
Symbolic Computation of Differential Equivalences

Luca Cardelli

Microsoft Research and University of Oxford, UK

luca@microsoft.com

Mirco Tribastone Max Tschaikowski

Andrea Vandin

IMT - Institute for Advanced Studies Lucca, Italy

{name.surname}@imtlucca.it

Abstract

Ordinary differential equations (ODEs) are widespread in many
natural sciences including chemistry, ecology, and systems biology,
and in disciplines such as control theory and electrical engineering.
Building on the celebrated molecules-as-processes paradigm, they
have become increasingly popular in computer science, with high-
level languages and formal methods such as Petri nets, process
algebra, and rule-based systems that are interpreted as ODEs.

We consider the problem of comparing and minimizing ODEs
automatically. Influenced by traditional approaches in the theory
of programming, we propose differential equivalence relations.
We study them for a basic intermediate language, for which we
have decidability results, that can be targeted by a class of high-
level specifications. An ODE implicitly represents an uncountable
state space, hence reasoning techniques cannot be borrowed from
established domains such as probabilistic programs with finite-state
Markov chain semantics. We provide novel symbolic procedures
to check an equivalence and compute the largest one via partition
refinement algorithms that use satisfiability modulo theories.

We illustrate the generality of our framework by showing that
differential equivalences include (i) well-known notions for the
minimization of continuous-time Markov chains (lumpability),
(ii) bisimulations for chemical reaction networks recently proposed
by Cardelli et al., and (iii) behavioral relations for process algebra
with ODE semantics. With a prototype implementation we are able
to detect equivalences in biochemical models from the literature that
cannot be reduced using competing automatic techniques.

Categories and Subject Descriptors F.1.1 [Models of Computa-
tion]: Relations between models

General Terms Theory, Algorithms

Keywords Quantitative Equivalence Relations, Satisfiability Mod-
ulo Theory, Ordinary Differential Equations, Partition Refinement

1. Introduction

Ordinary differential equations (ODEs) are a widespread mathemat-
ical model to describe the time-course evolution of systems that
can be characterized by continuously varying quantities. Classical

examples are concentrations of species in chemical reactions and in
biological processes, pressure and temperature in a plant, and volt-
age and current in an electrical circuit. Much more recently there has
been an increasing attention to quantitative models of computation
based on ODEs, for example to use formal languages to describe bio-
chemical models [11, 14, 17, 21, 26, 56, 60, 66] or as a deterministic
approximation for languages with stochastic semantics [21, 42, 76].

In this paper we consider the fundamental problem of automat-
ically comparing and minimizing programs with ODE semantics.
From a mathematical viewpoint, the models of our interest are sys-
tems of coupled equations in n variables, x = (x1, . . . , xn), where

ẋi = fi(x), i = 1, . . . , n,

and fi is the drift, a real valued function giving the derivative with
respect to time of variable xi when the system’s state is x.

IDOL. We study a basic formalism called IDOL— Intermediate
Drift Oriented Language. It essentially gives a syntax for the drifts,
covering a class of nonlinear ODEs for which the reasoning is
decidable, hence amenable to automatic treatment. Although not
every ODE system can be written with IDOL (e.g., ODEs with
trigonometric functions or exponentials), it covers a wide range of
ODE models including:

• Linear ODE systems. This is a very important class of models
in many disciplines including control theory and electrical
engineering. Here we remark that a continuous-time Markov
chain (CTMC), a very popular stochastic semantics for higher-
level quantitative languages (see [10] and references therein)
can also be directly seen as a linear ODE system through its
Kolmogorov equations (also called the master equation). These
equations give the probability of being in each state of the chain
at any point in time [62].

• Chemical reaction networks. Chemical reaction networks
(CRNs) express interactions between chemical species or molec-
ular compounds. IDOL allows to specify relevant (nonlinear)
kinetics such as the well-known law of mass action, where the
reaction rate is proportional to the product of the concentrations
of the reagents; and the Hill kinetics, which involves rational
expressions of polynomials in the species variables [80].

• Quantitative models of computing systems. Some formal
methods with ODE semantics such as Petri nets [29] and
process algebra [42, 76] have nonlinear laws of interaction based
on threshold-like functions to model resource contention. For
instance, these are used to model the firing rate of transition
in a Petri net as being proportional to the minimum among the
number of tokens at its incoming places [29].

Relating IDOL programs. We cast the problem of relating IDOL
programs into the traditional context of equivalences for more
classical models of computation based on labeled transition systems

(LTS). We put forward the analogy between states of an LTS and
IDOL variables. Thus, our equivalences are between variables,
(exactly) preserving their ODE solutions in some appropriate sense.
We propose two variants of differential equivalence.

The first variant is forward differential equivalence (FDE). This
is such that an ODE system can be written for the variables that
represent the equivalence classes. To be more concrete, let us
consider the following trivial, yet illustrative, ODE example:

ẋ1 = −x1, ẋ2 = k1 · x1 − x2, ẋ3 = k2 · x1 − x3, (1)

where k1 and k2 are constants. Then, it turns out that there is an
FDE relating x2 and x3. Indeed, we have

ẋ1 = −x1, ˙(x2 + x3) = ẋ2 + ẋ3 = (k1 + k2) · x1 − (x2 + x3).

By the change of variable y = x2 + x3, this is equivalent to writing

ẋ1 = −x1 ẏ = (k1 + k2) · x1 − y.

This quotient ODE model recovers the sum of the solutions of
the variables in each equivalence class. That is, we have that
setting the initial condition y(0) = x2(0) + x3(0) yields that
y(t) = x2(t) + x3(t) at all time points t.

Our second variant is backward differential equivalence (BDE).
It equates variables that have the same solutions if they start from
the same initial conditions. In (1), it can be shown that x2 and x3
are related also by BDE when k1 = k2. In this case, we obtain a
quotient ODE by removing either equation, say x3, and rewriting
every occurrence of x3 into x2:

ẋ1 = −x1 ẋ2 = k1x1 − x2.

If one starts with x2(0) = x3(0) in (1) then the solution of the
quotient ODE gives that x2(t) = x3(t) at all time points t.

Since in BDE every variable in the same equivalence class has
the same solution, the original model can be fully recovered. On
the other hand, from the quotient FDE model one cannot recover
the original solutions, but FDE poses no restriction on the initial
conditions.

Checking and computing IDOL equivalences. An IDOL variable
corresponds to a real function, thus it represents a continuous state
space: proving two IDOL variables equivalent concerns relating two
real-valued functions for all possible assignments—which involves
reasoning over an uncountable state space. A major consequence is
that established techniques for checking and computing equivalence
relations over models based on LTSs with discrete state spaces
(e.g., [6, 45, 48, 51, 64]) do not carry over.

We tackle this problem by proposing a symbolic approach based
on satisfiability modulo theories (SMT) [7]. We encode differential
equivalences into satisfiability problems of quantifier-free first-
order logic formulae containing IDOL terms. Checking candidate
relations amounts to establishing their validity, as usual through the
unsatisfiability of their negation. The SMT solver that we use, the
well-known Z3 [30], is a decision procedure for such formulae, so
it can answer whether or not they are valid.

More importantly, we provide an automatic technique to compute
the largest differential equivalence for an IDOL model, which is
very relevant for minimization because it yields the smallest quotient
ODE system. We do this by developing a partition refinement
algorithm (cf. [64]) to which we introduce two novelties.

For FDE, we are able to establish a key technical result. We
start from its classic definition in terms of a linear transformation
of the ODE variables that preserves the aggregated dynamics,
e.g., [2, 63, 74]. This definition requires to check “higher-order”
properties, i.e., it involves (partition) blocks of variables, instead
of individual variables. Thus, if a block does not satisfy the FDE
condition, no information can be derived about how to split the
current candidate partition. Instead, we equivalently verify FDE in

terms of checks that involve only two IDOL variables at a time;
that is, we characterize FDE in a form that does enable partition
refinement.

For BDE, the partition refinement is counter-example guided. We
fully exploit the ability of an SMT solver to produce an assignment
of the variables that falsifies the assertion that a candidate partition
is a BDE. The algorithm splits partition blocks according to such
assignment; the iterative procedure terminates with the coarsest
BDE partition when a distinguishing assignment is not found.

Applications. Many apparently unrelated formalisms and lan-
guages can benefit from the common framework provided by
IDOL. In order to support our claim we consider three applications:
CTMCs, CRNs, and process algebras.

Continuous-time Markov chains. The properties captured by
FDE and BDE are analogous to ordinary and exact lumpability
for CTMCs [12], respectively, and many behavioral equivalences
for higher-level languages based on these notions (e.g., [10, 13,
27, 31, 37, 44, 46, 57, 71]). Indeed, we use the terms “forward”
and “backward” to align with the terminology used in some of
this literature (e.g., [20, 37, 71]). Actually, we show that FDE and
BDE correspond to their respective variants of lumpability when
the IDOL program is a linear ODE system representing a CTMC.
For instance, the ODEs (1) are the Kolmogorov equations of the
simple CTMC with state-transition diagram in the inset below,

1

2 3

k
1

k
2

where xi is the probability of finding the process
in state i. However our differential equivalences
are more general: they do not require k1 and k2 to
be nonnegative, and can establish relations also for
nonlinear ODEs. For instance, using the nonlinear
ODE ẋ1 = −x21 in (1) we would equate x2 and x3
in the forward as well as in backward sense.

Chemical reaction networks. CRNs have received increased at-
tention in computer science due to the powerful analogy between
computational processes and biological systems [19, 38, 68]. In addi-
tion to being a relevant model per se, CRNs are also closely related
to many other languages. Cardelli establishes a correspondence
between his Chemical Ground Form and CRNs [17]; rule-based
languages such as κ [26] and BioNetGen [11] provide compact
descriptions of biomolecular systems that can be “compiled down”
to CRNs; Petri nets with an appropriate mass-action semantics on
the transitions correspond to CRNs (e.g., [43]).

The idea of formally relating the dynamics of CRNs has recently
emerged. In [18] Cardelli presents the notion of emulation between
two CRNs as a property that exactly relates the ODE trajectories
of a source CRN to those of a target CRN. Syntactic conditions are
given to establish an emulation under the assumption of mass-action
kinetics. Here we show that BDE is more general than emulation.
As an application, we find that the emulations found for a class of
biological processes in [18] are preserved even when an alternative
dynamics based on the Hill kinetics is considered. This reinforces the
findings in [18] that networks with different biological functionality
are indeed related structurally, in a way that is insensitive to the
underlying kinetics assumed.

In [20] Cardelli et al. present forward and backward bisimula-
tions. The intent is analogous to ours, but those are equivalences
that can be detected syntactically by inspecting the set of reactions.
However, they only apply to a class of CRNs with mass-action se-
mantics (namely, reactions with at most two reagents). Under these
restrictions we show that forward bisimulation is only a sufficient
condition for FDE; instead, backward bisimulation corresponds to
BDE. Furthermore, in [20] a polynomial time partition refinement
algorithm to compute the largest bisimulations is provided. We use
benchmarks including those from [20] to present two findings of
experimental nature: (i) FDE minimizes CRNs of biological inter-
est that cannot be reduced by forward bisimulation; and (ii) the

CTMCs CRNs
Process

Algebra

IDOL
model

Sec. 4.1

Sec. 2.1

IDOL
quotient

ODE
Quotient

ODE

FDE Sec. 2.2

Sec. 4.2 Sec. 4.3

BDE Sec. 2.3

Theorem 1

Theorem 3

Figure 1. Paper overview.

symbolic implementation of BDE may empirically provide faster
answers than the specialized partition-refinement algorithm.

