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O. Introduction 

The impact of the computer on mathematics and its related fields is well-known. For 

instance, we are all familiar with its applications to numerical analysis, which started 

some decades ago. Its utility has also been proved in discrete mathematics, number 

theory and algebra (finite groups). 

Perhaps, less well-known is the recent progress of the application of symbolic 

calculations in the more continuous parts of mathematics, such as mathematical 

analysis, differential equations, differential geometry and its applications in theoreti- 

cal physics. In this context, we mention some outstanding results: the Risch algorithm 

to calculate indefinite integrals [17] and the program package SHEEP for formula 

manipulation, primarily in General Relativity [6]. 

The main aim of this paper is to contribute to the automatic calculations in dif- 

ferential geometry and its applications, with emphasis on the prolongation theory of 

Estabrook and Wahlquist [4, 5], and the calculations of invariance groups of exterior 

differential systems [7, 10]. A second aim is to encourage the reader to use symbolic 

calculations in his own field of interest. 

In contrast to the strategy of most papers related to symbolic calculations, which 

only discuss the theory and give final results of computations, we shall present by 

worked examples the explicit manipulations which have to be carried out in order to 

get to the results. An obvious but nonnegligible circumstance is the fact that, due to 
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the use of symbolic calculations, one may carry out easy, although 'long and tedious' 

calculations with the computer, thus avoiding lots of elementary mistakes, such as 

wrong signs, missing brackets, omitted symbols, etc. 

There are several systems designed for symbolic calculations, e.g., FORMAC, 

SAC, MACSYMA, REDUCE, and we have chosen the language REDUCE [3] as a 

basis for our developments. It may be implemented on any computer system support- 

ting LISP [14] and it is cheap and easily available and, consequently, widespread. 

Last, but not least, we are charmed by the interactive facilities of REDUCE. 

PLAN OF THE ARTICLE 

Essentially, the paper consists of three parts. First, in order to become more familiar 

with REDUCE, some typical symbolic calculations are given. The second part is 

concerned with the basic manipulations of vector fields and differential forms (exterior 

differential calculus). The third part describes the application to infinitesimal sym- 

metries of exterior differential systems. In the appendix, a list of REDUCE procedures 

of the described material is included. 

Before discussing the three parts in more detail, we shall make some general 

remarks relevant for all worked examples in each section. 

(1) In the examples, a terminal session with the computer is reproduced in printout 

form. 

(2) Input lines always begin with a '*', which is the prompt character of REDUCE, 

indicating that the system is waiting for a command, while the command 

itself is written in small letters. 

(3) Output from the system is printed in capital letters. 

(4) Results of commands terminated by a ';' are printed. 

(5) Results of commands terminated by a '$' are not printed. 

(6) On each separate input line text following a '~ '  is ignored by REDUCE, and 

therefore used as a means of including comment. 

(7) In input, the parentheses of functions with a single argument are not required 

and, therefore, often omitted. 

In Section 1, three examples illustrating the capabilities of REDUCE are presented: 

(a) a procedure for finite Taylor series expansions, which is applied to concrete 

cases; (b) the integration package; and (c) matrix calculations related to the theory of 

Lie algebras. 

In Section 2 an implementation of differential geometric objects and their 

operations are described. The concepts of exterior differential calculus are succes- 

sively expounded. Keywords are: representation of differential forms and vector 

fields, exterior product, exterior derivative, commutator of vector fields, inner 

product of vector fields and forms and Lie derivatives of forms. 

Section 3 is concerned with the computation of infinitesimal symmetries of exterior 

differential systems, representing differential equations. Determination of these 

symmetries gives rise to overdetermined systems of partial differential equations. 



SYMBOLIC COMPUTATIONS IN APPLIED DIFFERENTIAL GEOMETRY 45 

These are derived by the machinery of the Section 2. In order to solve such systems, 

frequently-occurring computations are automized. Further, some auxiliaries are 

developed. The procedure is illustrated by two examples. Finally, the complete 

algebra of the infinitesimal symmetries for the Lin-Reisner-Tsien equation is given. 

1. Introduction to Symbolic Computations 

By means of some examples, which are chosen such that they are still computable 

by hand, we shall give a sample of the interactive symbolic computations in REDUCE. 

All functions not explicitly described in this section are already available in the basic 

REDUCE system. We recommend that the reader without experience consult the 

R E D U C E  Users' Manual  [11]. Moreover, one has to be informed how to start a 

REDUCE session. 

(A) TAYLOR SERIES 

Our first example will be a P R O C E D U R E  for finite Taylor series expansions. Here, 

two special system functions are used, one for differentiation and one for substitution. 

d f( function ,variable) 

This command differentiates 'function' with respect to 'variable'. 

sub(x=pt, expression) 

Every 'x' occurring in 'expression' is substituted by 'pt'. 

Note: Only the simplest form of DF and SUB are introduced here. 

in order to illustrate the Taylor series expansions for various functions, we write 

a P R O C E D U R E :  

*procedure taylor(fn,x,pt,u);begln scalar fakt; 

* fakt :=I ; 

* return 

* sub(x=pt, fn)+ 

* for i:~l:n sum 

* sub(x=pt , fn : =d f (fn,x))* 

* (fakt : = fakt* (x-pt)/i) 

*end taylor; 

TAYLOR 

The four parameters of the PROCEDURE TAYLOR have the following meaning: 

F N  has to be a function, X represents the variable with respect to which the function 

F N  is expanded about the point P T  up to order N. 

EXAMPLE 1.1. The Taylor series expansion T(X)  of a rational function F(X)  with 

two parameters a and b: 

2X 2 + X + 1 

F(X)  = b X  2 + a X  + 2 

about 0 up to order three is constructed. Moreover, we give the rest R(X),  i.e., R(X)  = 

= F(X)  - T(X) .  
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*operator f,t,r; 

*f x:=(2*x'2+x+1)/(b*x^2+a*x+2); 

2 2 

F(X) := (2*X + X + I)/(X *B + X*A + 2) 

*t x:=taylor(f x,x,0,3); 

3 3 3 3 3 2 

T(X) := (4*X *B*A - 4*X *B - X *A + 2*X *A 

2 2 2 2 2 

X *B + 2*X *A - 4*X *A + 16*X 

16 

*r x:=f x-t x; 

4 2 2 3 

R(X) := (X *( - 4*X*B *A + 4*X*B + X*B*A 

2 2 

B*A + 4*B - 6*B*A + 8*B*A - 16*B + A 

2 2 

+ 8*A ))/(16*(X *B + X*A + 2)) 

3 

- 8*X *A- 4* 

- 4*X*A + 8*X + 8 ) /  

2 

- 2*X*B*A + 8*X* 

4 3 

- 2*A 

[] 

The following example illustrates that the expressions may be expanded with respect 

to different variables: 

EXAMPLE 1.2, 

*taylor(sin(x+2*a) ,x,0,3); 

3 2 

( - COS(2*A)*X + 6*COS(2*A)*X - 3*SIN(2*A)*X + 6*SIN(2*A))/6 

*taylor(s in(x+2*a) ,a,0,3); 

3 2 

( - 4*COS(X)*A + 6*COS(X)*A- 6*SIN(X)*A + 3*SIN(X))/3 

[] 

(B) INTEGRATION 

The integration package of REDUCE is called by 

int( function ,variable) 

and its application is demonstrated in the following example 
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EXAMPLE 1.3. 

*h:=2ex*atan x/(l+x^2)A2; 

4 2 

H := (2*ATAN(X)*X)/(X + 2*X 

H is now a function of x. 

*hh:=int(h,x) ; 

2 

HH := (ATAN(X)*X - ATAN(X) 

*h-df(hh,x); 

0 

*int(x*e^(x^2),x); 

2 
(x) 

E /2 

* I n t ( e ^ ( - x A 2 ) , x ) ;  

+ 1) 

2 2 2 

(x) 2 (x) (x) 
(E *INT((2*X )/E ,X) + X)/E 

*on div; 

2 
+ x)/(2*(x + I)) 

47 

DIV is an output switch: each term gets its denominator. The last algebraic result 

is always stored under the name !*ANS. 

