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Abstract—We provide simulations of the nonlinear thresh-
old (NLT) versus per-channel symbol rate at a constant band-
width efficiency for a 15-channel wavelength-division multiplexing
long-haul coherent optical transmission over a 20 × 100 km single-
mode fiber link, both dispersion-managed (DM) and dispersion-
uncompensated (DU), with several popular polarization multi-
plexed modulation formats. We exploit the nonlinearity-decoupling
method to estimate the NLT due to each individual nonlinear ef-
fect, and, thus, show how the dominant nonlinearity changes with
symbol rate. Plots of the NLT normalized to the symbol rate also
reveal the symbol rate achieving the longest distance. Assuming a
signal-independent Gaussian nonlinear interference, we derive a
new formula yielding the system reach based on knowledge of NLT
measurements on a much shorter link. We finally provide reach
simulations to verify the accuracy of the new reach formula for
both DM and DU links.

Index Terms—Coherent systems, nonlinear effects, PDM-BPSK,
PDM-QPSK, PDM-16QAM.

I. INTRODUCTION

T
HE issue of the best granularity in wavelength division

multiplexed (WDM) long-haul coherent optical links, i.e.,

the per-carrier symbol rate for orthogonal frequency division

multiplexing, and the per-channel symbol rate for single-carrier

modulations, was recently discussed [1]–[9]. The best symbol

rate either minimizes the bit error rate (BER) at a fixed distance,

or maximizes the largest transparent transmission distance (i.e.,

the reach) at a fixed BER.

We previously reported on lengthy Monte-Carlo simulations

of the nonlinear threshold (NLT) versus symbol rate R in

polarization-division-multiplexed (PDM) quadrature phase shift

keying (QPSK) coherent systems at a constant bandwidth effi-

ciency η � R/∆f , where ∆f is the channel spacing, with the

aim of highlighting the dominant nonlinearity as the granu-

larity changes [10]. In both [10] and in this paper, the NLT

PNLT is defined as the transmitted per-channel power at 1 dB

signal to noise ratio (SNR) penalty at BER = 10−3 (the inte-

grated NLT PNLT · N is also often used, with N the number

of spans, see e.g., [11], [12]). We also reported on how the

reach in dispersion-uncompensated (DU) links can be inferred

from both the nonlinear interference (NLI) accumulation param-

eter ǫ and the power margin measured at a given transmission

distance [13, eq. (24)]. The power margin is proportional to the

ratio PNLT/PL , where the linear threshold PL is the power at
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the required SNR in linear propagation. Similar inferences for

dispersion managed (DM) systems are well known (see, e.g.,

[14]). Since PL scales linearly with R, the largest power margin

(hence, as we shall see, the longest reach) is achieved at the

symbol rate that maximizes the normalized margin PNLT/R.

In this paper, which is an extended version of [15], we re-

port on simulations of PNLT/R for both DM and DU systems,

for several PDM single-carrier modulation formats of interest

with non-return to zero (NRZ) supporting pulses, namely: bi-

nary phase-shift keying (PDM-BPSK), PDM-QPSK, and 16-

level quadrature amplitude modulation (PDM-16QAM). Com-

pared to [15], we here extend the investigation to higher spec-

tral efficiency, and to polarization switched QPSK (PS-QPSK)

and interleaved return to zero (iRZ) for both PDM-BPSK and

PDM-QPSK [16], [17]. All NLT simulations were performed

for a 20×100 km single-mode fiber (SMF) link with end-span

lumped amplification and 15 WDM channels. The split-step

Fourier method (SSFM) simulations were based on the Man-

akov nonlinear equation and used the nonlinearity-decoupling

method proposed in [18] (which is reviewed for convenience in

Appendix B) to yield the NLT due to each Kerr nonlinearity.

We thus aim to shed light on the way the nonlinear Kerr effect

manifests on several modulation formats propagating in both

legacy DM and modern DU links. We present the NLT results

in terms of the normalized margin versus R to highlight both i)

the dominant nonlinearity for each format, and ii) the optimal

granularity for maximum reach.

For DU systems we double-check the margin dependence

on symbol-rate against predictions of the Gaussian noise (GN)

model [19], and observe a format-dependent offset, in agreement

with [20]–[23]. Another novelty compared to [15] is that, by

working with the GN theory, we come up with a new formula that

relates the system reach to the NLI accumulation parameter ǫ and

to the fictitious noise figure found in fixed-distance simulations

at NLT. Surprisingly, we show that such a formula also very

well predicts the reach of DM systems.

The paper is organized as follows. Section II briefly recalls

the system design problem. Section III describes the simula-

tions setup, while Section IV presents and discusses the simu-

lations results. Section IV-C presents GN-model extrapolations

of the margin/reach dependence on symbol-rate to a large chan-

nel count. Section V presents the novel formula that quantifies

the maximum reach as a function of the simulated fictitious

noise figure at NLT, and checks it against simulations. Finally,

Section VI contains the conclusions.

II. SYSTEM DESIGN

The design of long-haul optical links is traditionally based

on the maximization of the system reach, defined as the

maximum distance bridged by a channel without regeneration.
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Fig. 1. Simplified sketch of received BER contours, plotted against power per
channel and distance. PH is the nonlinear line. PL is the linear line. Their ratio
is the power margin.

To this goal, it is customary to evaluate the reach from BER,

or equivalently Q-factor, contours versus both launched power

and distance (see, e.g., [13], [14], [24] and Fig. 8). A simplified

straight-line sketch of such contours is given in Fig. 1 for both

a DM and a DU system [25, presentation slides]. At any given

reachable distance there are two powers yielding the target BER,

the largest one PH in the so called “nonlinear region,” the other

PL in the “linear region.” Their difference is the power margin.

While the linear PL line versus distance (or span number N ) has

slope 1 dB/dB when the spans are identical, the negative slope

of the nonlinear PH line depends on the dispersion map. For

DU links, theory shows the nonlinear line slope is −(1 + ǫ)/2
dB/dB, where the NLI accumulation parameter ǫ is a small pos-

itive number ≪ 1 [13], while for DM links the nonlinear slope

is close to −1 dB/dB [14], or equivalently ǫ ∼= 1. The reason of

the larger negative nonlinear slope in DM links can be traced

back to the nonlinear contributions of the various spans: in DM

systems they are unequal and strongly correlated, while in DU

systems they tend to be more even and uncorrelated by the large

cumulated dispersion [26]. The linear line PL of the DU link

lays below the one of the DM link because of the absence of

lossy in-line dispersion compensating fibers in the DU span.

Together with the smaller tilt of the nonlinear line PH , this gives

the DU link a longer reach than the DM link.

