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Symbolic computation and exact distributions of nonparametric test
statistics

M.A. van de Wiel, A. Di Bucchianico and P. van der Laan

Abstract

We show how to use computer algebra for computing exact distributions on nonparametric
statistics. We give several examples of nonparametric statistics with explicit probability
generating functions that can be handled this way. In particular, we give a new table of
critical values of the Jonckheere-Terpstra test that extends tables known in the literature.

Keywords: Computer algebra; generating function; Jonckheere-Terpstra test.

1 Introduction

Nonparametric statistics is a valuable tool of applied statistics. Thus it is important to have
correct and extensive tables (on paper or in a digital form) of critical values of nonparametric
tests. Many nonparametric tables were computed in the fifties and sixties using recurrences.
However, computations with recursions tend to be very time-consuming. Therefore, other
ways of computing were developed. The most important contributions in this respect (often
for the broader class ofpermutation tests) are the fast Fourier methods of Pagano and Tritchler
(1983), various shift-algorithms (see e.g. Streitberg and Rohmel (1986) and Edgington (1995;
pp. 393-398)), and the network algorithms developed by Mehta and co-workers (see Good
(1994, chap. 13) for an overview). Baglivo, Pagano and Spino (1993) remark that all these
methods can be described as efficient methods to calculate generating functions. It is thus not
surprising that the recent availability of computer algebra systems offer new possibilities (see
e.g. Baglivo et al. (1993) and Kendall (1993)). It is the purpose of this paper to show that
critical values of many nonparametric tests can be computed easily within a computer algebra
system at high speed, avoiding the sophisticated approaches mentioned above. The crux is
to find expressions for the probability generating function of the test statistic at hand. Since
many nonparametric test statistics are of a combinatorial nature (especially those based on
ranks), these generating functions can be found in the literature (David and Barton (1962)
is a rich source of generating functions, many of which are important for statistics). It is
interesting to note that in the statistical literature generating functions of nonparametric
statistics are hardly mentioned, or used for other purposes such as deriving recursions (see
e.g. Pollicello and Hettmansperger (1976)).

A major advantage of using generating functions and computer algebra systems over other
approaches is that one can work directly with mathematical objects like polynomials the way
we are used to do as humans, as opposed to representations of these objects in arrays etc.,
which are suitable for computers only. Another advantage is that computer algebra systems
use infinite precision, so that rounding errors during computations do not occur. Examples
of computations in Mathematica (a computer algebra system of Wolfram Research) can be
found in Section 4. Furthermore, we extend the existing tables for the Jonckheere-Terpstra
test. A few words on asymptotics is in order here. We want to show with this paper that
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against the alternative hypothesis

Ho : J.Lx = J.Ly

(2)

(1)
m

Wm,n = L ...'ii,
i=l

m

Mm,n =L #{j : Yj < Xd·
i=l

HI : J.Lx =P J.LY,

Wilcoxon (1945) introduced the test statistic

where Ri is the rank of Xi in the combined sample X I, ••• ,Xm , YI, ••. ,Yn • Mann and
Whitney (1947) introduced the statistically equivalent test statistic

The generating function of Mm,n was already known to Gauss (see, e.g., Andrews (1976), p.
51). A complete overview of recurrences and generating functions for Mm,n can be found in
Di Bucchianico (1996).

We assume, unless stated otherwise, that all distributions function are continuous and that
hence, ties do not occur almost surely.

2 Generating functions of rank statistics

2.1 The Wilcoxon-Mann-Whitney test

In this section we present examples of rank statistics the null distribution of which can be
easily computed using generating functions.

This paper is organised as follows. In Section 2 we present generating functions of some rank
statistics, in Section 3 we give generating functions for two goodness-of-fit tests. Section 4
contains examples of the use of a generating function in Mathematica. In Section 5 we give
a new extended table of critical values of the Jonckheere-Terpstra test.
For more details about the presented tests we refer to Gibbons and Chakraborti (1992).
An overview of nonparametric techniques which stresses the analogies with the parametric
counterparts can be found in Van der Laan and Verdooren (1987).

with computer algebra, one can compute exact distributions of many nonparametric statistics
within reasonable time. Our strategy is to compute exact distributions whenever possible. We
found in all cases that when computing exact distributions becomes time-consuming, asymp
totic results are sufficiently accurate. We therefore see asymptotic distributions as a useful
addendum to exact computations. Also note that now we can compute exact distributions,
it is possible to investigate more precisely the convergence of distributions.