Process algebra. Our last application is a fragment of Hillston’s
PEPA [46]. This is a stochastic process algebra which has been
more recently equipped also with an ODE semantics with nonlinear
minimum-based drifts that approximate the average evolution of
underlying CTMCs with massively parallel computations [42, 47,
76]. We take PEPA as the representative of a family of languages
for the quantitative evaluation of computing systems — indeed it
is expressive enough to cover the semantics of a popular class of
queuing networks [75] and Petri nets [39]. We show that recently
proposed behavioral equivalences for PEPA [49, 77] are special,
language-specific cases of our differential equivalences.

Summary. Figure 1 provides a pictorial representation of the
structure and main results of this paper. All the experiments herein
reported are replicable using a prototypal implementation available
at http://sysma.imtlucca.it/erode.

Further related work. We are not aware of general automated
approaches to ODE equivalences as done in this paper, though
there is a large literature of techniques in domain-specific situations.
The combinatorial explosion of CRN biochemical models has
spurred considerable research in this area, e.g., [15, 16, 20, 24,
25, 28, 35, 36]. The fragmentation approach for κ identifies a
coarse-grained ODE system for models with mass-action semantics
through sums of variables; this is weaker than an equivalence
relation over species, because one variable may appear in more
than one block (a fragment) [28, 36]. Using the terminology of [63],
fragmentation is a form of improper lumping, as opposed to our
differential equivalences where species belong to a single block. As
such it can still be seen as an ODE aggregation obtained through
a transformation of the variables by a linear matrix, for which the
general theory is well established (see [2, 63, 74]) but no general
algorithms for computing the largest equivalences are available.

SMT has become a cornerstone in the programming languages
and in the verification community, with contributions to program
synthesis [41], constraint programming [54], and symbolic optimiza-
tion [58]. The combination of SMT and equivalence relations has
been the subject of recent investigations. In [9] partition-refinement
algorithms are proposed to compute equivalences between terms
over arbitrary theories inferred from a set of axioms. Applied to
our context, these partition-refinement algorithms could be used to
check if a candidate partition is a differential equivalence, but not to
compute the largest equivalence for an IDOL program. In [32] the
authors present an SMT-based approach for the computation of the
coarsest ordinary lumpable partition of a Markov chain, but for a
fragment of the PRISM language [55].

Finally, links between ODEs and SMT are established in the for-
mal verification community, especially for hybrid systems (e.g., [40,
59, 69]); however none of these works considers ODE comparisons
and minimizations through equivalence relations. Still at the in-
terface between control theory and computer science, the idea of

bisimulation for dynamical systems has been developed in a series of
works by Pappas and coauthors [65] and van der Schaft [79]. These
works are similar in spirit to ours, but the setting is different because
the focus is on control systems, i.e., dynamical systems with internal
states, external inputs, and output maps. In that context, bisimulation
relates internal states mapped to the same output, i.e., they cannot
be told apart by an external observer. The largest bisimulation is
therefore related to the maximal unobservability subspace of a con-
trol system (e.g., [79, Corollary 6.4]) while our largest differential
equivalences provide the coarsest partition of ODE variables that
preserves the dynamics.

2. Intermediate Drift Oriented Language

We first introduce IDOL as a language to define a class of ODEs.
More precisely, IDOL can describe nonlinear, first-order, au-
tonomous, and explicit finite systems of coupled ODEs. Then, we
present the notions of FDE and BDE as equivalence relations over
IDOL variables, with their characterizations in terms of properties
enjoyed by the underlying semantics.

2.1 Syntax and Semantics

Definition 1 (IDOL syntax). The syntax of programs of the inter-
mediate drift oriented language (IDOL) is given by

p ::= ε | ẋi = f, p

f ::= n | xi | f + f | f · f | f
1
m ,

where xi ∈ V and n,m ∈ Z and m 6= 0.

The set V represents ODE variables. A program is a list of
elements ẋi = f where each element gives the drift f for ODE
of the variable xi. Given an IDOL program p, we define Vp =
{x1, . . . , xn} as the set of variables in p. We say that p is well-
formed if for every xi ∈ Vp there exists a unique term ẋi = f in
p. We denote its drift by fi. From now on we assume to work with
well-formed programs only. Finally, we remark that the restriction
to integer parameters allows us to encode rationals, which is without
loss of generality in practice (e.g., [4]).

Although some results presented below hold for richer classes of
ODE systems, drifts expressible in IDOL form a class for which our
differential equivalences are decidable. Despite the minimality of
IDOL, it is possible to encode frequently used dynamics such as:

• the law of mass action, with drifts such as x1 · x2;

• the Hill kinetics for CRNs, with drifts such as x21/(1 + x21);

• and the minimum function for threshold based drifts, where

min(x1, x2) :=
1

2
(x1+x2−|x1−x2|), with |x| := (x·x)

1
2 .

For the semantics of IDOL, we interpret each term fi in a
standard way, as a real function of real variables on an appropriate

domain, D(fi) ⊆ RVp , where the function is well-defined, i.e., with
no division by zero or negative arguments in roots. We denote by

σ an assignment of variables in p, thus σ ∈ RVp . The semantics of
IDOL depends on a context: this is a pair c = (T, σ̂) that contains a
time horizon T > 0 and an initial assignment σ̂. The semantics of a
program p is a function that maps the variables Vp to a continuous

trajectory JxKpc : [0;T] → RVp that describes the time course of
every variable when starting from a given initial assignment σ̂. In
other words, JxiK

p
c(t) is the value of the variable xi at time t when

JxiK
p
c(0) = σ̂(xi).

Definition 2 (IDOL Semantics). The semantics of an IDOL program
p in a context c = (T, σ̂) is the unique differentiable function

JxKpc := (JxiK
p
c)xi∈Vp

, JxKpc : [0;T]→ R
Vp

http://sysma.imtlucca.it/erode

that satisfies

JxiK
p
c(t) = σ̂(xi) +

∫ t

0

JfiK
p
c(JxK

p
c(s))ds, for all 0 ≤ t ≤ T ,

where JfiK
p
c : D(fi)→ R is recursively defined as follows:

JnKpc :R
Vp → R, JnKpc(σ)= n

JxKpc :R
Vp → R, JxKpc(σ)= σ(x)

Jg + hKpc :D(g) ∩D(h)→ R, Jg + hKpc(σ)= JgKpc(σ) + JhKpc(σ)

Jg · hKpc :D(g) ∩D(h)→ R, Jg · hKpc(σ)= JgKpc(σ) · JhKpc(σ)

Jg
1
m Kpc :D(g

1
m)→ R, Jg

1
m Kpc(σ) =

(

JgKpc(σ)
) 1

m

with D(g
1
m) = {σ ∈ D(g) : (JgKpc(σ))

1
m is defined}. If no such

unique function exists, we call p ill-posed.

As usual we call JfKpc = (JfiK
p
c)xi∈Vp the vector field of pro-

gram p in context c. Also, the semantics of an even root term is given

by the nonnegative solution; e.g., in any context c, (J4Kpc)
1/2 is 2

and not −2. We remark that, in general, no closed-form expressions
for JxiK

p
c exist. However these functions can be computed using

standard numerical integration algorithms, cf. [3].

Assumptions. IDOL is permissive enough to define somewhat

degenerate ODEs with no solutions like ẋ1 = x−1
1 , with σ̂(x1) = 0,

or multiple solutions as in ẋ1 = |x1|
1/2, with σ̂(x1) = −1. We

exclude these cases making certain assumptions that are usual when
dealing with ODEs (e.g., [69]). For this, we define a notion of
invariance which considers a subset of the drifts’ domain containing
the trajectories of the IDOL variables starting from any initial
condition within that set.

Definition 3. Given a program p and a time horizon T > 0, a set
E ⊆

⋂

xi∈Vp
D(fi) is invariant with respect to p and T if, for all

σ̂ ∈ E and t ∈ [0;T], it holds that JxKpc(t) ∈ E, where c = (T, σ̂).

Now we make the following assumptions:

A1 For a given time horizon T > 0, an IDOL program p has an

invariant set E(p) ∈ {R
Vp
>0,R

Vp
≥0,R

Vp}.

A2 For all xi ∈ Vp, the function JfiK
p
c : D(fi) → R is locally

Lipschitz continuous at any point of E(p).

A1 is a technical assumption that allows us to work with nice enough
domains when reasoning about differential equivalences. Our theory
can be developed for more general invariant sets, but at the expense
of significantly more convoluted mathematical definitions which do
not seem to add substantial value to our contribution. Instead, A2
is a standard textbook condition to ensure the existence of a unique
solution, hence to exclude ill-posedness.

In many applications, models are typically such that a) the
solution will be positive if the initial condition is positive and b) the
drift is well-defined on positive reals. Under such circumstances,
local Lipschitz continuity is usually immediate. Indeed, all IDOL
programs presented in this paper satisfy these assumptions (and we
will avoid stating which invariant set they have).

Notation. Differential equivalences are partitions of IDOL vari-
ables. Whenever convenient, for a program p and a given partition
H of Vp, we write H = {xH,1, . . . , xH,|H|} for any H ∈ H. As
usual, we denote by ψ[t/s] the term that arises by replacing each
occurrence of t in ψ by s.

2.2 Forward Differential Equivalence

With FDE one can write an IDOL program with one variable for each
equivalence class, representing the sum of the trajectory solutions of
its members. A partitionH is induced by an FDE if the aggregated

drift
∑

xi∈H
fi of any block H ∈ H can be written in terms of the

sums of the variables within the block {
∑

xi∈H
xi : H ∈ H}. For

instance, in the IDOL program

ẋ1 = −2x1 − 3x2 − 4x3 ẋ2 = −3x1 − 4x2 − 5x3

ẋ3 = −6x1 − 4x2 − 2x3 ẋ4 = x1 + x2 + x3 − 2x4

the aggregated drifts for the partition {{x1, x2, x3}, {x4}} are

f1 + f2 + f3 = −11 · (x1 + x2 + x3) + 0 · x4,

f4 = 1 · (x1 + x2 + x3)− 2 · x4.

Clearly they depend only on the values of x1 + x2 + x3 and x4.
Answering the question whether sums of variables can be fac-

tored out from the aggregated drifts means finding new appropriate
functions with arity equal to the number of equivalence classes. In
this example, we would have drifts g1 and g2 defined as

g1 = −11 · y1 g2 = 1 · y1 − 2 · y2

where y1 and y2 represent blocks {x1, x2, x3} and {x4}, respec-
tively. We avoid synthesizing these functions directly by exploiting
an alternative characterization that involves reasoning on properties
concerning only the original variables: The evaluation of the aggre-
gated drift must be invariant under any change of assignment of the
variables that preserves the sum of values across each block.

To do this formally, we rewrite each variable as a scaling of
the corresponding sums-of-variables of its block, such that all
scaling factors are nonnegative and sum to one; in the example,
we rewrite x1 with s1(x1 + x2 + x3), x2 with s2(x1 + x2 + x3),
and s3(x1 + x2 + x3) with scaling factors s1, s2, and s3. The
alternative characterization consists in proving that the aggregated
drifts do not depend on the assignments of the scaling factors.

Importantly, following [74] it can be shown that if such rewriting
does not change the values of the aggregated drifts for some choice
of the scaling factors, then any choice will enjoy this property.
The notion of FDE checks this using the uniform scaling that
gives equal weight to every variable in the block (for instance
s1 = s2 = s3 = 1/3 in the example above). By assumption
A1, the uniform scaling ensures that terms are always rewritten into
terms that give rise to well-defined functions.