The question is now how these BER contours and thus the

reach change as the symbol rate R is changed. It is clear

from Fig. 1 that, assuming ǫ independent of R, by maximiz-

ing the power margin PH/PL one also maximizes the reach.

Appendix A provides an analytical proof of the above fact for

DU links. Since PL is proportional to the receiver bandwidth,

and hence to R, then the ratio PH/R should be maximized. In

DU links, PNLT versus N (in a dB–dB plot) is known to be

approximately a straight-line, placed 3.42 dB below PH [13,

Fig. 8]. Hence in the next section we provide a thorough inves-

tigation by simulation of the normalized margin PNLT/R at a

BER = 10−3 in both DM and DU links and for several popular

modulation formats.

III. SIMULATED SYSTEMS

Fig. 2 shows the optical systems simulated with the open-

source software Optilux [27]. The transmitter consisted of

Nch = 15 WDM channels modulated at a symbol rate of R
Gbaud with channel spacing ∆f and bandwidth efficiency

R/∆f = 0.56 (except where otherwise stated). We considered

four modulation formats: PDM-BPSK, PDM-QPSK, PS-QPSK,

Fig. 2. Block diagrams of DM and DU simulated links. TX block represents
15 WDM channels with spacing ∆f = R/η, with R the symbol rate and η the
bandwidth efficiency. In DM we use a RDPS of 30 ps/nm and a pre-compensation
of −540 ps/nm.

and PDM-16QAM with differential phase encoding/decoding.

For all formats we used NRZ supporting pulses, and for PDM-

BPSK and PDM-QPSK we also considered iRZ pulses with

50% duty cycle [16], [17]. Before multiplexing, each channel

was modulated with independent random symbols and filtered

by a second order super-Gaussian filter of bandwidth ∆f . The

number of symbols was a function of R, and sized to cor-

rectly reproduce the maximum walk-off cumulated by the edge

channels of the WDM comb with respect to (w.r.t.) the cen-

tral channel. In all cases it was confined between 1024 and

16384 symbols. The transmission line consisted of 20 spans

of 100 km of SMF (dispersion D = 17 ps/nm/km, slope pa-

rameter β3 = 0, attenuation α = 0.2 dB/km, nonlinear coef-

ficient γ = 1.3 W−1 · km−1). At the end of the link, lumped

electronic dispersion compensation was implemented in the co-

herent receiver. In the DM case, we used an in-line residual

dispersion per span (RDPS) of 30 ps/nm and a straight-line rule

pre-compensation of −540 ps/nm [28], while in the DU case

no compensation fiber was used. Propagation used the vector

SSFM with zero polarization mode dispersion and Manakov

nonlinear step [29], [30]. The maximum nonlinear phase per

step was 3 · 10−3 rad at symbol rates lower than 80 Gbaud, and

6 · 10−4 rad at higher symbol rates. Before detection we used a

sixth order Butterworth optical filter of bandwidth ∆f to extract

the central WDM channel. The signal was then converted to an

electrical current by an ideal coherent mixer (zero laser phase

noise, zero frequency offset) and sampled at two samples per

symbol over a bandwidth of 0.6R. The discrete sequence was

then digitally processed by performing polarization recovery

and equalization with a 15-tap least-squares trained equalizer,

and a 27-tap carrier phase estimation (CPE). For PSK modula-

tion formats the CPE was performed with the Viterbi and Viterbi

algorithm, while for 16QAM we used a blind-phase search

algorithm [31].

The objective of the simulations was to estimate the 1-dB con-

strained NLT PNLT (see Appendix A) of the worst-case central

channel versus symbol rate when nonlinear effects are selec-

tively activated (see Appendix B). The procedure to estimate

PNLT was the following [32, Algorithm 1]: first, we estimated

the SNR S0 at the receiver sampler yielding BER = 10−3 in

linear transmission; second, we activated the Kerr nonlinearity

of interest and varied the input power P as well as the ASE

power NASE = P/(1.26 · S0) (so as to enforce a linear SNR

penalty of 10log10 (1.26) = 1 dB) until a BER = 10−3 is again
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Fig. 3. Normalized margin 10 log10 (PNLT /R) versus symbol rate R [log scale] for a 15-channel homogeneous WDM comb with R/∆f = 0.56 over a
20×100 km SMF DM link with RDPS = 30 ps/nm. Solid lines: ASE loading at the receiver side. Dashed lines: distributed ASE. Labels: “SPM”= self-phase
modulation only; “XPM” = scalar cross-phase modulation only; “XPolM” = cross-polarization modulation only; “WDM” = all nonlinearities.

obtained. The found value is PNLT . ASE power is changed by

varying the lumped EDFA noise figure.1

Each BER estimation, with ASE either generated at each

EDFA (distributed noise) or loaded at the end of the link (noise

loading), was performed by Monte Carlo simulations, by re-

peating several independent transmissions of the WDM comb

until 100 errors were counted. The input states of polarization

(SOP) of the WDM carriers were randomly oriented over the

Poincar sphere and randomly scrambled between two consecu-

tive transmissions.

IV. NUMERICAL RESULTS

Aim of this section is to quantify the NLT set by each Kerr

nonlinearity for the most common coherent modulation formats.

Recall that a small NLT corresponds to a strong nonlinearity,

1Other authors equivalently choose to vary the span loss, hence the EDFA
gain [33].

and vice-versa. All results of simulations in the DM and DU

systems described in Section III are summarized inFigs. 3–4,

where the 1-dB NLT PNLT at BER = 10−3 , normalized to the

symbol rate R, is plotted versus R. The reason for the normal-

ization is that the maximum reach is a monotonic increasing

function of the normalized margin PNLT/R, as discussed in the

introduction and analytically proved for DU links in Appendix

A. Hence the plots in Figs. 3 and 4 not only reveal the dominant

nonlinear effect (yielding the lowest NLT), but also the symbol

rate corresponding to the maximum reach.

In Figs. 3 and 4, in each labeled curve only the indicated

nonlinearities are active, except for the curve labeled WDM,

where all nonlinear effects are active and thus corresponds

to the real case. The nonlinearities are: self-phase modulation

(SPM), cross-phase modulation (XPM) and cross-polarization

modulation (XPolM). The Appendix B summarizes the SSFM

details for the selective activation of the desired nonlinear-

ities. XPM and XPolM simulations were performed by the
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separate-field propagation (SFP) that misses classical four wave

mixing (FWM), while WDM simulations used the unique-field

propagation (UFP) which includes all Kerr nonlinearities. The

XCI curve includes both XPM and XPolM and is added to better

compare cross-channel to single-channel nonlinearity. In read-

ing Figs. 3 and 4, please keep in mind that SPM and XPM are

scalar effects that just depend on the field intensity.

