
Symbolic Algorithms for Token Swapping
Bruno Schmitt1 Mathias Soeken2 Giovanni De Micheli1

1EPFL, Lausanne, Switzerland, 2Microsoft, Switzerland

Abstract—We study different symbolic algorithms to solve two
related reconfiguration problems on graphs: the token swapping
problem and the permutation routing via matchings problem.
Input to both problems is a connected graph with labeled vertices
and a token in each vertex. The goal is to move each token to its
destination vertex using swap operations. In the token swapping
problem, the goal is to find a solution with a minimum number
of swaps. In the permutation routing via matchings problem,
the goal is to find a solution with a minimum number of steps,
where a step is a set of disjoint swaps which can be performed in
parallel. First, we present an A* search algorithm. This algorithm
can find optimal solutions if used with an admissible heuristic.
We also evaluate the use of non-admissible heuristics. In this case,
we prove that the result will deviate from an optimum result by
at most an even number of swaps. We also present an algorithm
based on Boolean satisfiability. We evaluate our methods on a
large set of practical benchmarks.

I. INTRODUCTION

In this work, we study several symbolic algorithms to solve
two related problems on graphs: the token swapping problem,
introduced by Yamanaka et al. [1], and the permutation routing
via matchings problem, proposed by Alon et al. [2]. In both
problems, we are given a connected graph with n vertices, a set
of n tokens and an initial bijective assignment between tokens
and vertices, i.e., a permutation. We are also given a target
permutation. The goal is to move each token to its destination
vertex in the target permutation by applying a sequence of
token swaps among adjacent vertices.

The difference between the two problems lies in the
optimization goal. In the token swapping problem the aim
is to minimize the total number of swaps. In the permutation
routing via matchings the goal is to minimize the total number
of steps by picking matchings, i.e., a disjoint collection of
edges, and swapping the tokens of all vertices connected by
an edge on the matching at each step—some authors have
referred to this as the parallel token swapping problem. It is
known that solutions to both problems always exist [1], [2].
The length of a swap sequence to solve the token swapping
problem is O(n2) [1].

The token swapping problem in its full generality was
introduced only recently [1]. Its decision version, where we are
interested if a target permutation can be reached in at most k
swaps, is NP-complete and APX-complete [3]. The existence of
an exact algorithm on general graphs which solves the problem
in time 2O(n) would refute the exponential time hypothesis [4],
[3]. Works studying this problem from a theoretical point of
view exist [5], [3]; but only a few practical algorithms to solve
the problems have very lately been proposed. For example,
the author in [6] adapted frameworks used for solving the
multi-agent pathfinding problem to solve the token swapping
problem and some of its variations.

Determining the minimum sequence of necessary matchings
to move all the tokens for a given permutation is a special case
of the minimum generator sequence problem for groups [7]. In
this problem we are given a permutation group G and a set of
generators. Given a permutation π ∈ G the task is to determine
if there exists a generator sequence of length at most k that
generates π from the identity permutation. This problem is
NP-hard [7].

In this paper, we present the results of research directed
towards the development and analysis of symbolic algorithms
for solving both problems:
• A*-based algorithm. We study the use of A* search

algorithm [8] to solve both problems using admissible
heuristics, which guarantee optimality and non-admissible
heuristics.

• When trying to optimize for the number of swaps, we
prove that any non-admissible heuristic will obtain a result
that deviates from an optimal result by at most an even
number of swaps.

• SAT-based algorithm. Inspired by [6], we introduced a
new encoding which relies only on SAT for solving both
problems.

II. PRELIMINARIES

A. Graphs
A graph is an ordered pair of sets G = (V,E), where V is a

finite set of vertices and E is a finite set of edges or arcs. In an
undirected graph, the edges are unordered pairs. In this work,
we write u−−− v instead of {u, v} to denote the undirected
edge between vertices u and v. In a directed graph, we use
the term arc in a set E ⊆ V ×V to denote a link between two
vertices and write u −→ v instead of (u, v) to denote an arc
from u to v.