We encode this property in first order logic with function symbols
from IDOL that are interpreted in the standard way, having Vp as
free variables. We denote by Θ(p) the logical formula that encodes

E(p) (e.g., if E(p) = R
Vp
>0 then Θ(p) :=

∧

xi∈Vp
xi > 0).

Definition 4 (FDE). Let p be an IDOL program andH a partition
of Vp. Then,H is a forward differential equivalence if the following
formula is valid:

Θ(p)→
∧

H∈H

(

∑

xi∈H

fi =

∑

xi∈H

fi
[

xj
/

∑

xk∈H
′ xk

|H ′|
: H ′ ∈ H, xj ∈ H

′
])

(ΦH)

The next definition provides the quotient IDOL program with
respect to an FDE.

Definition 5 (FDE Quotient). Let p be an IDOL program and H
an FDE partition. Then, the forward quotient of p with respect to
H, denoted by −→pH, is given by:

ẏH =
∑

xi∈H

fi
[

xj
/ yH′

|H ′|
: H ′ ∈ H, xj ∈ H

′
]

, for all H ∈ H.

The uniform scaling and A1 ensure that −→pH is not ill-posed.
We now state a crucial dynamical characterization theorem: A

partition of IDOL variables is FDE if and only if the ODEs of the

quotient program preserve the sums of the original trajectories in
each equivalence class. Hence the largest FDE represents the best
possible aggregation that can be obtained in this sense.

Theorem 1 (Dynamical FDE Characterization). Let p be an IDOL

program, T > 0 a time horizon andH a partition of Vp. Then,H is
an FDE partition with forward quotient −→pH if and only if

JyHK
−→pH
c̃ (t) =

∑

xi∈H

JxiK
p
c(t)

for all σ̂ ∈ E(p), H ∈ H and t ∈ [0;T], where c := (T, σ̂),
c̃ := (T, σ̂H) and σ̂H(yH) :=

∑

xi∈H
σ̂(xi) for all H ∈ H. 1

Let us remark that FDE is stated in terms of a partition and is
thus consistent with the notion of lumpability for ODEs [74]. This
has the advantage that the above theorem is a direct consequence of
the theory presented in [74], hence we omit the proof here. However,
this is not in a form that enables an algorithm for computing the
largest FDE using partition refinement, because an assignment that

falsifies the FDE conditions ΦH does not provide information about
which variables to tell apart in the refinement step.

We tackle this problem by providing a characterization of FDE
in terms of binary checks, i.e., involving two variables only at a time.
Intuitively, for each block H ∈ H and any pair xi, xj ∈ H , such
characterization allows to check if the fact that xi and xj belong to
the same block preventsH from being an FDE.

More precisely, an equivalence relationR over Vp is FDE if and
only if for all (xi, xj) ∈ R it holds that the aggregated drifts of all
blocks in H are invariant under a scaling of the sum-of-variables
which involves only two variables belonging to the same block,
rather than all of them as per Definition 4. The intuition is that any
scaling considered in Definition 4 can be equivalently achieved as a
composition of such “binary” scalings. To our knowledge, such a
binary characterization is provided here for the first time.

Theorem 2 (Binary FDE characterization). Let p be an IDOL

program, R be an equivalence relation on Vp, and H = Vp/R.
ThenH is an FDE if and only if for all distinct xi, xj ∈ Vp we have
that (xi, xj) ∈ R implies that the following formula is valid:

Θ(p)→
∧

H∈H

(

∑

xk∈H

fk =

∑

xk∈H

fk
[

xi/s·(xi + xj), xj/(1− s)·(xi + xj)
]

)

(ΦH
xi,xj

)

Proof. Note that s is not an ODE variable from V but a variable of
the first order logic. However, we still denote the interpretation of
any variable s̃ /∈ V by σ(s̃). Moreover, to increase readability in the
proof we shall write J·K instead of J·Kpc .

Let us assume that ΦHxi,xj
is valid for allH ∈ H and xi, xj ∈ H .

We have to show that ΦH is valid. For this, we fix arbitrary
σ ∈ E(p) and H ∈ H and assume without loss of generality
that H = {x1, . . . , xm} and that σ(xi) ≥ σ(xi+1) for all 1 ≤ i ≤
m − 1. Together with µH := 1

|H|

∑

1≤i≤m σ(xi) we then define

σi ∈ RVp , where 1 ≤ i ≤ m− 1, as

σ(xk)
i+1 :=

µH , k = i

(1− σ(si)) · (σ
i(xi) + σi(xi+1)) , k = i+ 1

σi(xk) , otherwise

with σ1 := σ and σ(si) := µH/(σ
i(xi) + σi(xi+1)) for all

1 ≤ i ≤ m− 1. Since σ(xi) ≥ σ(xi+1) for all 1 ≤ i ≤ m− 1, it

holds that 0 < σ(si) ≤ 1 for all 1 ≤ i ≤ m−1. Thus, since ΦHxi,xj

1 Proofs not included in this paper are provided in a technical report available
at the authors’ web pages.

is valid for all xi, xj ∈ H , we infer that JfK(σi+1) = JfK(σi)
because both terms are equal to

Jf [xi/si(xi + xi+1), xi+1/(1− si)(xi + xi+1)]K (σ̃
i),

where σ̃i := σi ∪ {(si, σ(si))} ∈ RVp∪{si}, for all 1 ≤ i ≤
m − 1. Hence, JfK(σ|H|) = JfK(σ|H|−1) = . . . = JfK(σ1) =
JfK(σ). Note also that σ|H| satisfies σ|H|(xk) = σ|H|(xl) for all
xk, xl ∈ H . By applying the above argument to the remaining
blocks H \ {H} (i.e., in second step we would consider a block

H ′ 6= H and the vector σ|H|), we infer that ΦH is true under the
assignment σ. Since σ was chosen arbitrarily,H is an FDE.

For the proof of the converse, we first consider the case E(p) =

R
Vp
>0 and define, for any partition H of Vp, the matrix MH ∈
{0, 1}H×Vp by setting (MH)H,xk

to 1 if xk ∈ H , and 0 otherwise.

The matrix MH can be thought of as an “aggregation” matrix.
In particular, the rows of the matrix MH encode the blocks of
H. Then, for any positive generalized right inverse of MH, i.e. a

matrix MH ∈ (0; 1]Vp×H that satisfies MHMH = I, the function

σ 7→ MHMHσ defines a scaling on H. Since the entries of

MH are positive, we infer MHMHσ ∈ R
Vp
>0 for all σ ∈ R

Vp
>0.

As pointed out at the beginning of Section 2.2, any scaling that
yields well-defined terms is equivalent to the notion of FDE [74].
Consequently,H is an FDE if and only if there exists a generalized

right inverse MH ∈ (0; 1]Vp×H of MH such that MH
(

JfK(σ)
)

=

MH
(

JfK(MHMHσ)
)

for all σ ∈ R
Vp
>0. With this in mind, let us

now assume thatH is an FDE partition and fix arbitrary σ ∈ E(p),
H0 ∈ H, xi, xj ∈ H0 and σ(s) ∈ (0; 1]. We next show that ΦHxi,xj

is true for the assignment σ. Fix the generalized right inverse

(MH)xk,H =

σ(s)(σ(xi)+σ(xj))∑
xl∈H0

σ(xl)
, xk = xi

(1−σ(s))(σ(xi)+σ(xj))∑
xl∈H0

σ(xl)
, xk = xj

σ(xk)/(
∑

xl∈H
σ(xl)) , xk /∈ {xi, xj}

It is straightforward to show that

(

MHMHσ
)

(xk) =

σ(s)(σ(xi) + σ(xj)) , xk = xi
(1− σ(s))(σ(xi) + σ(xj)) , xk = xi
σ(xk) , otherwise

SinceH was assumed to be an FDE, the above discussion implies

that MH
(

JfK(σ)
)

= MH
(

JfK(MHMHσ)
)

. This, however, im-

plies that ΦHxi,xj
holds true for the assignment σ. Since σ ∈ E(p),

H0 ∈ H and xi, xj ∈ H0 were chosen arbitrarily, we infer the

claim in the case where E(p) = R
Vp
>0.

The case E(p) ∈ RVp (resp. E(p) ∈ R
Vp
≥0) follows by general-

izing our argumentation. In particular, the generalized right inverse

has to be chosen from RVp×H (resp. [0; 1]Vp×H). Moreover, note

that (MH)xk,H is well-defined only if all aggregated variables un-

derlying the fixed σ ∈ RVp are nonzero. However, such assignments
build a (Lebesgue) zero set of E(p) and the vector field JfK is con-
tinuous on E(p), which yields the claim.

2.3 Backward Differential Equivalence

BDE relates IDOL variables having the same semantics whenever
they are given the same initial assignment. This property is charac-
terized by the following implication: if the variables in each block
of the partition have the same equal assignments, then the drifts of
any two variables of a block have equal values. Similarly to FDE,
we formalize this in first order logic.

Definition 6 (BDE). Let p be an IDOL program andH a partition
of Vp. ThenH is a backward differential equivalence if the following
formula is valid:

Θ(p)→
(

∧

H∈H

(xH,1 = . . . = xH,|H|)

→
∧

H∈H

(fH,1 = . . . = fH,|H|)
)

(ΨH)

For instance, let us consider the IDOL program

ẋ1 = −min(x1, 1) + x2 ẋ2 = −min(x2, 1) + x1 (2)

We seek to verify that {{x1, x2}} is a BDE partition. Indeed this

holds since ΨH becomes

x1 = x2 → −min(x1, 1) + x2 = −min(x2, 1) + x1

Definition 7 (BDE Quotient). Let p be an IDOL program andH a
BDE partition of Vp. The backward quotient of p with respect toH,
denoted by←−pH, is given by

ẏH = fH,1

[

xH′,1

/

yH′ , . . . , xH′,|H′|

/

yH′ :H ′ ∈H
]

, for H ∈ H.

Similarly to FDE, the BDE quotient is not ill-posed. For instance,
the BDE quotient of (2) with respect to {{x1, x2}} is

ẏ =
(

−min(x1, 1)+x2
)[

x1/y, x2/y
]

, i.e., ẏ = −min(y, 1)+y

The next characterization result is analogous to Theorem 1.

Theorem 3 (Dynamical BDE Characterization). Let p be an IDOL

program, T > 0 a time horizon and H a partition of Vp. Then,
H is a BDE partition with backward quotient ←−pH if and only if
σ̂H(yH) = σ̂(xH,1) = . . . = σ̂(xH,|H|) for all H ∈ H implies

JyHK
←−pH
c̃ (t) = JxH,1K

p
c(t) = . . . = JxH,|H|K

p
c(t)

for all H ∈ H and t ∈ [0;T], with c := (T, σ̂) and c̃ := (T, σ̂H).

The statement is shown by using the same strategy as in the proof
of Theorem 6 in [20].

Let us point out that the notions of FDE and BDE are not
comparable. For instance, the partition {{x1, x2}} is not an FDE
of (2) because the formula

−min(x1, 1) + x2 −min(x2, 1) + x1 =

−min
(x1 + x2

2
, 1
)

+
x1 + x2

2
−min

(x1 + x2
2

, 1
)

+
x1 + x2

2

is not true for the assignment σ(x1) = 2 and σ(x2) = 0. Con-
versely, {{x1}, {x2, x3}} is an FDE partition of (1) for any choice
of k1 and k2, but a BDE only if k1 = k2.

3. Computing Differential Equivalences

We now discuss how to compute differential equivalences and how
to implement this using SMT. We first consider the problem of
checking if a given partition is a differential equivalence. Then we
focus on computing the largest differential equivalence for an IDOL
program using partition refinement.

