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Abstract

Symbol-level precoding (SLP) has recently emerged as a new paradigm for physical-layer
transmit precoding in multiuser multi-input-multi-output (MIMO) channels. It exploits the
underlying symbol constellation structure, which the conventional paradigm of linear precoding
does not, to enhance symbol-level performance such as symbol error probability (SEP). It also
allows the precoder to take a more general form than linear precoding. This paper aims to better
understand the relationships between SLP and linear precoding, subsequent design implications,
and further connections beyond the existing SLP scope. Focused on the quadrature amplitude
modulation (QAM) constellations, our study is built on a basic signal observation, namely, that
SLP can be equivalently represented by a zero-forcing (ZF) linear precoding scheme augmented
with some appropriately chosen symbol-dependent perturbation terms, and that some extended
form of SLP is equivalent to a vector perturbation (VP) nonlinear precoding scheme augmented
with the above-noted perturbation terms. We examine how insights arising from this perturbed
ZF and VP interpretations can be leveraged to i) substantially simplify the optimization of
certain SLP design criteria, namely, total or peak power minimization subject to SEP quality
guarantees; and ii) draw connections with some existing SLP designs. We also touch on the
analysis side by showing that, under the total power minimization criterion, the basic ZF scheme
is a near-optimal SLP scheme when the QAM order is very high—which gives a vital implication
that SLP is more useful for lower-order QAM cases. Numerical results further indicate the
merits and limitations of the different SLP designs derived from the perturbed ZF and VP
interpretations.

1 Introduction

Transmit precoding is a subject that has been studied for decades. It plays a central role in the
multiuser multi-input-multi-output (MIMO) scenarios, offering effective transmit signaling schemes
to enable spatial multiplexing and to enhance system throughputs. Linear precoding is, by far, the
most popular approach: it is easy to realize at the symbol or signal level; it has good design flexibility
to cater for various design needs, such as those from cognitive radio, multi-cell coordination, cell-
free MIMO and physical-layer security; and there is a rich line of research concerning how we
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can design linear precoding for utilitarian throughput maximization, fair throughput allocation,
etc.; see, e.g., [1–8]. The decades of transmit precoding research also led to beautiful ideas with
nonlinear precoding, such as Tomlinson-Harashima precoding [9] and vector perturbation (VP)
precoding [10,11]; they take certain specific modulo-type nonlinear forms and may not be as flexible
as linear precoding, but they can greatly improve performance compared to some simple linear
precoding schemes such as the zero-forcing (ZF) scheme. In linear precoding we often treat multiuser
interference (MUI) as noise, or something to alleviate. However, some recent research argues that
MUI is not necessarily adversarial. We can manipulate MUI at the symbol level to help us improve
performance. This idea is generally called symbol-level precoding (SLP) in the literature.

The currently popular way to define SLP is that we can choose any multi-antenna transmitted
signals (absolute freedom rather than a linear form), and the aim is to enhance performance in a
symbol-aware fashion, e.g., symbol error probability. For the past decade researchers have been
invoking various ideas that gradually evolved to the SLP defined above, and it is worthwhile to
briefly recognize such original endeavors. SLP is also known as directional modulation [12–14] and
constructive interference (CI) [15–20], depending on the context. In the early 2010, Masouros et al.
took the intuition that under phase shift keying (PSK) constellations, MUI can be characterized as
constructive and destructive [15,16]. There, linear precoders are designed such that, at the user side,
the CI pushes the received signals deeper into the decision region. Soon, this CI idea was exploited
extensively for PSK constellations and in a more general nonlinear form [17, 19, 21–23]. Later,
Alodeh et al. extended this interference manipulating concept to quadrature amplitude modulation
(QAM) constellations [24], and many subsequent works followed this adaptation [20,25–27]. Lately,
SLP has been applied to a number of scenarios, such as MIMO orthogonal frequency division
multiplexing [28, 29], physical-layer security [30, 31] and intelligent reflecting surface [32]; see the
overview papers [33,34] for a more comprehensive introduction.

In addition to improved symbol-level performance over linear precoding, SLP allows us to
have a better control with the transmitted signal amplitudes. By comparison, linear precoding
typically controls the average squared amplitudes, or powers. The better amplitude control of SLP
is particularly beneficial to the recent developments of large-scale or massive MIMO systems. In
such systems it is desirable that each antenna is employed with a low-cost radio frequency chain,
wherein the power amplifiers trade a smaller linear amplification range for a higher power efficiency.
This necessitates the transmitted signals at each antenna to have low amplitude fluctuations at
every time instant. SLP has been adopted to deal with more amplitude stringent designs, such as
peak-to-average-power ratio minimization [35,36], constant-envelope precoding [37–39] and one-bit
precoding [40–44].

SLP has been extensively employed in a variety of scenarios, as noted above, and the flexibility
of SLP as a precoding design framework has been the key factor with its recent prominence. But
we see fewer studies that work toward understanding the basic nature of SLP. In particular, the
connections between SLP and the existing precoding schemes were relatively under-explored in the
prior literature. Researchers realized that there are connections between SLP and ZF precoding;
see, e.g., [19, 23, 45]. But the existing literature does not provide a thorough enough investigation
on such connections and the subsequent implications on precoding designs.

1.1 This Work and The Contributions

In this paper we study SLP through the lens of ZF and VP precoding, with a focus on the QAM
constellations. We are interested in drawing connections between SLP and the existing precoding
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schemes, thereby revealing new insight. We take the classic single-cell multiuser multi-input-single-
output (MISO) downlink as the scenario to study the problem; and we consider a class of precoding
designs that seek to minimize the transmission power, either as total power or as peak per-antenna
power, under the constraints that some symbol error probability (SEP) requirements are met.
Also, we study a general SLP structure wherein the received constellation ranges and phases,
which are typically prefixed in the existing SLP designs, are part of our design variables. Under
the above problem setup, we raise the argument that SLP can be regarded as a perturbed ZF
scheme; perturbations are injected into the symbols and on the channel nullspace, they are symbol-
dependent, and they are designed for enhancing power efficiency. As an extension not seen in
the existing designs, we also argue that SLP, with a suitable modification, can be regarded as a
perturbed VP scheme. Our study will revolve around how the SLP-ZF and SLP-VP relationships
can be exploited to engage with the SEP-constrained designs more efficiently; we also seek to better
understand the basic problem nature. In addition, our study will lead us to draw connections with
some existing SLP designs, which gives rise to an alternative explanation of the existing designs.

Some key contributions of this study should be highlighted. On the theoretical side, we use
the SLP-ZF relationship to show that, for the SEP-constrained total power minimization design,
the ZF scheme (without perturbations) is a near-optimal SLP scheme for very high-order QAM
constellations. This result is fundamentally intriguing, and it explains why we have never seen a
numerical result that shows significant performance gains with SLP for very high QAM orders (see,
e.g., [24]). It further leads to the vital implication that SLP is more useful for lower-order QAM
constellations.

Another set of key contributions lies in design optimization. We deal with SLP designs that
jointly optimize SLP and the constellation ranges and phases; this is done over a block of symbols
(typically a few hundreds in length, in practice). The motivation is to work on a general design
in an effort to enhance performance; as mentioned, the existing SLP solutions typically prefix the
constellation ranges and phases. The challenge arising is that the design problems are large-scale
optimization problems. We tackle the challenge by introducing an algorithmic method that exploits
the problem structure provided by the SLP-ZF and SLP-VP relationships; it is a combination of
the alternating minimization and proximal gradient methods. A main issue there lies in finding
a way to efficiently handle the large-scale problem nature, specifically, in the form of coupled
constraints with a large number of optimization variables. We deal with it by custom-building a
proximal gradient method that exploits the coupled constraint structures in a very specific way (cf.
Algorithm 3).

Our numerical results also reveal useful insights as design guidelines. They will be discussed
in the conclusion section after we describe the different SLP designs derived from the SLP-ZF and
SLP-VP relationships in the ensuing sections.

1.2 Related Works

Let us give a further discussion with the relevant state of the art. This study focuses on the
QAM constellations, and in this regard it is worthwhile to discuss the existing QAM-based SLP
designs [20, 24–27, 45]. The vast majority of the existing designs considered signal-to-noise ratio
(SNR) or signal-to-interference-and-noise ratio (SINR) as the quality-of-service (QoS) metric, and
they applied the CI notion, i.e., pushing symbols deeper into the correct decision regions, to enhance
performance at the symbol level. Such designs will improve the SEP performance. They, however,
do not work on SEP directly. Some recent studies directly use the SEP as the QoS metric [42–44];
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Table 1: A summary of notations.

Notation Definition

◦ Hadamard product, x ◦ y = [xiyi]i
⋄ x ⋄ y = [ℜ(xi)ℜ(yi) + ℑ(xi)ℑ(yi)]i

≥ x ≥ y means xi ≥ yi for all i

≥c x ≥c y means ℜ(x) ≥ ℜ(y), ℑ(x) ≥ ℑ(y)

‖ · ‖R Mahalanobis norm, ‖x‖R =
√
xHRx, where R is positive definite

αc αc = α + jα, αi = σv√
2
Q−1(1−

√
1−εi
2 )

S QAM constellation S = {sR + jsI | sR, sI ∈ {±1,±3, . . . ,±(2L− 1)}}
ρ average symbol power, ρ = Est[|st|2], st ∈ S
st symbol vector, st ∈ SK

xt transmitted signal

ut symbol perturbation vector, cf. (12)

Bzt channel nullspace perturbation vector, cf. (12)

ϕ constellation phase, with |ϕi| = 1

d constellation range, with di = dRi + jdIi , dRi , d
I
i ≥ 0

H channel matrix

B basis matrix of the nullspace of H

R R = (HHH )−1

Rϕ Rϕ = Diag(ϕ)HRDiag(ϕ)

they appear in the context of one-bit and constant-envelope precoding, and they considered SEP
performance maximization under power constraints. This study focuses on the classic multiuser
downlink scenario and considers power minimization under SEP constraints. In fact, the reader
will find that the SLP-ZF and SLP-VP relationships are particularly suitable tools for studying
SEP-constrained designs.

Exploring and exploiting the SLP-ZF relationship is the central theme of this study. As men-
tioned ealier, some prior studies already noticed and/or used the SLP-ZF relationship [23, 45, 46].
The studies in [23] and [45] considered the symbol-perturbed ZF structure and the per-symbol
scaled ZF structure, respectively. These structures were proposed as specific forms of SLP, but
their connections with SLP in its most general form were not studied. The conference version of
this paper [46] showed the direct connection between SLP and perturbed ZF; the main results there
will appear as Fact 2 and Proposition 1 in this paper. This present study takes the insight of our
previous finding and sets its sight on a wider range of aspects, such as the SLP-VP relationship, the
peak per-antenna power minimization design, and joint design with the SLP and the constellation
ranges and phases.

1.3 Notations

We use x, x, X and X to denote a scalar, a vector, a matrix and a set, respectively; R, C and
Z denote the set of all real numbers, complex numbers and integers, respectively; XT , XH , X−1
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and Tr(X) are the transpose, Hermitian transpose, inverse and trace of X, respectively; x∗ stands
for the element-wise complex conjugate; ℜ(x) and ℑ(x) are the real and imaginary components of
x, respectively; |x| denotes the element-wise modulus of x; 〈x,y〉 , ℜ(xHy) is the inner product
of two vector x,y; card(X ) denotes the cardinality of the set X ; N (µ, σ2) and CN (µ, σ2) denote
the real and complex circularly symmetric Gaussian distribution with mean µ and variance σ2,
respectively; Ex[·] denotes expectation of a random variable x. Some specialized notations will be
defined later, and Table 1 gives a summary of those notations and some commonly used symbols
in the sequel.