Let Xl,." ,Xm and YI , ... ,Yn be independent random samples from continuous distributions
with finite expectations J.Lx and J.LY, respectively, and with distribution functions F(x) and
G(y) = F(y - flJ.L), respectively, where flJ.L is an unknown shift parameter. In order to test
the null hypothesis



and let

(5)

(4)

(3)

J = 2S - M,

3

M k 1 TIn.+N• (1 _ xt)
'"' PreS =£) x t =II t=N.+1
LJ . (n.+N.) TIn. (1 - xt)
t=O .=2 n. t=l

mn 1 TI~+n (1 - xi)
L Pr(Mm,n = k) x

k = (m+n) ---::::':TI·=:::~:.:.:..+-,--,(1:-1'-_-X.-:-:-·)-'-·
k=O m ._1

against the alternative hypothesis

Proof: For a proof based on recurrences we refer to Andrews (1976; Chapter 3), for a proof
based on inversions we refer to David and Barton (1962; pp. 203-204). IJ

where M is the maximum possible value of S, Le. M = 2::=2 2:~~i ninj' Therefore, if we
know the distribution of S then we also know the distribution of J.

Theorem 2.2 Let for i = 2, ... , k, Nj = 2:~~i nj and M = 2::=2 niNj. The probability
generating function of Sunder Ho is given by

We wish to test the null hypothesis

ni

Si = L <P(Xij)
j=l

Theorem 2.1 Under HOI the probability generating function of the Mann- Whitney test statis
tic Mm,n is given by

2.2 The Jonckheere-Terpstra test

A multi-sample analogue of the Mann-Whitney test is the Jonckheere-Terpstra test. Assume
that random samples of size nI, ... ,nk, respectively, are given from k populations. Denote
by Xij the jth observation in the sample from the ith population, 1 ~ i ~ k, 1 ~ j ~ ni.
Denote by Fi the continuous cumulative distribution function of Xij. Define <P(Xij) to be the
number of observations from the first i - 1 populations that are smaller than Xij. Let, for
i =2, ... ,k,

with at least one strict inequality. For this testing problem Terpstra (1952) and Jonckheere
(1954) proposed the following test statistic J (nowadays known as the Jockheere-Terpstra
statistic):



2.3 The Kendall rank correlation test

Recently, generating functions for the null distribution of Kendall's rank correlation statistic
when ties are present in both ranks have been derived (see Valz et al. (1995) for details).

o

(7)

(8)

(9)

(6)

4

1 if Di > 0
o otherwise.

m

Tm = L: RiZi,
i=l

where

Proof: See Kendall and Stuart (1977; pp. 505-506).

The trick to reduce the probability generating function of the Jonckheere-Terpstra test to
a product of Mann-Whitney type generating functions can also be applied to other tests
for partial orders (e.g. the Mack-Wolfe test for umbrella alternatives). See Streitberg and
Rohmel (1988) for examples and a characterization of those alternatives for which the corre
sponding generalization of the Mann-Whitney test can be treated along the same lines as the
Jonckheere-Terpstra test.

Theorem 2.3 The probability generating function of the number of inversions I is

(~) k 1 n x k - 1
L: Pr(I = k) x = I" II --1.
k=O n. k=l x-

Let (XI, Yt}, ... ,(Xn , Yn ) be a sample of n pairs of observations. A nonparametric correlation
test is the Kendall rank correlation test. The rank correlation coefficient T of Kendall is defined
as

Proof: It follows from Theorem 1 of Terpstra (1952) or Theorem 3 of Streitberg and Rohmel
(1988) that under Ho the random variables Si are independent. Further, note that Pr(Si =
t) = Pr(Mn;,N; = t), with Mm,n the Mann-Whitney statistic defined by (2). Hence, the
probability generating function of S is a product of the probability generating functions of
the form (3). 0