3.1 Checking Differential Equivalences

Tarski’s famous result ensures that one can decide whether ΦH,
ΦHxi,xj

and ΨH are valid because the functions supported by IDOL
can be expressed in the theory of reals (R,+,−, ·, 0, 1, <,=).

For instance, terms with roots like y = x
1
2 can be encoded as

∃y(y2 = x), while the encoding of fractions is straightforward.
However, no efficient computation is possible in general.

Proposition 1. Deciding a differential equivalence is coNP-hard.

Despite this, in many cases the computation is feasible in
practice. We provide examples in Section 4.2.2. Here we briefly
discuss how an SMT solver can be used for this purpose. The

validity of the quantifier-free formulae ΦH, ΦHxi,xj
and ΨH can

be encoded, as usual, into the unsatisfiability problem of their

negation, i.e., by invoking sat(¬ΦH), sat(¬ΦHxi,xj
), and sat(¬ΨH).

These can be decided using the decision procedure nlsat [50],
which is implemented in Z3 v4.0 [30]. Thus checking differential
equivalences is sound and complete using state-of-the-art SMT
technology: A partition H is FDE (resp., BDE) if and only if

sat(¬ΦH) (resp., sat(¬ΨH)) returns “unsatisfiable”. As a concrete
example, consider the IDOL program (1) and the partition H̄ =
{{x1}, {x2, x3}}, which, as discussed, is a BDE if and only if
the parameters k1 and k2 are equal. The executable Z3 encoding

of ¬ΨH for both the cases k1 6= k2 and k1 = k2 is available at
http://rise4fun.com/Z3/PmJtS.

3.2 Partition Refinement

We compute the largest differential equivalence for an IDOL pro-
gram using a partition refinement algorithm. First, however, we
show that this is a well-posed problem.

Definition 8 (Refinement). Let S be a set, and H1, H2 two
partitions of S. Then, H1 is a refinement of H2 if for any block
H1∈H1 there exists a block H2∈H2 such that H1⊆H2.

Theorem 4. Let p be an IDOL program and G be a partition of Vp.
Then, there exists a unique coarsest FDE/BDE partition refining G.

Proof. For a given partition H of Vp, write xi ∼H xj whenever
there exists some H ∈ H such that xi, xj ∈ H .

FDE case. Set ∼HΦ := {(xi, xj) : xi = xj or ΦHxi,xj
is valid}

and note that ∼HΦ is an equivalence relation on Vp. We fix FDE par-
titionsH1, . . . ,Hn of Vp and set for the sake of brevity ∼i:=∼Hi

and ∼∗:=∼H∗ where H∗ := Vp/
(
⋃m

i=1 ∼i

)∗
and the asterisk

denotes transitive closure. Thanks to Theorem 2, it suffices to prove

that y1 ∼
H∗

Φ y2 for all H∗ ∈ H∗ and y1, y2 ∈ H∗. Thus, let

us fix some H∗ ∈ H∗ and y1, y2 ∈ H∗. Since ∼H
∗

Φ is transi-
tive and y1 = x0 ∼i0 x1 ∼i1 . . . ∼ik−1 xk = y2 for some

x0, . . . , xk ∈ Vp and i0, . . . , ik−1 ∈ {1, . . . , n}, it suffices to

show that xj ∼
H∗

Φ xj+1 for all 0 ≤ j ≤ k − 1. For this, let us fix
some arbitrary G∗ ∈ H∗. Then, it can be easily seen that there exist

(unique) subsets {Gi
1, . . . , G

i
mi
} ⊆ Hi such that

mi
⊎

l=1

Gi
l = G∗

for all 1 ≤ i ≤ n. Since xj ∼ij xj+1 implies that

∑

xι∈G∗

fι =

mij
∑

l=1

∑

xι∈G
ij
l

fι

=

mij
∑

l=1

∑

xι∈G
ij
l

fι[xj/s(xj + xj+1), xj+1/(1− s)(xj + xj+1)]

=
∑

xι∈G∗

fι[xj/s(xj + xj+1), xj+1/(1− s)(xj + xj+1)],

we infer that xj ∼
H∗

Φ xj+1.

BDE case Define ∼HΨ := {(xi, xj) : ΨHxi,xj
is valid}, where

ΨHxi,xj
:= Θ(p) →

(
∧

H∈H(xH,1 = = xH,|H|) →

fi = fj
)

and note that ∼HΨ is an equivalence relation on Vp. Then,
we fix BDE partitions H1, . . . ,Hn of Vp and, by applying the
very same reasoning as in the case of FDE, we have to show that

xj ∼
H∗

Ψ xj+1 for all 0 ≤ j ≤ k − 1. Since xj ∼ij xj+1 implies

http://rise4fun.com/Z3/PmJtS

Algorithm 1 Construction of the largest FDE and BDE.

Require: Program p, context c, partition G of Vp and χ∈{F,B}.
H ← G
while true do
H′ ← refineχ(H)

ifH′ = H then
return H

else
H ← H′

end if
end while

Algorithm 2 Routine refineF

Require: Program p, context c and a partitionH of Vp.
H′ ← ∅
for all H ∈ H do
R ←{(xi, xj) :xi, xj ∈H and (xi=xj or ΦHxi,xj

is valid)}

H′ ← H′ ∪ (H/R)
end for
return H′

that xj ∼
Hij

Ψ xj+1 and any block ofH∗ is a union of blocks ofHij ,

it can be easily seen that xj ∼
Hij

Ψ xj+1 implies xj ∼
H∗

Ψ xj+1.

So far, we have shown that the coarsening Vp/
(
⋃m

i=1 ∼i

)∗
of

FDE (BDE) partitionsH1, . . . ,Hn is again an FDE (BDE) partition.
The claim follows then by noting that Lemma 26 in [20] ensures that

Vp/
(
⋃m

i=1 ∼i

)∗
is a refinement of G if each Vp/ ∼i is a refinement

of G.

The main difference with respect to the classical partition-
refinement algorithms developed for discrete-state transition systems
(e.g., [6, 33, 51]) is that each IDOL variable represents a continuous
(uncountable) state space. To tackle this problem we build a variant
which performs a symbolic evaluation at each iteration that checks
the validity of the FDE/BDE conditions. As usual, the algorithm
returns the coarsest FDE/BDE partition that refines a given input
partition: This is the trivial partition {Vp} when computing the
largest differential equivalence. We remark that the freedom in
choosing the initial partition can be useful. For FDE, it allows to
single out variables to be preserved in the aggregated program. These
are the variables for which the modeler is interested in obtaining
distinct ODE solutions. BDE requires equivalent variables to be
initialized with same initial conditions. In this case, an appropriate G
can be used to tell apart variables having different initial conditions.
This is similar to the pre-partitioning for the largest bisimulation of
a labeled Markov chain (e.g., [5]), where states with different sets
of atomic propositions are told apart.

The outer loop of the algorithm, shown in Algorithm 1, is a
classic fixed-point iteration. The specific refinement depends on
an inner procedure, parameterized by the notion of differential
equivalence that is considered (χ = F and χ = B).

FDE Partition Refinement. Routine refineF , shown in Algo-
rithm 2, refines each block of the current partition of IDOL variables
according to FDE. As discussed, we use the binary characteriza-
tion of FDE in Theorem 2. Specifically, for each block H ∈ H,
routine refineF computes an equivalence relationR on H relating

variables xi, xj of H respecting ΦHxi,xj
, and adds toH′ blocks of

R-equivalent variables of H . (As discussed, the SMT solver is used

when computing R to check the validity of ΦHxi,xj
for each pair

of variables xi, xj ∈ H .) The algorithm is correct, since H′ is a

Algorithm 3 Routine refineB

Require: Program p, context c and a partitionH of Vp.

if ΨH is valid then
H′ ← H

else
σw ← getWitness(sat(¬ΨH))
H′ ← ∅
for all H ∈ H do
R ← {(xi, xj) :xi, xj ∈H and JfiK

p
c(σw) = JfjK

p
c(σw)}

H′ ← H′ ∪ (H/R)
end for

end if
return H′

refinement ofH, and two variables xi, xj for which ΦHxi,xj
is not

valid cannot belong to the same block of an FDE partition.

Theorem 5. If p is an IDOL program, G a partition of Vp and
χ = F , Algorithm 1 returns the coarsest FDE partition refining G.

BDE Partition Refinement. Routine refineB , shown in Algo-
rithm 3, refines the given current partition for computing BDE.
Differently from the FDE case, Definition 6 can be directly used

for this. Furthermore we fully exploit the SMT technology: If ΨH

is not valid then ¬ΨH is satisfiable, hence by invoking sat(¬ΨH)
the SMT solver provides us with a witnessing assignment σw for

which ¬ΨH holds. We use such witness as a “counter-example” to
refine H: Each block H ∈ H is split in sub-blocks of variables
xH,i whose drifts fH,i have same value if evaluated according to
σw. The algorithm is correct because the obtained partition H′ is
a refinement of H, and two variables whose drifts have different
values for σw cannot belong to the same block of a BDE partition.

Theorem 6. If p is an IDOL program, G a partition of Vp and
χ = B, Algorithm 1 returns the coarsest BDE partition refining G.

As with other SMT-based partition refinement algorithms [9, 32],
Algorithm 1 has a whole can be implemented in a standard way as a
routine in a general purpose programming language which calls the
SMT solver when required.

4. Applications

In this section we relate IDOL to CTMCs, CRNs, and the FPA
process algebra. We show that differential equivalences include the
already available notions of equivalence developed in those domains.
To do this in a self-contained manner we present the definitions of
the semantics as well as of the original equivalences, while we
refer to the literature for the intuitions and motivations behind the
languages themselves. In all cases, the encoding of the original
semantics into IDOL is straightforward, hence we omit this formal
step and directly give the underlying IDOL program.

4.1 Continuous-time Markov Chains

Let us consider a CTMC with states {1, . . . , n} that is given in terms
of its generator matrix Q = (qi,j)1≤i,j≤n where qi,j ∈ Q. That is,
for i 6= j, the entry qi,j ≥ 0 defines the rate at which the CTMC
moves from state i into state j, whereas we set qi,i = −

∑

i 6=j qi,j
for all 1 ≤ i ≤ n. Then, the corresponding IDOL program is given
by the Kolmogorov forward equations.

Definition 9. The IDOL program pQ of a CTMC (qi,j)1≤i,j≤n is

ẋi = −
∑

j 6=i

qi,j · xi +
∑

j 6=i

qj,i · xj , for all 1 ≤ i ≤ n.

Meaningful contexts for pQ are such that the initial condition σ̂ is
a probability distribution, i.e.,

∑

1≤i≤n σ̂(xi) = 1, with σ̂(xi) ≥ 0

for all 1 ≤ i ≤ n. For such a context c, JxiK
p
c(t) gives the

probability of being in state i at time t.
We next provide the notions of lumpability for CTMCs [12].

Definition 10 (Ordinary and Exact Lumpability). Let Z be a
partition of {1, . . . , n} and set

q[i, Z] :=
∑

j∈Z

qi,j and q[Z, i] :=
∑

j∈Z

qj,i,

where 1 ≤ i ≤ n and Z ⊆ {1, . . . , n}.

• Z is called ordinarily lumpable if q[i, Z′] = q[i′, Z′] for all
Z,Z′ ∈ Z and i, i′ ∈ Z.

• Z is called exactly lumpable if q[Z′, i] = q[Z′, i′] for all
Z,Z′ ∈ Z and i, i′ ∈ Z.