For any edge u −−− v in an undirected graph, we call u
a neighbor of v, and vice versa. We denote δ(v) the set of
neighbors of v and the degree of a vertex is |δ(v)|, i.e., its
number of neighbors. In directed graphs, we distinguish two
kinds of neighbors. For any directed edge u −→ v, we call u
a predecessor of v and v a successor of u. Accordingly, we
use δ−(v) and δ+(v) to denote the set of predecessors and the
set of successors of a vertex v respectively.

Given two undirected graphs G1 = (V1, E1) and G2 =
(V2, E2), we say that a subgraph isomorphism from G1 to G2

is an injective function f : V1 → V2 such that vi−−−vj implies
f(vi)−−−f(vj) for all vi, vj ∈ V1. A matching M of a graph
G is subgraph where every vertex has degree 1, i.e., no two
edges on M have a common vertex.

In a directed graph, a directed walk is a sequence of vertices
v1 −→ v2 −→ · · · −→ vl such that vi−1 −→ vi ∈ E for every

index i. A directed walk is called a directed path if it visits
each vertex at most once.

B. Permutation
A permutation is a bijective function f : X → X where X

is a finite set {1, 2, . . . , n}. A permutation is represented as
a tuple π = (a1, a2, . . . , an) in which each item k moves to
ak. For example, π = (3, 1, 2, 4) implies 1 7→ 3, 2 7→ 1 and
3 7→ 2—in this example item 4 is already on its place. We
write Sn to denote the symmetric group on X , i.e., the set of
all permutations, and use πe to denote the identity permutation
(1, 2, . . . , n). A transposition τ(i,j) ∈ Sn is an elementary
permutation which interchanges two elements and leaves all
others unchanged. Any permutation can be decomposed into
a sequence of transpositions which can be made canonical.
We can represent the previous example permutation as π =
τ(3,1) ◦ τ(2,1). Note that we apply transpositions from right to
left.

An inversion of π is a pair of indices i < j such that π(i) >
π(j), where i, j ∈ [n] and π(i) denotes the ith element. The
number of inversions of π is denoted inv(π). The sign of a π is
sgn(π) = (−1)inv(π). For any transposition sgn(τ(i,j)) = −1.
For all πi, πj ∈ Sn, sgn(πi ◦ πj) = sgn(πi) · sgn(πj).

Theorem 1: Let π = τ(ak,bk) ◦ · · · ◦ τ(a2,b2) ◦ τ(a1,b1) be any
decomposition of π ∈ Sn into a sequence of transpositions.
Then

sgn(π) = (−1)k.

Proof: We can rewrite π as π2 ◦ π1 where π1 = τ(a1,b1)
and π2 = τ(ak,bk) ◦ · · · ◦ τ(a2,b2), then sgn(π) = sgn(π1) ·
sgn(π2). Next we can do the same for π2 and iteratively for
all subsequent πk such that each πk is a transpositionτ(ak,bk).
Clearly, sgn(π) =

∏k
i=1 sgn(πi). The conclusion now follows

by recalling that sgn(τ(i,j)) = −1.

C. Reconfiguration problems
Definition 1 (Token assignment): Given an undirected graph

G = (V,E), with V = {v1, . . . , vn}, a token assignment is a
bijective mapping Π : V → {1, . . . , n}. By assuming an order
on the vertices v1 < · · · < vn, a token assignment can equally
be described by a permutation π ∈ Sn, where π(i) = Π(vi).

Given a connected undirected graph G = (V,E), an initial
token assignment πinit = π0 and a target token assignment
πtarget. We define the two problem of interest as follows.