[] 

*!*ans; 

2 2 

(-x) 2 (x) 

E *X + INT((2*X )/E ,X) 

(C) MATRIX C A L C U L A T I O N S  

Matrix operations will be illustrated by calculations involving two different matrices. 

EXAMPLE 1.4. The first matrix represents the adjoint matrix 

ad(Ah + Bx + Cy) 

of the Lie algebra M(2) with respect to the standard basis h, x, y, satisfying the com- 

mutator relations 

[h,x]=ax, [h,y] = - 2 y ,  [x,y]=h. 

Ah + Bx + Cy represents a 'general' element of ~1(2). For Convenience, the matrix 
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ad(Ah + Bx + Cy) is called ADSL2 and equals: 

l_ 0 - C  B 1 
2*B 2*A 0 

2"C 0 - 2*A 

*matrlx ads12(3,3); 

*adsl2(l,l):=0$ adsl2(l,2):=-C$ adsl2(l,3):=B$ 

*adsl2(2,1):=-2*B$ ads12(2,2):=2*A$ ads12(2,3):=05 

*adsl2(3,1):=2*C$ ads12(3,2):=05 ads12(3,3):=-2*A$ 

Let us calculate the determinant and the characteristic polynomial in the variable 
T of adsl 2: 

*det adsl2; 

0 

We construct the 3 x 3-identity matrix I3 as follows: 

* m a t r i x  i 3 ( 3 , 3 ) ;  
*for i:=1:3 do i3(i,i):=l; 

Then the characteristic polynomial equals: 

*det(adsl2 - t*13) ; 

2 2 

T* (4*B*C + 4*A - T ) 

This agrees with the fact that ADSL2 has to be singular and we find two roots with 

opposite signs if BC + A 2 # O. 

To show a second matrix operation, taking the inverse, we compute 

(ADS1 2 - T*I3)- 1. Moreover, to shorten the output we introduce the name DETSL2 

for the determinant of this matrix. 

*let t*(4*b*c+4*a^2-t^2)=detsl2; 

* (adsl2-t*13) ^(-I); 

2 2 

MAT(I,I) :- ( - 4*A + T )/DETSL2 

MAT(I,2) := (C*( - 2*A - T))/DETSL2 

MAT(I,3) :- (B*( - 2*A + T))/DETSL2 

MAT(2,1) :- (2*B*( - 2*A - T))/DETSL2 

2 

MAT(2,2) := ( - 2*B*C + 2*A*T + T )/DETSL2 

2 

MAT(2,3) := ( - 2*B )/DETSL2 

MAT(3,1) := (2"C*( - 2*A + T))/DETSL2 

2 

MAT(3,2) := ( - 2"C )/DETSL2 

2 

MAT(3,3) := ( - 2*B*C - 2*A*T + T )/DETSL2 [] 
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Computations with matrix-polynomials are possible too and, 

comparable with the given examples. 
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of complication, 

EXAMPLE 1.5. The second matrix represents the matrix of the Killing form of the 

Lie algebra with the following commutator  table. Here the Lie product [x i, xj] is 

represented by LIE(i, j) and only nonzero commutators are printed. 

This Lie algebra emerges in the determination of a 11-dimensional prolongation 

algebra of the Korteweg-de Vries equation [4, 8]. 

lie(l, 3) := x~5 

lie(l, 4) := - x ^ 6 * M  - x " 5 * L  

lie(l, 5) := (x^4 + x ^ 3 * L  - x ^ 2 ) / M  

lie(l, 6) := - x^4 

lie(2, 3) := - x^6 - x ^ 5 * M  

lie(2, 4) := xA6*L 

lie(2, 5) := -- XA3*L + xA2 

lie(2, 6) := (xA4*L + x ^ 3 * L  ^2 -- x ^ 2 * L ) / M  

lie(3, 4) := x^6 

lie(3, 5) := - xA3 

lie(3, 6) := (x^4 + x ^ 3 * L  - x^2  - x * M ) / M  

lie(4, 5) := x^2 + x * M  

lie(4, 6) := - x A2*M + x*( -- M ^ 2  + L) 

lie(8, 11):= - x^7 

lie(9, 10) := x '7  

The matrix C of the Killing form of the 6-dimensional sub-algebra spanned 

by x l ,  . . . ,  x 6 equals: 

*matrix e(6,6); 

After a declaration of a matrix, all elements are initialized to zero, therefore we have 

to give only the nonzero elements of C. 

*c(l,l) : =2"m$ 

*c(2,2) :=2"m*I$ 

*c(1,3) :=c(3,1) :=-45 

*c(4,4):=2*m*(-m^2+3*l)$ 

*c(5,6) :=c(6,5) :=-2"M5 

We compute the determinant of C: 

c(1,2):=C(2,1)-4"I$ 

c(2,3):=c(3,2):=2"m5 

c(3,4):=c(4,3):=-2"m$ 

c(5,5):=45 

c(6,6) := 2"(m^2 - 2"1)$ 

*det c; 

2 6 4 2 2 3 

64"M *(M - 12*M *L + 48"M *L - 64"L ) 

This result shows that this subalgebra is semisimple for almost all values of the para- 

meters L and M. []  
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2. Vector and Form Manipulations in REDUCE 

Using the concepts of differential geometry in applied mathematics, we have to 

manipulate the vector fields and differential forms, which are 'living' on a differentiable 

manifold. All manipulations are essentially simple and straightforward, but doing 

computations by hand, in particular on high-dimensional spaces, the amount of 

labour grows rapidly and becomes rather tedious. Moreover, there is every chance that 

errors are introduced. For instance, a slip of the pen or a wrong sign is very likely. 

Manipulations with vector fields and forms are so systematic that they are very well 

suited for symbolic computations. In doing so only input, which is usually very short, 

has to be checked carefully. 

In this section, almost all the computations are carried out with respect to a local 

coordinate system for an n-dimensional manifold M. So, in fact, we assume that M 

is a domain U of the Euclidean space R". All objects are assumed to be infinitely 

differentiable. 

0-FORMS 

The ring of all functions on U will be denoted by d~ 0-forms on U are identified 

with elements of d~ 

The algebraic mode of REDUCE already contains all tools to manipulate within 

the ring ~'~ In practice, the first problem to solve is to introduce local coordinates 

in a flexible way. The coordinates should be introduced such that indicial calculation 

is allowed and also such that a user may give them convenient names. This problem 

is solved by using the algebraic operator  VNAT (natural  variables), where VNAT(1), 

VNAT(2), . . . ,  VNAT(n) represents a coordinate system of U. The name of the ith 

coordinate may be changed into another, more suitable name by: VNAT(i) := 'name'; 

EXAMPLE 2.1. The coordinates ought to be x, y, z and ul ,  •2" This is introduced 

to REDUCE by: 

*d!@dlf:=5$ 

*vnat l:=x$ vnat 2:=y$ vnat 3:=z$ 

*operator u; vnat 4:=u I; vnat 5:=u 2 5 

VNAT(4) := U([) 

Note: U(i) is used instead o f  u i . [] 

Now let us define two functions f(1) and f(2), add and substract them, and let 

f(3) be the product o f f ( l )  and f(2). 

EXAMPLE 2.2 

*operator f; 

*f l:=for i:=1:5 sum i*vnat i; 
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F(1) := 4"O(i) + 5*U(2) + X + 2*Y + 3*Z 

*f 2:=sin(vnat l+vnat 4)+3*(l+vnat(1)'2); 

2 

F(2) := SIN(U(1) + X) + 3*X + 3 

An alternative way of input for f(2) is' 

*f 2:=sln(x+u i)+3"(I+x'2)$ 

Any 'mixed form' of input is allowed too, and yields the same result. 