This definition motivates our terminology. Ordinary lumpability
is a “forward” criterion because it relates states according to their
outgoing transitions (toward equivalence classes); exact lumpability
is a “backward” criterion since it relates states according to incoming
transitions (from predecessor equivalence classes). On the domain
of CTMCs, FDE and BDE turn out to be equivalent to ordinary
lumpability and exact lumpability, respectively.

Theorem 7. Fix a CTMC Q = (qi,j)1≤i,j≤n and let Z be a
partition of {1, . . . , n}. Then, Z is ordinarily lumpable (resp.,

exactly lumpable) if and only if the partitionHZ =
{

{xi : i ∈ Z} :
Z ∈ Z

}

of VpQ is an FDE (resp., BDE) of pQ.

Proof. FDE case. As observed already by Proposition 1 in [78], for
all Z ∈ Z and i ∈ Z it holds that

q[i, Z] = q(i, i) +
∑

j∈Z

j 6=i

q(i, j) = −
∑

Z′∈Z

Z′ 6=Z

q[i, Z′].

That is, Z is ordinarily lumpable if and only if q[i, Z′] = q[i′, Z′]
for all Z,Z′ ∈ Z and i, i′ ∈ Z where Z′ 6= Z. In the following,
we will use this alternative formulation of ordinary lumpability to
establish the equivalence with FDE. Since [12] and the proof of
Theorem 2 ensure that any ordinarily lumpable partition Z induces
an FDE HZ , let us assume that HZ is an FDE and pick some
arbitrary Z,Z′ ∈ Z and i, i′ ∈ Z with Z′ 6= Z. We have to
show that q[i, Z′] = q[i′, Z′]. Thanks to Theorem 2, we know that

ΦHZ
xi,xi′

holds true. This, however, implies that the value of
∑

j∈Z′

qi,j · s · (xi + xi′) +
∑

j∈Z′

qi′,j · (1− s) · (xi + xi′)

does not depend on the assignment 0 < σ(s) ≤ 1, meaning that
q[i, Z′] = q[i′, Z′].

BDE case. Assume without loss of generality that Z =
{1, . . . ,M} with M = |Z| and I = {(I, 1), . . . , (I, |I|)} for

any I ∈ Z . We note that

ẋk = −
∑

j 6=k

qk,j · xk +
∑

j 6=k

qj,k · xj =
∑

j

qj,k · xj ,

which yields, for any I ∈ Z and 1 ≤ l ≤ |I|,

ẋI,l =
∑

J∈Z

|J|
∑

k=1

q(J,k),(I,l) · xJ,k

=
∑

J∈Z

(

|J|
∑

k=1

q(J,k),(I,l)

)

· xJ,1 =: ℘I,l

in the case of
∧

J∈Z(xJ,1 = . . . = xJ,|J|). Since HZ is a

BDE and the real polynomials ℘I,l and ℘I,l′ , where I ∈ Z

and 1 ≤ l, l′ ≤ |I|, coincide if and only if they have the same
coefficients, we infer that

|J|
∑

k=1

q(J,k),(I,l) =

|J|
∑

k=1

q(J,k),(I,l′)

for all J ∈ Z , thus closing the proof.

This result explains why differential equivalences can be seen
as a somewhat natural generalization of more traditional notions
of equivalence for discrete-state stochastic systems. In principle,
the coarsest lumpable partition of a CTMC could be computed
using the partition refinement algorithm in Section 3.2. However,
in practice, one would use the efficient algorithms specialized for
CTMCs, which run in polynomial time and space [33]. Still, an SMT-
based approach to computing CTMC lumpability can be useful to
handle uncertainty in rate values, by treating them symbolically
(e.g., as suggested in [32] for PRISM [55]).

As a side product, we remark that Theorem 7 provides a char-
acterization of ordinary and exact lumpability by means of real
calculus, based on the Kolmogorov ODEs, instead of the classical
argument [12] that combines the well-known concept of uniformiza-
tion (e.g., [72]) with the characterization of lumpability for discrete
time Markov chains [52].

4.2 Chemical Reaction Networks

A CRN is a set of rules (reactions) describing interactions between

species. For instance, the reaction A + B
α
−→ 2C states that one

element (e.g., molecule) of species A interacts with one element of
species B to form two elements of species C. The label α decorates
the reaction with information about the speed at which the reaction
occurs; its signature depends on the chosen kinetics.

Formally, let S be a finite set of species. Either side of a reaction

is a multiset of S, i.e., a function in NS
0 associating each species

with its multiplicity (the stoichiometry) as a reactant or product.
The stoichiometry of a species A in multiset ρ is denoted by ρA.

A reaction r over S is a triple (ρ, π, α) ∈ RS ⊆ NS
0 × NS

0 × L,

where L is the label set, represented usually with ρ
α
−→ π.

Mass-action CRNs. We now give the semantics of CRNs accord-
ing to standard mass action kinetics. In this case the labels are rates,
i.e., positive real numbers; the speed of the reaction is proportional
by such rates to the product of the amounts of the reactant species.

Definition 11. A mass-action CRN is a pair (S,RS) where RS is

a finite set of reactions over S, with RS ⊆ NS
0 × NS

0 ×Q>0.

For mass-action reactions, set φ(A, ρ
α
−→ π) := α(πA − ρA).

Definition 12. The IDOL program pS of a mass-action CRN (S,R)
is

ẋA = fA :=
∑

ρ
α−→π∈RS

φ(A, ρ
α
−→ π)

∏

B∈S

xρBB , for all A ∈ S.

Hill CRNs. We discuss the semantics of CRNs according to the
Hill kinetics (e.g., [80]) in the case of catalytic reactions, i.e.,

reactions which are in the form B + C
l
−→ D + C with B 6= D.

Here, C plays the role of a catalyst, a species promoting the reaction
but which is not affected by it. Species B is the substrate that is
modified, becoming D, when the reaction occurs. Each reaction is
labeled with a triple (β1, β2, ν) ∈ Q3

>0.

Definition 13. A Hill CRN is a pair (S,RS) where RS is a finite

set of catalytic reactions with RS ⊆ NS
0 × NS

0 ×Q3
>0.

Definition 14. The IDOL program pS of a Hill CRN is

ẋA = hA :=
∑

ρ
(β1,β2,ν)
−−−−−−→π∈RS
ρ=B+C,π=D+C

(πA−ρA)
β1x

ν
B

β2 + xνB
, for all A ∈ S.

In both semantics, reasonable contexts for CRNs are such that
σ̂(xA) ≥ 0 for all A ∈ S, since the IDOL variables represent
concentrations of species, i.e., molecular counts divided by the
volume of the environment where the reactions take place.

4.2.1 CRN Emulation

Emulation is a recently developed notion of comparison between
mass-action CRNs [18]. The definition is presented below, slightly
simplified from [18] and directly stated in IDOL terms.

Definition 15. Let (S,RS) and (S̃, R̃S̃) denote two mass-action

CRNs, with vector fields denoted by JfKpSc and Jf̃K
p
S̃

c̃ and contexts
denoted by c and c̃, respectively. A species morphism from (S,RS)
to (S̃, R̃S̃) is a function µS : S → S̃. It is an emulation when

JfKpSc (σ̃ ◦ µS) =
(

Jf̃K
p
S̃

c̃ (σ̃)
)

◦ µS for all σ̃ ∈ RS̃ .

The emulation condition, stated in terms of function composition,
can be checked syntactically on the CRN structure by using the
notions of reactant morphism and stoichiomorphism presented
in [18]. Here we formally relate emulation to BDE.

Proposition 2. If µS is an emulation from (S,RS) to (S̃,R̃S̃) then:

i)
{

µ−1
S (Ã) : Ã ∈ S̃

}

is a BDE partition of (S,RS).

ii) Assume S ∩ S̃ = ∅. Then,
{

µ−1
S (Ã)∪{Ã} : Ã ∈ S̃

}

is a BDE

partition of the CRN (S ∪ S̃, RS ∪ R̃S̃).

We observe that with i) BDE allows to relate species within
the same CRN. By ii), we note that emulation relates species
essentially like BDE: whenever all species are initialized with the
same conditions as the target species to which they are mapped, then
such species have the same ODE traces. We note that the assumption
on disjoint sets of species in ii) is without loss of generality since it
is always possible to rename species of one CRN with fresh names.

Example 1. The following two mass-action CRNs describe the
behavior of AM, a basic biological switch (left) and MI, a mutual
inhibition mechanism (right) [18]:

X0 +X2
α1−−→ X2 +X1

X1 +X2
α2−−→ X2 +X2

X2 +X0
α3−−→ X0 +X1

X1 +X0
α4−−→ X0 +X0

Y0 + Z0
α1−−→ Z0 + Y1

Y1 + Z0
α2−−→ Z0 + Y2

Y2 + Y0
α3−−→ Y0 + Y1

Y1 + Y0
α4−−→ Y0 + Y0

Z2 + Z0
α1−−→ Z0 + Z1

Z1 + Z0
α2−−→ Z0 + Z0

Z0 + Y0
α3−−→ Y0 + Z1

Z1 + Y0
α4−−→ Y0 + Z2

The following species morphism can be shown to be an emulation:

µS(Y0) = X0, µS(Y1) = X1, µS(Y2) = X2,

µS(Z0) = X2, µS(Z1) = x1, µS(Z2) = X0

Since emulation is a particular BDE partition, with BDE it is
possible to automatically check whether such correspondence of
traces carries over to non-mass-action kinetics. The possibility of
reasoning using different hypotheses for the reaction kinetics is
of biological relevance because in different situations one may
find mass-action mechanisms (e.g., phosphotransfers) or Hill-type

mechanisms (e.g., enzymes). For instance, much of the utility of Hill
kinetics is owed to supporting non-integer exponents. Famously, this
ranges in 2.3-3.0 for haemoglobin. Furthermore, biologists often
consider exponents less than 1 in order to describe “anticooperative"
behavior [61]. Any rational exponent can be expressed in IDOL.

In Example 1 it is possible to show that replacing equal mass-
action rates with equal (and arbitrary) Hill triples, a BDE partition
that is related to an emulation in the sense of item ii) of Proposition 2
is still BDE for the resulting Hill CRN. This suggests a structural
relationship between CRNs with different biological functionality,
which is insensitive (to some extent) to underlying kinetics that is
considered. Indeed, through BDE it is possible to show that all of the
thirteen species morphisms found in [18] do enjoy this property. This
is particularly interesting because, at the same time, Hill kinetics can
never be exactly matched by mass-action kinetics, and vice versa.
(This holds because the drift for Hill kinetics has partial derivatives
of arbitrary high order that are not identical to zero, whereas the
drift for mass-action kinetics does not.)

4.2.2 Forward and Backward Bisimulations for CRNs

Forward and backward bisimulations for CRNs have been recently
introduced in [20]. These are equivalence relations over species
for elementary mass-action reactions, where at most two reactants
(possibly of the same species) can appear in the left hand side.
A specialized partition-refinement algorithm is provided which
computes the largest bisimulations in polynomial time and space.

Forward bisimulation. Forward bisimulation depends on the com-
putation of the following quantities from the CRN syntax.

Definition 16. Let (S,RS) be a CRN,A,A′ ∈ S, and ρ ∈ S∪{∅}.
The ρ-reaction rate of A, and the ρ-production rate of A′-elements
by A are defined respectively as

crr[A, ρ] := (ρA + 1)
∑

A+ρ
α−→π∈RS

α,

pr(A, ρ,A′) := (ρA + 1)
∑

A+ρ
α−→π∈RS

α · πA′

Finally, for Z ⊆ S we define pr[A, ρ, Z] :=
∑

A′∈Z pr(A, ρ,A′).