2 System Model

2.1 Basics

Consider a classic single-cell multiuser MISO downlink scenario, where a base station (BS) with N
transmit antennas simultaneously serves K single-antenna users over a frequency-flat block faded
channel. The received signal yi,t of the ith user at symbol time t can be modeled by

yi,t = hH
i xt + vi,t, i = 1, . . . ,K, t = 1, . . . , T, (1)

where hi ∈ C
N represents the downlink channel from the BS to the ith user; xt ∈ C

N is the
transmitted signal at symbol time t; vi,t ∼ CN (0, σ2

v) is noise; T is the transmission block length.
Under the above scenario, the goal of precoding is to simultaneously transmit data streams to

multiple users, one for each user. To describe, let si,t be the desired symbol of the ith user at
symbol time t. The symbols are assumed to be drawn from a quadrature amplitude modulation
(QAM) constellation

S = {sR + jsI | sR, sI ∈ {±1,±3, . . . ,±(2L− 1)}}, (2)

where L is a positive integer (the QAM size is 4L2); j =
√
−1. Assuming perfect channel state

information at the BS, we aim to design the transmitted signals x1, . . . ,xT such that the users will
receive their desired symbols. To be precise, we want the noise-free part of yi,t in (1) to take the
form

hH
i xt ≈ ϕi(d

R
i ℜ(si,t) + jdIiℑ(si,t)), (3)

where ϕi = ejθi , θi ∈ [0, 2π], is the constellation phase rotation experienced by the ith user; dRi ≥ 0
and dIi ≥ 0 describe the constellation range;1 see Figure 1. For notational conciseness, let us rewrite
(3) as

Hxt ≈ ϕ ◦ (d ⋄ st), t = 1, . . . , T, (4)

where H =[h1, . . . ,hK ]H is the channel matrix; ϕ=[ϕ1, . . . , ϕK ]T is the constellation phase rotation
vector; ◦ denotes the Hadamard product; d = [d1, . . . , dK ]T , with di = dRi + jdIi , represents the
constellation range vector; d⋄s means that [d⋄s]i = dRi ℜ(si)+jdIiℑ(si) for all i; st = [s1,t, . . . , sK,t]

T

is the symbol vector at time t. Our aim is to design x1, . . . ,xT , as well as the constellation phase ϕ

and range d, such that a good approximation of (4), as indicated by some metric, will be yielded.
We will call such attempt symbol shaping in the sequel.

1It is more accurate to say that 2(2L− 1)dRi and 2(2L− 1)dIi describe the constellation range, as seen in Figure 1,
but we will call dRi and dIi the constellation range for the sake of convenience.
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Figure 1: Illustration of the constellation experienced at the user’s side. We assume 16-QAM.

2.2 Linear Precoding

To provide intuition, we first review how linear precoding performs symbol shaping. In linear
precoding, the transmitted signal xt takes the form

xt =
K∑

i=1

wisi,t, (5)

where wi ∈ C
N is the precoding or beamforming vector of the ith user. The noise-free part of the

received signal yi,t is then given by

hH
i xt = hH

i wisi,t +
∑

j 6=i

hH
i wjsi,t,

where hH
i wisi,t is the desired symbol scaled by hH

i wi, and
∑

j 6=i h
H
i wjsi,t is the multiuser interfer-

ence (MUI). In linear precoding, the MUI is often treated as Gaussian noise. Also, the beamform-
ing vectors are typically designed to maximize some utility defined over a certain quality-of-service
(QoS) metric, e.g., the signal-to-interference-and-noise ratio (SINR)

SINRi =
ρ|hH

i wi|2
∑

j 6=i ρ|hH
i wj|2 + σ2

v

,

where ρ = E[|si,t|2] is the average symbol power; or, power minimization under some target QoS
requirements is sought. The reader is referred to the literature [1–8] and the references therein for
details. Such QoS metric often ignores the constellation structure; the SINR defined above is an
example. On the other hand, from the perspective of symbol shaping, the MUI

∑

j 6=i h
H
i wjsi,t is

seen as the approximation error in (3); ϕi = ej∠(h
H
i wi) is seen as the constellation phase rotation;

di = (1 + j)|hH
i wi| is seen as the constellation range.
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2.3 SLP and Symbol Error Probability Characterization

In symbol-level precoding (SLP), we attain symbol shaping by allowing the transmitted signals xt’s
to take any form to optimize certain constellation-dependent QoS metrics. To put into context,
consider the symbol error probability (SEP) as our QoS metric. Assume that the users detect the
symbols by the standard decision rule

ŝi,t = dec
(ℜ(ϕ∗

i yi,t)

dRi

)

+ j · dec
(ℑ(ϕ∗

i yi,t)

dIi

)

, (6)

where dec(·) denotes the decision function corresponding to {±1,±3, . . . ,±(2L − 1)}. Here, we
assume that each user knows its corresponding constellation phase rotation ϕi and range di; the
users can acquire them during the training phase. The SEPs are given by

SEPi =
1

T

T∑

t=1

Pr(ŝi,t 6= si,t | si,t)
︸ ︷︷ ︸

, CSEPi,t

, (7)

where SEPi is the SEP of the ith user;2 CSEPi,t is the SEP of ŝi,t conditioned on si,t. We are
particularly interested in making sure that every SEPi will meet, or be better than, a given value
εi > 0; i.e.,

SEPi ≤ εi, i = 1, . . . ,K.

Dealing with the above SEP quality constraints is difficult, and as a compromise we consider

CSEPi,t ≤ εi, i = 1, . . . ,K, t = 1, . . . , T, (8)

which will guarantee SEPi ≤ εi.
The SEP quality guarantees in (8) can be turned to some more convenient forms. Before we

present it, we want to provide the intuition. Consider the following example.

Example 1 The intuition is best illustrated by reducing the problem to the real-valued case;
i.e., hi, st, d and xt are real-valued; ϕ = 1; the constellation is {±1,±3, . . . ,±(2L − 1)}; ŝi,t =
dec(yi,t/di); vi,t ∼ N (0, σ2

v). It can be shown that

CSEPi,t







≤ 2Q
(
di−|hT

i xt−disi,t|
σv

)

, |si,t| < 2L− 1

= Q
(
di+(hT

i xt−disi,t)
σv

)

, si,t = 2L− 1

= Q
(
di−(hT

i xt−disi,t)
σv

)

, si,t = −2L + 1

,

where Q(x) =
∫∞
x

1√
2π
e−z2/2dz; see, e.g., [43, 46]. Figure 2 shows an illustration of how CSEPi,t is

derived. Applying the above expression to (8), the SEP quality guarantees in (8) are satisfied if






|hT
i xt − disi,t| ≤ di − σvQ

−1(εi2 ), |si,t| < 2L− 1

hT
i xt − disi,t ≥ σvQ

−1(εi) − di, si,t = 2L− 1

hT
i xt − disi,t ≤ di − σvQ

−1(εi), si,t = −2L + 1

2Note that, under the assumption of independent and identically distributed si,t’s, we have SEPi → Esi,t [Pr(ŝi,t 6=
si,t)] as T → ∞.
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decision boundary

Figure 2: Illustration of the conditional SEP for S = {±1,±3}. According to (1), yi,t is N (hT
i xt, σ

2
v)

distributed. The shaded area corresponds to the conditional SEP in (7).

In particular, observe that the above inequalities are linear with respect to (w.r.t.) xt and d—what
we meant by convenient. �

By taking the above idea in Example 1 to the complex-valued case, we get the following result.

Fact 1 The SEP quality guarantees in (8) hold for all i if

−d + at ≤c ϕ
∗ ◦ (Hxt) − d ⋄ st ≤c d− ct, (9)

where x ≥c y means that ℜ(x) ≥ ℜ(y), ℑ(x) ≥ ℑ(y); at = [a1,t, . . . , aK,t]
T , ai,t = aRi,t + jaIi,t,

ct=[c1,t, . . . , cK,t]
T , ci,t = cRi,t + jcIi,t;

aRi,t =







αi, |ℜ(si,t)| < 2L− 1
βi, ℜ(si,t) = 2L− 1
−∞, ℜ(si,t) = −2L + 1

cRi,t =







αi, |ℜ(si,t)| < 2L− 1
−∞, ℜ(si,t) = 2L− 1
βi, ℜ(si,t) = −2L + 1

(10)

and
αi = σv√

2
Q−1

(
1−

√
1−εi
2

)

, βi = σv√
2
Q−1(1 −√

1 − εi); (11)

aIi,t and cIi,t are defined by the way as aRi,t and cRi,t in (10), specifically, by replacing “R” with “I”
and “ℜ” with “ℑ”.
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We relegate the proof of Fact 1 to Appendix A.
Intuitively, the constellation range d should not be too small in order to achieve certain SEP

guarantees. To quantify that, consider the following assumption:

Assumption 1 The QAM order L (cf. (2)) has L ≥ 2; i.e., high-order and non-constant modulus
QAM cases. Each user’s symbol stream si,1, . . . , si,T has at least one symbol si,t such that |ℜ(si,t)| <
2L − 1 and |ℑ(si,t)| < 2L − 1; that is, si,t is an inner constellation point (ICP) of the QAM
constellation.

We have the following result.

Fact 2 Suppose that Assumption 1 holds. Any constellation range d satisfying the SEP quality
guarantees (9) must satisfy

d ≥c αc,

where αc = α + jα; the αi’s were defined in (11).

Proof: Suppose that si,t is an ICP. From (9) we see that −di + αc,i ≤c di − αc,i, which reduces to
di ≥c αc,i. �

3 A New Look at SLP

In this section, we introduce a new way to represent SLP, which will enable us to link SLP with
linear precoding.

3.1 Precoding via the Lens of Zero-Forcing

Let us make the following assumption.

Assumption 2 The channel matrix H has full row rank.

The following result will be key to our developments.

Fact 3 Suppose that Assumption 2 holds. Let st ∈ C
K , d ∈ C

K and ϕ ∈ C
K , with |ϕ| = 1, be

given. Any xt ∈ C
N can be represented by

xt = H†(ϕ ◦ (d ⋄ st + ut)) + Bzt, (12)

for some ut ∈ C
K and zt ∈ C

N−K , where H† , HH(HHH )−1 is the pseudo-inverse of H, and
B ∈ C

N×(N−K) is a basis matrix for the nullspace of H. Also, under the representation (12), we
can equivalently represent the SEP quality guarantee (9) in Fact 1 by

−d + at ≤c ut ≤c d− ct. (13)

Proof: Let R ⊆ C
N denote the range space of HH . Let R⊥ be the orthogonal complement of

R, which is also the nullspace of H. Any xt ∈ C
N can be decomposed into xt = x̄t + x̃t, where

x̄t ∈ R and x̃t ∈ R⊥. By letting B be a basis matrix for R⊥, we can represent x̃t by x̃t = Bzt for
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some zt. In the same vein, we can write x̄t = HHrt for some rt. Let st, d, ϕ (|ϕ| = 1) be given.
Choose ut such that

rt = (HHH )−1(ϕ ◦ (d ⋄ st + ut)), (14)

or equivalently,
ut = ϕ∗ ◦ (HHHrt) − d ⋄ st.

Putting (14), x̄t = HHrt and x̃t = Bzt into xt = x̄t + x̃t gives the representation in (12).
Furthermore, putting (12) into (9) gives the result in (13). �

Fact 3 shows two key revelations. Firstly, an SLP scheme is equivalent to a zero-forcing (ZF)
scheme with a symbol perturbation ut and a nullspace perturbation Bzt. From that point of view
we can regard SLP as instances of ZF, with suitable perturbations. The most obvious one is the
traditional ZF scheme xZF

t = H†(d⋄st) itself, which is an instance of (12) with ut = 0, zt = 0 and
ϕ = 1. Secondly, we see from (13) that the SEP quality guarantee (9) depends only on the symbol
perturbation component ut and the constellation range d. This result will substantially simplify
our designs.

3.2 SLP is Symbol-Perturbed ZF

Let us further examine the implications of the SLP-ZF relationship in Fact 3 by considering SLP
designs. Consider an SLP design that minimizes the total transmission power (TTP) under the
SEP quality guarantee in (9); i.e.,

min
d,ϕ,X

1

T

T∑

t=1

‖xt‖22

s.t. − d + at ≤c ϕ
∗ ◦ (Hxt) − d ⋄ st ≤c d− ct, t = 1, . . . , T,

d ≥c αc, |ϕ| = 1,

(15)

where X = [x1, . . . ,xT ]; note that we jointly optimize the transmitted signal X and the received
constellation phase ϕ and range d, and that the constraint d ≥c αc is due to Fact 2. Using the
alternative SLP representation in Fact 3, we have the following result.