*f l+f 2; 

2 

4*U(I) + 5*0(2) + SIN(U(1) + X) + 3*X + X + 2*Y + 3*Z + 3 

*f l-f 2; 

2 

4"O(i) + 5*U(2) - SIN(U(1) + X) - 3*X + X + 2*Y + 3*Z - 3 

*f 3:=f l*f 21 

2 

F(3) := 4*U(1)*SIN(U(1) + X) + 12*U(1)*X + 12"O(I) + 5*0(2) 

2 

*SIN(U(1) + X) + 15*0(2)*X + 15"O(2) + SIN(U(1) + X 

3 
)*X + 2*SIN(U(1) + X)*Y + 3*SIN(U(1) + X)*Z + 3*X 

2 2 

+ 6*X *Y + 9*X *Z + 3*X + 6*Y + 9*Z 

Here the construction off ( l )  shows the advantage of indicial calculations. [] 

Note: Observe that the examples show different ways of giving names. 

I -FORMS 

The set of 1-forms on the domain U is denoted by d~(U). Ifx 1 , x2, .. . ,  x is a coordi- 

nate system of U, then: 

BF(1) = { dxl ,dx  2 . . . . .  dx} 

is a basis for the ~/~ ~r 

A general 1-form can be written in the form: 

u = a  ldx  l + a  2dx 2 + . . . + a  d x ,  

where al,  a 2 . . . . .  a are elements of dO(u). 

In REDUCE, we represent the basis 1-forms by WEDGE(i), where WEDGE has 

to be declared an algebraic operator. 

EXAMPLE 2.2. Fixing the dimension of U to 3 and introducing coordinates 

X1, X2 and X3, a general 1-form in REDUCE can be constructed with, e.g., an 
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algebraic opera to r  A as follows: 

*u:=for i:=1:3 sum a(i,xl,x2,x3)*wedge i; 

U := A(I,XI,X2,X3)*WEDGE(1) + A(2,XI,X2,X3)*WEDGE(2) + A(3, 

Xl ,X2 , X3)*WEDGE(3) 

A more  concrete  1 - form is: 

*v : =x2*wedge ( I )-wedge(3) ; 

V := X2*WEDGE(1) - WEDGE(3) [ ]  

MULTI-INDEX NOTATION 

To int roduce differential forms of a higher order,  a mult i - index nota t ion  will be used. 

Let 

I = (i l i2.. ,  i,,) 

be a list of  m-ordered integers, a mult i- index of order  m. Then dx I is an abbrevia t ion  

of the following m-form: 

dxl  = dxil /x dxi: /x ... /x dxim 

Let 

I I (n ,m)  = {(ili2..-im)11~< i I < i 2... < i m <~ n} 

be the index set of  all strictly-increasing ordered multi- indices of  order  m(~< n). This 

no ta t ion  is used in the following. 

FORMS OF HIGHER ORDER 

A basis for the zg~ of m-forms of d " ( U )  is 

BF(m)  = {dx I ]I e II(n,  m) } 

where the d imension of U equals n. 

An arb i t ra ry  m-form u can be writ ten uniquely as: 

u = ~ a I d x  I. 
leIl(n,m) 

As usual ~r = 0 for m > n, by definition. 

In R E D U C E  dx~ with I = (ili 2 ... i )  becomes:  

W E D G E ( i l ,  i2, . . . ,  i,,). 

E X A M P L E  2.3. Let the coordinate  system of U be X(1), X(2), X(3), X(4) when X is 
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an algebraic operator, then two concrete forms are : 

*fl :=x(1)*wedge(2,3)-x(3)~2*wedge(l,4); 

2 

F1 :ffi X(1)*WEDGE(2,3) - X(3) *WEDGE(I,4) 

*f2 :ffi a(l,x(1))*wedge(l,2,4) + wedge(l,2,3); 

F2 :ffi A(I,X(1))*WEDGE(I,2,4) + WEDGE(I,2,3) 

F1 is a 2-form and F2 is a 3-form. 

53 

[] 

THE W E D G E  P R O D U C T  OF FORMS 

The s~'~ of all differential forms on U equals: 

d ( v )  = ~ ~  | . . .  @ ~"(v )  

It becomes an algebra if the usual wedge product 

A :d~(U)xd~(U)-,~r+~(U) (r,s >10) 

is introduced. We recall that /x is bilinear and alternating. Therefore, it suffices to 

define /x on basis forms in BF(r) and BF(s). 

In order to implement this idea we have to decompose forms: 

at dx t + a o 
I~O 

into a t, dx I and a 0 for all occurring multi-indices I with a t ~ 0. 

Actually, such a differential form is written as 

N 

K(i)* W EDGE (arg(i)) + REST, 

i=0  

where K(i) corresponds to an ai( 5 ~ 0), WEDGE(arg(i)) to some dx t and REST to a o. 

This decomposition is performed by the function OPCOEFF,  which depends 

on three parameters: O P C O E F F  (EX, OP, AR), where EX is the expression that 

has to be decomposed with respect to the operator OP. EX also has to be linear with 

respect to OP, W E D G E  in this case. The third parameter is used to retrieve the K(i) 

and W E D G E  (arg (i)). REST will be the value of a global variable !@RESTOP- 

COEFF.  The value of O P C O E F F  is the number ( - 1) of terms K(. . .  )*OP( ... ) 

in the expression EX. AR becomes a function of two parameters: AR(0, i) with value 

one of the dx I written as W E D G E  ( - . . )  and AR (1, i) has the corresponding coefficient 

K(i) as its value. 

Internally, the numerator of EX is checked for kernels with operator OP by an 

auxiliary function GETFIRSTOP.  If successful, the corresponding coefficient of 
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this kernel is determined and intermediate results are stored in a list. The rest is 

examined in the same way. A second auxiliary function M !@A2D makes a function 

from AR which operates on the list of intermediate results, acting as described above. 

Summarizing, the expression EX can be reconstructed as follows: 

!@restopcoeff + for i:=O:n sum ar(l,l)*ar(O,l) 

Let us decompose f l ,  introduced in Example 2.3. 

EXAMPLE 2.4. 

*dl'-opeoeff(fl,wedge,cc); 

D1 :-- 1 

One way to show the effect of opcoeff: 

*for i:=O:dl do write ce(O,f)," ",ce(l,i); 

2 

WEDGE(I,4) - X(3) 

WEDGE(2,3) X(1) 

A second way to show the effect of opcoeff: 

�9 !@restopcoeff+for i:=0:dl sum cc(0,i)*cc(l,i); 

2 

X(1)*WEDGE(2,3) - X(3) *WEDGE(I,4) 

*!*ans-fl; 

0 

This is again a check of the result. []  

Now we can deal with the basic problem, how to compute 

dx I/x dxj, (dx1~ BF(r), dx~  BF(s) ) 

because differential forms in our implementation in RED U CE are essentially re- 

presented by a list of strictly increasing integers, the multi-index. The algebraic 

operator W EDGE serves only as a carrier and a medium for input and output pur- 

poses. Indeed, the implementation allows any convenient different name for WEDGE. 

It suffices to construct a P R O C E D U R E  which merges two multi-indices into a 

new multi-index and which, at the same time, gives the sign of the resulting product 

or zero, if at least one integer occurs twice in the concatenated multi-index of I and J. 

Therefore, a function is written to check whether at least two elements in a list occur 

twice. 

There exists a system function in REDUCE,  which orders a list of integers in 

decreasing order and another that reverses the order of a list. 