A. DM Link

The six plots in Fig. 3 show the normalized margin versus

symbol rate in the DM link. We report both the simplistic case

of noise loading at the receiver (solid lines) and the true case of

distributed ASE noise (dashed lines), where nonlinear signal-

ASE interactions are fully accounted for. We will call noiseless

SPM/XPM/XPolM those effects with ASE noise loading, and

noisy SPM/XPM/XPolM those effects with distributed ASE.

The six DM plots in Fig. 3 show that:

1) XPM with PSK formats is quite sensitive to signal-ASE

interactions, since noisy and noiseless XPM-NLTs widely differ.

This is due to the fact that in noiseless propagation in a DM

link the symbol-rate quasi-periodic intensities of the transmitted

PSK WDM fields are preserved, hence also the noiseless XPM

field is symbol-rate quasi-periodic, and is thus well suppressed

by the CPE block [34]. When in-line ASE is added, the intensity

periodicity is broken and the XPM suppression in the CPE is

way less effective, leading to a stronger residual XPM and thus

a lower NLT.

Also, the low-pass filtering action introduced by fiber

walk-off on the field intensity enhances XPM correlation on

neighboring symbols, thus helping the phase tracking of the

CPE [34]. In this case, shortening the CPE window may further

improve the BER, however at the expense of an increase of the

ASE-induced phase noise [35]. Since at the 1-dB NLT the ASE

noise is largely dominant,2 then the number of CPE taps is gen-

erally set to a value large-enough (27 in our simulations) to well

suppress ASE-induced phase fluctuations, and small-enough not

to interfere with the frequency estimation block.

2) With homogeneous NRZ-PSK WDM formats, the domi-

nant nonlinearity in the lower symbol rate range is XPolM. Ac-

cording to the XPolM model in [30], this is attributed to the fast

modulation-induced random re-orientations of the mean WDM

Stokes vector (called the pivot) in Stokes space, which cannot be

tracked by the polarization demultiplexer at the receiver. ASE

impact on XPolM is negligible, since ASE contribution to the

pivot re-orientation is a second-order effect [10].

The XPolM-NLT is seen to be almost symbol-rate indepen-

dent for all formats over the shown range. As symbol rate R
is increased at constant η = R/∆f , the channel spacing ∆f is

also increased, and so is channel walk-off. XPM rapidly weakens

and thus XPM-NLT increases3 with R because of the low-pass

intensity filtering due to walk-off [34]. XPolM is affected also

by channels with a huge spectral distance from the channel of

interest [38], [39] since it weakens with walk-off (i.e., with R)

much more slowly than XPM. Hence the XPolM-NLT on the

shown R range appears almost flat.

2At the optimal power the ASE variance is twice that of the NLI [36], [37].
The 1-dB NLT is about 1dB below the optimal power [13].

3For the anomalous behavior of noiseless XPM-NLT for iRZ see point 4).

3) iRZ pulses in PDM-PSK formats were proposed because

they quite effectively suppress XPolM [16], [17]. The XPolM-

NLT curves in a homogeneous WDM system with iRZ-PDM-

PSK formats are in fact seen to shift to a much higher value than

with NRZ pulses. The physical reason can be attributed to the

symbol-time periodic alternation of each signal’s polarization

between two antipodal SOPs, which partly compensates the

XPolM polarization spread [16].

4) PSK formats with iRZ pulses are also less sensitive to XPM

due to a more constant transmitted PDM power than with NRZ

pulses. This translates into weaker intensity-dependent scalar

nonlinearities, namely, SPM and XPM [40].

In the DM link, for iRZ pulses we note an anomalous decrease

with R of the initially very high noiseless XPM-NLT. This is

ascribed to an increase with R of the XPM-enhancing intensity

fluctuations induced by GVD on the high-power, narrow RZ

pulses, which overcome the XPM-suppressing action of walk-

off. However, the realistic noisy XPM-NLTs are much lower

and do recover an increasing behavior with R.

5) with iRZ-PDM-PSK formats, the suppression of XPolM

makes noisy XPM no longer negligible. Also, the noise loading

method may be quite inaccurate on the overall WDM-NLT, with

a maximum difference of 2 dB between noisy and noiseless

propagation over the shown R range.

6) SPM-NLT decreases at increasing symbol rates for all for-

mats. SPM manifests at small R as a quasi-periodic nonlinear

phase rotation induced by the quasi-periodic signal intensity,

which is effectively suppressed by the CPE block, hence SPM-

NLT is initially large. As the symbol rate increases, the SPM

perturbation field evolves into an almost signal-independent cir-

cular noise, much like in DU links [33], and the CPE block can-

not suppress the intensity fluctuations of the SPM field. Noisy

SPM manifests at small R as an ASE-induced nonlinear phase

noise: ASE destroys the noiseless-SPM periodicity so that the

CPE is less effective in suppressing SPM (Cfr point 1 for XPM).

With standard SMFs, the nonlinear signal-noise interactions are

limited to bandwidths not exceeding a few tens of GHz [32], so

that, as the symbol-rate increases, a larger and larger fraction

of ASE is white as in linear propagation and thus noise load-

ing simulations yield the same results as with distributed noise.

Hence noisy and noiseless SPM-NLTs merge at large R.

In NRZ-BPSK, the plateau at which the noiseless SPM-NLT

levels-off as R is decreased is due to the large powers toler-

ated by this format. Such powers cause a strong SPM-induced

bandwidth enlargement, and a significant fraction of the signal

energy is cut off by the receiver filter.

7) the WDM-NLT of PS-QPSK is almost 1 dB higher than that

of NRZ-PDM-QPSK, but still lower than that of NRZ-PDM-

BPSK. With only XPolM, PS-QPSK has a NLT very close to

PDM-BPSK, since they both display a binary SOP pattern on

the Poincar sphere (Cfr point 3)). With only XPM, PS-QPSK

has a similar NLT to PDM-QPSK since they both have a similar

intensity profile and the same quaternary modulation in each

polarization.

8) signal-noise interactions in 16QAM are a second-order

effect, not only for XPolM, but also for scalar SPM and XPM,

because of the large modulation-induced intensity fluctuations

of the QAM format. The same reason makes XPM dominant at

low symbol rates.
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Fig. 4. Normalized margin 10 log10 (PNLT /R) versus symbol rate R [log scale] for a 15-channel homogeneous WDM comb with R/∆f = 0.56 over a
20× 100 km SMF DU link. ASE loading at the receiver side. Labels: “SPM” = self-phase modulation only; “XPM” = scalar cross-phase modulation only;
“XPolM”=cross-polarization modulation only; “WDM” = all nonlinearities; “XCI” = XPM+XPolM.