Proposition 1 Suppose that Assumption 2 holds. Then an optimal X⋆ = [x⋆
1, . . . ,x

⋆
T ] to Prob-

lem (15) is given by
x⋆
t = H†(ϕ⋆ ◦ (d⋆ ⋄ st + u⋆

t )), t = 1, . . . , T,

where (d⋆,ϕ⋆,U⋆), U⋆ = [u⋆
1, . . . ,u

⋆
T ], is an optimal solution to

min
d,ϕ,U

1

T

T∑

t=1

‖d ⋄ st + ut‖2Rϕ

s.t. − d + at ≤c ut ≤c d− ct, t = 1, . . . , T,

d ≥c αc, |ϕ| = 1,

(16)

with Rϕ = Diag(ϕ)HRDiag(ϕ); R = (HHH )−1; ‖x‖R ,
√
xHRx.
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Proof: Substituting (12) into Problem (15) gives

min
d,ϕ,{ut,zt}Tt=1

1

T

T∑

t=1

(
‖d ⋄ st + ut‖2Rϕ

+ ‖Bzt‖22
)

s.t. − d + at ≤c ut ≤c d− ct, t = 1, . . . , T,

d ≥c αc, |ϕ| = 1.

We see that any optimal solution to the above problem must have ‖Bzt‖22 = 0, or equivalently,
zt = 0, for all t. The proof is complete. �

Proposition 1 indicates that the optimal SLP scheme under the TTP minimization design (15)
is a symbol-perturbed ZF scheme, with the nullspace components being shut down.

3.3 ZF is a Near-Optimal SLP for Very Large QAM Sizes

We showed in the preceding subsection that the optimal SLP scheme under the TTP minimization
design (15) is a symbol-perturbed ZF scheme. In fact, we can even show that the optimal SLP
scheme reduces to the basic ZF scheme—without symbol perturbations—under certain assumptions.
Let us set the stage by assuming the following:

Assumption 3 The symbols si,t’s are independently and identically distributed (i.i.d.) and are
uniformly distributed on the QAM constellation S.

Assumption 4 The transmission block length T tends to infinity.

The SLP design problem (16) under Assumptions 1–4 can be written as

fSLP = min
d≥cαc,|ϕ|=1

g(d,ϕ), (17)

where

g(d,ϕ) = Est

[

min
ut∈U(st,d)

‖d ⋄ st + ut‖2Rϕ

]

,

U(st,d) = U(s1,t, d1) × · · · × U(sK,t, dK),

U(si,t, di) = {ui ∈ C| − di + ai,t ≤c ui ≤c di − ci,t}.
Let

xZF
t = H†(αc ⋄ st) (18)

be our benchmark ZF scheme. Note that the ZF scheme (18) is a feasible solution to Problem (17),
with d = αc, ϕ = 1 and ut = 0. Our result is as follows.

Theorem 1 Suppose that Assumptions 1–4 hold. Also, suppose that ε1 = · · · = εK = ε. Then the
optimal value fSLP of Problem (17) satisfies

κfZF ≤ fSLP ≤ fZF,

where fZF = Est

[∥
∥xZF

t

∥
∥2

2

]
is the TTP of ZF, and

κ =
(

1 − 1

L

)2K 2L− 3

2L + 1

(2L− 1)(2L− 3) − 3

(2L− 1)(2L− 3) − 3 + 3λmax(R)
λmin(R)

.
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The proof of Theorem 1 is shown in Appendix B. Theorem 1 suggests that the TTP ratio
between SLP and ZF is lower bounded by κ (κ < 1). In particular, κ increases as L increases, and
κ → 1 as L → ∞. This leads to the following important conclusion:

Corollary 1 Under Assumptions 1–4, the optimal SLP scheme under the TTP minimization de-
sign (16) approaches the ZF scheme (18) as the QAM size tends to infinity.

Corollary 1 suggests that, for very high-order QAM, we may simply use ZF. It explains why we
have not seen a numerical result that shows significant gains with SLP for very high-order QAM;
see, e.g., [24]. Our numerical results will illustrate that the ZF scheme is indeed near-optimal for
very large L. On the other hand, our numerical results will also indicate that, for smaller L, the
optimal SLP scheme can have significant TTP reduction over the ZF scheme.

4 SLP Schemes for TTP Minimization

We now turn to the aspect of tackling the TTP minimization SLP design (16). Let us recapitulate
Problem (16):

min
d,U ,ϕ

fTTP(d,U ,ϕ) ,
1

T

T∑

t=1

‖d ⋄ st + ut‖2Rϕ

s.t. − d + at ≤c ut ≤c d− ct, t = 1, . . . , T,

d ≥c αc, |ϕ| = 1.

(19)

We should briefly mention the problem nature. Problem (19) is a large-scale problem since T is
large in practice, say, a few hundreds. The objective function of (19) is convex w.r.t. either ϕ or
(d,U), but not w.r.t. both. Also, the unit-modulus constraint |ϕ| = 1 is non-convex.

4.1 Alternating Minimization over (d,U) and ϕ

We tackle Problem (19) in an approximate fashion by alternating minimization (AM). Specifically,
we alternatingly minimize the objective function over (d,U) and ϕ:

ϕk+1 ∈ arg min
ϕ∈P

fTTP(dk,Uk,ϕ), (20a)

(dk+1,Uk+1) ∈ arg min
(d,U)∈W

fTTP(d,U ,ϕk+1), (20b)

where
P = {ϕ ∈ C

K ||ϕ| = 1},

W={(d,U) ∈ C
K × C

K×T | − d + at≤cut≤cd− ct, ∀t, d ≥cαc}.

Let us describe how the above minimizations are handled. First, the problem in (20a) can be
shown to be

min
ϕ∈P

ϕHR̄ϕ, (21)

where R̄ = 1
T

∑T
t=1 Diag(dk ⋄ st + uk

t )HRDiag(dk ⋄ st + uk
t ). Problem (21) is a unit-modulus

quadratic program; it is non-convex, but in practice it can be efficiently approximated by a variety
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of methods, such as semidifinite relaxation [47] and the proximal gradient (PG) method [48–50]. We
choose the PG method to approximate Problem (21), and the method is shown in Algorithm 1. Note
that 〈·, ·〉 = ℜ(xHy) is the inner product; ∇f is the gradient of f ;3 ΠX (x) ∈ arg miny∈X ‖x− y‖22
denotes a projection of x onto X . Also, we have

y = ΠP (x) ⇔ yi =

{

xi/|xi|, xi 6= 0

any x with |x| = 1, xi = 0

The PG method is guaranteed to converge to a critical point (under some assumptions) [50]; we
discuss the details in the supplemental material of this paper.

Algorithm 1 PG method for handling min f(ϕ) s.t. ϕ ∈ P
1: given an initialization ϕ0, 0 < α < 1
2: ℓ = 0
3: repeat

4: ϕℓ+1 = ΠP
(

ϕℓ − α
Lℓ
∇f(ϕℓ)

)

; Lℓ is such that

f(ϕℓ+1) ≤f(ϕℓ)+〈∇f(ϕℓ),ϕℓ+1−ϕℓ〉+Lℓ

2
‖ϕℓ+1−ϕℓ‖22,

which can be obtained by line search [51] or by setting Lℓ as a Lipschitz constant of ∇f
(assuming that it exists)

5: ℓ = ℓ + 1
6: until some stopping rule holds

Second, the problem in (20b) can be expressed as

min
ξ

φ(ξ) ,
1

T

T∑

t=1

‖d ⋄ st + ut‖2Rϕ
, s.t. ξ ∈ W, (22)

where ξ = (d,U); ϕ = ϕk+1. Problem (22) is a convex quadratic program with linear constraints.
While we can call off-the-shelf convex optimization software, such as CVX [52], to solve Prob-
lem (22), it is computationally prohibitive to do so in practice—this is because Problem (22) is
a large-scale problem. Our solution is a custom-built one, leveraging on the structure of the con-
straints to improve the efficiency of solving Problem (22). We use the accelerated proximal gradient
(APG) method for convex optimization [51], shown in Algorithm 2. The APG method is known to
converge to the optimal solution at a rate of O(1/ℓ2) (under some assumptions) [51].

The computational efficiency of APG hinges on whether the projection ΠW can be computed
easily. Although the coupling of d and ut’s in the constraints makes the projection seemingly not
too easy to compute, it turns out that ΠW can be solved in a semi-closed form fashion. Specifically,

3Since f deals with complex variables, we define ∇f(x) = ∇ℜ(x)f(x) + j∇ℑ(x)f(x) where ∇ℜ(x)f(x) and
∇ℑ(x)f(x) are the gradients w.r.t. the real and imaginary parts of x, respectively.
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Algorithm 2 APG method for solving minφ(ξ) s.t. ξ ∈ W, where φ and W are convex.

1: given an initialization ξ0

2: ℓ = 0, ν−1 = 0, ξ−1 = ξ0

3: repeat

4: νℓ = (1 +
√

1 + 4ν2ℓ−1)/2

5: pℓ = ξℓ +
νℓ−1−1

νℓ
(ξℓ − ξℓ−1)

6: ξℓ+1 = ΠW(pℓ − L−1
ℓ ∇φ(pℓ)); Lℓ is such that

φ(ξℓ+1)≤φ(pℓ)+〈∇φ(pℓ), ξℓ+1−pℓ〉+Lℓ

2
‖ξℓ+1−pℓ‖22,

which can be obtained by line search [51] or by setting Lℓ as a Lipschitz constant of ∇f
(assuming that it exists)

7: ℓ = ℓ + 1
8: until some stopping rule holds

given a point ξ̃ = (d̃, Ũ ), the projection ΠW(ξ̃) is to solve

min
d,U

T∑

t=1

‖ut − ũt‖22 + ‖d− d̃‖22

s.t. − d + at ≤c ut ≤c d− ct, t = 1, . . . , T,

d ≥c αc.

(23)

Observe that Problem (23) is separable w.r.t. each coordinate i = 1, . . . ,K and also w.r.t. the
real and imaginary components. Hence, solving Problem (23) amounts to solving 2K independent
subproblems, and all the subproblems share the same structure as follows

min
d,u1,...,uT

T∑

t=1

(ut − ũt)
2 + (d− d̃)2

s.t. − d + at ≤ ut ≤ d− ct, t = 1, . . . , T,

d ≥ α.

(24)

We outline how Problem (24) is solved. The idea is to first eliminate the variables ut’s by plug-
ging the solutions of ut’s given d into (24). The resulting problem for d is to solve a series of
one-dimensional quadratic programs over different intervals, which admit closed-form solutions.
By comparing all solutions of d over all the intervals, the one that gives the smallest objective
value is the projection solution. We show the projection solution in Algorithm 3 and relegate the
mathematical details to Appendix E.

Table 2 summarizes the per-iteration complexities of the PG method for Problem (21) and
the APG method for Problem (22). It is worth noting that the computations of the gradient and
projection operations contribute to the main complexity.
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Algorithm 3 A fast solution to Problem (24)

1: input: [ ũ1, · · · , ũT , d̃ ].
2: set D1 , {ct + ũt

∣
∣ ct + ũt ≥ α, ∀t}.

3: set D2 , {at − ũt
∣
∣ at − ũt ≥ α, ∀t}.

4: set D̃ , {α} ∪ D1 ∪D2 ∪ {+∞}.
5: sort the elements of D̃ in an ascending order to obtain D , {ω1, . . . , ωcard(D)}.
6: for p = 1, · · · , card(D) − 1
7: set Tp , {t

∣
∣ ωp+1 ≤ ct + ũt}.

8: set Lp , {t
∣
∣ ωp+1 ≤ at − ũt}.

9: compute dp = max{ωp,min{ωp+1, d̂
p}}, where

d̂p =

∑

t∈Tp(ct + ũt) +
∑

t∈Lp
(at − ũt) + d̃

1 + card(Tp) + card(Lp)
.

10: compute
fp=

∑

t∈Tp
(dp − ct − ũt)

2 +
∑

t∈Lp

(−dp + at − ũt)
2 + (dp − d̃)2.