Problem 1 (token swapping, [1]): Find a sequence of
transpositions τ(a1,b1), . . . , τ(ak,bk) with vai−−−vbi such that

πi = πi−1 ◦ τ(ai,bi) for all 1 ≤ i ≤ k, (1)

and πk = πtarget, where k is minimum.
Problem 2 (permutation routing via matchings, [2]): Find a

sequence of matchings M1,M2, . . . ,M` ⊆ E on G such that

πi = πi−1 ◦
∏

{vai
,vbi}∈Mi

τ(ai,bi) for all 1 ≤ i ≤ `, (2)

and π` = πtarget, where ` is minimum.
Note that it is always possible to relabel the graph such that

π0 is the identity permutation, π0 = πe. We assume such an
initial token assignment in the remainder of the paper, without
loss of generality.

D. State space
A state space is a 6-tuple S = 〈S,A, cost, T, s0, S?〉 where

S is a finite set of states, A is a finite set of actions, cost :
A→ R+

0 , T ⊆ S×A×S is a transition relation (deterministic
in 〈s, a〉), s0 ∈ S is the initial state, and S? ⊆ S is the set
of goal states. State spaces are often represented as directed
graphs. Given a state space S, we can construct a directed
graph Ds = (S,E), where the set of vertices V consists of
all possible states, and an arc v −→ w only if there exists an
action a ∈ A that transforms the state in v to the state in w,
denoted v −→

a
w.

E. Boolean Satisfiability
The Boolean satisfiability problem (SAT) asks whether a

given propositional formula representing an n-variable Boolean
function f is satisfiable or not, i.e., whether there exists an
assignment of variables x ∈ Bn such that f(x) = 1. When
such an assignment does not exist, the formula is said to be
unsatisfiable (UNSAT).

The SAT problem is NP-complete [9]. Still, several instances
of practical interest are efficiently solvable using state-of-the-
art SAT solvers [10]. Most modern SAT solvers require a
conjunctive normal form (CNF) encoding of the problem. In
such encoding, the presence (absence) of a given property is
represented by a positive (negative) literal of a variable. The
combined literals form clauses—i.e., a disjunction of literals.
The conjunction of clauses forms the CNF. The encoding of a
problem is crucial and can significantly impact the run-time
of an SAT solver.

III. A*-BASED ALGORITHM

Both problems 1 and 2 can be abstracted to the mathematical
problem of finding a minimal cost path from a start vertex
to a goal vertex in a directed graph Ds = (S,E) which
represents a state space. Each vertex s ∈ S represents a state,
i.e., one of the possible token assignments. The set of actions
A, which transforms states, changes depending on the problem.
In the token swapping problem, A corresponds to the set of
edges in G, while in the permutation routing via matchings A
corresponds to the set of matchings M in G.

The graph Ds is not explicitly specified as the number of
vertices and edges is too large. Instead, the graph is implicitly
represented by means of a set of source vertices S′ ⊂ S and
a successor operator Γ : S′ → (S × cost)|A|, i.e., an operator
that, given a vertex si, generates the set of tuples (sk, cost(a)),
where sk ∈ δ+(si), for all a ∈ A.

We employ an informed search algorithm, namely A* [8], to
solve the problem of finding a lowest-cost path in Ds. Given
a start vertex s0, the algorithm iteratively generates parts of
a subgraph of Ds by applying the successor operator Γ(si).
We say that a vertex has been expanded when the successor
operator is applied to it. For each expanded vertex si ∈ Ds a
weight is calculated for all its successors sk, si −→

a
sk, using

weight(sk) = g(sk) + h(sk), (3)

where g(sk) = g(si) + cost(a) is the cost to reach vertex
sk and h(sk) is a heuristic function that estimates the cost

from sk to the target vertex. In other words, weight(sk) gives
an estimate of the total cost of a path using that vertex. At
each iteration, the vertex with the lowest cost is chosen to be
expanded. The algorithm expands the vertex with the lowest
cost first, some parts of the search space (those that lead to
expensive solutions) are never explored. Hence use of a good
heuristic is important in determining the performance of A*.
Further, if h(sk) is admissible, that is, it never overestimates
the cost of the cheapest path from sk to a target vertex, then
A* guarantees finding an optimal solution.