Finally, a system function is used, which establishes the permutation class of two 

equally long lists of integers. All these ingredients are joined together in the procedure 
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MULFORM (FORM1, FORM2), which effectuates the wedge product on 

d(U)  x d(U), e.g., if 

f l  = ~ a t d x ,  + a o, f 2  = ~ b j d x ~  + b o 

are two forms in ,~r then in order to computef l  /x f 2  one has to convertf 1 and 

f 2  in our notation, as shown in the preceding examples, f l /x f 2  then becomes: 

mulform ( f  1, f2). 

Note: Because the manipulation of lists of integers is very effective and 'cheap', 

this implementation is faster compared with other implementations [3] of the wedge 

product of differential forms. 

EXAMPLE 2.5. 

*fI:=x l*wedge(2,3)-x 3^2*wedge(l,4); 

2 

FI := E(1)*WEDGE(2,3) - X(3) *WEDGE(I,4) 

*f2:=a(l,x 1)*wedge( I , 2,4)+wedge( I , 2,3) ; 

F2 := A(I,X(1))*WEDGE(I,2,4) + WEDGE(I,2,3) 

*mulform(fl,f2); 

0 

*mulform(fl,wedge 5) ; 

2 

- WEDGE(I,4,5)*X(3) + WEDGE(2,3,5)*X(1) 

*mulform(f2,wedge 5) ; 

WEDGE(I,2,3,5) + WEDGE(I,2,4,5)*A(I,X(1)) 

*mulform(wedge 5,f2) ; 

(WEDGE(I,2,3,5) + WEDGE(I,2,4,5)*A(I,X(1))) 

EXTERIOR D I F F E R E N T I A T I O N  OF FORMS 

Comparing exterior differentiation with the wedge product, there remains only one 

computational problem, the computation of total derivatives of 0-forms. Fortunately, 

this is very easy to achieve in our approach: For example, let G be an element ofd~ 

then dG is computed by: 

dg :=for i:=l:d!@dlf sum df(f,vnat(i))*wedge(i) 

We call the function of exterior differentiation EXDF according to the system 

function DF. 
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EXAMPLE 2.6. 

*d!@dif:=4; 

D@DIF := 4 

*for i:=1:4 do vnat i:=x i; 

*fl:=x l*wedge(2,4)-sin(x 3)*wedge 4+2"x 4 5 

*exdf fl; 

2*WEDGE(4) + WEDGE(I,2,4) - COS(X(3))*WEDGE(3,4) 

P. K. H. GRAGERT ET AL. 

[] 

VECTOR FIELDS 

The d~ of vector fields on U c R" is denoted by Y'(U). 

, . . .  , B V F =  0xl ~ 

is a basis with respect to the coordinate system x I , x2, . . . ,  x .  

In fact it is the dual basis of BF(1), i.e. 

where 6i; is the Kronecker symbol. 

A vector field Von U may be written as 

V = i~=lai~xi (aie~~ 

To implement the vector fields in REDUCE, we prefer to use the already-existing 

system functions. If we represent vector fields as polynomials, applying the linear 

isomorphism given by 

then the components a i can be determined easily by the system function COEFF.  

Note '  There will be no confusion with this vector field notation, if we do not use 

the letter D in function names. 

EXAMPLE 2.7. Let n = 3 and xl ,  x2, x3 be a coordinate system of U. Then, for 

instance, the vector field 

V = X I o x  ~ X2 3 ~  + s i n  (xlx2)-Ox 3 
i 8x2  
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becomes in REDUCE: 
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*v :=xl*d-x2^ 3*dA2+s in(x l*x2)*d" 35 

To determine the coefficients of V and printing them, you may type the following 

commands: 

*array aa 3; dlm:=coeff(v,d,aa); 

DIM := 3 

*for i:=1:3 do write aa i:=aa i; 

AA(1) := Xl 

3 

AA(2) := - X2 

AA(3) := SIN(XI*X2) 

[] 

Note: Due to this approach, we can use the input and output facilities of REDUCE 

for vector fields. The ordinary operations with vector fields, addition and multi- 

plication with functions in d~ are therefore standard operations with poly- 

nomials in REDUCE. 

If V1, V2 are vector fields belonging to Y'(U), 

V I = ~'~ e l i  = ~"Y i ' V 2 = ~-'l b i c? x = 

then the commutator [V1, V2] of V1 and V2 is defined by 

:( [V1, V2] = a i b 2 - -  b i aj 
i=1 j=  j = l  

This formula can be implemented directly, where the COEFF function is used to 

determine the a i, bi ( i --  l, 2 . . . . .  n). Obviously, the summations can be effected by 

FOR-loops. The commutator function is called COM and will be demonstrated by 

EXAMPLE 2.8. 
*fload opcoef,com; 

EXECUTE: IN 

*inicom(3,x 

D!@DIF = 3 

THE SPECIAL 

I<= I<= 3 

AND SHOULD CHANGED BY: CH(CHANGE,N), 

THAT MEANS, 

PLUS OTHER 

TO USE THE 

OF THEM AS 

ICOM(DIMENSlON OF PROBLEM,NAME OF VARIABLES) 

); % as we are asked to do 

% the necessary programs are loaded 

!! 

VECTOR FIELDS VF(1) ARE INITIALIZED TO 0 

CH(CHANGE,N) HAS AS EFFECT: VF(N) := VF(N)+CHANGE; 

SIDE EFFECTS 

SPECIAL VECTOR FIELDS, USE ONLY THE INDEX 

PARAMETER TO COM 
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THE LOCAL COORDINATES ARE XI,...,X3 

INICOMEND 

*vl:=x3*d$ v2:=xl*d^2-d^3$ ch(vl,l); 

CHEND 

Now two special vector fields are initialized. 

*on test; 

368 MS 
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ch(v2,2)$ 

By this switch, execution times are printed too, and differences in execution time 

can be observed. 

*com(l,2); 

2 

D *X3 + D 

30 MS 

*com(vl,v2); % the same commutator again 

2 

D *X3 + D 

47 MS 

*com(l,xl*d-sin x2*d^2+x3*cos xl*d~3); 

3 2 

- D *X3 *SIN(XI) + D'X3*( - COS(X1) + i) 

104 MS [ ]  

I N N E R  PRODUCT OF VECTOR FIELDS A N D  FORMS 

The inner product of vector fields and differential forms is a d~ mapping: 

IP :  a t (u )  x ~ m ( u )  --, d m- l (u )  

where d -  I(U) = 0 by definition. 

It suffices to define the action of IP on basis elements BVF and BF(i), i.e., to define 

I P ( • ,  dx , ) .  
\ a x ,  

In our implementation in REDUCE this action can be described as follows: 

0 
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if i does not occur in the multi-index I. Otherwise, let 

I = (i~ . . .  i . . .  im) 

J -- (i i l . . .  ~... i )  

K = (i  1 " " 7 " " i r a ) ,  

where, as usual, '~'over an index denotes the delation of this index. Because 

dx i = _+ dx~, 

with the sign depending on the permutation class of I and J, we have 

This manipulation with an index i and a multi-index I is implemented as a function 

B !@IP. Now the inner product IP is obtained by a simple composit ion of C O E F F  and 

O P C O E F F ,  to determine the coefficients of forms and vector fields, and B !@IP. 

EXAMPLE 2.9. 

*ip(d,wedge(l~2)); 

WEDGE( 2 ) 

*ip(d ̂ 2,wedge(l,2)); 

- WEDGE(i) 

*ip(xl*d^3-sin(x2)*d^2,xl*x3*wedge(l,3,4)+wedge(2)+xl) ; 

2 

(El *E3*WEDGE(I,4) + SIN(X2)) 
[] 

LIE DERIVATIVES OF FORMS 

To implement the Lie derivative of a differential form F with respect to a vector 

field V, one may write the following procedure: 

*algebraic procedure liedf(v,f); 

*exd f (ip(v, f))+ip(v,exdf (f)) ; 

LIEDF 

As an illustration we give 

EXAMPLE 2.10. 

The local coordinates are xl ,  . . . ,  x5. 