9) the decreasing trend of SPM with R leads to a cross point

where single-channel NLI dominates over cross-channel NLI.

This point, for a 15-channel transmission, is placed around 100

Gbaud for NRZ-BPSK format, while it lies in the range 40–60

Gbaud for the other NRZ formats; it is around 25 Gbaud for the

iRZ-PSK formats.

10) The overall WDM-NLT is roughly constant (within

1.5 dB) over the shown R range, with a very shallow max-

imum in the range 10–28 Gbaud. It is worth noting that the

influence of signal-ASE interactions on the WDM-NLT is sig-

nificant only for the iRZ-PSK formats. This implies that NLT

at BER = 10−3 in WDM DM links for all other formats can be

assessed by using the faster noise-loading method.

B. DU Link

Fig. 4 show the corresponding normalized margin PNLT/R
versus symbol rate in the DU link. Here ASE was loaded at

the receiver since signal-noise interactions are negligible [10].

These six plots show that:

11) with all formats, scalar XPM slightly dominates over

XPolM. We ascribe this behavior to the GVD-induced pseudo-

random intensity variations in DU links, which both tend to

enhance XPM variance and weaken XPM-induced symbol cor-

relations observed in the DM case, thus reducing the CPE XPM

suppression effectiveness. However, both XPM and XPolM are

much better suppressed than in DM links by the huge walk-off

of the line;

12) in the presented 15-channel WDM system, the XPM- and

XPolM-NLTs are quite close, hence to better compare cross-

and single-channel NLTs it is useful to also visualize the XCI-

NLT where both effects are active. We see that at lower R
XCI dominates, while at larger R SPM dominates. The cross-

point is around 20 Gbaud for most formats, except for 16QAM

where it is around 40–60 Gbaud. When nonlinearity i is active,

with i ∈ {XPM,XPolM}, for all links where it manifests as a
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circular complex Gaussian field, the NLT PNLT ,i is related to

the corresponding NLI coefficient ai (see Appendix A) as [13,

p. B211]:

P 2
NLT ,i = 1/(3c2S0ai) (1)

where c = 1.27 for the NLT at 1 dB penalty, and S0 is the

electrical SNR at the reference BER. If XPM and XPolM fields

were independent, their variances would add up, hence aXCI
∼=

aXPM + aXPolM and we would get an XCI-NLT:

PNLT ,XCI = 1/
√

1/P 2
NLT ,XPM + 1/P 2

NLT ,XPolM . (2)

We verified that such a formula is very close (within 0.3 dB for

all formats, except for PS-QPSK where the error can be up to

1 dB) to the XCI simulated NLT in Fig. 4, hence we conclude that

XPM and XPolM are practically uncorrelated in DU links for

most formats. We also verified that (2) very accurately predicts

the XCI-NLT even in DM links.

13) the GN reference formula [19, eq. (1)] treats the cross-

nonlinearity as a whole, and cannot discriminate between XPM

and XPolM. At large R, the XCI coefficient is predicted to

scale as [41, eq. (20)]4: aXCI ∝ 1/(R∆f) = η/R2 (consistent

with [43, eq. (57)] for Nyquist-WDM systems). Using (1) we

have PNLT ,XCI ∝ 1/
√

aXCI , hence the GN model leads us to

conclude that PNLT ,XCI/R is a constant at large R and constant

η. This confirms the observed flattening of the simulated XCI-

NLTs versus R for all formats.

14) XPolM is much weaker than in the DM case. In both

DM and DU links, XPolM operates in the same way within

each span, with an efficiency related to the number of pivot

re-orientations along propagation [30]. The difference is that

the periodic map of the DM link induces a long trajectory of

the output SOP vector over the Poincar sphere. In the DU link,

instead, the direction of the pivot is almost uncorrelated span

by span, thus producing Brownian-like wiggled output SOP

trajectories that drift less away from the input SOP [30]. Since

each symbol experiences a different SOP trajectory, overall we

observe polarization scattering, and since the drift from the

input SOP is smaller in DU links, then we also have a weaker

XPolM.

15) with all formats, the WDM PNLT/R curves decrease with

R, i.e., the best symbol rate at fixed bandwidth efficiency and

with 15 channels is below the lower R limit, i.e., 5 Gbaud.

C. More Checks with GN Theory

NLT simulations are extremely time-consuming hence the

number of WDM channels was here limited to 15. It would

be very useful to have an analytical model to cross-verify the

general physical trends found by simulation and to extrapolate

the behavior when the WDM channel count is in the order of

100, as in typical commercial WDM systems. Fortunately, for

DU systems the GN model [19] does the job. In this section, we

test the predictions of the GN model and compare them with

those obtained from the NLT data in Figs. 3 and 4.

If the NLI coefficient ai for the ith nonlinearity were format-

independent, as postulated by the GN model, from (1) we would

4There is a typo in eq. (20) of [41], the correct equation can be found in [42].

Fig. 5. Lines with markers: simulated
√

S0 PNLT /R [dB(mW/Gbaud)] ver-
sus R [Gbaud] for DU(a-b) and DM(c-d) 20×100 km SMF link with 15 WDM
channels at η = 0.56, (Dashed) WDM, (Solid) XPolM, (Dash-dotted) XPM.
PNLT /R simulated values are those reported in Figs. 3 and 4. GN theory plotted

in solid line without markers as
√

S0 PNLT /R = 1/
√

3c2 aNL /R.

expect
√

S0PNLT ,i to also be format-independent. If this were

the case, the simulated PNLT ,i/R versus R curves reported in

Fig. 4 for the DU link, multiplied by the
√

S0 of the used format,

should all fall on top of each other. We performed this check in

Fig. 5(a) and (b). We used the same S0 values as in the simula-

tions, namely, S0 = [7.77, 10.77, 17.07] dB for the three NRZ

formats (BPSK, QPSK, 16QAM in that order), while iRZ for-

mats required 0.2 dB less SNR than their corresponding NRZ

formats. Dashed curves refer to XPolM, dash-dotted to XPM,

and solid lines to the all-nonlinearities WDM case. We note

that the
√

S0PNLT/R XPM/XPolM curves reasonably merge,

with different values between NRZ and iRZ curves. The WDM

curves with NRZ pulses show instead a spread of about 1.5 dB

across the formats at larger R, which we verified to be also due

to the spread of the corresponding SPM curves (not shown to

avoid clogging the figure). As pointed out in Section II, PNLT/R
is proportional to the reach, hence one can read off the WDM

curves in Fig. 5(a) also the reach behavior versus symbol rate for

each modulation format. A similar decreasing reach versus R be-

havior for a five-channel WDM DU system was reported in [7].