21
T = 1- G)'

where I is the number of inversions, i.e. the number of pairs {(Xi, Yi), (Xj, Yj)} such that
Xi < Xj and Yi > Yj for i < j, i = 1, ... n - 1 and j = 2, ... ,n. The probability generating
function of I has the following simple form:

2.4 The Wilcoxon signed rank test

The Wilcoxon signed-rank test is used to test whether the median of a random sample
XI, ... ,Xm from a symmetric distribution equals mo. Under the null hypothesis the dif
ferences Di = Xi - mo, i = 1, ... , m, are symmetrically distributed around zero. Ranks
{1, ... ,m} are assigned to the absolute values of the Di'S from small to large and the rank
of IDil is denoted by Ri. The test statistic is
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Theorem 2.4 Under Ho, the probability generating function of Tm is

(12)

(11)

(10)

m

T~ = L a(i) Zi,
i=l

M" 1 mL Pr(T~ =i) xi = 2
m
II (1 + xa(i»,

i=l i=l

Examples of such scores include

3.1 The Kolmogorov one-sample test

The Kolmogorov one-sample test is used to test whether the sample Xl,." ,Xm comes from
a certain distribution function. The null hypothesis is

3 Generating functions for goodness-of-fit tests

• a( i) = max[O, i - mil], i = 1, ... ,m. These are the scores proposed in Randles and
Hogg (1973) for light-tailed distributions.

• a( i) = min[2i, m + 1], i = 1, ... ,m. These are the scores proposed in Pollicello and
Hettmansperger (1976) for heavy-tailed distributions.

• a( i) = ep-l (! + 2(n:+1») ,i = 1, ... m, where ~-l is the inverse of the standard normal
cumulative distribution function. These are the inverse normal scores. Note that the
scores in this case are not rational and that exact computations are not possible unless
we approximate the scores by rational numbers.

Ho : F(x) = Fo(x) for all x,

where M a = L~l a( i).

with Zi as in (9). A similar argument as for Tm yields the generating function of T:'n under
Ho:

2.5 Other one-sample rank tests

Instead of assigning ranks {I, ... ,m} to the IDil's as in the Wilcoxon signed-rank test, one
can also assign rank scores a(i) to the IDil's, where a: {I, ... ,m} ~ JR. We can now define
the following test statistic:

Proof: The generating function is an easy consequence of the fact that under Ho, Tm has the
same distribution as U = L~l Ui, where Ui = 0 or i, both with probability!. 0

Computations with this generating function are so fast, that existing algorithms as in Castagli
ola (1996) become obsolete. Mitic (1996) reports that existing tables contain many errors.
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The test statistic is

HI : F(x) I- Fo(x) for at least one x.

(14)
Qr(x) Qs(x)

Qr+s(x) ,
00 ( ) (kx)kL Pr -r < k DJ; < s k!

k=O

K m = D~ +D~,

where Dm + and D;, are defined in the previous subsection, as a Kolmogorov-type test statistic
on a circle. It has the property that if the observations are circular data, its value does not

D~ = sup{Fo(x) - Fm(x)} and D~ = sup{Fm(x) - Fo(x)}, (13)
x x

s s
Pr(Dm ~ k) = 1- Pr(max(-D~,D~)< k) = 1- Pr (-s < k D~ < s) (15)

where F( x) is the continuous distribution function of the observations and Fo(x) is a given
continuous distribution function. The two-sided alternative is

3.2 The Kuiper test

Kuiper (1960) suggested

Dm = sup IFm(x) - Fo(x)l,
x

where Fm(x) denotes the empirical distribution function defined by Fm(x) := ~ #{f: Xl ::;
x,f=l, ... ,m}.
For the one-sided alternative hypotheses HI : F(x) ::; Fo(x) and HI : F(x) ~ Fo(x), for all x
and with strict inequality for at least one x, the test statistics are

So in order to compute the exact distribution of D m we need the coefficient of xm of the
right-hand side of (14). This can be done by expanding the right-hand side of (14) by hand,
which yields an explicit expression for the null distribution of Dm (d. Kemperman (1957)).
Alternatively, we may ask Mathematica to compute the coefficient of xm of the right-hand
side of (14). Critical values can be computed using a numerical procedure for root finding.
We refer to Section 4 for further details. Tail probabilities for D;!;, or D;, can be obtained by
choosing r = m or s = m.