A. Token swapping
We describe two heuristics for solving the token swapping

problem. The first is admissible and follows from the following
simple lemma.

Lemma 1: Let d(Π(vi)) be the distance of a token Π(vi)
to its target vertex vt. Let K be the sum of distances of all
tokens to their target vertices K =

∑n
i=1 d(Π(vi)), then

h(sk) =
K

2
(4)

is an admissible heuristic for solving the token swapping
problem.

Proof: Any solution would need a least K2 swap operations
as every swap reduces K by at most 2.

Experiments in Section V demonstrate that such admissible
heuristic can still take a long time to find optimal solutions for
problems with up to 20 vertices. Given the inherent complexity
of the problem, this is a good indication that employing an
admissible heuristic might be prohibitive, especially if the
problem instances grow. Hence, we explored different non-
admissible heuristics which aggressively prune the search space.
We report results for when using h(sk) = K. Furthermore, we
prove the following corollary to Theorem 1:

Corollary 1: Any non-optimal solution to the token swapping
problem differs from an optimal solution by an even number
of swaps.

Proof: Let πtarget be any permutation and τ(ak,bk) ◦ · · · ◦
τ(a2,b2) ◦ τ(a1,b1) be any sequence of swaps which transforms
the identity permutation πe into πtarget. If sgn(πtarget) is 1
(−1), then such sequence must have an even (odd) number
of swaps, since sgn(πtarget) = (−1)k. The conclusion now
follows because this is true for both optimal and non-optimal
sequences.

B. Permutation routing via matchings
Solving this variant of the problem requires knowing all

the matchings of the graph, i.e., computing the set of all
combinations of edges in which no two edges have a common
vertex. We use ZDDs to represent the set of all matchings—
further details on this can be found in [11]. Given a graph
G(E, V) the ZDD is defined over the |E| variables e ∈ E.
The ZDD with all matchings M is described by

M = ℘↘
⋃
v∈V

(
δ(v)

2

)
,

where ℘ refers to the ZDD that represents the universal family
of all subsets of E.

We also employ one admissible and one non-admissible
heuristic to solve this problem. The admissible heuristic follows
from the following simple lemma.

Lemma 2: Let d(Π(vi)) be the distance of a token Π(vi) to
the target vi. Let K be the maximum distance of all tokens to
their target vertices L = max d(Π(vi)), then

h(sk) = L (5)

is an admissible heuristic to solve the permutation routing via
matchings problem.

Proof: Any solution needs at least L steps as every step
can only reduce L by at most 1.

In summary, we explored different non-admissible heuristics
which aggressively prune the search space. We report results
for when using h(sk) = L + K, where K =

∑n
i=1 d(Π(vi))

as in Lemma 1.

IV. SAT-BASED ALGORITHM

Using the state space representation, we formulate the token
swapping and permutation routing via matching problems as
instances of the Boolean satisfiability problem. In our encoding,
one variable is used to indicate whether a token is placed in
a vertex at a given step and one variable is used to indicate
whether a swap between two vertices took place at a given
step. Our encoding uses four different types of clauses to
constrain the problem such that the solution corresponds to a
valid placement of swaps:
• C1. At each level, each token must be assigned to exactly

one vertex and each vertex must be assigned to exactly
one token.

• C2. If at steps l and l + 1 a vertex is assigned the same
token, then no swapping involving that vertex occurred at
l.

• C3. If at levels l and l+1 a vertex is assigned to different
tokens, then a swap involving that vertex occurred and
must have occurred with its adjacent vertex that at level l
is assigned the token.