11: end for

12: compute d = dp̃, where p̃ = arg minp f
p.

13: compute ut = max{−d + at,min{ũt, d− ct}}, ∀t.
14: output: [ u1, · · · , uT , d ].

Subproblem Gradient Projection
Per-iteration Complexity

and Method Calculation Calculation

PG for (21) O(K2) O(K) O(K2)

APG for (22) O(K2T ) O(KT 2) O(K2T + KT 2)

Table 2: Computational complexity of AM.

4.2 Does the Alternating Minimization Converge?

A curious question is whether the AM method (20) for Problem (19) guarantees convergence to a
critical point. From a mathematical optimization viewpoint, this aspect is subtle. AM is known
to have provable critical-point convergence for a class of optimization problems that have convex
constraints; see, e.g., [53]. But our problem has unit modulus constraints |ϕ| = 1, and this makes
the convergence analysis challenging. It turns out that, by taking insight from the proximal AM
framework in mathematical optimization [54], we can answer the question. Simply speaking, by
modifying the AM update (20a) as

ϕk+1 ∈ arg min
ϕ∈P

fTTP(dk,Uk,ϕ) +
τ

2
‖ϕ−ϕk‖22,

for some τ > 0, and by initializing the PG method for the above update with ϕk, we can show
convergence to a critical point. The result is quite technical, however, and we relegate it to the
supplemental material of this paper.
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On the other hand, we should note that the original AM method (20) works well in our numerical
study.

4.3 A Suboptimal SLP Scheme

We study a suboptimal, but computationally efficient, alternative of the above SLP design. Specif-
ically we follow the same AM method as in (20), but we prefix the constellation range as d = αc.
There are two reasons for this. First, if we prefix the constellation range d, the TTP minimization
problem in (20b), or (22), will be decoupled into a multitude of per-symbol-time TTP minimization
problems

min
ut

‖d ⋄ st + ut‖2Rϕ

s.t. −αc + at ≤c ut ≤c αc − ct

, for t = 1, . . . , T, (25)

which are computationally much easier to solve than Problem (22). Second, by observing the
objective function of (25), it seems that reducing the constellation range d should reduce the
power. This intuition drove us to choose the smallest, d = αc. We support our intuition by the
following result.

Fact 4 Consider the TTP minimization problem (19) with the symbol perturbation U prefixed as
U = 0. Suppose that Assumptions 1–4 hold. Then an optimal solution to the aforementioned
problem is d = αc, ϕ = 1; the corresponding SLP is the ZF scheme in (18).

The proof of Fact 4 is relegated to Appendix F. While we are unable to prove similar results
when the symbol perturbations U are present, Fact 4 gives us the insight that d = αc may be a
reasonable choice.

Let us write down the above suboptimal SLP scheme.

ϕk+1 ∈ arg min
ϕ∈P

fTTP(αc,U
k,ϕ), (26a)

uk+1
t = arg min

ut

‖αc ⋄ st + ut‖2R
ϕk+1

s.t. −αc + at ≤c ut ≤c αc − ct,
(26b)

for t = 1, . . . , T.

We will call the above scheme the semi-ZF SLP scheme; the reason will be given later. Every
problem in (26b) is a convex quadratic program with simple bound constraints, and it can be
efficiently solved in a variety of ways, e.g., by the active set method [55], ADMM [56], and the
APG method [51]. We will use the APG method (c.f., Algorithm 2) to solve (26b) when we
implement the semi-ZF SLP scheme in the numerical simulation section.

4.4 Relationship with the Existing SLP Solutions

The semi-ZF SLP scheme in (26) has strong connections with the existing SLP solutions. We
illustrate the connections by considering the real-valued case in Example 1; the complex-valued
counterpart is just a notationally more complicated version, and we will omit it. By examining the
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constraints of (26b), we notice that (26b) can be written as

min
ut

‖α ◦ st + ut‖2R

s.t. ui,t







= 0, |si,t| < 2L− 1

≥ βi − αi, si,t = 2L− 1

≤ αi − βi, si,t = −(2L− 1)

, i = 1, . . . ,K;
(27)

(as a minor note, αi = σvQ
−1(εi/2), βi = σvQ

−1(εi)). Equation (27) gives the physical interpreta-
tion that, if si,t is an ICP, we set the corresponding symbol perturbation ui,t as 0; or, we perform
ZF partially. This is why we call the scheme semi-ZF SLP. Problem (27) resembles the existing
SLP solutions, which were derived from different formulations.

As a representative example, consider the constructive interference power minimization (CIPM)
design [24] and the subsequent variant [23]. The idea there starts with achieving a set of signal-to-
noise ratio (SNR) requirements

Ext [|hT
i xt|2]

σ2
v

≥ ζi, i = 1, . . . ,K,

where ζi > 0 is the SNR target of the ith user. The idea is then turned to the symbol level, giving
rise to the following design formulation

min
xt

‖xt‖22

s.t.
hT
i xt

σv







=
√

ζi
ρ si,t, |si,t| < 2L− 1

≥
√

ζi
ρ si,t, si,t = 2L− 1

≤
√

ζi
ρ si,t, si,t = −(2L− 1)

, i = 1, . . . ,K.
(28)

Here, recall that ρ = E[|si,t|2] is the average symbol power. In particular, the authors of CIPM
applied the constructive interference (CI) notion, i.e., pushing symbols deeper into the correct
decision regions, by applying it on outer constellation points (OCPs) only.

The subsequent variant of the CIPM design in [23] plugs the symbol-perturbed ZF structure4

xt = H†(d ◦ st + ut), d = [σv
√

ζ1/ρ, . . . , σv
√

ζK/ρ]T

into (28) to get
min
ut

‖d ◦ st + ut‖2R

s.t. ui,t







= 0, |si,t| < 2L− 1

≥ 0, si,t = 2L− 1

≤ 0, si,t = −(2L− 1)

, i = 1, . . . ,K.
(29)

Now, we see that the CIPM formulation in (29) looks very similar to the semi-ZF SLP formulation
in (27). However, it is worth noting that the vast majority of the existing SLP solutions were
not derived from the SEP metric, while our design considers the SEP quality constraints and did
not use the CI notion. Hence our design provides an alternative path to explain the existing SLP
solutions.

4As a minor note, the work [23] applied the symbol-perturbed ZF structure as a specific form of SLP. It did not
provide the reasoning; like the one in Fact 3 and Proposition 1.

17



5 SLP Schemes for PPAP Minimization

In this section, we describe how our SLP designs can be modified to handle the peak per-antenna
power (PPAP) minimization design. The problem is formulated as follows:

min
X,d,ϕ

max
t=1,...,T

‖xt‖2∞
s.t.− d + at ≤c ϕ

∗ ◦ (Hxt) − d ⋄ st ≤c d− ct, t = 1, . . . , T,

d ≥c αc, |ϕ| = 1.

(30)

We should note that we minimize the PPAP at all the symbol times; the existing linear precoding
formulations typically deal with the peak average power maxn=1,...,N E[|xn,t|2] [4]. Substituting the
representation (12) to Problem (30) gives

min
d,ϕ,U ,Z

fPPAP(d,ϕ,U ,Z)

s.t.− d + at ≤c ut ≤c d− ct, t = 1, . . . , T,

d ≥c αc, |ϕ| = 1,

(31)

where
fPPAP(d,ϕ,U ,Z) , max

t=1,...,T
‖H†(ϕ ◦ (d ⋄ st + ut)) + Bzt‖2∞.

Note that the nullspace components zt’s, which are shut down in the TTP minimization (cf. Propo-
sition 1), are part of the design variables.

Our optimization strategy is identical to that for TTP minimization in the preceding section.
Specifically, we apply AM between ϕ and (d,U ,Z). The new challenge is that fPPAP is non-smooth.
We circumvent this issue by log-sum-exponential (LSE) approximation

max{x1, . . . , xN} ≈ δ log
(
∑N

i=1 e
xi/δ

)

, (32)

for a given smoothing parameter δ > 0. It is known that the right-hand side of (32) is smooth, and
the approximation in (32) is tight when δ → 0. Applying (32) to fPPAP yields

fPPAP(d,ϕ,U ,Z) ≈ δ log
( N∑

n=1

T∑

t=1

e
|h̃H

n (ϕ◦(d⋄st+ut))+b̃Hn zt|
2

δ

)

, f̂PPAP(d,ϕ,U ,Z), (33)

where h̃H
n and b̃Hn denote the nth row of H† and B, respectively. The rest of the operations are

same as the AM in Section 4.1: we minimize f̂PPAP over |ϕ| = 1 by the PG method in Algorithm 1,
and we minimize f̂PPAP over (d,U ,Z) by the APG method in Algorithm 2.

Like the suboptimal semi-ZF scheme in Section 4.3, we can pre-fix d = αc to reduce the
computational cost. It is worthwhile to note that the resulting minimization of f̂PPAP over (d,U ,Z)
with d = αc is, in essence, solving

min
ut,zt

‖H†(ϕ ◦ (αc ⋄ st + ut)) + Bzt‖2∞
s.t. −αc + at ≤c ut ≤c αc − ct,

(34)
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for t = 1, . . . , T ; or, in words, we are minimizing the PPAP of all the symbol times. Moreover, if
we further pre-fix ϕ = 1 (no phase optimization) and U = 0 (no symbol perturbations), then our
design reduces to

min
zt

‖H†(αc ⋄ st) + Bzt‖2∞ (35)

for t = 1, . . . , T , which is a nullspace-assisted ZF scheme (more precisely, the design reduces to
the LSE approximation of (35)). Our numerical results will show that even the nullspace-assisted
ZF scheme provides significant PPAP reduction, compared to the state-of-the-art schemes such
as the basic ZF scheme and the linear precoding design under peak per-antenna average power
minimization [4].

6 When SLP Meets Vector Perturbation

The SLP designs in the previous sections can also be extended to cover vector perturbation (VP)
precoding.

6.1 A Review of VP

Let us first review the working principle of VP [10,11]. To facilitate, consider the real-valued case
in Example 1. Also, assume d = 1. The transmitted signals in VP are

xt = H†(st + 4Lγt), (36)

for some integer vector γt ∈ Z
K . VP looks like yet another perturbed ZF scheme, but the key idea

lies in the detection. The users detect the symbols by a modulo-type detection

ŝi,t=dec(M(yi,t)),

where
M(y) = y −

⌊
y+2L
4L

⌋

4L

is the modulo operation, with the modulo constant given by 4L; ⌊x⌋ denotes the maximum integer
that is less than or equal to x. In the absence of noise, one can verify that M(yi,t) = si,t. This
further translates into the fact that the VP term γt does not affect the decision accuracies or
SEPs. The role played by the VP term, however, is to improve power efficiency. We can reduce
the transmitted power by designing an appropriate γt; e.g., for TTP minimization,

min
γt∈ZK

‖H†(st + 4Lγt)‖22.

The above problem is computationally hard, but in practice it can be solved by sphere decoding [57]
if K is not too large.

6.2 Connecting VP and SLP

Next, we show how VP and SLP are connected. Consider SLP under the modulo-type detection:

ŝi,t=dec
(

M
(ℜ(ϕ∗

i yi,t)

dRi

))

+j · dec
(

M
(ℑ(ϕ∗

i yi,t)

dIi

))

. (37)
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Following the SEP result in [43, 46] or in Section 2, it is shown that the SEP quality guarantee
CSEPi,t ≤ εi holds if

−di + αc,i ≤c ϕ
∗
ih

H
i xt − di ⋄ (si,t + 4Lγi,t) ≤c di − αc,i, (38)

for some complex integer γi,t, i.e., γi,t ∈ ZC , {a + jb | a, b ∈ Z}, where αc,i = αi + jαi and αi is
defined in (11). Define

µt = ϕ∗ ◦ (Hxt) − d ⋄ (st + 4Lγt), (39)

where γt = [γ1,t, . . . , γK,t]
T , such that (38) can be rewritten as

−d + αc ≤c µt ≤c d−αc, ∀t.

By substituting the representation of xt in (12) into (39), the symbol perturbation takes the form

ut = 4Ld ⋄ γt + µt.