*liedf(d-d ̂ 2,xl*x2*x3*wedge(l,2,3)-cos(x2)*wedge(1)); 

- WEDGE(1)*SIN(X2) - XI*X3*WEDGE(I,2,3) + X2*X3*WEDGE(I,2,3) 
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Note: One may obtain a somewhat faster procedure, if the existing functions 

EXDF and IP are not used as above, but instead, a procedure for the Lie derivative 

is constructed directly. 

DISCUSSION OF DIFFERENT IMPLEMENTATIONS 

In this section we have described in some detail an implementation of the exterior 

differential calculus in REDUCE. There are a few other implementations known, 

which are based on different designs. 

First we mention an implementation by Edelen [3], based only on LET-statements. 

Experience with this system on a DEC-10 computer indicates that the system suffers 

from frequently-occurring garbage collections and is therefore substantially more 

time-consuming, compared with our implementation. 

Second, even on a micro-computer, exterior calculus can be done. There exists a 

program package CARTAN for an 'apple'-computer designed by Wahlquist [18]. 

Third, one may want an implementation allowing a coordinate-free exterior 

differential calculus and with output coming closer to the usual notation. 

Up to the now, we have only partly succeeded in fulfilling these wishes. This 

development will be illustrated by the following 

EXAMPLE 2.11. Let us assume that we have 1-forms A, 2-forms B and 3-forms C, 

i.e., we may use A, A(1) or A(2) as 1-forms, etc. 

*fload difnew; precedence mulformgen,cons; 

*off raise; 

From now on, small and capital letters are distinguished and in the remaining part 

of this example we deviate from the convention of writing input in small letters, 

because we want to indicate differentials by a small letter d. 

INITDF( 3 ,X, u Z) $ 

The dimension of U is 3, coordinates are X, Y, Z. 

* COMPOPDF A,B,2,C,3; 

This command declares A, B, C as forms of the required degree. Here'  ̂ ' is used as the 

infix operator for the wedge product 

*H:=(A l-X *A 2)"(A 4+A 2); 

H := - A(2)AA(4)*X + A(1)AA(4) + A(1)'A(2) 

The letter D is used as a function for exterior derivatives. 

*D H; 

dA(1)AA(2) A(1)^dA(2) + dA(1)^A(4) - A(1)^dA(4) - 
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dX*A(2)*A(4) - dA(2)~A(4)*X + A(2)*dA(4)*X 

�9 H2 :=(B+Z~B I) ~(B+555*A) ; 

H2 := B(1)^B*Z + 555*A^B(1)*Z + 555*A^B 

�9 D H2; 

555*dZ'A^B(1) + 555*dA'B(1)*Z - 555~A*dB(1)~Z + dZ'B(1)^B + 

dB(1)^B*Z + dB^B(1)~Z + 555~dA~B + 555~dB^A [] 

Note: On account of its experimental state, the details of this package are not 

included in the Appendix. We hope to report on this in future work. 
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3. Infinitesimal Symmetries of Exterior Differential Systems. 

As an application of the above-developed software, we treat infinitesimal symmetries 

of partial differential equations by means of differential geometric methods. Follow- 

ing Cartan, partial differential equations can be described geometrically by exterior 

differential systems [2, 7, 10]. 

We consider an exterior differential system I in a domain U of a n-dimensional 

manifold M, and suppose that I is generated by the finite set of forms 

~(1), . . . ,  ct(m). (3.1) 

By definition, infinitesimal symmetries are vector fields V such that 

~ v  I c I (3.2) 

where Lf v denotes the Lie derivative by the vector field V[7, 10]. In physical literature, 

infinitesimal symmetries are also called isovectors. 

Note: In the case that I is generated by k-forms fl(1), . . . ,  fl(r) and their exterior 

derivatives, it suffices to require (3.2) to hold for these k-forms fl(1) . . . . .  fl(r) only, due 

to the fact that exterior derivative and Lie derivative commute 

dS~ = ~ v  d. (3.3) 

The relation (3.2) is equivalent to 

m 

~ v ~ ( i ) -  ~ y(i,j)/x ct(j)= 0 (3.4) 
j = l  

with y(i,j) suitably-chosen differential forms. 

If X(1) . . . . .  X(n) are local coordinates in U and if we describe forms and fields 
locally in these coordinates 

n 

V =  ~ v i  c~ 
i= 1 ~X(i) (3.5) 

~(i) = ~ A,,...ip(X)dX(il)/x ... A.dX(ip), 
i l  . . . . .  i p  
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then (3.4) yields the conditions on V in order to be an infinitesimal symmetry This 

leads to an overdetermined system of partial differential equations for the functions 

V i (i = 1 . . . . .  n). 

E X A M P L E  3.1. In this example we shall derive the first set of partial differential 

equations for the determination of the infinitesimal symmetries of Burgers' equation, 

U r = Uxx + 2UU x. 

The ideal I in R 4 = { (X(1), X(2), X(3), X(4))} -- {(X, T, U, Ux) ) is generated by 

~(1) = - d T / x  d U -  U x d X / x  d T  

~(2) = - d T / x  dU x -  d X  /x d U  ~ 2 U U  x d X  /x d T  

First we call the necessary programs and declare some algebraic operators. 

*fload opcoef,diffor; operator x,v,alfa,aa,ver; 

GIVE VALUES TO D!@DIF AND VNAT(1) I=3,...,DX@DIF 

(VNAT I=X, VNAT 2=T) 

*in tools .red ,opl .red, Ip .red,bevat .red, lle. reds 

IP 
EXECUTE: ARRAY A!@IP(MAXIMAL DIMENSION); 

LIEDF 

LE 

*d!@dif:=4; 

D@DIF := 4 

*array a!@ip 4; for i:=1:4 do vnat i:=x i; 

*vec:=for i:=1:4 sum v(i,var)*d^i; 

4 3 2 

VEC := D *V(4,VAR) + D *V(3,VAR) + D *V(2,VAR) + D*V(I,VAR) 

We introduce functions V(I, VAR), meaning functions dependent on the variables 

X(1) . . . . .  X(4), generating the vector field VEC (V in (3.5)) 

*for all i,j let df(v(i,var),x j)=v(i,x j); 

Due to the introduction of VAR in the functions V(I, VAR) (I = 1, 2, 3, 4) we are 

able to 'create' partial derivatives V(I,X(J)) by this LET-statement, although 

V(I, VAR) does not explicitly depend on X(1), . . . ,  X(4). 

*alfa l:=-wedge(2,3)-x 4*wedge(l,2)$ 

*alfa 2:=-wedge(l,3)+2*x 3*x 4*wedge(l,2)-wedge(2,4)$ 

*la:=liedf(vec,alfa l)-aO*alfa l-al*alfa 2; 

LA := WEDGE(3,4)*V(2,X(4)) + WEDGE(2,4)*(AI + V(I,X(4))*X(4) - V 

(3,X(4))) + WEDGE(2,3)*(V(I,X(3))*X(4) V(3,X(3)) + 
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A0 - V(2,X(2))) - WEDGE(I,4)*X(4)*V(2,X(4)) + 

WEDGE(I,3)*( - V(2,X(3))*X(4) + A! - V(2,X(1))) + 

WEDGE(I,2)*( - V(I,X(1))*X(4) + V(3,X(1)) + AO*x(4) 

2*AI*X(3)*X(4) - X(4)*V(2,X(2)) - V(4,VAR)) 

LA = 0 is just requirement (3.4) for ALFA(1). 

Using O P C O E F F  we calculate the coefficients 

WE DGE (3, 4) . . . . .  which have to be zero, and print them. 