We also report in Fig. 5(a)–(c) the solid-line curve la-

beled GN, which plots the theoretically equivalent quan-

tity 1/
√

3c2aNLR2 , as per eq. (1), with aNL =
∫

GNLI(f)df
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Fig. 6. Plot of
√

S0 PNLT /R versus R for DU 20×100 km SMF link ob-
tained from GN reference formula at varying bandwidth efficiency η and fixed
aggregate symbol rate B = Nch R. The η = 0.56, Nch = 15 curve is the same
labeled GN in Fig. 5(top). These curves, which according to the GN model are
format-independent, display the same behavior versus R as the reach, as proved
in Appendix A.

calculated according to the GN reference formula [19, eq. (1)]

with the efficient algorithm detailed in[20], with the same nor-

malized WDM input power spectral density GNLI used in the

simulations of Fig. 4. The GN curve theoretically confirms the

monotone decreasing trend versus R in DU links with η = 0.56

and 15 channels. Among the NRZ formats, we note that the

16QAM format is the closest to the GN curve, because of its

better agreement with the key GN model assumption of a Gaus-

sian input process [20]. Such findings about a non-negligible

modulation-format dependence of the NLI variance are in agree-

ment with recent extensions of the GN model [20]–[23]. Also,

note that iRZ formats are the farthest from the GN model, with

a distance of over 2 dB, and their weaker NLI may suggest that

iRZ formats do not converge to a Gaussian-like field as fast as

their NRZ counterparts.

In Fig. 5(c)–(d) we tried the same rescaling with the DM link

data in Fig. 3, where we used the distributed-noise NLTs only.

We see that the XPM curves now show a more marked format

dependence (note the dramatic decrease of the 16QAM XPM),

while the XPolM curves for the NRZ formats do reasonably

merge together and are relatively flat, as in the DU link. This is an

indication that XPolM is the nonlinear effect that behaves most

similarly in DM and DU links. The large spread of WDM curves

across the modulation formats now comes not only from a large

spread of the SPM curves (not reported to avoid confusion), but

also from that of the XPM curves. For completeness, the curve

labeled GN reports the predictions of the GN model for the DM

link, which are clearly unsatisfactory. A recent extended GN

model seems promising in reducing such a spread also for DM

links [44].

To conclude this section, we present GN model extrapolations

of the
√

S0PNLT/R versus R curves to large WDM channel

numbers, where simulations are unfeasible. We first note that the

monotonically decreasing behavior versus R of both GN theory

and simulations observed in Fig. 5(a) can in part be explained

by the increase of the total WDM bandwidth, since the number

of channels was fixed at a fixed η = R/∆f = 0.56, hence by

increasing R we also increased the spacing ∆f . In Fig. 6 we

now more realistically fixed the WDM aggregate symbol rate

B = NchR = 2.8 Tbaud, which corresponds to increasing the

TABLE I
∆ = PNLT (Nch = 15) − PNLT (BA ) [dB] COMPUTED FROM WDM PNLT

AT REFERENCE BER = 10−3
OVER A 20×100 KM SMF LINK

η = 0.56 (BA = 750 GHz) η = 0.85 (BA = 500 GHz)

10 Gbaud 80 Gbaud 10 Gbaud 80 Gbaud

16QAM, DM −0.44 dB 0.53 dB −0.30 dB 0.40 dB

16QAM, DU −0.49 dB 0.61 dB −1.18 dB 0.37 dB

QPSK, DM −0.40 dB 0.65 dB −0.57 dB 0.73 dB

QPSK, DU −0.25 dB 0.42 dB −0.76 dB 0.73 dB

number of channels Nch when reducing R. The total occupied

bandwidth was fixed at W = B/η. We observe that even in this

case the
√

S0PNLT/R (hence the reach!) plot versus R keeps a

monotonically decreasing trend at any η < 1, and converges to

the naturally flat behavior of the Nyquist-WDM case (η = 1).

The physical message from these curves is that, for reach max-

imization, smaller symbol rates are slightly preferable, which

means the WDM energy should be most uniformly spread across

the frequency axis. However, from the “reach” curves of Fig. 6,

we conclude that the granularity of the WDM spectrum may be

of some importance only away from the Nyquist limit, and at

small channel counts, where smaller symbol rates are slightly

preferable. Otherwise, in all practical cases, the per-channel

symbol rate need not be optimized to maximize the reach. We

cannot replicate such curves by SSFM simulation. However,

to give a feeling to the reader, for NRZ QPSK and 16QAM

we replicated at R = 10 and 80 Gbaud the WDM NLTs of

Figs. 3, 4, and 7 at the aggregate bandwidth BA of the 15-channel

system at 28 Gbaud namely, BA = 750 GHz at η = 0.56. We

also included the case η = 0.85 (BA = 500 GHz) that will be

analyzed in Section IV-D. Table I shows the NLT gap of the new

curves from the corresponding ones in Fig. 3, 4, and 7. From the

table we note a counterclockwise tilt of each curve. This was ex-

pected, since we are enhancing cross-nonlinearities at 10 Gbaud

while reducing them at 80 Gbaud. Regarding the DU case such

results qualitatively agree with the GN model predictions of

Fig. 6. Overall we observe that for the tested symbol rates the

NLTs change by at most 1.18 dB, and a shallow maximum of

the reach at 5 Gbaud for DU links in reasonable agreement with

[1], [9].

D. NLT at Large Bandwidth Efficiency

Fig. 7 shows PNLT/R versus symbol rate for an NRZ PDM-

QPSK signal in both a DM link (top) and a DU link (bottom),

with a larger bandwidth efficiency η = 0.85 w.r.t. that of Fig. 3.

Comparing the figure with the corresponding plots in Fig. 3,

(second row, left) and (fourth row, left), we observe that an

increase of η (hence a reduction of ∆f at same R and thus a

decrease of the walk-off) enhances cross-channel effects. In the

DM link, XPolM remains the dominant nonlinearity, with a NLT

decrease from the η = 0.56 case by about 1–1.5 dB at R > 28
Gbaud. Overall, the WDM curve shifts downwards by more than

1 dB, and keeps its concave shape with a shallow maximum

in the 10–40 Gbaud range, with signal-ASE interactions still

negligible over the whole symbol rate range. Even if not reported

here, we observed similar NLT reductions even in the 16QAM
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Fig. 7. Normalized margin PNLT /R at reference BER = 10−3 versus sym-
bol rate for 15-channel NRZ-PDM-QPSK homogeneous WDM comb with
η = 0.85 over a 20×100 km SMF link. (Top) DM link, (Bottom) DU link.

case. Hence, the qualitative aspects observed in Sections IV-A

and IV-B still remain true at η = 0.85.