We see that the symbol perturbation ut consists of two terms. The first term 4Ld ⋄ γt, or simply
γt, is referred to as the vector perturbation; the second term µt plays a similar role as the symbol
perturbation ut in the previous sections (recall −d + at ≤c ut ≤c d − ct in the previous SLP
designs). As a result, the transmitted signal xt can be expressed as

xt = H†(ϕ ◦ (d ⋄ (st + 4Lγt) + µt)) + Bzt. (40)

The expression (40) suggests that SLP under the modulo detection (37) takes a form that is the
VP extension of the symbol-perturbed, nullspace-assisted, ZF scheme. In particular, if we choose
d=αc, ϕ=1, µt = 0, zt = 0 such that

xt = H†(αc ⋄ (st + 4Lγt)),

the resulting scheme is essentially the VP scheme in (36).
Next, we specify SLP designs under (37)-(40). The VP-extended SLP designs for TTP mini-

mization and PPAP minimization are, respectively, given by

min
d,ϕ,Ξ,Γ

1

T

T∑

t=1

‖ϕ ◦ (d ⋄ (st + 4Lγt) + µt)‖2R

s.t. − d + αc ≤c µt ≤c d−αc, t = 1, . . . , T,

γt ∈ Z
K
C , t = 1, . . . , T, d ≥c αc, |ϕ| = 1,

(41)

and
min

d,ϕ,U ,Z,Γ
max

t=1,...,T
‖H†(ϕ ◦ (d ⋄ (st + 4Lγt) + µt)) + Bzt‖2∞

s.t. − d + αc ≤c µt ≤c d−αc, t = 1, . . . , T,

γt ∈ Z
K
C , t = 1, . . . , T,

d ≥c αc, |ϕ| = 1,

(42)

where Ξ = [µ1, . . . ,µT ], Z = [z1, . . . ,zT ], and Γ = [γ1, . . . ,γT ]. Note that, as a direct extension
of Proposition 1, we have Z = 0 for TTP minimization.
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We apply AM between ϕ, (d,Ξ) (respectively (d,Ξ,Z)), and Γ for TTP minimization (respec-
tively PPAP minimization). The procedures for handling the ϕ update, the (d,Ξ) update and
the (d,Ξ,Z) update are the same as in the preceding development. The Γ update is done by
sphere decoding [57] in the TTP minimization design, and by p-sphere encoding [58] in the PPAP
minimization design. We can also consider the semi-ZF scheme wherein we pre-fix d = αc, as well
as the nullspace-assisted ZF scheme (for PPAP minimization) wherein we pre-fix d = αc, ϕ = 1.

The VP extension is numerically found effective in performance improvement, while the down-
side lies in its higher computational complexity of calling the sphere decoding (or the p-sphere
encoding) algorithms.

7 Simulation Results

In this section, we provide numerical results to show the performance of the developed SLP schemes.
We aim to shed light onto how different components, such as symbol perturbations and nullspace
components, have their respective impacts on the system performance.

The simulation settings are as follows. In each simulation trial, the channel matrix H is
randomly generated and follows an element-wise i.i.d. complex circular Gaussian distribution with
zero mean and unit variance. The symbols si,t’s are uniformly drawn from the QAM constellation.
The power of noise is set to σ2

v = 1. The users share the same SEP requirement, i.e., ε1 = · · · =
εK = ε. Unless specified, the transmission block length is T = 200. All the results to be reported
are results averaged over 1000 Monte Carlo simulation trials. The simulations were conducted by
MATLAB on a small server with an Intel Core i7-6700K CPU and 16GB RAM.

To provide benchmarking, we consider the ZF scheme (18) and the SINR-constrained optimal
linear beamforming (OLB) scheme [1, 4, 6]. The implementation of OLB can be found in the
supplemental material of this paper. We also consider two representative SLP designs for TTP
minimization: 1) the CIPM design [24] solved by CVX, and 2) the symbol-level optimization for
conventional precoding (SLOCP) design [23] solved by the non-negative least squares algorithm [59].
As discussed in Section 4.4, these two SLP designs are SNR constrained. To facilitate comparison,
we repurpose these two SLP designs to the SEP-constrained designs.5

For clarity, we summarize all the tested precoding schemes in Table 3. We will refer to “SLP” as
the SLP design that optimizes all the variables (e.g., Section 4.1 for TTP minimization), “SLP-VP”
as the VP extension of “SLP”, “Null-ZF” as the nullspace-assisted ZF scheme, and “Null-VP” as
the nullspace-assisted VP scheme.

The implementation details of the SLP algorithms are as follows. For the LSE approximation,
we set the smoothing parameter as δ = L2/25. The AM algorithm terminates when the relative
change of the objective values of successive iterations is smaller than 10−3 or when the iteration
number exceeds 10. The APG method stops when the difference of solutions between successive
iterations is smaller than 10−3, or when the iteration number exceeds 300. The PG method is
implemented under the same stopping criterion as that of APG. SLP, Semi-ZF SLP and Null-ZF
are initialized with the ZF solution. Null-VP and SLP-VP are initialized by the solutions of VP
and Null-VP, respectively.

5Following the spirit of the SEP characterization in Appendix A, one can show that if CIPM and SLOCP

have their target SNRs chosen as ζi = ρ

2
[Q−1(1−

√

1−εi
2

)]2, then they will achieve the SEP quality guarantees
CSEPi,t ≤ εi.
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Table 3: Summary of the tested precoding schemes

Name Scenario
Parameters to

optimize
Fixed parameters Formulations and methods

ZF
TTP none (d,ϕ,U) = (αc,1,0)

(18), closed form

PPAP none
(d,ϕ,U ,Z) =

(αc,1,0,0)

OLB [1,4]
TTP (d,ϕ,U) none (81) in supplemental material, CVX

PPAP (d,ϕ,U ,Z) none (82) in supplemental material, CVX

CIPM [24] TTP X none (12) in [24], CVX

SLOCP [23] TTP U (d,ϕ) = (αc,1) (16) in [23], the algorithm in [59]

Semi-ZF SLP
TTP (ϕ,U) d = αc (16), AM with APG and PG

PPAP (ϕ,U ,Z) d = αc
(31), LSE approximation, AM with APG

and PG

Null-ZF PPAP Z (d,ϕ,U) = (αc,1,0) (31), LSE approximation, APG

SLP
TTP (d,ϕ,U) none (16), AM with APG and PG

PPAP (d,ϕ,U ,Z) none
(31), LSE approximation, AM with APG

and PG

VP [10]
TTP Γ (d,ϕ,Ξ) = (αc,1,0) (41), sphere decoding

PPAP Γ
(d,ϕ,Ξ,Z) =

(αc,1,0,0)
(42), p-sphere encoding

Null-VP PPAP (Z,Γ) (d,ϕ,Ξ) = (αc,1,0)
(42), AM with APG (LSE approximation)

and p-sphere encoding

SLP-VP
TTP (d,ϕ,Ξ,Γ) none

(41), AM with APG, PG and sphere
decoding

PPAP (d,ϕ,Ξ,Z,Γ) none
(42), AM with APG (LSE approximation),

PG (LSE approximation) and p-sphere
encoding

The remaining parts of this section is organized as follows: Section 7.1 and Section 7.2 show the
simulation results of the SLP schemes for TTP minimization and PPAP minimization, respectively.
Their VP extensions are considered in Section 7.3.

7.1 SLP for TTP Minimization

First of all, we show the performance of the SLP schemes in the context of TTP minimization.
Figure 3 shows the TTP performance versus the SEP requirement ε for (N,K) = (32, 30) and
for various QAM constellation sizes. It is seen that the SLP schemes (SLP, Semi-ZF SLP, CIPM,
SLOCP) outperform OLB and ZF; CIPM and SLOCP are more than 1dB worse than SLP and
Semi-ZF SLP. Also, the performance gap decreases as the constellation size increases. This trend
is in agreement with the result in Theorem 1. We should pay attention to Semi-ZF SLP. For
16-QAM, Semi-ZF SLP outperforms ZF by 4.8dB, which indicates that the designs of the symbol
perturbations for OCPs and constellation phase can play a significant role in TTP reduction. Also,
it is interesting to see that Semi-ZF SLP exhibits nearly the same performance as SLP, which
suggests that the choice of the constellation range d = αc is a good heuristic. Note that compared
with SLP, Semi-ZF SLP is simpler in structures and much easier to optimize. Thus, Semi-ZF SLP
achieves a good balance between high performance and low computational complexity.

Figure 4 shows the TTP performance versus the problem size K. We set N = K + 2, ε = 10−3
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Figure 3: TTP versus the SEP requirements ε. (N,K) = (32, 30).
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Figure 4: TTP versus the number of users K. N = K + 2, ε = 10−3, 16-QAM.

and use 16-QAM constellation. It is seen that the TTPs of the SLP schemes increase with K at
slower rates than those of OLB and ZF. Again, we see that Semi-ZF SLP works well.

In Table 4, we show the runtime performance of the SLP schemes w.r.t. the transmission block
length T , including SLP, Semi-ZF SLP, CIPM and SLOCP. It is seen that both Semi-ZF SLP and
SLOCP are fast; SLOCP is slightly faster than Semi-ZF SLP.

Table 5 shows the actual average SEPs achieved by the various precoding schemes, where we
consider (N,K) = (32, 30) and 64-QAM constellation. We see that the actual average SEPs are
better than the required, although the differences are insignificant.
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T 200 400 600 800 1000

SLP 6.44 6.71 7.94 10.29 12.84

Semi-ZF SLP 0.12 0.22 0.33 0.44 0.54

CIPM 62.48 189.67 384.76 645.39 969.70

SLOCP 0.09 0.16 0.25 0.33 0.40

Table 4: Average runtime (in seconds) for each block. (N,K) = (32, 30), ε = 10−3, 16-QAM.

ε 10−4 10−3 10−2

OLB 8.0 × 10−5 8.3 × 10−4 8.9 × 10−3

SLP 8.3 × 10−5 9.1 × 10−4 9.3 × 10−3

Semi-ZF SLP 8.2 × 10−5 9.1 × 10−4 9.3 × 10−3

CIPM 8.1 × 10−5 8.6 × 10−4 9.1 × 10−3

SLOCP 8.1 × 10−5 8.5 × 10−4 9.0 × 10−3

Table 5: Average SEPs for different SEP requirements ε. (N,K) = (32, 30); 64-QAM.

7.2 SLP for PPAP Minimization

Next, we test the SLP designs for PPAP minimization. We use the complementary cumulative
distribution function (CCDF) to measure the PPAP distribution, i.e.,

CCDF(x) = Pr(PPAP ≥ x).

Note that given the same CCDF level, a smaller PPAP threshold x means better performance.
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Figure 5: CCDF of PPAP. (N,K) = (32, 16), ε = 10−3.

Figure 5 presents the CCDF of PPAP for (N,K) = (32, 16) and ε = 10−3. Our observations
are as follows. First, all the SLP schemes perform better than the OLB and ZF for 16-QAM and
256-QAM. Different from the TTP minimization case in Figure 3, in this PPAP minimization case
the benefits of SLP over ZF do not vanish as the QAM size increases. Second, Semi-ZF SLP, SLP
and Null-ZF provide comparable performance, with Null-ZF performing slightly worse. Comparing
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Figure 6: CCDF of the worst PAPR. (N,K) = (32, 16), ε = 10−3, 256-QAM.

T 200 400 600 800 1000

SLP 4.33 8.79 13.36 17.72 22.52

Semi-ZF SLP 1.63 3.00 4.33 5.57 6.86

Null-ZF 0.40 0.79 1.19 1.58 1.98

Table 6: Average runtime (in seconds) for each block. (N,K) = (32, 16), ε = 10−3, 16-QAM.

Null-ZF with ZF, we see that the incorporation of nullspace components contributes a lot to PPAP
reduction. Comparing Null-ZF with Semi-ZF SLP, we see that optimizing the symbol perturbations
for OCPs is helpful, though the performance gain is not substantial. Comparing Semi-ZF SLP with
SLP, the nearly identical performance of the two again suggests that fixing the constellation range
as d = αc is a good heuristic. Both Null-ZF and Semi-ZF SLP are computationally light and show
promising performance.