*aant:=opcoeff(la,wedge,ce); 

AANT := 5 

*for I:~O:5 do write aa(l,i) :fficc(l,i); 
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AA(I,0) := V(2,X(4)) 

AA(I,I) :ffi - X(4)*V(2,X(4)) 

AA(I,2) :ffi A1 + V(I,X(4))*X(4) - V(3,X(4)) 

AA(I,3) := - V(2,X(3))*X(4) + A1 - V(2,X(1)) 

AA(I,4) :ffi - V(I,X(1))*X(4) + V(3,X(1)) + A0*X(4) - 2*AI*X( 

3)*X(4) - X(4)*V(2,X(2)) - V(4,VAR) 

AA(I,5) := V(I,X(3))*X(4) - V(3,X(3)) + A0 - V(2,X(2)) 

AA(1, J) are the coefficients of the basis-forms and we now eliminate A0, A1, by the 

use of OP L  and retain theremainingequations.  

*opl(aa(l,2),al)$ al:=al; 

A1 :ffi - V(I,X(4))*X(4) + V(3,X(4)) 

*opl(aa(t,5),a0)$ 

*vet l:~aa(l,0)$ ver 

*ver 4:~aa(1,4)$ 

*for i:'-1:4 d o  write 

VER(1) :ffi V(2,X(4)) 

VER(2) :ffi - X(4)*V(2,X(4)) 

VER(3) :- - V(2,X(3))*X(4) 

- V ( 2 , X ( 1 ) )  

2 : f f i a a ( 1 , 1 ) $  v e r  3 : - a a ( 1 , 3 ) $  

v e r  l : f f i v e r  i ;  

- V ( 1 , X ( 4 ) ) * X ( 4 )  + V ( 3 , X ( 4 ) )  

V E R ( 4 )  := 
- v ( l , x ( 1 ) ) * x ( 4 )  + v ( 3 , x ( 1 ) )  - v ( t , x ( 3 ) ) * x ( 4 )  

2 
V(3,X(3))*X(4) + 2*V(I,X(4))*X(3)*X(4) 

- 2*V(3,X(4))*X(3)*X(4) - V(4,VAR) 

2 
+ 

[]  

of the basis-forms, 
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The process of computing the whole system of partial differential equations for the 

functions V i (i = 1 . . . . .  n) runs along similar lines, as in Example 3.1, and is done 

automatically by the procedure INFSYM(VOR, N1, N) in the appendix, where 

VOR is the name of the differential forms generating I (3.1), N1 is the number of 

differential forms, and N is the dimension of R'. 

Once the system of partial differential equations has been derived, we have to 

solve it for the functions V(I, VAR). In general, it is not possible to solve them auto- 

matically; but it turns out that in the most interesting cases, e.g., nonlinear evolution 

equations such as Korteweg-de Vries and Burgers', and field equations such as 

Maxwell and Dirac equations, solutions are of polynomial type and, therefore, 

we are able to compute them semi-automatically [9, 12]. 

The process of automization of solving these overdetermined systems is still in 

progress, and we shall discuss two frequently occurring cases. 

(A) Usually there are equations in this system of type 

VER(J) := V(I, X(K)) 

for some I, K; from which we derive 

V(I, VAR) is independent of X(K). 

Procedure ONE( )searches for such equations and assigns zero to the function 

V(I, X(K)). 

(B) In most cases, the system of partial differential equations is linear in V(I, X(J)), 

V(K, VAR) (we shall denote these by V(I, ,))  with coefficients which are polynomials 

in some of the variables X(1) . . . . .  X(N). 

If an equation contains only terms V(I, *) independent of X(I~), ..., X(Ir), (results, 

which can be obtained by procedure ONE( ) )  and if the coefficients are polynomials 

in X(I1 )  . . . . .  X(Ir) , we consider this equation as a polynomial in X(I 1) . . . . .  X(I)  and 

split up this equation into a set of smaller equations, due to the fact that the coefficients 

of this polynomial have to be zero. 

This analysis is carried out by SPLITI(K), which searches for a polynomial struc- 

ture in VER(K), or SPLITS(),  which deals with the whole system. 

SCHEM( ) is a procedure that creates lists !@A(L) of numbers representing 

partial derivatives which are zero. !@A(2) = (1, 4) means V(2, X(1)) = 0; V(2, X(4))= 0 

FIG( ) prints a diagram of partial derivatives being zero. 

EXAMPLE 3.2. First we load some necessary programs. 

*fload opcoef; 

*in tools.red,opl.red,split.red$ 

TELl := 0 

*in mlie$ 

EXECUTE : ARRAY !@A(DI@DIF)$ 

EXECUTE : ARRAY AI@FIG(D!@DIF)$ 
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We read a file which contains a system of five equations (TOTAAL = 4), while the 

number of variables is 7 (D !@DIF = 7); so V(I, VAR) is dependent on X(1), . . . ,  X(7). 

*in tests 

VER(0) := V(I,X(2)) + X(3)*V(I,X(4)) 

VER(1) := V(I,X(4)) 

VER(2) := V(I,X(2))*X(1) + 3*X(4)*V(I,X(3)) 

2 

VER(3) := X(2) *V(I,X(7)) + X(3)*V(l,X(6)) 

VER(4) := X(4)*V(2,X(5)) + V(I,X(6)) 

TOTAAL := 4 

D@DIF := 7 

*array l@a d!@dif,a!@fig d!@dif; 

These aretheini t ia t ionsrequired bythesystem: 

*one()$ 

V(i,X(4)) 

0 

V(I,X(2)) 

0 

v(1,x(3)) 

o 

2 

V E R ( 3 )  := X ( 2 )  * V ( 1 , X ( 7 ) )  + X ( 3 ) * V ( 1 , X ( 6 ) )  

VER(4) := X(4)*V(2,X(5)) + V(I,X(6)) 

ONE sets V(1, X(4)), V(1, X(2)), V(1, X(3)) equal to zero and prints the remaining 

set of nontrivial equations. 

* f i g ( ) ,  
VlJ I 2 3 4 5 6 7 

1 * * * * * * * 

2 0 * * * * * * 

3 0 * * * * * * 

4 0 * * * * * * 

5 * * * * * * * 

6 * * * * * * * 

7 * * * * * * * 

From FIG we see that V(1, X(2)) = V(1, X(3)) = V(1, X(4)) = 0. 

* z e r o d e l e t e ( ' v e r ) $  



66 P . K . H .  GRAGERT ET AL. 

This is a procedure that deletes trivial equations, i.e., 

VER(I) := 0 

from the system. 

*splits()$ 

O-TH EQUATION : YES!I(2 3 4) 

I-TH EQUATION : NO! ! 

TOTAAL : = 2 

From the message of the procedure SPLITS we see that equation 0 (i.e., VER(3) 

above, because ZERODELETE has renumbered the equations) is a polynomial in 

X(2), X(3) and X(4). The coefficients of this polynomial, which have to be zero, 

generate a new and larger set of equations. 

*for i:=0:totaal do write v e t  i:=ver i; 

VER(0) :=  X(4)*V(2,X(5)) + V(I,X(6)) 

VER(1) := V(I,X(6)) 

VER(2) := V(I,X(7)) 

VER(1),VER(2) are Just the coefficients of VER(3) above. 

*one()$ 

v(i,x(6)) 

0 

v(1,x(7))  

0 

V(2,X(5)) 

0 

Now all equations are trivial, so there is no remaining set to be printed. 