In the DU link, we observe that both XPM- and XPolM-NLTs

at large rates decrease by ∼1 dB when increasing η by ∼2 dB,

and so does the WDM-NLT curve. This is consistent with the

GN model large-rate prediction that aXCI ∝ 1/(R∆f) = η/R2

[41]. Using (1) we have P dB
NLT ,XCI ∝ − 1

2 ηdB . Now XPM-NLT

is quite close to the SPM-NLT, while the XPolM-NLT is almost

2 dB larger than the XPM-NLT around 60 Gbaud.

At lower rates, FWM due to next neighbors starts to be no-

ticeable even in DU links. For instance, at R = 5 Gbaud the

XPM- and XPolM-NLTs at η = 0.85, vary very little w.r.t.

the η = 0.56 case; however, the WDM-NLT (which captures

FWM) decreases by 1.8 dB. To double-check that next-neighbor

FWM is indeed the cause, in a separate test of the same link

we suppressed the two next neighbors of the central channel

in the 15 channel comb and verified that the true WDM-NLT

now coincides (to within 0.5 dB) with the SFP-obtained NLT

(see Appendix B) with XPM + XPolM + SPM activated.

V. REACH PREDICTION FROM NLT

The procedure to obtain the 1-dB NLT PNLT consists of tun-

ing the lumped amplifiers noise figure together with the launch

power in order to achieve the combination such that at an SNR

S = S0 + 1 dB the BER is 10−3 [32]. As a by-product of the

PNLT(N) estimation for an N -span link, we thus also get the

corresponding EDFA’s noise figure FNLT(N). Table II reports

the values of FNLT at N = 20 spans found in the same WDM-

NLT simulations yielding the PNLT values used to build Fig. 3

for three selected modulation formats at R= 10, 28 and 80

TABLE II
EDFA’S NOISE FIGURE FNLT [dB] YIELDING 1-dB OF SNR PENALTY AT

BER=10−3
AND POWER PNLT ESTIMATED IN FIGS. 3–4

10 Gbaud 28 Gbaud 80 Gbaud

DM, 16QAM −2.90 −2.32 −3.55

DU, 16QAM 2.68 0.95 −0.38

DM, QPSK 9.17 9.48 7.60

DU, QPSK 12.69 11.86 10.35

DM, BPSK 14.42 14.52 13.41

DU, BPSK 17.42 15.88 14.83

20 × 100 km SMF link with 15 WDM channels. ASE

noise loaded at the receiver.

Gbaud in both DM and DU links, with receiver noise loading

(since Fig. 3 indicates that, for NRZ pulses, signal-noise interac-

tions are negligible). Whenever FNLT takes unrealistic values,

it means that a practical system is not able to achieve the tar-

get BER at the selected distance. For instance, PDM-16QAM

achieved NLT at N = 20 spans with a negative noise figure,

which physically means that 20 spans are unachievable with

lumped EDFA amplification and does require distributed ampli-

fication. FNLT however can be used to estimate the system reach

N0 at a practical noise figure F from NLT measurements over

a much shorter N -span link by the following formula (derived

in Appendix A):

N0(F )

N
=

(

FNLT(N)

x1 · F

)
2

3 + ǫ

(3)

with x1 = 0.94 and ǫ is the NLI slope parameter. Of course one

also needs the knowledge of ǫ to perform such an estimation. ǫ
can be obtained either by theoretical models (e.g., the GN model

predicts ǫ ∼ 0 when cross-channel nonlinearity dominates [19],

[41]) or by numerical fitting.

To double-check the accuracy of formula (3) for both our

DU and DM links, we performed extra UFP SSFM simulations

for three NRZ modulation formats (PDM-BPSK, PDM-QPSK

and PDM-16QAM) at three sample symbol rates (R = 10, 28

and 80 Gbaud). Fig. 8 plots the power yielding the reference

BER = 10−3 versus number of spans N for a 15-channel ho-

mogeneous WDM comb for the selected modulation formats

and symbol rates. The noise figure (reported in each plot) was

arbitrarily set to keep the reach between 15 and 40 spans in

all cases, and receiver noise loading was used. Triangles show

simulations, while solid lines are least-squares cubic interpo-

lations of the simulated values, according to formula [13, eq.

(8)], where aNL = αNLN 1+ǫ , whose only fitting parameters

are αNL and ǫ. From such “contours” the system reach can be

easily visualized. The least-squares fitting NLI slope parameter

values are reported in Table III, along with the much smaller

GN model predictions for ǫ in DU links[19, Section XI-D]. For

our 15-channel DM and DU links we note that ǫ is very slowly

decreasing with symbol rate R, and can be safely considered as a

constant for reach maximization w.r.t. symbol rate, as discussed

in Section II and in Appendix A. For DM links, it is ǫ ∼ 0.7

for most formats, except for BPSK which has ǫ ∼ 0.6; for

DU links the value is much smaller, as discussed in [13], and

close to 0.3, except for QAM which shows an ǫ < 0.2. For the
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Fig. 8. Triangles: SSFM-simulated power versus span number N (log10 scale) at reference BER = 10−3 for a 15-channel homogeneous WDM comb with
η = R/∆f = 0.56 over a N×100 km SMF link. ASE noise loaded at the receiver. (Top row) DM link, (Bottom row) DU link. (Left column) PDM-16QAM,
(Center column) PDM-QPSK, (Right column) PDM-BPSK. Stars: prediction by (3) using the NLTs of Fig. 3. Solid lines: least-squares cubic interpolations of
triangles.

TABLE III
ESTIMATED ǫ FROM SIMULATED DATA IN FIG. 8

10 Gbaud 28 Gbaud 80 Gbaud

DM, 16QAM 0.77 0.68 0.71

DU, 16QAM 0.11 0.19 0.19

DM, QPSK 0.80 0.72 0.71

DU, QPSK 0.29 0.27 0.26

DM, BPSK 0.77 0.70 0.56

DU, BPSK 0.40 0.30 0.29

GN model [19, Section XI-D] 0.072 0.013 0.005

PDM-QPSK DU link, the values in Table III are consistent with

the experimental measurements in [26]5.

The predictions of formula (3) can now be calculated using

Tables III and II and compared to the true reach. They are

marked with stars in Fig. 8 and are quite close to the actual

reach, with a worst-case error of only 1.5 spans. Although the

used noise figures may be unrealistic and were used to keep the

reach within 15–35 spans, yet the accuracy of (3) is not expected

to degrade with practical noise figures and longer reaches, since

such an equation is accurate for all physical links for which the

NLT scales as N−(1+ǫ)/2 , with ǫ a suitably estimated factor.