The last necessary constraint changes depending on the
problem we are solving. The constraint 4a is necessary when
searching for an optimal number of swaps, while constraint
4b is necessary when searching for an optimal number of
matchings.
• C4a. At each level at most one swap can occur.
• C4b. At each level, each vertex can only be involved in

at most one swap.
Let xltv be a Boolean variable which indicates whether a

token t is assigned to the vertex v at the level l. Constraint C1
can be split into two parts: one guarantees that each token is
assigned to exactly one vertex, expressed as

∀l ∀t,
∑
v

xltv = 1, (6)

and the other ensures that each vertex is assigned to one token

∀l ∀v,
∑
t

xltv = 1. (7)

Let slvw be a Boolean variable representing whether a swap
between vertices v and w occurs at step l. The constraint C2

xltv ∧ xl+1
tv ⇒

∧
w∈δ(v)

slvw, (8)

where δ(v) is the set of vertices adjacent to v. Similarly,
constraint C3

xltv ∧ xl+1
tv ⇒

∨
w∈δ(v)

(slvw ∧ xltw). (9)

Constraint C4a can be expressed as

∀l
∑

{v,w}∈E

slvw ≤ 1. (10)

Constraint C4b allows multiple non-conflicting swaps per step,
i.e., a set of swaps that act on different vertices, and is described
by

∀l ∀v,
∑

w∈δ(v)

slvw ≤ 1. (11)

As the SAT-based approach always answers a given formula
in a satisfiable/unsatisfiable (yes/no) manner we need to
translate the minimization of the number of swaps (or steps)
into series of queries to the SAT solver. We build a formula
that encodes a question of whether there is a solution to the
problem using a specified number of swaps (or steps) using
the above constraints. In practice, for both optimizations goals,
this corresponds to the number of steps l we encoded.

Our implementation solves the problem incrementally by
adding a new step whenever the SAT formula is unsatisfiable.
We do not always start with l = 1 as it is possible to analyze
each problem instance to get a lower bound on the necessary
number of swaps (or steps) required. When optimizing the
number of swaps, the lower bound corresponds to the sum of
shortest paths connecting the start and target vertices of each
token divided by 2 (see Lemma 1), while the lower bound on
the number of steps corresponds to the longest shortest path
(see Lemma 2).

The encoding can have an enormous effect on the speed with
which a SAT solver can find an answer to our problem. Thus it
is important to consider means to improve it. In this case, we
can reduce the number of variables and simplify some clauses
by noting that when encoding the possibility of a token been
at a certain vertex at a given step l, we only need to consider
those vertices that reachable by the token in l steps from its
initial position. Further, when optimizing for the number of
swaps, we can reduce the number of queries to the solver by
encoding two new steps, instead of one, whenever the solver
returns unsatisfiable—this can be done because of Lemma 1.

V. EXPERIMENTAL RESULTS

We implemented our methods in C++ into the quantum
compilation framework tweedledum.1 We evaluate the different
approaches with a set of benchmarks on the latest reported
hardware model based on the superconducting circuit technol-
ogy. All experiments were run on an Intel(R) Xeon(R) CPU

1github.com/boschmitt/tweedledum

E5-2680 v3 @ 2.50GHz. As SAT solver, we used a variation
of MapleSAT [12].

A. Benchmarks

As benchmarks, we use a set of 8338 instances of the token
swapping problem which were encountered while mapping
quantum circuits from previous works on quantum map-
ping [13]. The quantum circuits in these benchmarks contain a
variety of functions taken from RevLib [14] as well as quantum
algorithms written in Quipper [15] or the Scaffold language [16]
(and pre-compiled by the ScaffoldCC compiler [17]). The set of
circuits was chosen for evaluation because they are functions
commonly seen in quantum compilation literature and are
publicly available for use.

We partition the quantum circuits as described in [18]. We
use three real device topologies. The first is Rigetti’s 16-qubit
quantum computer where the topology consists of two octagons
connected by a square:

0

1

2

34

5

6

7 10

11

12

1314

15

16

17

. (12)

We also use the IBM Q14 Melbourne, a 14-qubit quantum
computer with the following coupling constraints—we use an
undirected graph for this device.

