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Symbol Time Offset Estimation in Coherent OFDM Systems

Daniel Landström, Sarah Kate Wilson, Jan-Jaap van de Beek, Per Ödling, and Per Ola Börjesson

Abstract—This paper presents a symbol time offset estimator
for coherent orthogonal frequency division multiplexing (OFDM)
systems. The estimator exploits both the redundancy in the cyclic
prefix and available pilot symbols used for channel estimation. The
estimator is robust against frequency offsets and is suitable for use
in dispersive channels. We base the estimator on the maximum-
likelihood estimator for the additive white Gaussian noise channel.
Simulations for an example system indicate a system performance
as close as 0.6 dB to a perfectly synchronized system.

Index Terms—Communication system, delay estimation, multi-
carrier, orthogonal frequency division multiplexing (OFDM), syn-
chronization, time estimation.

I. INTRODUCTION

M
OST coherent orthogonal frequency-division multi-
plexing (OFDM) systems, such as the Digital Video

Broadcast (DVB) system [1] and the Broadband Radio Access
Network (BRAN) [2], use pilot symbols to estimate the channel
[3]. In this paper, we present a method to use these pilot
symbols for symbol time synchronization in conjunction with
the redundancy present in the cyclic prefix [4]. Though the
synchronization algorithm in [4] performs well without pilots,
performance can be improved by using channel estimation
pilots also for synchronization, yielding a more accurate esti-
mate of the time offset. Synchronization is a critical problem in
OFDM systems, and the effects of synchronization errors are
documented in, e.g., [5]–[7].

First, we derive the maximum-likelihood (ML) estimator for
a symbol time offset in coherent OFDM systems. It is based
on a suitably chosen model of the OFDM symbol, emphasizing
the cyclic prefix redundancy and the presence of pilots, but dis-
regarding channel dispersion, frequency offset, and signal cor-
relation. This estimator’s performance is, however, very sensi-
tive to variations in the carrier frequency. Based on knowledge
about how to jointly estimate time and frequency offsets when
not using pilots [4] we make an ad hoc extention of the ML es-
timator that is robust against frequency offsets and suitable for
practical systems.

II. SIGNAL MODEL

In OFDM systems, the data are modulated in blocks by means
of a discrete Fourier transform (DFT). By inserting a cyclic
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prefix in the OFDM symbol, intersymbol interference (ISI) and
intercarrier interference (ICI) can be avoided [7]. Most coherent
OFDM systems transmit pilot symbols on some of the subcar-
riers to measure the channel attenuations. Both the cyclic prefix
and the channel estimation pilots contain information that can
be used to determine the symbol start.

Assume that one transmitted OFDM symbol consists of
subcarriers of which are modulated by pilot symbols. Let
denote the set of indexes of the pilot carriers. We separate
the transmitted signal in two parts. The first part contains the

data subcarriers and is modeled by

(1)

where is the data symbol transmitted on the th subcarrier,
using some constellation with average energy .
The second part contains the pilot subcarriers, modeled by

(2)

where is the pilot symbol transmitted on the th subcar-
rier. We assume , although some systems use
boosted pilots [1]. (It is straightforward to extend our method to
accommodate boosted pilots.)

In the following,we assume an additive white Gaussian noise
(AWGN) channel, not introducing any time dispersion, and we
model the received signal as

(3)

where represents the unknown integer-valued time offset and
is additive complex white zero-mean Gaussian receiver

noise with variance . Two properties of the received signal
allow for the estimation of : the statistical properties of
and the knowledge of . We simplify the statistical proper-
ties of so that we can derive a tractable estimator. First we
assume that the time-domain signal is a Gaussian process
with variance , where . In an OFDM
system with a reasonably large number of data-carrying subcar-
riers , has statistical properties similar to a dis-
crete-time Gaussian process (by the Lindeberg theorem [8, pp.
368–369]). Secondly, as in [4], we make simplifying assump-
tions about the statistical properties of the correlation of .
In systems employing a cyclic prefix, the tail samples of the

-sample transmitted signal are copied,
i.e., , and , for .
The length of one OFDM symbol is thus samples of
which samples constitute the cyclic prefix. Therefore,
is not white but contains pairwise correlations between samples
spaced samples apart within two sets. Furthermore, we ig-
nore the correlation between successive time symbols in .
For most practical systems this correlation will be small if the
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number of pilots is small. So, while we do model the correla-
tion due to the cyclic prefix, we disregard any other correlation
between time-symbols.