Besides the PPAP, we also test the peak-to-average power ratio (PAPR) performance. Specifi-
cally, we evaluate the worst PAPR among all the transmit antennas, defined as maxn=1,...,N PAPRn,
where

PAPRn ,
maxt=1,...,T |xn,t|2
∑T

t=1 |xn,t|2/T
is the PAPR of the nth transmit antenna.

In Figure 6, we show the CCDF of the worst PAPR for 256-QAM, where (N,K) = (32, 16) and
ε = 10−3. We observe similar performance behaviours as the PPAP performance in Figure 5. Inter-
estingly, although the SLP designs do not minimize the PAPR, the results indicate that minimizing
the PPAP is helpful in reducing the PAPR.

Let us test the runtime performance of SLP, Semi-ZF SLP and Null-ZF. Table 6 shows the
result. It is seen that Null-ZF is the most computationally efficient, Semi-ZF SLP is the second,
and SLP is the slowest.

The above numerical results suggest that Semi-ZF SLP and Null-ZF are good candidates for
the PPAP minimization design, offering a good balance in performance and complexity.
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Figure 7: TTP versus the SEP requirements ε for TTP min. (N,K) = (16, 15).
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Figure 8: CCDF of the PPAP for PPAP min. (N,K) = (16, 8), ε = 10−3.

7.3 VP Extension of the SLP Schemes

Finally, we show the performance of the VP extensions of the SLP schemes. We first consider the
TTP minimization scenario. The results are shown in Figure 7, where we evaluate the TTP versus
the SEP requirements ε for (N,K) = (16, 15). It is seen that the VP extensions of both SLP and
ZF provide much better performance than their no-VP counterparts. We observe that SLP-VP
and VP yield nearly identical performance. A possible explanation is as follows. The effect of
modulo operation in the detection may be regarded as periodically and infinitely extending the
QAM constellation with period 4L [11]. Therefore, there is no concept of OCPs for this extended
QAM constellation. On the other hand, the numerical results in Section 7.1 suggest that optimizing
the symbol perturbations for OCPs is key to improving the performance of the SLP schemes for
TTP minimization.

Next, we consider the PPAP minimization scenario. In Figure 8, we present the CCDF of the
PPAP. We choose (N,K) = (16, 8) and ε = 10−3. Again, it is seen that the VP extensions bring
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significant performance improvement. Moreover, we observe that Null-VP and SLP-VP achieve
comparable performance, which again indicates that optimizing the nullspace components plays an
important role in PPAP reduction.

8 Conclusion

Through the lens of ZF and VP precoding, we studied SLP under SEP-constrained formulations
and under QAM constellations. The connections between SLP, linear precoding and VP precoding
were shown by interpreting SLP as a ZF scheme with symbol perturbations, nullspace perturba-
tions, and integer perturbations for the VP extension. Taking insights from these connections, we
developed a collection of SLP designs—from a more general design that gives the best performance
in principle, to suboptimal but computationally more efficient designs; and from total transmission
power minimization to peak per-antenna power minimization. Simulation results were provided to
examine the impacts of different design elements on the SLP performance. A summary with our
numerical examination is as follows.

1. Symbol perturbations give rise to marked improvement with TTP reduction for lower QAM
orders (this is also noted in the literature), but offer little gain once we consider the VP extension.

2. Nullspace perturbations are useless in TTP reduction (this is known analytically), but are useful
in PPAP reduction.

3. The semi-ZF scheme, which employs a heuristic choice of the constellation range for simpli-
fying the optimization, offers nearly identical performance as the more fully developed SLP
designs, which optimizes the constellation range. The same phenomena were observed for the
VP extension. It is worth noting that the semi-ZF SLP scheme resembles some existing SLP
solutions [23].

4. The VP-extended SLP designs yield significantly improved performance, although one should
note that they also demand higher computational costs because of the need to optimize the
integer perturbations.

Appendix

A Proof of Fact 1

Let

CSEP
R
i,t = Pr(ℜ(ŝi,t) 6= ℜ(si,t) | si,t),

CSEP
I
i,t = Pr(ℑ(ŝi,t) 6= ℑ(si,t) | si,t),

which are the conditional SEPs of the real and imaginary components of ŝi,t, respectively. It is
easy to verify that

CSEP
R
i,t≤ 1−

√
1−εi, CSEP

I
i,t≤ 1−

√
1−εi ⇒ CSEPi,t ≤ εi. (43)
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Following the same spirit in the real-valued conditional SEP analysis in Example 1, we have

CSEP
R
i,t







≤ 2Q
(√

2
σv

(dRi − |bRi,t|)
)

, if |ℜ(si,t)| < 2L− 1,

= Q
(√

2
σv

(dRi + bRi,t)
)

, if ℜ(si,t) = 2L− 1

= Q
(√

2
σv

(dRi − bRi,t)
)

, if ℜ(si,t) = −2L + 1,

where bRi,t = ℜ(ϕ∗
ih

H
i xt) − dRi ℜ(si,t). Consequently,

−dRi + aRi,t ≤ ℜ(ϕ∗
ih

H
i xt) − dRi ℜ(si,t) ≤ dRi − cRi,t ⇒ CSEP

R
i,t ≤ 1 −

√
1 − εi, (44)

Similarly, the result in (44) also holds for CSEP
I
i,t by replacing “R” with “I” and “ℜ” with “ℑ”.

Reorganizing (44) in a vector form yields (9). The proof is done.

B Proof of Theorem 1

We first prove fSLP ≤ fZF. As the ZF scheme (18) is feasible to Problem (17), we have

fSLP ≤ Est

[∥
∥xZF

t

∥
∥2

2

]

= Est

[
‖αc ⋄ st‖2R

]
= α2ρTr(R).

Note that the last equation above is due to E[s∗i,tsj,t] = 0 for i 6= j and E[|si,t|2] = ρ. Next, we
prove κfZF ≤ fSLP. The following two lemmas will be required, and their proofs are shown in the
Appendices C-D.

Lemma 1 Consider
p⋆ = min

x∈CK
‖x + b‖2A s.t. − c ≤c x ≤c c, (45)

where A is Hermitian positive definite. Then, for any β ≥ 0, we have

p⋆ ≥ bH(A−A(A + βI)−1A)b− β‖c‖22.

Lemma 2 Suppose R is Hermitian positive definite.

(a) For any |ϕ| = 1, the matrices Rϕ , Diag(ϕ)HRDiag(ϕ) and R share the same eigenvalues.

(b) Let R̃ϕ = Rϕ −Rϕ(Rϕ + βI)−1Rϕ, where β ≥ 0. We have

λi(R̃ϕ) =
λi(R)β

λi(R) + β
, ∀i, (46)

where λi(X) denotes the ith largest eigenvalue of X.
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Firstly, we derive a lower bound for g(d,ϕ). Denote I as the set of all ICPs of S, and let DI
be the uniform distribution on I. It holds that, for any β ≥ 0,

g(d,ϕ) =
1

(2L)2K

∑

st∈SK

[

min
ut∈U(st,d)

‖d ⋄ st + ut‖2Rϕ

]

≥ 1

(2L)2K

∑

st∈IK

[

min
−d+αc≤cut≤cd−αc

‖d ⋄ st + ut‖2Rϕ

]

=
(

1 − 1

L

)2K
Est∼DK

I

[

min
−d+αc≤cut≤cd−αc

‖d⋄st+ut‖2Rϕ

]

≥
(

1 − 1

L

)2K
Est∼DK

I

[

(d ⋄ st)HR̃ϕ(d ⋄ st)
]

− β‖d−αc‖22

=
(

1 − 1

L

)2K
K∑

i=1

( ρ̄

2
r̃ϕ,i|di|2 − β|di − αc|2

)

,

(47)

where R̃ϕ = Rϕ − Rϕ(Rϕ + βI)−1Rϕ; ρ̄ = Esi,t∼DI
[|si,t|2]; r̃ϕ,i is the (i, i)th entry of R̃ϕ; the

second equation is due to I ⊂ S; the fourth equation follows from Lemma 1.
Secondly, we specify the choice of β ≥ 0 to obtain the desired result. Plugging (47) into (17)

gives

fSLP≥
(

1 − 1

L

)2K
min

d≥cαc,
|ϕ|=1

K∑

i=1

( ρ̄

2
r̃ϕ,i|di|2−β|di − αc|2

)

. (48)

Observe from (48) that, given any |ϕ| = 1, the optimization over d is decoupled for each di, i.e.,

min
di≥cαc

( ρ̄

2
r̃ϕ,i|di|2 − β|di − αc|2

)

, (49)

which is a one-dimensional quadratic program. We choose β = (ρ̄/2 − 1)λmin(R). It can be shown
that the optimal solution to Problem (49) is di = αc. As a result,

min
d≥cαc,
|ϕ|=1

K∑

i=1

( ρ̄

2
r̃ϕ,i|di|2 − β|di − αc|2

)

=
ρ̄

2
|αc|2 min

|ϕ|=1

K∑

i=1

r̃ϕ,i =
ρ̄

2
|αc|2

K∑

i=1

λi(R̃ϕ)

≥ ρ̄

2
|αc|2

( ρ̄2 − 1)λmin(R)

λmax(R) + ( ρ̄2 − 1)λmin(R)

K∑

i=1

λi(R),

(50)

where the second equality is due to Lemma 2(a); the last inequality is due to Lemma 2(b) and
λi(R) ≤ λmax(R) for all i. By invoking

ρ=2(2L + 1)(2L− 1)/3, ρ̄=2(2L− 1)(2L − 3)/3,

∑K
i=1 λi(R) = Tr(R), and by plugging (50) into (48), we get κfZF ≤ fSLP. This completes the

proof.
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C Proof of Lemma 1

Problem (45) can be equivalently transformed to

p⋆ = min
x

‖x + b‖2A
s.t. ℜ(xi)

2 ≤ ℜ(ci)
2, i = 1, . . . ,K,

ℑ(xi)
2 ≤ ℑ(ci)

2, i = 1, . . . ,K.

The Lagrangian associated with the above problem is

L(x,νR,νI) = ‖x + b‖2A +
K∑

i=1

νRi (ℜ(xi)
2 −ℜ(ci)

2) +
K∑

i=1

νIi (ℑ(xi)
2 −ℑ(ci)

2),

where νR ≥ 0 and νI ≥ 0 are the dual variables. By the Lagrangian duality theory, it holds that
p⋆ ≥ infx L(x,νR,νI) for any νR ≥ 0 and νI ≥ 0. By choosing νR = νI = β1 with β ≥ 0, we
have

p⋆ ≥ inf
x

L(x, β1, β1)

= inf
x
{‖x + b‖2A + β‖x‖22 − β‖c‖22}

= bH(A−A(A + βI)−1A)b− β‖c‖22,
where the last equation is due to the fact that the optimization problem in the second equation
has x = −(A + βI)−1Ab as its optimal solution. The proof is complete.

D Proof of Lemma 2

Denote the eigendecomposition of R as V ΛV H , where V ∈ C
K×K is unitary, and Λ ∈C

K×K is
diagonal whose diagonal elements are the eigenvalues of R. We have

Rϕ = Diag(ϕ)HV ΛV HDiag(ϕ) = V̂ ΛV̂ H ,

where V̂ = Diag(ϕ)HV . It is seen that V̂ is also unitary. This means that the diagonal elements
of Λ are also the eigenvalues of Rϕ. Therefore, Rϕ and R share the same eigenvalues.

From the definition of R̃ϕ, we have

R̃ϕ = Rϕ −Rϕ(Rϕ + βI)−1Rϕ

= V̂ (Λ−Λ(Λ + βI)−1Λ)V̂ H .

It follows that the eigenvalues of R̃ϕ are

λi(R̃ϕ) = λi(R) − λ2
i (R)

λi(R) + β
=

λi(R)β

λi(R) + β
, ∀i.