0 1 2 3 4 5 6

13 12 11 10 9 8 7 , (13)

and IBM Q20 Tokyo, a 20-qubit quantum computer:

15

10

5

0

16

11

6

1

17

12

7

2

18

13

8

3

19

14

9

4

. (14)

B. Methodology

We try to solve each problem instance for two optimization
goals (minimum number of swaps and minimum number of
steps) by employing three methods: A*-based with admissible
heuristic, A*-based with non-admissible heuristic and SAT-
based. Thus, we run our program a total of 50028 times. Each
time we set a timeout of 3 hours.

Fig. 1 shows the run-time results for solving instances with
different optimization goals and using A*-based methods with
different heuristics—one admissible and one non-admissible.
In the top row the goal it to minimize number of swaps, while
on the bottom row the goal is to minimize number of steps. As
expected, the results show that the non-admissible heuristic has
better run-time for both goals. We note that the non-admissible
heuristic is a clear winner when optimizing the number of
swaps; when optimizing number of steps, we see that the

Fig. 1. Run-time comparison between A*-based algorithm with an admissible heuristic and A*-based algorithm with a non-admissible heuristic. In the top row,
the optimization goal is the number of swaps. In the bottom row, the optimization goal is the number of steps.

non-admissable heuristic is still a winner, but in many cases
performs similar to the admissable heuristic.

Next, we analyzed the quality of results obtained by
employing A*-based method with a non-admissible heuristic.
We calculate the difference in the number of swaps and steps
between the obtained result and a known optimal result for
each problem instance. As we proved in Section III, the
difference will always be an even number. When solving the
token swapping problem the non-admissible heuristic found
an optimal solution in 85.2% and 70% of the benchmarks for
Rigetti’s 16Q and 20Q, respectively. For IBM’s 14Q it found
solutions using two extra swaps in 87.8% of the cases. In the
worst cases, the heuristic would use 8 extra swaps, but this
only happens in less than 1% of the cases. When optimizing
for the number of steps, the non-admissible heuristic does not
perform as good. Indeed, for this case, optimum results are
only reached 55.5%, 55.8%, and 13.0% of the time for Rigetti’s
16Q, IBM’s 14Q and 20Q, respectively. Further, the number
of extra steps might be as high as 13.

Fig. 2 shows the run-time results for solving instances with
different optimization goals and using the two methods which
guarantee optimal results, namely A*-based with admissible
heuristic and SAT-based. The top row shows the results for
obtaining an optimal number of swaps, while the bottom
row shows results for obtaining an optimal number of steps.

We find that the SAT-based algorithm is better suited for
solving the permutation routing via matchings problem, while
the A*-based algorithm does better when solving the token
swapping problem—although for many instances this difference
is negligible or non-existent.

VI. CONCLUSION

We presented two symbolic algorithms for solving both
the token swapping and permutation routing via matchings
problems. We evaluated the algorithms using a set of practical
benchmarks obtained while mapping quantum circuits into
different device architectures. The results demonstrate that
the A*-based algorithm with an admissible heuristic performs
better than the SAT-based method when optimally solving the
token swapping problem. The SAT-based method, on the other
hand, outperforms A*-based algorithm when optimally solving
the permutation routing via matchings problems.

We also evaluated the use of non-admissible heuristics when
using the A*-based algorithm. For the token swapping problem,
we proved that any result from using a non-admissible heuristic,
if not optimal, will deviate from an optimal result by at
most an even number of swaps. Further, our non-admissible
heuristic obtained optimal solutions for the vast majority of
the benchmarks. When dealing with the permutation routing

Fig. 2. Run-time comparison between A*-based algorithm with an admissible heuristic and SAT-based algorithm. In the top row, the optimization goal is the
number of swaps. In the bottom row, the optimization goal is the number of steps.

via matchings problem, the use of a non-admissible heuristic
is not as advantageous.