*fig()$ 

VIJ I 2 3 4 5 6 7 

1 * * * * * * * 

2 O * * * * * * 

3 O * * * * * * 

4 0 * * * * * * 

5 * 0 * * * * * 

6 0 * * * * * * 

7 0 * * * * * * [] 

We applied this to the computation of the infinitesimal symmetries of the Lin- 

Reisner-Tsien equation (unsteady transonic gas motion) 

UxUxx - 2ux, + u y = O. 
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The ideal I in R 12 -- {(x(1) .... ,x(12))} -- {(x, t, y, u, u x, u t, uy, u x, Uxt, u y, u . ,  u,y)} 

is generated by the 1-forms 

ALFA(1):=WEDGE(4)-x(5) *WEDGE(1)-x(6) *WEDGE(2)-x(7) *WEDGE(3) 
ALFA(2):=WEDGE(5)-x(8) *WEDGE(1)-x(9) *WEDGE(2)-x(10) *WEDGE(3) 
ALFA(3) :=WEDGE(6)-x(9) *WEDGE(1)-x(II)*WEDGE(2)-x(12) *WEDGE(3) 
ALFA(4):=WEDGE(7)-x(IO)*NEDGE(1)-x(12)*WEDGE(2)-PSI(1)*WEDGE(3) 
PSI(1):= 2"X(9)+ X(5)*X(8) 

and their exterior derivatives. 

Due to (3.4) we shall omit EXDF(ALFA(I))(I:  = 1:4). We calculated the following 

infinitesimal generators of the group of symmetries 

V x = V(1, VAR) = xF'(t) + y2F"(t) + yG'(t) + H(t) + 2Ax. 

V t = V(2, VAR) = 3V(t) 

V" = V(3, VAR) = 2yV'(t) + Gtt) + A y  (3.6) 

V" = V(4, VAR) = - uF'(t) + x2F"(t) + 2xyZF ' '(t) + 

+ 1/3y4F""(t) + 2xyG"(t) + 2/3 y3G"'(t) + 

+ 2xH'(t) + 2y2H"(t) + ya( t )  + z(t) + 4Au 

where F, G, H, a, z are arbitrary functions of t, A is constant, and denotes differentia- 

tion. For  simplicity, we omit the functions V"x,.. . ,  which can be derived from (3.6) 

by prolongation. This result is in agreement with that of Anderson and Ibragimov 

[1, p. 73], apart from the generator arising from A. 

4. Conclusions 

In principal, anything which can be achieved by symbolic calculations can be achieved 

by hand and vice versa. By using the computer, however much valuable time can often 

be saved. 

We invite the reader to do symbolic calculations in REDUCE himself and to 

experience with the material presented in this paper. We are aware that various 

improvements can be made, and so further suggestions will be most welcome. 

If a reader is interested in the functions in the Appendix, it may be of help to get a 

copy on magnetic tape. This can be arranged by sending a blank tape to one of the 

authors. 

Appendix 

~OPCOEF.R~D tO-FEB-alL 

SCALAR !0RESTOPeOEFFS 

LISP OPERATOR OPCOEFF$ 

LISP PROCEDURE GETFIRSTOP(FORM,L,OP); 

%C GETFIRSTOP.i; 

IF ATOM FORM THEN L 

%C ii; 



68 P. K. H. GRAGERT ET AL. 

ELSE BEGIN SCALAR X!@GETFIRSTOP; 

%C II.l; 

WHILE (NOT ATOM FORM) AND NULL L DO << 

%C ii.2; 

L:=GETFIRSTOP(LC FORM, 

IF (NOT ATOM (XI@GETFIRSTOP:=MVAR FORM)) 

AND CAR X!@GETFIRSTOP=OP 

THEN Xl@GETFIRSTOP ELSE L,OP); 

%C ii.3; 

FORM:=RED FORM,>; 

%C ii.4; 

RETURN L 

END GETFIRSTOP; 

LISP PROCEDURE OPCOEFF(EX,OP,AR); 

%C OPCOEFF.i; 

IF NOT(IDP OP AND IDP AR) THEN 

REDERR("OPCOEFF: SECOND OR THIRD PARAMETER NO ID") 

%C ii; 

ELSE IF EX = 0 THEN << !@RESTOPCOEFF:=0; 

Mi@A2D(AR,'(NIL NIL));-1 >> 

%C iii; 

ELSE BEGIN SCALAR EL,Y,XX,DENEX,LKERN,LCOEFF; 

%C ill.l; 

EX:=SIMP!* EX; 

Y:=NUMR EX;DENEX:=DENR EX; 

%R IF GETFIRSTOP(DENEX,NIL,OP) THEN REDERR 

%R ("OPCOEFF: NOT A LINEAR OP-ELEMENT (WRONG DENOMINATOR)W); 

XX:=KORD!*; 

%C iii.2; 

WHILE EL:=GETFIRSTOP(Y,NIL,OP) DO BEGIN 

%C iii.3; 

KORDI*:=(LIST(EL:=!*A2K EL)); 

Y:=FORMOP Y; 

%C iii.4; 

IF NOT LDEG Y=I THEN 

BEGIN KORD!*:=XX;REDERR( 

"OPCOEFF: NOT A LINEAR OP-ELEMENT (POWER UNEQUAL i) w) 

END; 

%C iii.5; 

%R IF GETFIRSTOP(LC Y,NIL,OP) THEN BEGIN KORDI*:=XX;REDERR 

%R("OPCOEFF: NOT A LINEAR OP-ELEMENT (WRONG COEFFICIENT)") 

%R END; 

LKERN:=EL . LKERN; 

LCOEFF:=MK!*SQI CANCEL(LC Y ./ DENEX) . LCOEFF; 

%C iii.6; 

Y:=RED Y; END LOOP L; 

%C iii.7; 
!@RESTOPCOEFF:=MK!*SQI CANCEL( Y ./ DENEX); 

MI@A2D(AR,LIST(LKERN,LCOEFF)); 

KORDI*:=XX; 

%C iii.8; 
RETURN IF LKERN THEN LENGTH(LKERN)-I ELSE -i 

END OPCOEFF; 

LISP PROCEDURE MI@A2D(NAME,L); 
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%C MI@A2D.i; 

BEGIN IF NULL GET(NAME,'I@OPELEMENT) THEN 

%C ii; 

(<FLAG(LIST(NAME),'OPFN); 

PUTD(NAME,'EXPR,LIST('LAMBDA,'(I0 Ii), 

LIST('NTH, 

LIST('NTH,LIST('GET, MKQUOTE NAME, 

MKQUOTE '!@OPELEMENT), 

'(ADD1 I0)),'(ADDI If))) )>>; 

%C iii; 

PUT(NAME,'!@OPELEMENT,L); 

END MI@A2D; 

%DIFFOR.RED 6-APR-1981; 

SCALAR !@RESTOPCOEFF,D!@DIF,I@UIT; 

OPERATOR VNAT,UIT; 

LISP OPERATOR EXDF,MULFORM,NORMDIF$ 

%INITIALIZATIONS; 

WRITE( 

"GIVE VALUES TO DI@DIF AND VNAT(I) I=3,...,D!@DIF 

(VNAT I=X, VNAT 2= T)")$ 

FACTOR UIT$OFF ALLFAC$ 

VNAT(1)d:=X;VNAT(2):=T; 

LISP !@UIT:=WEDGE$ 

LISP PROCEDURE I@REPEATSONCE X; 

%C !@REPEATSONCE.i; 

IF NULL X THEN NIL 

%C ii; 

ELSE IF CAR X MEMBER CDR X THEN T 

%C iii; 

ELSE !@REPEATSONCE CDR X; 

LISP PROCEDURE MERGESTRICT(LA,LB); 

%C MERGESTRICT.i; 

BEGIN SCALAR LALB,RES; 

%C ii; 

RETURN IF !@REPEATSONCE (LALB:=APPEND(LA,LB)) THEN '(0) 

%C iii; 

ELSE IF PERMP(LALB,RES:=REVERSIP ORDN LALB) 

THEN 1 . RES 

%C iv; 

ELSE (-i) . RES 

END MERGESTRICT; 

LISP PROCEDURE MULFORM(A,B); 

%C MULFORM.i; 

BEGIN INTEGER F,DI,D2; 

SCALAR H3,AMULII,RES,AREST,BREST,ELA,ELB,LI; 

%C ii; 

DI:=OPCOEFF(A,!@UIT,'I@AMUL);AREST:=I@RESTOPCOEFF; 