Definition 17. Let (S,RS) be a CRN, R an equivalence relation
over S and Z = S/R. Then,R is a forward bisimulation if for all
(A,A′) ∈ R, all ρ, and all blocks Z ∈ Z it holds that

crr[A, ρ] = crr[A′, ρ] and pr[A, ρ, Z] = pr[A′, ρ, Z]. (3)

Proposition 3 (Forward bisimulation implies FDE). Let (S,RS)
be an elementary mass-action CRN andR be a forward bisimula-
tion. Then, the IDOL program p underlying (S,RS) is such that

Vp/
{

(xA, xA′) : (A,A′) ∈ R
}

is an FDE partition.

We offer an intuitive explanation as to why forward bisimulation
is only a sufficient condition for FDE. For this, we observe that
it separately considers the negative and the positive contribution
by reactions to the concentration of a species, captured by the ρ-
reaction rate and the ρ-production rate, respectively. Instead, FDE
considers the net contribution to the species’ concentration. We
illustrate this difference using an example.

Example 2. Consider the mass-action CRN

Ap +B
1
−→ ApB Au +B

1
−→ AuB (4)

ApB
2
−→ Ap +B AuB

2
−→ Au +B (5)

This is a basic instance of CRNs resulting from higher-level ap-
proaches using rule-based languages such as κ [26] and BioNet-
Gen [11]. It involves agents, A and B, which may exhibit different

Table 1. FDE reduces more than forward bisimulation (FB).

Original model Largest FB Largest FDE

Model |R| |S| Red.(s) Size Red.(s) Size

M1 [34, 70] 8620 745 6.54E–1 745 7.85E+3 105
M2 [34, 70] 3680 354 2.81E–1 354 3.22E+3 105
M3 [1] 4944 411 1.29E–1 411 6.46E+2 47
M4 [8] 3447 348 2.46E–1 348 5.22E+3 215

internal states (e.g., being phosphorylated or unphosphorylated, sub-
scripts p and u, respectively). Line 4 shows complexation reactions,
where agents can combine into a single compound, modelled as
a different species (ApB and AuB). Line 5 are decomplexation
reactions, where the agents unbind. By Definition 12 we have that
the IDOL program of this CRN is

ẋAp = −xAp · xB + 2xApB ẋApB = xAp · xB − 2xApB

ẋAu = −xAu · xB + 2xAuB ẋAuB = xAu · xB − 2xAuB

ẋB = −xAp · xB + 2xApB − xAu · xB + 2xAuB

It holds that ZC = {{Ap, Au}, {B}, {ApB,AuB}} is a for-
ward bisimulation, soHC = {{xAp , xAu}, {xB}, {xApB , xAuB}}
is an FDE for the corresponding IDOL program. For example, the
aggregated drift of the block {xAp , xAu} is

fAp + fAu = −(xAp + xAu)· xB + 2(xApB + xAuB) (6)

Let us now add reactions

Au
αup
−−→ Ap and Ap

αpu
−−→ Au, with αup 6= αpu.

Biologically, this is a classical model of phosphorylation/unphospho-
rylation of a molecule. With these new reactions,ZC is not a forward
bisimulation, because crr[Au, ∅] = αup while crr[Ap, ∅] = αpu.
However, HC is still an FDE because the influence of the new
reactions “disappears” in the aggregated ODEs:

fAp + fAu = −(xAp + xAu)· xB + 2(xApB + xAuB)

+ αup · xAu − αpu · xAp − αup · xAu + αpu · xAp

where the last line, which represents the contributions of the new
reactions, evaluates to zero. Hence the new aggregated drift fAp +
fAu coincides with (6).

We now show that FDE can aggregate biochemical models from
the literature that cannot be aggregated using forward bisimulation.
For this experimental study, we developed a Java prototype that
implements Algorithm 1 for IDOL programs of mass-action CRNs,
using the Z3 application programming interface to evaluate the
conditions on differential equivalence. Our tool is available at
http://sysma.imtlucca.it/erode to replicate our tests.

The results are presented in Table 1. Alongside the model
identifier we show the reference from which the CRN was taken;
headers |R| and |S| give the number of reactions and species,
respectively, of the original CRN. Headers Red.(s) give the time
in seconds to compute the largest equivalences. Measurements were
taken on a 2.6 GHz Intel Core i5 with 4 GB of RAM. We obtain
up to one order of magnitude fewer variables (models M1 and M3)
using FDE.

The runtime comparisons show that FDE is computationally
more demanding than forward bisimulation, exhibiting larger run-
times even if it performs fewer iterations on each model because it
gives coarser aggregations. The reason is that the computation of
R at each iteration of Algorithm 2 requires in the worst case to es-

tablish the validity of ΦHxi,xj
for each pair of IDOL variables xi, xj

belonging to the same block. Furthermore, each check is performed

Table 2. BDE has runtimes similar to backward bisimulation (BB).

Original model Reduction

Model |R| |S| BB (s) BDE (s) |S|

M5 [70] 786432 65538 3.68E+3 1.01E+3 167
M6 [70] 172032 16386 1.77E+2 3.01E+2 122
M7 [70] 48 18 2.00E–3 6.00E–2 12
M8 [73] 194054 14531 1.32E+3 3.45E+3 6634
M9 [34, 70] 187468 10734 2.71E+2 1.57E+3 5575
M10 [22, 23] 5832 730 6.00E–1 3.22E+0 217
M11 [53] 487 85 6.00E–3 2.71E–1 56
M12 [18] 24 18 7.00E–3 5.20E–2 3

symbolically using the SMT solver, while the partition refinement
algorithm of [20] splits candidate partitions using Definition 16.
However we stress that these tests are “unfair” to our differential
equivalences because the comparison is with a specialized partition
refinement algorithm which iterates using concrete values (that can
be computed syntactically).

Backward bisimulation. On the domain of elementary CRNs with
mass-action kinetics, BDE corresponds to backward bisimulation;
hence we avoid recalling that notion (see [20, Def. 14]).

Proposition 4 (Backward bisimulation corresponds to BDE). Let
(S,RS) be an elementary mass-action CRN and R be an equiva-
lence relation over S. Then, the IDOL program p underlying (S,RS)
is such that Vp/

{

(xA, xA′) : (A,A′) ∈ R
}

is a BDE partition if
and only ifR is a backward bisimulation.

Yet, we still compare BDE and backward bisimulation to show,
surprisingly to us, that our prototypical SMT-based implementation
of BDE can already compete with the polynomial mass-action
specific partition refinement algorithm for backward bisimulation.
The results are presented in Table 2, using models also studied
in [20]. For instance, the reduction of M5 is obtained three times
faster using BDE, while M6 and M8 registered runtimes of the
same order. This shows that the SMT theory and technology are
well suited for BDE: a single iteration allows to perform as many
partition splits as the number of distinct evaluations of the drifts with
the counterexample assignment. In the largest benchmark, M5, at
each iteration of the partition refinement algorithm the SMT solver
evaluated equivalences involving ca. 786,000 nonlinear monomials
and 1,500,000 linear monomials, from binary and unary reactions,
respectively.

Finally, we note that the formula ΨH used at each iteration
to refine the current partition H is much simpler then the ones
considered for FDE, as just single drifts are compared rather than
cumulative ones over blocks. For instance, it can be shown that
in model M11 the coarsest FDE and BDE partitions coincide, but
it took 9.90E+1 s to compute the largest FDE, as opposed to the
reported 2.71E−1 s for the largest BDE.

4.3 Process Algebra

Lastly we consider a fragment of Fluid Process Algebra (FPA)
presented in [49], which corresponds to the process algebra studied
in [77]. The grammar of FPA considers parallel composition of
sequential processes with synchronization over shared actions. Let
A denote the set of actions and K the set of constants. Each process

P ∈ K is defined as P
def
=

∑

i∈IP
(αi, ri).Pi, where IP is an index

set, αi ∈ A, ri∈Q>0 is a rate, and Pi ∈ K.
Using the obvious standard operational semantics for the choice

and prefix operator, we let B(P) be the states of the underlying

http://sysma.imtlucca.it/erode

LTS, with transitions denoted by P
(αi,ri)−−−−→ Pi. Furthermore, we

let A(P) denote the set of actions labeling transitions from P .

Definition 18. An FPA modelM is generated by

M ::= P | M ‖L M , with L ⊆ A and P ∈ K.

We let G(M) be the set of sequential components appearing in
M and B(M) for

⋃

P∈G(M)B(P). For any two P,Q ∈ G(M),

we assume B(P) ∩ B(Q) = ∅.
We introduce the following elementary concepts that will be

needed to define the semantics.

Definition 19. Let Z ⊆ K and α ∈ A. Then

rα(P) :=
∑

P
(α,r)
−−−→P ′

r and q[P,Z, α] :=
∑

P ′∈Z

∑

P
(α,r)
−−−→P ′

r

Also, we say that an action α is enabled in an FPA model M
if for any submodel M1 ‖L M2 of M with α ∈ L there
exist P1 ∈ B(M1) and P2 ∈ B(M2) with rα(P1) > 0 and
rα(P2) > 0.

An IDOL variable (hence, an ODE) is associated with each LTS
state of every sequential process appearing in an FPA modelM.

Definition 20. The IDOL program of an FPA modelM is given by

ẋP =
∑

α∈A

∑

P ′∈B(M)

xP ′ · q[P ′, {P}, α] · R∗α(M, P ′)

−
∑

α∈A

xP · rα(P) · R∗α(M, P), for all P ∈ B(M),

where r∗α(M) is recursively defined as

r∗α(M1 ‖L M2) :=

{

r∗α(M1) + r∗α(M2) , α /∈ L

min
(

r∗α(M1), r
∗
α(M2)

)

, α ∈ L

r∗α(P) :=
∑

P ′∈B(P)

xP ′ · rα(P
′)

R∗α(M1 ‖L M2, P) :=

R∗α(Mi, P) , P ∈ B(Mi) ∧ α 6∈ L

R∗α(Mi, P)
r∗α(M1‖LM2)

r∗α(Mi)
, P ∈ B(Mi) ∧

α ∈ L is enabled inMi

0 , otherwise

R∗α(P, P
′) :=

{

1 , P ′ ∈ B(P)

0 , otherwise

We refer the reader to the literature (e.g., [49, 77]) for a more
detailed discussion on the semantics of FPA. Here we stress that
the crucial definition is r∗α(M1 ‖L M2) for a synchronization
action α ∈ L. Intuitively, it provides a contribution to the drift that
establishes a threshold-based contention between the capacities (i.e.,
rates) of the operands, dictated by the minimum function.

4.3.1 Differential Bisimulation

The first equivalence for FPA that we study is differential bisimula-
tion [49]. It is a relation over the set of constants of an FPA model,
defined in terms of conditions on the sequential behavior and on
the compositional structure of processes. The latter is captured by
collecting actions which affect the sequential behavior.

Definition 21. LetM be an FPA model, and P ∈ B(M). Then

D(P,M) :=

{

L ∪ D(P,Mi) , M =M1 ‖LM2, P ∈ B(Mi)

∅ , otherwise

and

I(P,M) := D(P,M) ∩ A(P).

For any Z ⊆ B(M), we set D(Z,M) =
⋃

P∈ZD(P,M) and

I(Z,M) =
⋃

P∈ZI(P,M).

Definition 22. LetM be an FPA model, and P,Q ∈ B(M). Then

we write P
s.i.
=M Q if

(i) A(P) = A(Q), and

(ii) if there exists an M = M1 ‖L M2 within M with P ∈
B(M1), and Q ∈ B(M2) (or vice versa), then I(P,M) =
I(Q,M) = ∅.