For the corresponding two-sample Smirnov test a: lalOgous generating functions exist for sam
ple sizes that are not relatively prime (Kemperman (1957) and Niederhausen (1981)). For a
combinatorial explanation of the influence of relative primeness of the sample sizes on this
statistic, see Di Bucchianico and Loeb (1997).

respectively.
Kemperman (1957) (see also Niederhausen (1981)) gives the following implicit generating
function, which holds under Ho:

for x < lie, where Qt(x) = E}~o (i-t)i xi Ii!, and ltJ denotes the largest integer not exceeding
t. Under Ho, D~ is distributed as -D;,. We also know that Dm = max(D;!;" D;,). Therefore,



depend on the choice of the origin for measuring x. From Niederhausen (1981) we obtain that
the generating function of K m has the same form as (14):

In this section we show how we use the generating funtions to obtain tail probabilities using
Mathematica. We give examples for the Mann-Whitney test and the Kolmogorov test. One
can deal with the other tests in the same way.

(16)

7

MannWhitneyRightCriticaIValue[3,2,O.2]
6

MannWhitneyFrequencies[2,3]
{1,2,4,6,8,9,lO}

MannWhitneyFrequencies[m_,n_]:=
Module[{x,i,mini = Min[m,n],maxi=Max[m,n]}, Drop[FoldList[
Plus,O,CoefficientList[ MannWhitneyGf[m,n],x]],I]]

MannWhitneyRightTail[m_,n_,L]:=
N[1-( Part[MannWhitneyFrequencies[m,n],k]/ Binomial[m+n,n])]

4 Generating functions in Mathematica

4.1 Implementation of the Mann-Whitney test

MannWhitneyGf[m_,n_,ex]:=
Module[{i,mini = Min[m,n],maxi=Max[m,n]}, Expand[Factor[Product[
I-x'" i,{i,maxi+l,maxi+mini}]/Product[l-x'" i,i,l,mini]]]]

~ P (K ~) (kx)k _ QS-I(X)QI(X)
~ r k<k k!k -x Qs(x) ,

with Qs(x) as in (14). Thus we can compute tail probabilities in the same way as for the
Kolmogorov test.

MannWhitneyRightCriticaIValue[m_,n_,alpha_]:=
Module[help= Length[Select[ MannWhitneyFrequencies[m,n],# < (1-1/2 * alpha)*
Binomial[m+n,n]&]]+I; If[m * n/2 <= help && help <= m*n,help,"*"]]

MannWhitneyGf[2,3]
1 + xl + 2x2 + 2x3 + 2x4 + x5 + x6

Timing[MannWhitneyRightCriticaIValue[25,20,O.05]]
{13.46 Second,337}

MannWhitneyRightTail[2,3,5]
0.2
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Kolmogorov[d-.m_]:=
N[l-Coefficient[F[m*d,m],x,m]*m! /(m" m)]

where T is an arbitrary rank statistic.
The advantage of using (17) is that we immediately know the right-tail probability of all k.
However, expanding (17) is more time consuming than our method since it involves division.

(17)f Pr(T > k)x k = 1 - Ek::0
1
Pr(T = k) x

k
,

k=O - X

Remark:
In order to obtain right-tail probabilities one can also use the formula:

Explanation
The MannWhitneyGf[m_,n_] function factors (Factor) and expands (Expand) formula (3) with
out the constant 1/ (m~n). With the aid of the local variables q, i, mini, maxi (Module) the
function MannWhitneyFrequencies[m_,n_] generates a list {Cll' .• 'cmn} of coefficients (Coeffi
cientList) and transforms it into {O, Cll Cl +C2, ••. ,E~1 Ci} (FoldList). Finally, it drops the
'0' in this list (Drop). Thus, the function MannWhitneyFrequencies[m_,n_] generates up to a
factor 1/(m~n) the cumulative distribution of the statistic Mm,n' The function MannWhit
neyRightTail[m_,n_,k_] takes the kth part of MannWhitneyFrequencies[m_,n_] and divides it by
(~n). This quotient is subtracted from 1 to obtain the right-tail probability of k.