The fitting factor x1 is exact if the NLI is Gaussian additive, and

may change for different NLI statistics. As a sanity check, we

also verified an excellent accuracy of (3) at BA = 750 GHz (43

channels) for 10 Gbaud 16QAM in both DM and DU links.

5For larger WDM systems where cross-nonlinearity dominates the NLT, it is
theoretically predicted by the GN model that ǫ ∼ 0 [19], [41].

Fig. 9. Contour levels of the maximum reach N0 given in (3) versus ǫ and
FNLT [dB] at a fixed F = 6 dB. Red circle corresponds to the pair (FNLT , ǫ)
estimated in the 10 Gbaud DU-QPSK link (see Tables II and III).

A. Tolerance to Estimation Errors

In Fig. 8 we showed that with the knowledge of FNLT and ǫ
it is possible to estimate the system reach with a very good ac-

curacy in a wide range of symbol rates and modulation formats.

FNLT comes for free from NLT simulations at a fixed distance

N . Knowledge of the NLI slope parameter ǫ must instead be

acquired from several BER measurements versus distance, as

those in Fig. 8, whose fit lead to Table III. Alternatively, one can

resort to analytical approximate expressions of ǫ. The general

question is thus how accurately we need to know ǫ and FNLT . To

answer this question, in Fig. 9 we plotted the contour levels of

N0(FNLT , ǫ) obtained from (3) versus both ǫ and FNLT at fixed

F = 6 dB. Such contours can be used to quantify the tolerance
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to our allowed ignorance of the two key parameters. We note

that, according to (3), when the ratio FNLT/(x1 · F ) = 1 the

parameter ǫ has no impact on reach prediction. A good estima-

tion of FNLT is more important than a good one of ǫ as a direct

consequence of the reach dependence on the term 3 + ǫ, where

the term 3 smooths out the impact of the small ǫ. For instance,

imagine to estimate the reach of the 10 Gbaud DU-QPSK link

at F = 6 dB using equation (3). To this aim we need FNLT and

ǫ, which are provided by Tables II and III. By inserting such

values in (3) we get a reach of N0 = 53 spans. To get a feeling

of the uncertainty of this value, we report in Fig. 9 by a red circle

the pair (FNLT , ǫ) estimated for this system. By looking at the

contour levels we infer that an error of 1 dB on FNLT gives a

sizable error of seven spans in reach, while a significant error of

22% on ǫ yields an error of just one span in reach.

VI. CONCLUSION

This paper provided simulation estimations of the NLT PNLT

versus channel symbol rate R for both DM and DU coherent sys-

tems and for several modulation formats and supporting pulse

shapes of interest. By using the nonlinearity-decoupling method

detailed in Appendix B, we provided the PNLT due to each in-

dividual Kerr effect, and showed that one can gather valuable

information about the dominant nonlinear effect as the rate R
is varied. We provided plausible explanations of the observed

behavior based on the main existing analytical nonlinear mod-

els. We proved that plots of PNLT/R also show the symbol rate

that maximizes the transmission distance, i.e., the reach. For

DU systems, for which the rather accurate analytical GN model

is available, we compared our NLT simulations against the-

ory and provided theoretical extrapolations to practically large

WDM systems which cannot be simulated. We finally provided a

new, simple system-level formula for reach prediction that uses

the noise figure obtained at NLT, and we showed that such a

formula can be used for accurate reach predictions both in DU

and DM systems, provided that estimations of the NLI accumu-

lation parameter ǫ are available.

APPENDIX A

GN MODEL REACH PREDICTION IN DU LINKS

Recent work provided a model to justify the performance of

coherent DU links [19], [43]. The model assumes the NLI is a

stationary, signal-independent circular GN, like the ASE noise,

whence the GN name. In this framework, the received SNR over

the electrical receiver bandwidth is [36], [37], [45]:

S =
P

NASE + aNLP 3
(4)

where P is the power per channel, NASE is the ASE power, and

aNL is the NLI coefficient. Assuming matched-filter detection,

the BER can be expressed as BER = f(S), where the functional

relation depends on the modulation format. The model provides

useful insights especially when working at a target BER, i.e.,

a target SNR6 S0 . In this constrained scenario, optimizing per-

formance means maximizing the transmission distance, i.e., the

6with matched filter detection, S0 coincides withEs /N0 , beingEs the average
energy per symbol and N0 the one-sided noise power spectral density.

number of spans. Equation (4) is the basic ingredient in the

maximization problem. To proceed, one further needs to know

how the ASE and the NLI scale with span number N . While

NASE = βN is clearly linear in N with factor β = hνFGR
(hν: photon energy at frequency ν; F : amplifiers noise fig-

ure; G: amplifiers gain; R: matched-filter electrical bandwidth,

equal to symbol rate), in [19], [26], and [13] it was shown that

the NLI coefficient scales approximately as aNL = αNLN 1+ǫ ,

0 ≤ ǫ ≤ 1, due to correlated and unequal NLI contributions

from each optical span [26].

The idea is now to express the maximum transmission dis-

tance (reach) N0 corresponding to the parameters pair (αNL , ǫ)
by using available NLT measurements at a specific coordi-

nate N . We find it convenient to introduce the constrained

NLT P̂NLT(N) as the power maximizing (4), i.e., P̂NLT(N) =
arg max

P
[S(P,N)], and such that S(P̂NLT , N) = S0 . The first

requirement implies that at P̂NLT the ASE power is twice the

NLI power [37]. When used together with the second require-

ment, it turns (4) into the following alternative identities [13]:

S0 =
1

3αNL P̂ 2
NLT(N) · N 1+ǫ

=
P̂NLT(N)
3
2 β̂(N) · N

(5)

where β̂(N) � hνF̂NLT(N)GR and the hat reminds us that to

satisfy both requirements at N �= N0 the ASE noise parameter

should be tweaked away from its true value β. β̂(N) is the

fictitious ASE parameter than makes N be the reach, hence

β̂(N0) ≡ β. From (5) we then get the following relation, first

reported in [13, eq. (24)]:

N0(F )

N
=

(

P̂NLT(N)/R
3
2 NhvGFS0

)
2

3 + ǫ

. (6)

Eq. (6) is consistent with the reach predictions in [43] when

ǫ = 0. Since ǫ is almost independent of R, as checked from

measurements reported in Table III, from (6) we learn that max-

imizing the value P̂NLT(N)/R measured at a generic distance

N corresponds to maximizing the system reach N0 . Hence, as

done in the main text, from plots of P̂NLT/R versus R we can

immediately spot the distance-maximizing symbol rate at a fixed

bandwidth efficiency.