Since the noise is zero-mean Gaussian and the pilot signal
is a deterministic signal which is known at the receiver,

the modeled received signal is also Gaussian with time-
varying mean and variance . Based on the simplifying
assumptions above, the autocorrelation becomes

otherwise

(4)

where

(5)

and is the signal-to-noise ratio.
Based on this correlation structure and on the knowledge of

the time-varying mean , we now derive an estimator of the
time offset , using data from one received OFDM symbol.

III. TIME OFFSET ESTIMATION

We derive the ML estimator of the time offset by investi-
gating the log-likelihood function of , i.e., the joint probability
of the received samples given ,

(6)

The ML time offset estimate is obtained by maximizing the
log-likelihood function over all possible values of

(7)

In Appendix A, is shown to be

(8)

where

reflects the redundancy in the received signal due to the cyclic
prefix and

reflects the information carried by the pilot symbols, with ac-
cording to (5).

The estimator (7) weights the information carried by the
signal’s redundancy and the pilot information depending on
the value of , which is based on the SNR and the number of
pilots. Fig. 1 illustrates this for an example OFDM system with

Fig. 1. The ML estimator statistics in an AWGN channel. Contribution from
the cyclic prefix � (�) (top), contribution from the pilots � (�) (middle),
and the resulting log-likelihood function �(�) (bottom). One OFDM symbol
(N + L) is 144 samples and the SNR is 8 dB.

128 subcarriers and a cyclic prefix of 16 samples. Every fifth
subcarrier contains a pilot symbol. For an SNR of 8 dB, Fig. 1
shows the contributions , and the log-likelihood
function . The function essentially correlates
samples spaced samples apart, thus identifying the position
of the cyclic prefix, and its contribution gives an unambiguous
but coarse estimate. While the function contains a filter
matched to the pilots and its contribution has very distinct
peaks, by itself it would yield an ambiguous estimate because
the evenly spaced pilots result in many correlation peaks. To-
gether, however, the properly weighted contributions yield an
unambiguous and distinct peak in the log-likelihood function.
The peaks of fine-tune the coarse estimate based on

.
For a large SNR , the estimate is mainly based on

the cyclic prefix redundancy, whereas for a low SNR
the estimate relies more on the pilot symbols. If the transmitted
signal does not contain any pilot symbols, then ,

, and . In this case, the ML estimator (8)
reduces to the estimator in [4], which only exploits the cyclic
prefix redundancy.

A. A Robust Estimator

Most communication systems experience some fine error in
the estimate of the carrier frequency [7]. That is, the received
signal will have the form

(9)

where . Frequency offsets or channel phase variations
will cause the phases of the complex-valued moving sums in (8)
to appear in a random manner and result in an increased variance
in the estimator. Therefore, we propose a robust estimator based
on the ML estimator (7) which we modify in two ways. First,
as in [4], we take the absolute value of the terms in the log-
likelihood function instead of the real part, thus preserving the
constructive contribution of the peaks in . Secondly, since
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Fig. 2. Sensitivity to frequency offsets in an AWGN channel. SNR = 10 dB,
N = 128,L = 16, 1 pilot every 32nd subcarrier (total: 4 pilot subcarriers), and
SNR = 5 dB. The reference estimator [4] (coarsely dashed), the ML estimator
(7) (fine dashed line), and the robust estimator (10) (solid line). The bottom
figure is a magnification of a part of the top figure.

the SNR may not be known at the receiver, we design a generic
estimator assuming a fixed SNR, which we denote with .
Our robust estimator then becomes

(10)

where is a fixed design parameter ,
and

The estimator differs from the estimator in (7) only in the ab-
solute values and the generic choice of the weighting factor, .
Note that the robust estimator is not ML, although it has bor-
rowed ideas from ML estimators (see (7) and [4]).

IV. SIMULATIONS

We use simulations to evaluate the estimators’ performance,
both in the AWGN channel (one-tap channel with Gaussian
noise) and in a dispersive channel, showing the variance of the
estimates and uncoded symbol error rate. In all simulations, we
use the estimator from [4], which is based only on the cyclic
prefix part of (8), as our reference estimator. The simu-
lations are based on subcarriers, the design SNR,

dB, and a simulation length of 432 000 OFDM sym-
bols. For the AWGN channel, we have used a cyclic prefix of

samples, 1 pilot every 32nd subcarrier (4 pilot subcar-
riers in total), and for the dispersive channel we have 1 pilot
every fifth subcarrier (25 pilot subcarriers in total).