The proof is complete.
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E Derivation of Algorithm 3

Observe from Problem (24) that given d ≥ α, the optimal ut’s can be explicitly expressed as

ut =







d− ct, if ũt ≥ d− ct,

−d + at, if ũt ≤ −d + at,

ũt, otherwise,

(51)

for t = 1, . . . , T . Therefore, by plugging (51) into Problem (24), the variable to optimize is only d,
which leads to a simplified problem. However, different intervals of d will result in different forms of
the ut’s, and thus different forms of the summation term

∑T
t=1(ut − ũt)

2 in the objective function.
We next show the formulations for d lying in different intervals. Define the set that includes all the
possible boundary points of the intervals of d as

D̃ , {α} ∪ D1 ∪ D2 ∪ {+∞},

where D1,{ct + ũt,∀t
∣
∣ ct + ũt≥α} and D2,{at − ũt, ∀t

∣
∣ at − ũt ≥ α}. Sort all the elements in

D̃ in ascending order, which results in D, {ω1, . . . , ωcard(D)} with ω1 ≤ · · · ≤ ωcard(D). Then, the
feasible region of d can be divided into card(D) − 1 intervals, i.e.,

ωp ≤ d ≤ ωp+1, p = 1, . . . , card(D) − 1.

By (24) and (51), the optimal d restricted on the pth interval is obtained by solving the following
quadratic program:

min
d

∑

t∈Tp
(d− ct − ũt)

2 +
∑

t∈Lp

(−d + at − ũt)
2 + (d− d̃)2

s.t. ωp ≤ d ≤ ωp+1,

where Tp , {t
∣
∣ ωp+1 ≤ ct+ũt} and Lp , {t

∣
∣ ωp+1 ≤ at−ũt}. The above problem has a closed-form

solution given by dp = max{ωp,min{ωp+1, d̂
p}}, where

d̂p =

∑

t∈Tp(ct + ũt) +
∑

t∈Lp
(at − ũt) + d̃

1 + card(Tp) + card(Lp)
.

The corresponding optimal value for the pth interval is

fp =
∑

t∈Tp
(dp − ct − ũt)

2 +
∑

t∈Lp

(−dp + at − ũt)
2 + (dp − d̃)2.

After computing the fp’s for all p, the dp that leads to the minimum fp is the optimal solution to
Problem (24).
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F Proof of Fact 4

Under the assumptions of Fact 4, Problem (19) becomes

min
d≥cαc,|ϕ|=1

Est

[

‖d ⋄ st‖2Rϕ

]

= min
d≥cαc,|ϕ|=1

Est

[ K∑

i=1

K∑

j=1

ϕ∗
i (di ⋄ si,t)∗rijϕj(dj ⋄ sj,t)

]

= min
d≥cαc,|ϕ|=1

ρ

2

K∑

i=1

|ϕi|2rii|di|2, (52)

where the last equation is due to E[(di ⋄si,t)∗(dj ⋄sj,t)] = 0 for all i 6= j, and E[|di ⋄si,t|2] = |di|2ρ/2
for all i. We see that (d,ϕ) = (αc,1) is an optimal solution to (52).
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1 Convergence Analysis

1.1 Preliminaries

We begin by introducing some notations and definitions. Let f : Rn → R∪ {+∞} be an extended-
real-valued function. Let X ⊆ R

n, and let

IX (x) =

{

0, if x ∈ X
+∞, otherwise

be the indicator function of X . As defined previously, 〈·, ·〉 is the inner product; ∇f(x) is the
gradient of a differentiable function f . A differentiable function f is said to have Lf -Lipschitz
continuous gradient on X if

‖∇f(x) −∇f(y)‖2 ≤ Lf‖x− y‖2, ∀x,y ∈ X . (53)

Also, dist(x,X ) , infy∈X ‖x− y‖2 is the distance between x and X .
Consider the minimization problem

min
x

f(x). (54)

It is a mathematically subtle subject to define what is a stationary point of Problem (54) when f
is nonconvex and nonsmooth [60]. Here we adopt the notion of critical points. A point x̂ is said to
be a critical point of Problem (54) if

0 ∈ ∂f(x̂), (55)

where ∂f(x) is the limiting subdifferential of f at x; see, e.g., [60, 61] and the references therein,
for details. If f is differentiable, then ∂f(x) = ∇f(x). If f is a sum of two functions, f(x) =
f1(x) + f2(x), it is generally not true that ∂f(x) = ∂f1(x) + ∂f2(x). But if f1 is differentiable and
f(x) = f1(x) + IX (x), then we do have ∂f(x) = ∇f1(x) + ∂IX (x).

The above concepts apply straightforwardly to functions of complex inputs, i.e., f : Cn → R;
see, e.g., [43, Section I.B].
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1.2 PG Method for Nonconvex Constrained Problems

Consider the following problem
min
x∈X

f(x),

where f : Rn → R is differentiable; X ⊆ R
n can be nonconvex. To put into context, we rewrite the

problem as
min
x

F (x) , f(x) + IX (x). (56)

Consider the following PG method for finding an approximate solution to Problem (56): given a
starting point x0 ∈ X and a parameter 0 < α < 1, solve

xℓ+1 ∈ arg min
x

‖x− (xℓ − αL−1
ℓ ∇f(xℓ))‖22 + IX (x)

= ΠX (xℓ − αL−1
ℓ ∇f(xℓ)), (57)

for ℓ = 0, 1, · · · , where Lℓ is such that

f(xℓ+1) ≤ f(xℓ) + 〈∇f(xℓ),xℓ+1 − xℓ〉 +
Lℓ

2
‖xℓ+1 − xℓ‖22. (58)

The above Lℓ’s can be obtained by standard methods; see, e.g., [51], for details. We are interested
in the question of under what conditions the above PG method will lead to convergence to a critical
point of Problem (56).

The above convergence question is relevant to the phase optimization problem in the main
paper; specifically, in Problem (21) and in the AM of the PPAP minimization in Section 5. The
problems are instances of Problem (56), while Algorithm 1 is identical to the above PG method.

In signal processing, convergence analyses of the PG methods are arguably well-known for the
case of convex X ; see, e.g., [51] and the references therein. Convergence analyses for nonconvex
X are, however, possibly less known. In fact, the convergence question for nonconvex X was
already answered by mathematical optimization researchers [50,62] as a special case of some general
frameworks. In particular, Attouch et al. [50] developed a powerful framework that shows critical-
point convergence for a general class of problems, and they did so by using the Kurdyka– Lojasiewicz
property elegantly.

While the convergence question was solved, there is a much simpler convergence proof if we
focus just on Problem (56). The proof, interestingly, resembles that for the more well-known case
of convex X (e.g., [51]). For the reader’s interest, we show the proof. Let us first describe the
result.

Proposition 2 Consider the PG method (57)–(58) for Problem (56). Suppose that

i) f⋆ , infx∈X f(x) > −∞;

ii) f has Lf -Lipschitz continuous gradient on X ;

iii) every Lℓ satisfies Lℓ ∈ [c1Lf , c2Lf ] for some 0 < c1 ≤ c2 < +∞ (true for a pertinent choice of
Lℓ [51]).

Then,
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(a) the sequence {xℓ}ℓ≥0 generated by the PG method satisfies the descent property f(xℓ) ≥ f(xℓ+1)
for all ℓ ≥ 0;

(b) {xℓ}ℓ≥0 exhibits a sublinear convergence rate property

min
ℓ=0,...,J

dist(0, ∂F (xℓ+1)) ≤
√

C

J + 1
, (59)

where

C =
4
(
1+

c22
α2

)
Lf (f(x

0)−f⋆)
(

1
α
−1
)
c1

;

(c) any limit point of {xℓ}ℓ≥0 is a critical point of Problem (56).

It is worth noting that the convergence rate result in (b) was not explicitly mentioned in the
aforementioned literature, although the key ideas leading to (b) follow those in the literature.

Proof of Proposition 2: Firstly we show (a). Define

h(x|x̃, β) = f(x̃) + 〈∇f(x̃),x− x̃〉 +
β

2
‖x− x̃‖22,

and rewrite (57) and (58) as

xℓ+1 ∈ arg min
x

h(x|xℓ, Lℓ/α) + IX (x), (60)

f(xℓ+1) ≤ h(xℓ+1|xℓ, Lℓ), (61)

respectively. We see from (60) that

h(xℓ+1|xℓ, Lℓ/α) ≤ h(xℓ|xℓ, Lℓ/α) = f(xℓ). (62)

Applying (62) to (61) gives

f(xℓ) − f(xℓ+1) ≥
(
1
α − 1

) Lℓ

2
‖xℓ+1 − xℓ‖22, (63)

which leads to (a).
Second we show (b). From (63),

f(x0) − f⋆ ≥ f(x0) − f(xJ+1)

≥
(
1
α − 1

) c1Lf

2

J∑

ℓ=0

‖xℓ+1 − xℓ‖22

≥
(
1
α − 1

) c1Lf (J + 1)

2
min

ℓ=0,1,...,J
‖xℓ+1 − xℓ‖22. (64)

Moreover, since xℓ+1 is a critical point of the problem in (60), xℓ+1 satisfies

0 ∈ ∇h(xℓ+1|xℓ, Lℓ/α) + ∂IX (xℓ+1)

= ∇f(xℓ) +
Lℓ

α
(xℓ+1 − xℓ) + ∂IX (xℓ+1). (65)
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It follows that

dist(0, ∂F (xℓ+1))2 = dist(0,∇f(xℓ+1) + ∂IX (xℓ+1))2

= min
v∈∂IX (xℓ+1)

‖∇f(xℓ+1) + v‖22

≤
∥
∥
∥∇f(xℓ+1) −

[

∇f(xℓ) + Lℓ

α (xℓ+1 − xℓ)
]∥
∥
∥

2

2
(66a)

≤ 2L2
f‖xℓ+1 − xℓ‖22 +

2c22L
2
f

α2 ‖xℓ+1 − xℓ‖22, (66b)

where (66a) is due to (65); (66b) is due to ‖x+y‖22 ≤ 2‖x‖22 +2‖y‖22 and the assumptions in ii)–iii).
Applying (64) to (66) leads to the result in (b).

Lastly we show (c). Suppose that there exists a convergent subsequence {xℓi}i≥0 of {xℓ}ℓ≥0.
Let x̄ be the limit of {xℓi}i≥0. Observe that, for all x ∈ X ,

h(x|xℓi , c2Lf/α) ≥ h(x|xℓi , Lℓi/α)

≥ h(xℓi+1|xℓi , Lℓi/α) (67a)

≥ f(xℓi+1) ≥ f(xℓi+1), (67b)

where (67a) is due to (60); (67b) is due to (61) and the result f(xℓ) ≥ f(xℓ+1) in (a). Taking limit
i → ∞ on both sides of (67) gives

h(x|x̄, c2Lf/α) ≥ f(x̄), for all x ∈ X ,

which implies
x̄ ∈ arg min

x
h(x|x̄, c2Lf/α) + IX (x) (68)

Since x̄ is a critical point of Problem (68), we have

0 ∈ ∇h(x̄|x̄, c2Lf/α) + ∂IX (x̄) = ∇f(x̄) + ∂IX (x̄)

which shows that x̄ is a critical point of Problem (56), the result in (c). �

1.3 A Proximal AM Method and Its Convergence

Consider the problem
min

x1∈X1,x2∈X2

f(x1,x2),

where f : Rn1+n2 → R is differentiable; X1 ⊆ R
n1 and X2 ⊆ R

n2 can be nonconvex. Let us define
x = (x1,x2) and X = X1 × X2, and rewrite the problem as

min
x

F (x) , f(x) + IX (x); (69)

note that IX (x) = IX1(x1) × IX2(x2). We are interested in the following proximal method for
finding an approximate solution to Problem (69): given x0 ∈ X , τ > 0,

xk+1
1 ≈ arg min

x1

f(x1,x
k
2) + IX1(x1), (70a)

xk+1
2 ≈ arg min

x2

f(xk+1
1 ,x2) +

τ

2
‖x2 − xk

2‖22 + IX2(x2), (70b)
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for ℓ = 0, 1, . . . , where “≈” means that we solve the problems approximately. The above proximal
AM method is a variant of the proximal AM in [54]; the notable difference is that the original
proximal AM method requires the problems in (70a)–(70b) to be exactly solved. As a variation
of [54, Lemma 3.1], we have the following critical-point convergence result.