The function MannWhitneyRightCriticaIValue[m_,n_,alpha_] computes the right critical value
corresponding to the two-sided confidence level a. By using Select it selects all frequencies
with right-tail probability larger or equal to ~a. We note that for every k, k = 0, ... ,mn
the probability that the Mann-Whitney statistic equals k is positive. Therefore, the length
(Length) of the list that results after applying Select equals the largest value for which the
right-tail probability is larger or equal to ~a. We add one to this number; the result (help) is
the right critical value if (If) ~mn ~ help ~ mn.

The example shows that the right-tail probability in the case m = 2, n = 3 equals 0.2 for
k = 5. The right critical value for this case with a = 0.2 equals 6. To give an indication of the
speed of this method we use the Timing function for obtaining the time needed for computing
the right critical value for the case m = 20, n = 25, a = 0.05. We see that the right critical
value equals 337 and that the computing time is 13.46 CPU seconds on a SunSPARC10.

4.2 Implementation of the Kolmogorov test

Q[s_]:=
Module[{i}, Sum[(i-sr i*(x" i)/i!,{i,O,Floor[s]}]]

F[s_,m_l:=
Normal[Series[Simplify[(Q[s)" 2)/Q[2*s]],{x,O,m}]]

F[3.5,lO]
1 +x +2 x 2 +4.5 x3 +10.6615 x4 +25.8969 x5 +63.6287 x6 +157.128 x7 +388.858 x8+
963.186 x 9 +2386.57 x10



Kolmogorov[O.35,lO]
0.866039

Timing[Kolmogorov[O.23,40]]
{O.96 Second, O.035}

Explanation
Floor[s] represents LsJ. The function F[s_,m_] simplifies (Simplify) the right-hand side of (14)
and then expands it into a Taylor polynomial (Series) of degree m, including an order term
which is removed by applying Normal. The function Kolmogorov [d_,m_] first computes the
coefficient of x m (Coefficient) in F[m*d,m] and multiplies this by :,;. for obtaining Pre-d <
D;. < d), where D;. is the Kolmogorov statistic as in (13). From equality (15) we know that
subtracting this result from one gives us PreDm ~ d). The function N provides a numerical
result instead of a fraction. The example shows F[m*d,m] for d = 0.35 and m = 10 and it
gives the right-tail probability for these values of d and m. We use the Timing function to
show that this method is very fast (computation on a SunSPARC10), even for m = 40.

5 Table for the Jonckheere-Terpstra test

With the generating function (5) we extended the existing tables for the Jonckheere-Terpstra
test statistic. In Odeh (1971) the following cases were tabulated: k = 3,2 ::; nl ::; n2 ::; n3 ::;

8; k = 4,5,6, nl = ... = nk = 2(1)6. We tabulated the cases ni = nj, i =f. j, i,j = 1, ... k. Our
tables are 2 to 5 times larger than the existing ones. Tabulation of the cases ni =f. nj requires
a lot of space, because there are so many different cases. For these cases we recommend to
use our Mathematica packages for computing tail probabilities. A star denotes that a critical
value does not exist for this case.

9



Table 1: Right critical values for the Jonckheere-Terpstra test, ni = nj = n

k n 0.2 0.1 0.05 0.025 0.01 0.005
3 2 9 10 11 12 * *

3 18 20 22 23 25 25
4 31 34 36 38 40 42
5 47 51 54 57 60 62
6 66 71 75 79 83 86
7 88 95 100 105 110 114
8 113 121 128 134 140 145
9 142 152 160 166 174 180

10 173 185 194 202 212 218
11 208 222 232 242 252 260
12 246 261 274 284 297 305
13 287 304 318 330 344 353
14 332 351 366 380 395 406
15 379 400 418 432 450 461
16 430 453 472 488 507 520
17 483 509 530 548 568 582
18 540 568 591 610 633 648
19 600 630 655 676 701 717
20 663 696 722 745 772 790
21 729 764 793 818 846 865
22 799 836 867 893 924 944
23 871 911 944 972 1005 1027
24 947 989 1024 1054 1089 1113
25 1025 1071 1108 1140 1177 1202
26 1107 1155 1194 1228 1268 1294
27 1192 1243 1284 1320 1362 1390
28 1280 1333 1377 1415 1459 1489
29 1371 1427 1474 1514 1560 1591
30 1465 1524 1573 1615 1664 1697
31 1562 1624 1676 1720 1771 1806
32 1662 1728 1782 1828 1882 1918
33 1766 1834 1891 1939 1996 2034
34 1872 1944 2003 2054 2113 2153
35 1982 2057 2118 2171 2233 2275
36 2095 2173 2237 2292 2356 2400
37 2210 2292 2358 2416 2483 2528
38 2329 2414 2483 2543 2613 2660
39 2451 2539 2611 2674 2746 2795
40 2576 2667 2742 2807 2883 2934