Definition 23 (Differential bisimulation). LetM be an FPA model,
R an equivalence relation over B(M), andZ = B(M)/R. We say
that R is a differential bisimulation forM if for all (P, P ′) ∈ R
we have:

(i) q[P,Z, α] = q[P ′, Z, α], for all Z ∈ Z and α ∈ A,

(ii) P
s.i.
=M P ′.

We observe that differential bisimulation can be checked in a non-
symbolic fashion. This is because the aggregate rates q[P,B, α]
only depend on the rates that label the prefix operator. The equiv-

alence relation
s.i.
=M involves parsing the FPA model and appro-

priately collecting the action types that decorate the compositional
operator of FPA. It turns out that differential bisimulation is a suffi-
cient condition for FDE on the corresponding IDOL program.

Proposition 5. Let M be an FPA model and R a differential
bisimulation. Then, the IDOL program p underlying M is such
that Vp/

{

(xP , xQ) : (P,Q) ∈ R
}

is an FDE partition.

We discuss why it is not a necessary condition using the example
taken from [49].

Example 3. LetMF := P1 ‖{α} Q1, with P1, Q1 defined as

P1
def
= (β, r).P2 + (β, r).P3 P2

def
= (α, s).P1 P3

def
= (α, s).P1

Q1
def
= (γ, 2r).Q2 Q2

def
= (α, s).Q1

Applying Definition 20, its IDOL program is

ẋP1 = s min(xP2 + xP3 , xQ2)− 2r xP1

ẋQ1 = s min(xP2 + xP3 , xQ2)− 2r xQ1

ẋP2 = r xP1 − s xP2

min(xP2 + xP3 , xQ2)

xP2 + xP3

(7)

ẋQ2 = 2r xP1 − s min(xP2 + xP3 , xQ2)

ẋP3 = r xP1 − s xP3

min(xP2 + xP3 , xQ2)

xP2 + xP3

It can be shown that ZF = {{P1}, {P2, P3}, {Q1}, {Q2}} is a
differential bisimulation, hence the corresponding partition on the
IDOL variablesHF = {{xP1}, {xP2 , xP3}, {xQ1}, {xQ2}} is an
FDE. Indeed, summing the variables within each equivalence class,
we obtain:

ẋP1 = s min(xP2 + xP3 , xQ2)− 2r xP1

ẋQ1 = s min(xP2 + xP3 , xQ2)− 2r xQ1

ẋP2 + ẋP3 = 2r xP1 − s min(xP2 + xP3 , xQ2)

ẋQ2 = 2r xP1 − s min(xP2 + xP3 , xQ2)

The converse, i.e., that an FDE over the IDOL variables implies
a differential bisimulation for the corresponding processes, does
not hold in general. For instance, by changing the definition of

P2 of Example 3 with P2
def
= (δ, s).P1 we have that RF is not a

differential bisimulation because we obtain q[P2, {P1}, α] = 0

and q[P3, {P1}, α] = s. Instead, HF remains an FDE, since the
“domain-specific” information about action types is lost in the IDOL
program.

As a further example, let us replace P2 with the following

definition: P2
def
= (α, s).P1 + (δ, s).P3. Again, we have that RF

is not a differential bisimulation, while HF is an FDE. This is
because the added δ-transition from P2 to P3 distinguishes P2 and
P3 (i.e., q[P2, {P2, P3}, δ] = s and q[P3, {P2, P3}, δ] = 0), but
its influence disappears in the lumped ODEs: the negative drift
term −δ · x2 in ẋP2 cancels out the positive drift term δ · x2 in
ẋP3 . This is similar to Example 2 for CRNs, and is actually an
instance of a more general observation that transitions internal to
an equivalence class do not interfere at the FDE level but may tell
apart processes according to differential bisimulation. Indeed, it is
not difficult to see that for any FPA modelM, the trivial partition
corresponding to {B(M)} is always an FDE. This is, intuitively,
a conservation-of-mass property due to the fact that processes are
not created nor destroyed in FPA, hence all transitions are internal
to the trivial partition. This remark also stresses the usefulness in
having an algorithm that can refine any given initial partition, since
computing the largest FDE for an FPA model always collapses to
an uninteresting reduction.

4.3.2 Label Equivalence

Similarly to differential bisimulation, we next provide the notion of
label equivalence that has been introduced in [77] and that describes
a sufficient, but not necessary, condition for a partition of FPA
constants to be a BDE.

Definition 24 (Label Equivalence). LetM be a FPA model and let

P = (P1, . . . ,PN), Pi = (P i
1 , . . . , P

i
Ki

), be a tuple partition on

G(M) = {Q1, . . . , Qn}, that is, for each P ∈ G(M) there exist

unique 1 ≤ i ≤ N and 1 ≤ k ≤ Ki with P = P i
k. Pi and Pj are

said to be label equivalent, written Pi ∼P Pj , if Ki = Kj and

there exist bijections ρi,jk : B(P i
k) → B(P

j
k), where 1 ≤ k ≤ Ki,

such that for all α ∈ A it holds that rα(P
i
k) = rα(P

j
k) and

• ∀xQ1 . . . ∀xQn

(

R∗α(M, P) = R∗α(M, ρk(P))[. . .]
)

,

• ∀xQ1 . . . ∀xQn

(

∑

P ′∈G(M)

q[P ′, {P}, α]R∗α(M, P ′),

=
∑

P ′∈G(M)

q[P ′, {ρk(P)}, α]R∗α(M, P ′)[. . .]
)

,

• ∀xQ1 . . . ∀xQn

(

R∗α(M, P) = R∗α(M, P)[. . .]
)

for all P in

ds(P l
k) with P l

k /∈ P
i,Pj

and

• ∀xQ1 . . . ∀xQn

(

r∗α(M) = r∗α(M)[. . .]
)

,

where [. . .] abbreviates

[xQ/xρk(Q), xR/xρ−1
k

(R)
: Q ∈ B(P i

k), R ∈ B(P
j
k), 1 ≤ k ≤ K].

It can be proven that label equivalence is an equivalence relation
on the tuple partition P . More importantly, the following result
from [77] connects label equivalence to the notion of BDE.

Proposition 6. Fix an FPA model M, a tuple partition P of
G(M) and let ∼P be a label equivalence on P . In particular, let

ρi,jk : B(P i
k) → B(P j

k) denote a set of bijections that relates

any two label equivalent tuples Pi,Pj ∈ P and that satisfies

(ρi,jk)−1 = ρj,ik . Then,
{

{xP : Q ∈ Z} : Z ∈ B(M)/ ≈
}

is a

BDE partition, where Q ≈ Q′ whenever Q′ = ρi,jk (Q) for some
i, j and k.

There exist BDE partitions that are not induced by label equiv-
alence. To see this, consider the FPA modelM = P1 with P1 =
(α, 1).P2, P2 = (α, 2).P3, P3 = (α, 1).P4 and P4 = (α, 2).P1.
Then, it can be easily verified that the partition {{xP1 , xP3},
{xP2 , xP4}} of the underlying IDOL model is BDE. However, it
cannot be constructed using label equivalence since this notion
relates FPA constants of distinct elements of G(M).

5. Conclusion

We have provided a generic framework for reasoning about lan-
guages that have ordinary differential equations (ODEs) as their
quantitative semantics. Three main principles can be borrowed from
more traditional domains based on labeled transition systems or
discrete-state stochastic processes such as Markov chains: program
comparison and minimization are understood in terms of equiva-
lence relations over the states of a program; partition-refinement
algorithms can be used to compute the largest equivalences; and
SMT can be used for program verification. Yet the technical details
involved in this transplantation are somewhat intricate: in ODE se-
mantics, the state space is implicitly given as a continuous function.
Therefore, proving programs equivalent involves a universal quan-
tification over an uncountable domain. We developed algorithms
for our differential equivalences by exploiting the possibility of
reasoning over the reals symbolically using SMT.

We have worked on a basic intermediate language for ODEs.
Conceptually, it can be seen as the analogous of a “bytecode”
format for higher-level languages, where differential equivalences
are compiler-optimization techniques that transform the original
program while exactly preserving its behavior. Reasoning at such an
intermediate level leads to equivalences that are more general than
analogous notions developed for higher-level languages, because
no domain-specific elements and issues are involved (such as
action types and compositionality in process algebra). This can
lead to potentially coarser minimizations, as our case studies of
biochemical reaction networks have shown. However we argue that
our contribution can still be useful when the modeller must work
with higher-level equivalences to account for domain specificity. In
this case, establishing a relationship with a differential equivalence
may provide a way to automatizing checks. It appears already to be
the case for label equivalence for FPA [77], which can be encoded
into SMT, being a backward differential equivalence.

There are interesting avenues of future research from this work.
The most direct one is that of improving the performance and
scalability of the presented algorithms. For example, validity checks
of different formulae can be performed independently, thus allowing
to refine more blocks at a time, or to parallelize the refinement of a
single block. Also, it is natural to relax the assumption of exactness
in favor of approximate equivalence relations, similarly to what has
been done for models with stochastic semantics [67]. Using SMT to
compute differential equivalences opens a number of possibilities
for symbolic computation. Our intermediate language could be
extended with parameter variables in order to find, for instance,
equivalences that hold under any possible assignment of such
variables; or synthesize assignments for which a candidate partition
is a differential equivalence. The ability to reason symbolically can
be particularly useful in domains such as computational biology,
where uncertainty on rate parameters is a well-known hindrance.

Acknowledgement

The authors thank Michele Loreti for helpful discussions. This work
was partially supported by the EU project QUANTICOL, 600708.
Luca Cardelli is partially funded by a Royal Society Research
Professorship.

References

[1] MAPK cascade in yeast - dimerization of Ste5. Available at http:
//vcell.org/bionetgen/samples.html.

[2] A. Antoulas. Approximation of Large-Scale Dynamical Systems.
Advances in Design and Control. SIAM, 2005.

[3] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary

Differential Equations and Differential-Algebraic Equations. SIAM,
1988.

[4] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking
continuous-time Markov chains. ACM Trans. Comput. Logic, 1(1):
162–170, 2000.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press,
2008. ISBN 978-0-262-02649-9.

[6] C. Baier, B. Engelen, and M. E. Majster-Cederbaum. Deciding
bisimilarity and similarity for probabilistic processes. J. Comput. Syst.

Sci., 60(1):187–231, 2000.

[7] C. Barrett, R. Sebastiani, S. A. Seshia, S. A. S. Cesare Tinelli Clark Bar-
rett, Roberto Sebastiani, and C. Tinelli. Handbook of Satisfiability: Vol-

ume 185 Frontiers in Artificial Intelligence and Applications, chapter
Satisfiability Modulo Theories. IOS Press, 2009.

[8] D. Barua and B. Goldstein. A mechanistic model of early FcεRI signal-
ing: lipid rafts and the question of protection from dephosphorylation.
PLoS One, 7(12), 2012.

[9] J. Berdine and N. Bjørner. Computing all implied equalities via SMT-
based partition refinement. In Automated Reasoning, volume 8562 of
LNCS, pages 168–183. Springer, 2014.

[10] M. Bernardo. A survey of Markovian behavioral equivalences. In
Formal Methods for Performance Evaluation, volume 4486 of LNCS,
pages 180–219. Springer, 2007.

[11] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNet-
Gen: software for rule-based modeling of signal transduction based
on the interactions of molecular domains. Bioinformatics, 20(17):
3289–3291, 2004.

[12] P. Buchholz. Exact and ordinary lumpability in finite markov chains.
Journal of Applied Probability, 31(1):59–75, 1994.

[13] P. Buchholz. Exact performance equivalence: An equivalence relation
for stochastic automata. Theoretical Computer Science, 215(1–2):
263–287, 1999.