Proposition 3 Consider the proximal AM method (70) for Problem (69). Suppose that

i) f⋆ , infx∈X f(x) > −∞, and X is closed;

ii) f has Lf -Lipschitz continuous gradient on X ;

iii) xk+1
1 is a critical point of the problem in (70a), and xk+1

2 is a critical point of the problem in
(70b);

iv) the following coordinate descent property holds

f(xk
1 ,x

k
2) ≥ f(xk+1

1 ,xk
2),

f(xk+1
1 ,xk

2) ≥ f(xk+1
1 ,xk+1

2 ) +
τ

2
‖xk+1

2 − xk
2‖22.

Then,

(a) the sequence {xk}k≥0 generated by the proximal AM method satisfies the descent property
f(xk) ≥ f(xk+1) for all k ≥ 0;

(b) {xk}k≥0 exhibits a sublinear convergence rate property

min
k=0,1,··· ,K

dist(0, ∂F (xk+1)) ≤
√

C

K + 1
,

where C = 2(L2
f/τ + τ)(f(x0) − f⋆);

(c) any limit point of {xk}k≥0 is a critical point of Problem (69).

We will give the proof later. There are applications for which assumption ii) in Proposition 3,
the Lipschitz continuous gradient assumption with f , may not be satisfied. For such cases we can
consider the following alternative.

Corollary 2 The same result in Proposition 3 holds if we replace assumption ii) by the following
conditions:

ii.a) f is twice differentiable on X ;

ii.b) {xk}k≥0 is a bounded sequence.

In the following we give the proof of Proposition 3 and Corollary 2. The reader may jump to
the next subsection for the application to the SLP designs in the main paper.

Proof of Proposition 3: From assumption iv), we see that

τ

2
‖xk+1

2 − xk
2‖22 ≤ f(xk) − f(xk+1). (71)
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We thereby have (a). To show (b), observe from (71) that

τ

2

K∑

k=0

‖xk+1
2 − xk

2‖22 ≤ f(x0) − f⋆ < +∞, (72)

which implies

min
k=0,1,...,K

‖xk+1
2 − xk

2‖22 ≤
2

τ(K + 1)
(f(x0) − f⋆). (73)

Moreover, from assumption iii), we have

0 ∈ ∇x1f(xk+1
1 ,xk

2) + ∂IX1(xk+1
1 ),

0 ∈∇x2f(xk+1
1 ,xk+1

2 ) + τ(xk+1
2 − xk

2)+∂IX2(xk+1
2 );

(∇xi
f denotes the gradient w.r.t. xi). The above equations can be rewritten as

vk+1 ∈ ∇f(xk+1) + ∂IX (xk+1), (74)

where vk+1 = (vk+1
1 ,vk+1

2 ) has

vk+1
1 = ∇x1f(xk+1

1 ,xk+1
2 ) −∇x1f(xk+1

1 ,xk
2) (75)

vk+1
2 = − τ(xk+1

2 − xk
2). (76)

By assumption ii), we can bound vk+1
1 as

‖vk+1
1 ‖2 ≤ Lf‖xk+1

2 − xk
2‖2 (77)

It follows from (74)–(77) that

dist(0, ∂F (xk+1))2 = dist(0,∇f(xk+1) + ∂IX (xk+1))2

≤ ‖vk+1‖22
≤ (L2

f + τ2)‖xk+1
2 − xk

2‖22. (78)

Applying (73) to (78) leads to (b).
To show (c), suppose that {xk}k≥0 has a convergent subsequence {xki}i≥0. Let x̄ be the limit

point of {xki}i≥0. Since f is continuous on X and we have xk, x̄ ∈ X , we get F (xki) → F (x̄).
From (72) and (78), we observe that

∑+∞
k=0 ‖vk+1‖22 ≤ +∞, which means that vk+1 → 0 as k → ∞.

Also, note from (74) that vk ∈ ∂F (xk).
As an elementary result, it is known that if yi → ȳ, F (yi) → F (ȳ), ui ∈ ∂F (yi) → ū, then

ū ∈ ∂F (ȳ); see, e.g., [54, Remark 2.1(b)]. Applying this result to our problem by yi = xki ,
ui = vki , we get 0 ∈ ∂F (x̄). �

Proof of Corollary 2: In the proof of Proposition 3, we only used assumption ii) in (77). Under
the new assumption ii.b), there exists a finite bound M that bounds xk; specifically, ‖xk‖2 ≤ M
for all k. Since ‖xk

1‖2 ≤ M and ‖xk
2‖2 ≤ M are also true, (xk+1

1 ,xk
2) is also bounded by M . Hence

{xk+1}k≥0 and {(xk+1
1 ,xk

2)}k≥0 lie in X̃ = X ∩ {x ∈ R
n1+n2 | ‖x‖2 ≤ M}, which is compact. As

an elementary fact, a twice differentiable function has Lipschitz continuous gradient on a compact
set. By setting Lf in (77) as the Lipschitz constant of ∇f on X̃ , we complete the proof. �
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1.4 Application of Proximal AM to SLP Designs

Now we study the application of the proximal AM framework in the last subsection to the SLP
designs in the main paper, with the focus on critical-point convergence.

We start with the TTP-minimization SLP design (19). We treat the SLP design (19) as an
instance of Problem (69), with

f = fTTP, x1 = (d,U), X1 = W, x2 = ϕ, X2 = P.

The AM scheme (20) for the SLP design (19) in the main paper, upon adding a proximal term τ
2‖ϕ−

ϕk‖22 in (20a), is identical to the proximal AM method in (70). In the main paper, the AM scheme
(20) solves Problem (70a) optimally via the APG method (Algorithm 2); and it approximates
Problem (70b) via the PG method (Algorithm 1), which was studied in the last last subsection. Let
us add one more condition, namely, that we use xk

2 to initialize the PG method for Problem (70b).
Then we can verify that the assumptions iii)-iv) in Proposition 3 are all satisfied; the PG results in
Proposition 2 are needed. Hence, by Proposition 3, we can conclude the following: the AM scheme
(20) for the SLP design (19) in the main paper, under the above described modification, guarantees
convergence to a critical point if we assume that f has Lipschitz continuous gradient on X .

However, there is a caveat: we are unable to show that f has Lipschitz continuous gradient on
X . Fortunately we can use Corollary 2. To describe, consider the following assumption.

Assumption 5 For each user i, there exists a symbol si,t such that |ℜ(si,t)| > 1; and that, for each
i, there exists a symbol si,t such that |ℑ(si,t)| > 1.

Proposition 4 Consider the TTP-minimization SLP design (19). Suppose that Assumption 5
holds. The AM scheme (20) under the above described modification generates a bounded sequence
{xk}k≥0. By Corollary 2 and by the above discussion, the modified AM scheme guarantees conver-
gence to a critical point of the SLP design (19).

We will show the proof later. The above result also applies to the PPAP-minimization SLP
design (31). Concisely we have

f = f̂PPAP (cf.,(33)), x1 = (d,U ,Z),

X1 = W × C
(N−K)×T ,x2 = ϕ, X2 = P.

We consider the same proximal AM scheme as above. As an extension of Proposition 4, we have

Corollary 3 Consider the PPAP-minimization SLP design (31) under the log-sum-exponential
approximation (33). All the results in Proposition 4 apply.

Proof of Proposition 4 and Corollary 3: We first consider Proposition 4. The variable ϕk is bounded,
naturally, and the nontrivial part lies in the boundedness of (dk,Uk). By the descent property in
Proposition 3.(a), we have f(x0) ≥ f(xk) for all k. For convenience, let x = xk. We get

f(x0) ≥ 1

T
‖d ⋄ st + ut‖2Rϕ

≥ 1

T
λmin(R)‖d ⋄ st + ut‖22

≥ 1

T
λmin(R)|dRi,tℜ(si,t) + ℜ(ui,t)|2 (79)
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for all i, t; note that λmin(Rϕ) = λmin(R) > 0. Suppose that (i, t) is such that ℜ(si,t) > 1. By
Fact 1, we have ℜ(ui,t) ≥ −dRi + ci, where ci = αi if si,t < 2L − 1 and ci = βi if si,t = 2L − 1.
Applying this result to (79) gives

√

f(x0)T

λmin(R)
≥ dRi,tℜ(si,t) + ℜ(ui,t) ≥ dRi,t(ℜ(si,t) − 1) + ci.

Since ℜ(si,t) > 1, the above inequality suggests that dRi is bounded above. Since dRi ≥ αi ≥ 0,
dRi is bounded. Under a bounded dRi , we see from (79) that ℜ(ui,t) is bounded for all t. Similarly
we can show the same bound result when ℜ(si,t) < −1 and when we consider the imaginary
counterparts. We hence conclude that, under Assumption 5, every (dk,Uk) is bounded. This
completes Proposition 4.

The proof of Corollary 3 is similar. We have

f(x0) ≥ f̂PPAP(d,U ,Z,ϕ)

≥ max
t=1,...,T

‖H†(ϕ ◦ (d ⋄ st + ut)) + Bzt‖2∞

≥ 1

N
‖H†(ϕ ◦ (d ⋄ st + ut)) + Bzt‖22

=
1

N
(‖d ⋄ st + ut‖2Rϕ

+ ‖zt‖22), (80)

where we have used δ log(
∑n

i=1 e
xi/δ) ≥ ‖x‖∞, BHH† = 0, and BHB = I. Eq. (80) shows that

zt is bounded; by the proof of Proposition 4 shown above, we readily see from (80) that (d,U) is
bounded. �

2 Optimal Linear Beamforming

In this section, we briefly review the optimal linear beamforming (OLB) scheme in [1,4] and describe
its implementation in our numerical simulations.

Under the linear precoding scheme xt =
∑K

i=1 wisi,t, the OLB scheme designs the beamforming
vectors w1, . . . ,wK by minimizing the average total transmission power (TTP) subject to signal-
to-interference-and-noise ratio (SINR) constraints; specifically,

min
w1,...,wK

E[‖xt‖22] =
∑K

i=1 ρ‖wi‖22

s.t. SINRi ,
ρ|hH

i wi|2
∑

j 6=i ρ|hH
i wj|2 + σ2

v

≥ ζi, ∀i,
(81)

where ζi is the SINR requirement of the ith user. As a variation of (81), we can also consider peak
per-antenna average power minimization

min
w1,...,wK

max
n=1,...,N

E[|xn,t|2] =
∑K

i=1 ρ|wn,i|2

s.t. SINRi ≥ ζi, ∀i.
(82)

In the simulation, the SINR requirement ζi of both Problems (81) and (82) are chosen to satisfy
the symbol error probability (SEP) requirement (8), which can be achieved by the following fact.
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Fact 5 Consider the OLB design in (81) or (82). Suppose that the multiuser interferences (MUIs)
are approximated as complex circular Gaussian random variables. Then any feasible beamforming
solution to (81) or (82) satisfies the SEP requirements in (8) if we choose

ζi =
ρ

2

[

Q−1
(1 −√

1 − εi
2

)]2
.

Proof: Plugging the transmitted signals of the linear precoding scheme (5) into the system model (1),
we get

yi,t = hH
i wisi,t +

∑

j 6=ih
H
i wjsj,t + vi,t,

where ηi,t ,
∑

j 6=ih
H
i wjsj,t is the MUI. By assuming that ηi,t is a complex circular Gaussian

random variable, we have ηi,t ∼ CN (0,
∑

j 6=i ρ|hH
i wj|2). Then, we model

ηi,t + vi,t =
(√

∑

j 6=i ρ|hH
i wj|2 + σ2

v

)

ξi,t, ξi,t ∼ CN (0, 1).

By further assuming that hH
i wi 6= 0, we have

yi,t

hH
i wi

= si,t +

√
ρ

SINRi
ξi,t.

By the basic SEP result in digital communications (e.g. [63]), or by the SEP derivation in Section 2,
we have

CSEP
R
i,t ≤ 2Q

(√
2SINRi

ρ

)
, CSEP

I
i,t ≤ 2Q

(√
2SINRi

ρ

)
.

By the relation (43) and the invertibility of the Q function, the desired result is obtained. �

Problems (81) and (82) can be transformed to convex problems [1] and then solved by available
convex optimization softwares, such as CVX [52].
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