4 2 16 18 19 21 22 23
3 34 37 40 42 44 45
4 58 63 67 70 73 76

10

k n 0.2 0.1 0.05 0.025 0.01 0.005
4 5 89 95 100 105 110 114

6 126 134 141 147 154 158
7 169 179 188 196 204 210
8 218 231 242 251 262 269
9 274 290 302 313 326 334

10 336 354 369 382 397 407
11 404 425 443 457 474 486
12 479 503 522 539 559 572
13 560 587 609 628 650 665
14 647 677 701 723 747 764
15 740 773 801 824 851 870
16 839 876 906 932 962 983
17 945 985 1018 1047 1080 1102
18 1057 1101 1137 1168 1203 1228
19 1175 1222 1261 1295 1334 1360
20 1299 1350 1392 1429 1471 1499

5 2 26 28 30 32 33 35
3 54 59 62 65 69 71
4 94 100 106 110 116 119
5 144 153 160 167 174 179
6 204 216 226 235 244 251
7 275 290 303 313 325 334
8 357 375 390 403 418 428
9 448 470 488 504 522 534

10 550 576 597 615 636 650
11 663 693 717 738 762 778
12 786 819 847 871 899 917
13 919 957 988 1015 1046 1067
14 1062 1105 1140 1170 1205 1228
15 1216 1263 1302 1335 1374 1400

6 2 37 40 43 45 47 49
3 80 85 90 94 98 101
4 138 147 154 160 167 171
5 212 224 234 242 252 259
6 302 317 330 342 354 363
7 407 427 443 457 474 484
8 528 552 572 589 609 623
9 664 693 717 738 761 777

10 816 850 878 902 930 949
11 984 1023 1055 1083 1115 1136
12 1167 1211 1248 1279 1316 1341



Table 2: Right critical values for the Jonckheere-Terpstra tf~st, ni = nj = n

k n 0.2 0.1 0.05 0.025 0.01 0.005
7 2 51 55 58 61 64 66

3 109 117 122 127 133 137
4 190 201 210 218 227 233
5 293 308 321 332 344 352
6 418 438 454 468 484 495
7 564 589 610 628 648 662
8 732 763 788 810 835 852
9 922 959 989 1015 1045 1065

10 1133 1176 1211 1242 1277 1301
8 2 66 . 71 75 78 82 85

3 144 153 160 166 173 178
4 251 264 275 285 296 303
5 387 406 421 434 449 460
6 552 577 597 614 634 648
7 746 777 802 824 849 867
8 969 1007 1038 1064 1095 1116
9 1221 1266 1303 1335 1371 1396

9 2 84 90 95 99 103 106
3 183 194 202 210 218 224
4 320 336 349 360 373 382

11

k n 0.2 0.1 0.05 0.025 0.01 0.005
9 5 494 516 535 550 568 581

6 705 734 759 779 803 819
7 954 990 1021 1047 1077 1097
8 1239 1284 1321 1353 1390 1415

10 2 104 111 116 121 126 130
3 227 239 249 258 268 274
4 397 416 431 444 460 470
5 614 640 661 680 701 716
6 877 911 939 964 992 1011
7 1186 1229 1265 1295 1331 1355

112 126 134 140 145 152 156
3 276 290 301 311 323 330
4 483 504 522 537 555 567
5 746 777 801 823 847 864
6 1067 1106 1139 1167 1199 1221

12 2 150 159 166 172 179 184
3 329 345 358 369 383 391
4 576 601 621 639 659 672
5 892 926 954 979 1007 1026
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