[14] L. Calzone, F. Fages, and S. Soliman. BIOCHAM: an environment for
modeling biological systems and formalizing experimental knowledge.
Bioinformatics, 22(14):1805–1807, 2006.

[15] F. Camporesi and J. Feret. Formal reduction for rule-based models.
Electronic Notes in Theoretical Computer Science, 276:29–59, 2011.

[16] F. Camporesi, J. Feret, H. Koeppl, and T. Petrov. Combining model
reductions. Electronic Notes in Theoretical Computer Science, 265:
73–96, 2010.

[17] L. Cardelli. On process rate semantics. Theoretical Computer Science,
391(3):190–215, 2008.

[18] L. Cardelli. Morphisms of reaction networks that couple structure to
function. BMC Systems Biology, 8(1):84, 2014.

[19] L. Cardelli and A. Csikász-Nagy. The cell cycle switch computes
approximate majority. Sci. Rep., 2, 2012.

[20] L. Cardelli, M. Tribastone, M. Tschaikowski, and A. Vandin. Forward
and backward bisimulations for chemical reaction networks. In
CONCUR, pages 226–239, 2015.

[21] F. Ciocchetta and J. Hillston. Bio-PEPA: A framework for the modelling
and analysis of biological systems. Theoretical Computer Science, 410
(33-34):3065–3084, 2009.

[22] J. Colvin, M. I. Monine, J. R. Faeder, W. S. Hlavacek, D. D. V.
Hoff, and R. G. Posner. Simulation of large-scale rule-based models.
Bioinformatics, 25(7):910–917, 2009.

[23] J. Colvin, M. I. Monine, R. N. Gutenkunst, W. S. Hlavacek, D. D. V.
Hoff, and R. G. Posner. Rulemonkey: software for stochastic simulation
of rule-based models. BMC Bioinformatics, 11:404, 2010.

[24] H. Conzelmann, J. Saez-Rodriguez, T. Sauter, B. Kholodenko, and
E. Gilles. A domain-oriented approach to the reduction of combinatorial
complexity in signal transduction networks. BMC Bioinformatics, 7(1):
34, 2006.

[25] H. Conzelmann, D. Fey, and E. Gilles. Exact model reduction of
combinatorial reaction networks. BMC Systems Biology, 2(1):78, 2008.

[26] V. Danos and C. Laneve. Formal molecular biology. Theoretical

Computer Science, 325(1):69–110, 2004.

[27] V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimu-
lation and cocongruence for probabilistic systems. Information and

Computation, 204(4):503–523, 2006.

[28] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Abstracting
the differential semantics of rule-based models: Exact and automated
model reduction. In LICS, pages 362–381, 2010.

[29] R. David and H. Alla. Discrete, Continuous, and Hybrid Petri Nets.
Springer, 2005.

[30] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS,
pages 337–340, 2008.

[31] R. De Nicola, D. Latella, M. Loreti, and M. Massink. A uniform
definition of stochastic process calculi. ACM Computing Surveys, 46
(1):5:1–5:35, 2013.

[32] C. Dehnert, J.-P. Katoen, and D. Parker. SMT-based bisimulation
minimisation of Markov models. In VMCAI, volume 7737 of LNCS,
pages 28–47, 2013.

[33] S. Derisavi, H. Hermanns, and W. H. Sanders. Optimal state-space
lumping in Markov chains. Inf. Process. Lett., 87(6):309–315, 2003.

[34] J. R. Faeder, W. S. Hlavacek, I. Reischl, M. L. Blinov, H. Metzger,
A. Redondo, C. Wofsy, and B. Goldstein. Investigation of early events
in FcεRI-mediated signaling using a detailed mathematical model. The

Journal of Immunology, 170(7):3769–3781, 2003.

[35] J. Feret. Fragments-based model reduction: Some case studies. Elec-

tronic Notes in Theoretical Computer Science, 268:77–96, 2010.

[36] J. Feret, V. Danos, J. Krivine, R. Harmer, and W. Fontana. Internal
coarse-graining of molecular systems. Proceedings of the National

Academy of Sciences, 106(16):6453–6458, 2009.

[37] J. Feret, T. Henzinger, H. Koeppl, and T. Petrov. Lumpability ab-
stractions of rule-based systems. Theoretical Computer Science, 431:
137–164, 2012.

[38] J. Fisher and T. Henzinger. Executable cell biology. Nature Biotech-

nology, 25(11):1239–1249, 2007.

[39] V. Galpin. Continuous approximation of PEPA models and Petri nets.
International Journal of Computer Aided Engineering and Technology,
2:324–339, 2010.

[40] S. Gao, S. Kong, and E. Clarke. Satisfiability modulo ODEs. In
FMCAD, pages 105–112, 2013.

[41] S. Gulwani, S. Jha, A. Tiwari, and R. Venkatesan. Synthesis of loop-free
programs. In PLDI, pages 62–73, 2011.

[42] R. A. Hayden and J. T. Bradley. A fluid analysis framework for a
Markovian process algebra. Theoretical Computer Science, 411(22-
24):2260–2297, 2010.

[43] M. Heiner, D. Gilbert, and R. Donaldson. Petri nets for systems and
synthetic biology. In Formal Methods for Computational Systems

Biology, volume 5016 of LNCS, pages 215–264. Springer, 2008.

[44] H. Hermanns and M. Rettelbach. Syntax, semantics, equivalences,
and axioms for MTIPP. In Proceedings of Process Algebra and

Probabilistic Methods, pages 71–87, Erlangen, 1994.

[45] H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic
process algebras and their BDD-based implementation. In ARTS, pages
244–264, 1999.

[46] J. Hillston. A Compositional Approach to Performance Modelling.
Cambridge University Press, 1996.

[47] J. Hillston. Fluid flow approximation of PEPA models. In QEST, pages
33–43, Sept. 2005.

[48] D. T. Huynh and L. Tian. On some equivalence relations for probabilis-
tic processes. Fundam. Inform., 17(3):211–234, 1992.

http://vcell.org/bionetgen/samples.html
http://vcell.org/bionetgen/samples.html

[49] G. Iacobelli, M. Tribastone, and A. Vandin. Differential bisimulation
for a Markovian process algebra. In MFCS, pages 293–306, 2015.

[50] D. Jovanovic and L. M. de Moura. Solving non-linear arithmetic. In
IJCAR, pages 339–354, 2012.

[51] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state
processes, and three problems of equivalence. Inf. Comput., 86(1):
43–68, 1990.

[52] J. Kemeny and J. Snell. Finite Markov Chains. Springer New York,
Heidelberg, Berlin, 1976.

[53] P. Kocieniewski, J. R. Faeder, and T. Lipniacki. The interplay of
double phosphorylation and scaffolding in MAPK pathways. Journal

of Theoretical Biology, 295:116–124, 2012.

[54] A. S. Köksal, V. Kuncak, and P. Suter. Constraints as control. In POPL,
pages 151–164, 2012.

[55] M. Kwiatkowska, G. Norman, and D. Parker. Prism 4.0: Verification of
probabilistic real-time systems. In CAV, pages 585–591, 2011.

[56] M. Kwiatkowski and I. Stark. The continuous pi-calculus: A process
algebra for biochemical modelling. In CMSB, pages 103–122, 2008.

[57] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Inf. Comput., 94(1):1–28, 1991.

[58] Y. Li, A. Albarghouthi, Z. Kincaid, A. Gurfinkel, and M. Chechik.
Symbolic optimization with SMT solvers. In POPL, pages 607–618,
2014.

[59] S. Mover, A. Cimatti, A. Tiwari, and S. Tonetta. Time-aware relational
abstractions for hybrid systems. In EMSOFT, pages 1–10, 2013.

[60] M. Nagasaki, S. Onami, S. Miyano, and H. Kitano. Bio-calculus: Its
concept and molecular interaction. Genome Informatics, 10:133–143,
1999.

[61] D. L. Nelson and M. M. Cox. Lehninger Principles of Biochemistry.
Palgrave Macmillan, 6th edition, 2013.

[62] J. Norris. Markov Chains. Cambridge Series in Statistical and
Probabilistic Mathematics. Cambridge University Press, 1998.

[63] M. S. Okino and M. L. Mavrovouniotis. Simplification of mathematical
models of chemical reaction systems. Chemical Reviews, 2(98):391–
408, 1998.

[64] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM

Journal on Computing, 16(6):973–989, 1987.

[65] G. J. Pappas. Bisimilar linear systems. Automatica, 39(12):2035–2047,
2003.

[66] M. Pedersen and G. Plotkin. A language for biochemical systems:
Design and formal specification. In Transactions on Computational

Systems Biology XII, volume 5945 of LNCS, pages 77–145. Springer,
2010.

[67] A. D. Pierro, C. Hankin, and H. Wiklicky. Quantitative relations and
approximate process equivalences. In CONCUR, pages 498–512, 2003.

[68] A. Regev and E. Shapiro. Cellular abstractions: Cells as computation.
Nature, 419(6905):343–343, 2002.

[69] S. Sankaranarayanan and A. Tiwari. Relational abstractions for
continuous and hybrid systems. In CAV, pages 686–702, 2011.

[70] M. W. Sneddon, J. R. Faeder, and T. Emonet. Efficient modeling,
simulation and coarse-graining of biological complexity with NFsim.
Nature Methods, 8(2):177–183, 2011.

[71] J. Sproston and S. Donatelli. Backward bisimulation in Markov chain
model checking. IEEE Trans. Software Eng., 32(8):531–546, 2006.

[72] W. J. Stewart. Probability, Markov Chains, Queues, and Simulation.
Princeton University Press, 2009.

[73] R. Suderman and E. J. Deeds. Machines vs. ensembles: Effective
MAPK signaling through heterogeneous sets of protein complexes.
PLoS Comput. Biol., 9(10):e1003278, 10 2013.

[74] J. Toth, G. Li, H. Rabitz, and A. S. Tomlin. The effect of lumping and
expanding on kinetic differential equations. SIAM Journal on Applied

Mathematics, 57(6):1531–1556, 1997.

[75] M. Tribastone. A fluid model for layered queueing networks. IEEE

Trans. Software Eng., 39(6):744–756, 2013.

[76] M. Tribastone, S. Gilmore, and J. Hillston. Scalable differential analysis
of process algebra models. IEEE Trans. Software Eng., 38(1):205–219,
2012.

[77] M. Tschaikowski and M. Tribastone. Exact fluid lumpability for
Markovian process algebra. In CONCUR, pages 380–394, 2012.

[78] A. Valmari and G. Franceschinis. Simple O(m logn) time Markov
chain lumping. In TACAS, pages 38–52, 2010.

[79] A. J. van der Schaft. Equivalence of dynamical systems by bisimulation.
IEEE Transactions on Automatic Control, 49, 2004.

[80] E. O. Voit. Biochemical systems theory: A review. ISRN Biomathe-

matics, 2013:53, 2013. URL http://dx.doi.org/10.1155/2013/
897658%]897658.

http://dx.doi.org/10.1155/2013/897658 %] 897658
http://dx.doi.org/10.1155/2013/897658 %] 897658

	Introduction
	Intermediate Drift Oriented Language
	Syntax and Semantics
	Forward Differential Equivalence
	Backward Differential Equivalence

	Computing Differential Equivalences
	Checking Differential Equivalences
	Partition Refinement

	Applications
	Continuous-time Markov Chains
	Chemical Reaction Networks
	CRN Emulation
	Forward and Backward Bisimulations for CRNs

	Process Algebra
	Differential Bisimulation
	Label Equivalence

	Conclusion

