, hence (59) has a unique minimizer, which we denote

τ∗. With arguments same as in the end of Section IV-E4, we

can show that
√
δτ̃(g,h,x0)

P−→ τ∗.

Finally, we sketch how all these leads to the desired, namely:

1

n

n∑

i=1

1{x∗
i
6=x0,i}

P−→ 2
(

1− 1

M

)

Q(τ−1
∗ ).

First, consider the case: x0,i ∈ {±1,±3, . . . ,±(M − 3)}.

Then, the thresholding rule (11b) implies that there is an error

iff |w̃i| > 1. Equivalently, in view of (55), and noting that

x+
0,i ≥ 2, it follows that and error occurs iff |hi| > A. Next,

consider the case(s) x0,i =M−1 (or, x0,i = −(M−1)). Then

the error event corresponds to w̃i < −1 (or, w̃i > 1), which

in view of (55) translates to hi < −A (or hi > A). Putting

these together and conditioning on the high-probability events

‖g‖/√n P−→
√
δ and τ̃

P−→ τ∗, we find that

1

n

n∑

i=1

1{argmins∈C |x0,i+w̃i−s|6=x0,i}
P−→

2

M

(
(M − 2)Q(τ−1

∗ ) +Q(τ−1
∗ )
)
= 2
(

1− 1

M

)

Q(τ−1
∗ ).


	I Introduction
	I-A Problem formulation
	I-B Contribution and related work
	I-C Paper Organization

	II The BRO Decoder for BPSK signals
	II-A Precise SER performance
	II-A1 On >12
	II-A2 Probability of error
	II-A3 Solving for *
	II-A4 Numerical illustration

	II-B Simple bounds and high-SNR regime
	II-C Comparison to the matched filter bound
	II-D Box-relaxation vs Zero-forcing

	III Extension to M-PAM constellations
	III-A Setting
	III-B SER performance

	IV Proof of main result
	IV-A Main technical result
	IV-B Proof of Theorem ??
	IV-C Independence of Error Events
	IV-D The convex Gaussian min-max theorem
	IV-E Proof of Theorem ??
	IV-E1 Strategy
	IV-E2 Identifying the (PO) and the (AO)
	IV-E3 Simplifying the (AO)
	IV-E4 Convergence properties of the (AO)
	IV-E5 The optimal solution of the (AO)
	IV-E6 Satisfying the conditions of the CGMT
	IV-E7 Completing the proof


	V Discussion and Future work
	Appendix
	A Supplementary proofs for Section ??
	A1 Corollary ??
	A2 Proof of Theorem ??
	A3 High-SNR regime

	B Supplementary proofs for Section ??
	B1 From Lipschitz to the indicator function
	B2 Proof of Corollary ??
	B3 Proof of Lemma ??

	C Proof of Theorem ??