In this paper, we used the power PNLT yielding 1dB of SNR

penalty at BER = 10−3 w.r.t. linear transmission, instead of

P̂NLT which yields a penalty of 1.76 dB [13]. It can be proved

that P̂NLT = cPNLT , c = 1.27, for any link where the GN model

applies [13], e.g., DU SMF links at large-enough symbol rates.

Since by definition N0(F̂NLT(N)) = N , then by multiplying

and dividing the fraction on the right-hand side (r.h.s.) of (6) by

F̂NLT(N) and by using the second identity of (5) we get:

N0(F )

N
=

(

F̂NLT(N)

F

)
2

3 + ǫ

(7)

which relates the maximum reach obtained at an arbitrary noise

figure F to the constrained noise figure F̂NLT measured at N
spans. Eq. (7) is preferable to (6) since it does not involve the

precise knowledge of the receiver bandwidth, which is R only
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with matched-filtering but in practice is set by the butterfly

equalizer that also implements polarization demultiplexing.

In our simulations, instead of estimating F̂NLT , we estimated

FNLT , i.e., the tweaked noise figure at the 1-dB PNLT at N spans.

The ratio xy � FNLT ,y/F̂NLT for a penalty of y [dB] is plotted

in [13, Fig. 6] as a function of y. At y = 1 dB we read off the

value x1 = 0.94, hence substitution in (7) leads to eq. (3) in the

main text. It can be proved that in general xy = 3
2c(y ) − 1

2c(y )3 ,

where c(y) = 1/
√

3(1 − 10−y/10) (hence c(1) = 1.27).

APPENDIX B

NONLINEARITY-DECOUPLING METHOD

In this Appendix we summarize the nonlinearity-decoupling

method, first introduced in [18], which we used in SSFM simu-

lations to selectively activate the desired nonlinear Kerr effects

in the nonlinear step. For a PDM WDM signal

�A(z, t) =

N ch
∑

k=1

�Ak (z, t)ej2πk∆f t (8)

with channel spacing ∆f and PDM complex signal envelopes
�Ak (z, t) � [Akx(z, t), Aky (z, t)], the Manakov nonlinear step

for the nth channel, n = 1, . . . , Nch , can be expressed in ab-

sence of FWM by [30]:

∂ �An

∂z
= −iγ̄

((

A2
n +

3

2

∑

k �=n

A2
k

)

σ0 +
1

2

∑

k �=n

(�ak · �σ)

)

�An

(9)

where A2
k is the signal intensity of channel k at time t,

γ̄ = (8/9)γ is the Manakov-averaged nonlinear coefficient, σ0

is the 2×2 identity matrix, �σ is the Pauli spin vector [46],

�ak = �A†
k�σ

�Ak is the real 3-D Stokes vector associated with the

complex Jones vector �Ak , and�ak · �σ =
∑

i akiσi is a (generally

non-diagonal) matrix. The first term on the r.h.s. of (9) gener-

ates SPM. The second summation term with a 3/2 multiplier

generates XPM. The factor 3/2 accounts for the polarization-

averaged value of XPM, which runs between a value 1 ( �Ak

orthogonal to �An , k �= n) and the classic value 2 of scalar prop-

agation [30]. SPM and XPM are both scalar effects, since they

just depend on signal intensities through the diagonal matrix

σ0 . The third matrix summation term in (9) generates all the

polarization-dependence of the cross-channel interactions and

is thus called XPolM [47]. XPolM can be seen as the natural

generalization of the scalar phase rotation induced by XPM in

the complex plane to a rotation over the Poincar sphere.

At each time instant, the exact solution of (9) when

SPM + XPM + XPolM are simultaneously active is (we omit

the time dependence, since the nonlinear step is memoryless):

�An (z) = e
−j γ z

(

A 2
n ( 0 )+ 3

∑

k �= n
A 2

k
( 0 )

)

2 e−
j γ z

2 (�st (0)·�σ ) �An (0) (10)

where�st(z) = �st(0) �
∑

k �ak (0) is the real pivot vector (a con-

stant in z), and e(.) denotes a matrix exponential, which can be

computed for the generic real vector �v of norm |�v| as [46]:

e−j (�v ·�σ ) = cos(|�v|)σ0 − j sin(|�v|)
(

�v

|�v| · �σ
)

.

Using the proposed selective activation of nonlinearities, the

exact solution of the Manakov nonlinear step (9) for the cases

labeled SPM, XPM, XPolM and XCI in the results section is

�An,SPM (z) � e−jγA 2
n (0)z �An (0) (11)

�An,XPM (z) � e−jγ 3
2

∑

k �= n A 2
k (0)z �An (0) (12)

�An,XPolM (z) � e
j γ A 2

n ( 0 ) z

2 e−
j γ
2 (�st (0)·�σ )z �An (0) (13)

�An,XCI(z) � e−jγ 3
2

∑

k �= n A 2
k (0)z �An,XPolM (z) . (14)

Note that eq. (9) is indeed a set of Nch coupled differential

equations, which we refer to as SFP [27]. Hence the split-step

Fourier simulations with SFP that we used to generate the NLT

curves labeled SPM, XPM, XPolM and XCI consist of forming

a matrix whose columns are the fields �Ak discretized over the

fast Fourier transform grid corresponding to a frequency window

equal to the channel spacing7 ∆f . Then the matrix is propagated

along z such that at each step:

i) independent Gaussian ASE noise samples are added at each

grid point if the z coordinate corresponds to the position of an

EDFA;

ii) the Nch signal fields are impaired by linear effects only

(attenuation, chromatic dispersion);

iii) the Nch fields are impaired by nonlinear effects only,

according to (11)–(14).

Note that point i) is applied only in the case of distributed

noise, and amounts to adding to each channel a white ASE over

a bandwidth equal to the channel spacing ∆f .

At small bandwidth efficiency η ≪ 1 the SFP is computation-

ally faster than the UFP, where the WDM signal (8) is treated as a

unique channel and the Manakov step is just ∂ �A
∂z = −iγ̄A2 �A but

requires a much shorter sampling time, typically of the order of

the inverse of three times the WDM occupied bandwidth, to ac-

count for at least first-order FWM. The curves labeled WDM in

all numerical results were obtained with the UFP and therefore

do account for linear channel crosstalk as well as all nonlin-

ear effects, including FWM and nonlinear spectral broadening,

which are instead not captured by the SFP solutions. Hence the

SPM + XPM + XPolM simulations using SFP are less accurate

than the WDM simulations using UFP at bandwidth efficiencies

η approaching the Nyquist-WDM value 1.
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