Acknowledgments: This research was supported by the
European Research Council in the project H2020-ERC-2014-
ADG 669354 CyberCare.

REFERENCES

[1] K. Yamanaka, E. D. Demaine, T. Ito, J. Kawahara, M. Kiyomi,
Y. Okamoto, T. Saitoh, A. Suzuki, K. Uchizawa, and T. Uno, “Swapping
labeled tokens on graphs,” Theoretical Computer Science, vol. 586, pp.
81–94, 2015.

[2] N. Alon, F. R. Chung, and R. L. Graham, “Routing permutations on
graphs via matchings,” SIAM journal on discrete mathematics, vol. 7,
no. 3, pp. 513–530, 1994.

[3] T. Miltzow, L. Narins, Y. Okamoto, G. Rote, A. Thomas, and T. Uno,
“Approximation and Hardness of Token Swapping,” in 24th Annual Eu-
ropean Symposium on Algorithms (ESA 2016), ser. Leibniz International
Proceedings in Informatics (LIPIcs), P. Sankowski and C. Zaroliagis,
Eds., vol. 57. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016, pp. 66:1–66:15.

[4] R. Impagliazzo and R. Paturi, “The complexity of k-SAT,” in Proceedings
of the Fourteenth Annual IEEE Conference on Computational Complexity.
IEEE Computer Society, 1999, p. 237.

[5] É. Bonnet, T. Miltzow, and P. Rzążewski, “Complexity of token swapping
and its variants,” Algorithmica, vol. 80, no. 9, pp. 2656–2682, 2018.

[6] P. Surynek, “Finding optimal solutions to token swapping by conflict-
based search and reduction to SAT,” in International Conference on
Tools with Artificial Intelligence (ICTAI). IEEE, 2018, pp. 592–599.

[7] S. Even and O. Golderich, “The minimum legth generator sequence
problem is NP-hard,” Computer Science Department, Technion, Tech.
Rep., 1981.

[8] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[9] S. A. Cook, “The complexity of theorem-proving procedures,” in
Symposium on Theory of computing. ACM, 1971, pp. 151–158.

[10] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 6:
Satisfiability, 1st ed. Addison-Wesley Professional, 2015.

[11] K. Smith, M. Thornton, M. Soeken, B. Schmitt, and G. De Micheli,
“Using ZDDs in the mapping of quantum circuits.”

[12] V. Ryvchin and A. Nadel, “Maple_LCM_Dist_ChronoBT: Featuring
chronological backtracking,” Proceedings of SAT Competition 2018,
p. 29, 2018.

[13] A. Zulehner, A. Paler, and R. Wille, “An efficient methodology for
mapping quantum circuits to the IBM QX architectures,” IEEE Trans.
on CAD of Integrated Circuits and Systems, 2018.

[14] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib:
An online resource for reversible functions and reversible circuits,” in
Int’l Symp. on Multiple-Valued Logic. IEEE, 2008, pp. 220–225.

[15] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“Quipper: a scalable quantum programming language,” in ACM SIGPLAN
Notices, vol. 48, no. 6. ACM, 2013, pp. 333–342.

[16] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu, A. Chakrabati,
C.-F. Chiang, S. Vanderwilt, J. Black, and F. Chong, “Scaffold: Quantum
programming language,” Princeton University, NJ, Dept of Computer
Science, Tech. Rep., 2012.

[17] A. J. Abhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov, F. T. Chong,
and M. Martonosi, “ScaffCC: a framework for compilation and analysis
of quantum computing programs,” in Proceedings of the 11th ACM
Conference on Computing Frontiers. ACM, 2014, p. 1.

[18] W. Hattori and S. Yamashita, “Quantum circuit optimization by changing
the gate order for 2D nearest neighbor architectures,” in Int’l Conf. on
Reversible Computation. Springer, 2018, pp. 228–243.