Fig. 2 shows how a carrier frequency offset (normalized to the
subcarrier spacing) affects the performance of the estimators,

Fig. 3. The performance in an AWGN channel, with and without a 4%
frequency offset, N = 128, L = 16, 1 pilot every 32nd subcarrier (total: 4
pilot subcarriers), and SNR = 9 dB. Note that the curves for the robust and
reference estimator are almost on top of each other.

in an AWGN channel at dB. Even for small carrier
frequency offsets, the performance of the ML estimator (dashed
line in Fig. 2) decreases significantly. The ML estimator is so
sensitive to this distortion that it is of little value in many prac-
tical systems. For example, the estimator from [4] (reference es-
timator, dash-dotted line) performs better under frequency off-
sets larger than 0.2%. The estimator (10) is robust against fre-
quency offsets. In Fig. 2 (solid line), we see that its variance is
almost constant, and lower compared to the other estimators, for
a large range of frequency offsets.

Fig. 3 shows the variance of the estimators in an AWGN
channel with two different fractional carrier frequency offsets.
With no frequency offset , the ML estimator and the
ad hoc estimator, using pilots, have superior performance com-
pared to the reference estimator. As expected, in this environ-
ment, the ML estimator performs best, but the robust estimator
has only a small performance loss. For SNR values larger than
5 dB, the robust estimator is within 1 dB of the ML estimator
with .

When applying the estimators in an environment with a fre-
quency offset, the performance of the ML estimator decreases
significantly, as also previously seen in Fig. 2, while the pro-
posed robust estimator does not. For SNR values above 7 dB,
the proposed estimator is substantially better then the other es-
timators for a frequency offsets of .

Though the robust estimator was derived assuming an
AWGN channel, it will be used in practice in a dispersive
channel. The symbol error rate of a system employing the
estimators in a dispersive channel is shown in Fig. 4. The
system uses a 4-PSK signal constellation and has the same
parameters as in the AWGN simulations but with a cyclic prefix
of samples and 1 pilot every 5th subcarrier. The channel
is exponentially decaying with an rms value of 5 samples and
a length of 8 samples and is fading according to Jakes’ model
[9], it is quasi-static so that it is constant over each symbol. We
assume perfect channel knowledge and perfect compensation
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Fig. 4. Performance of the 4-PSK system in a dispersive channel, N = 128,
L = 8, 1 pilot every 5th subcarrier, and SNR = 9 dB. The channel consists of
8 taps (independently fading according to Jakes’ model) with an exponentially
decaying power-delay profile and rms value of 5 taps.

for the phase rotations of the signal constellation due to time
offsets. Thus, we isolate the effect of synchronization errors
from possible performance loss due to nonideal channel esti-
mation. To see the effect of the dispersive channel, we choose

(no frequency offset). The performance loss with respect
to perfect synchronization shown in Fig. 4 is due to ISI and ICI
caused by synchronization errors.

We see that the robust estimator now is superior to the others.
In this simulation, the cyclic prefix and the channel impulse re-
sponse have the same length. Under these tight synchronization
requirements, the robust estimator has a 0.6-dB loss compared
with a perfectly synchronized system at a 10-dB working SNR.
For the ML estimator and the reference estimator, this loss is 1.7
dB and 3.5 dB, respectively.

V. DISCUSSION AND CONCLUSION

As seen in Fig. 1, the is an ambiguous function with
periodic peaks when the pilots are evenly spaced. We have ob-
served (in simulations not shown in this paper) that the peaks
surrounding the symbol start can be lowered by not having the
pilots evenly spaced. Therefore, the pilot pattern is an inter-
esting design parameter and system design could benefit from
taking synchronization aspects into account when designing the
channel estimation pilot pattern.

We draw two conclusions from our investigation. First, it is
possible to extend the analytic techniques earlier employed in

[4] to derive an ML time offset estimator for coherent OFDM
systems. Secondly, it is possible to improve the synchronization
performance when also taking the channel estimation pilots into
account.

APPENDIX

LOG-LIKELIHOOD FUNCTION (6)

The log-likelihood function can be written as [4]

(11)

where denotes the probability density function of the
variables in its argument. The two-dimensional density

is given in (12), shown at the bottom
of the page, where the constant is as defined in (5). The
one-dimensional density in (11) is given by

(13)

In three steps, the first term in (11) is now calculated. First,
substitution of (12) and (13) yields a sum of a squared form. In
the second step, we expand and simplify this form by noting that

(14)

due to the cyclic prefix. In the third step, we ignore the terms
and because they

are constants and are not relevant to the maximizing argument
of the log-likelihood function. The first term is now proportional
to

(15)

Similarly, the second term in (11) can be calculated, again
noting that some terms in the expansion are independent of
and do not affect the maximizing argument of the log-likelihood

(12)
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function. From these calculations, the log-likelihood function
consists of the three terms in (15) and the additional term

(16)

Expression (8) now follows readily.
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