D2:=OPCOEFF(B,!@UIT,'!@BMUL);BREST:=I@RESTOPCOEFF; 

%C iii; 

%C ill.l; 

RES:=AEVAL LIST('PLUS, LIST('TIMES,AREST,B), 

LIST('TIMES,BREST,AEVAL LIST('DIFFERENCE,A,AREST))); 
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%C 111.2; 

%C 2.a; 

FOR I:=0:DI DO 

%C 2.b; 

BEGIN AMULII:=!@AMUL(I,I);ELA:=CDR !@AMUL(0,I); 

%C 2.c; 

FOR J:=0:D2 DO BEGIN 

%C 2.d; 

LI:=MERGESTRICT(ELA,CDR !@BMUL(0,J)); 

%C 2.e; 

IF (F:=CAR LI) NEQ 0 THEN 

RES:=AEVAL LIST(IF F=I THEN 'PLUS ELSE 

'DIFFERENCE,RES,LIST('TIMES,AMULII, 

!@BMUL(I,J),!@UIT . CDR LI)) ; 

END J;END I; 

%C iv; 

RETURN RES 

END MULFORM; 

LISP PROCEDURE EXDF(EXPRESSIE); 

%C EXDF.i; 

BEGIN SCALAR HI,H2,H3,LI,DRES,COI; 

INTEGER DI,F; 

%C ii; 

DI:=OPCOEFF(EXPRESSIE, !@UIT,'A!SEXDF); 

%C iii; 

FOR I:=0:DI DO 

%C iv; 

%C iv.l; 

BEGIN COI:=A!@EXDF(I,I);HI:=CDR A!@EXDF(0,I); 

%C iv.2; 

FOR II:=I:D!@DIF DO << 

%C iv.3; 

IF NOT(II MEMBER HI) THEN 

%C iv.4; 

%C iv.5; 

%C iv.6; 

%C 6.I; 

%C 6.II; 

BEGIN H2:=AEVAL LIST('DF,COI,LIST('VNAT,II)); 

IF H2 NEQ 0 THEN 

BEGIN LI:=MERGESTRICT(LIST II,HI); 

DRES:=AEVAL 

LIST(IF (CAR LI)=I THEN 'PLUS ELSE 

'DIFFERENCE,DRES, 

LIST('TIMES,H2,!@UIT . CDR L1 )) 

END 

END >> 

END; 

%C v; 

RETURN IF !@RESTOPCOEFF NEQ 0 THEN 

%C vi; 

AEVAL LIST( 'PLUS,DRES, 

FOR II:=I:D!@DIF SUM AEVAL 

<<H2:=AEVAL LIST( 'DF,!@RESTOPCOEFF, 

LIST('VNAT,II) );IF 0=H2 THEN 0 ELSE 
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LIST('TIMES,H2,LIST(!@UIT,II))~>) 

%C vii; 

ELSE DRES 

END EXDF; 

LISP OPERATOR NORMDIF; 

LISP PROCEDURE NORMDIF(X); 

%C NORMDIF.i; 

BEGIN INTEGER D;SCALAR L; 

%C ii; 

D:=OPCOEFF(X,!@UIT,'OP!@NORMDIF); 

%C iii; 

RETURN AEVAL LIST('PLUS,!@RESTOPCOEFF, 

FOR I:=0:D SUM 

IF CAR(L:=MERGESTRICT(CDR OPI@NORMDIF(0,I),NIL)) = 0 

THEN 0 ELSE LIST('TIMES,CAR L,OP!@NORMDIF(I,I), 

I@UIT . CDR L)) 

END NORMDIF; 

%COM.RED 7-JUL-81; 

ARRAY AI@COM(I,I); 

SCALAR DI@DIF,D!@DIFPI,D!@DIFP2,I@VECVAR; 

OPERATOR VNAT,Di@COM,VF; 

LISP OPERATOR NIEUWCOEFF,FILVNAT$ 

WRITE("EXECUTE: INICOM(DIMENSION OF PROBLEM,", 

"NAME OF VARIABLES) ![")$ 

LISP !@VECVAR:='D$ 

OFF ALLFAC;FACTOR D; 

ALGEBRAIC PROCEDURE CH(CHANGE,N); 

IF N(I OR N>DE@DIF THEN WRITE( 

"***** CH: SECOND PARAMETER OUT OF RANGE: I,...,",D!@DIF) 

ELSE BEGIN VF(N):=VF(N)+CHANGE; 

D!@COM(N):=NIEUWCOEFF(VF N,i@VECVAR,A!@COM,N); 

IF A!@COM(N,0) NEQ 0 THEN WRITE( 

"*** THE VECTOR FIELD CONTAINS A CONSTANT TERM, 

WHICH SHOULD BE ELIMINATED 

NO FURTHER ACTION TAKEN"); 

RETURN CHEND 

END CH$ 

LISP PROCEDURE FILVNAT(N,NAM); 

FOR I:=I:N DO 

SETK(LIST('VNAT,I), INTERN COMPRESS APPEND(NAM, EXPLODE I))$ 

PROCEDURE INICOM(N,NAME);BEGIN CLEAR A!@COM; 

WRITE("DI@DIF = ",N); 

WRITE( 

"THE SPECIAL VECTOR FIELDS VF(I) ARE INITIALIZED TO 0 

1 <= I �9 ",N," 

AND SHOULD BE CHANGED BY: CH(CHANGE,N), 

THAT MEANS, CH(CHANGE,N) HAS AS EFFECT:VF(N):= VF(N)+CHANGE; 

PLUS OTHER SIDE EFFECTS"); 

WRITE( 

"TO USE THE SPECIAL VECTOR FIELDS, USE ONLY THE INDEX 

OF THEM AS PARAMETER TO COM"); 

FOR I:=I:N DO VF(I):=D!@COM(I):=0; 
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D!@DIF:=N;DI@DIFPI:=N+I;DI@DIFP2:=N+2; 

FILVNAT(N,NAME);ARRAY AI@COM(N+2,N); 

WRITE( 

"THE LOCAL COORDINATES ARE ",VNAT(1),",...,",VNAT(N)); 

RETURN INICOMEND 

END INICOM$ 

LISP PROCEDURE NIEUWCOEFF(A,XX,NAM,I)$ 

COEFF(A,XX,LIST(NAM,I,'TIMES))$ 

ALGEBRAIC PROCEDURE COM(I,J); 

%C COM.i; 

BEGIN INTEGER DI,DJ; 

%C ii; 

IF NOT(NUMBERP I AND I 0 AND I =DI@DIF) 

%C iii; 

THEN (<DI:=NIEUWCOEFF(I,!@VECVAR,A!@COM,D!@DIFPI); 

I:=D!@DIFPI >> 

%C iv; 

ELSE DI:=D!@COM(I); 

%C v; 

IF NOT(NUMBERP J AND J)0 AND J<=D!@DIF) 

%C vi; 

THEN'(DJ:=NIEUWCOEFF(J,I@VECVAR,AI@COM,D!@DIFP2); 

J:=DI@DIFP2 ~ 

%C vii; 

ELSE DJ:=DI@COM(J); 

%C viii; 

RETURN FOR II:=I:DI SUM IF A!@COM(I,II) NEQ 0 THEN 

FOR JJ:=I:DJ SUM IF A!@COM(J,JJ)NEQ 0 THEN 

(AI@COM(I,II)*I@VECVARAJJ*DF(A!@COM(J,JJ),VNAT(II)) - 

A!@COM(J,JJ)*!@VECVAR^II*DF(AI@COM(I,II),VNAT(JJ))) 

ELSE 0 ELSE 0 

END COM$ 

%IP.RED 25-MAR-81; 

ARRAY AI@IP(0); 

SCALAR !@UIT,I@VECVAR$ 

LISP OPERATOR REDERR,BI@IP$ 

OPERATOR UIT$ 

LISP [@VECVAR:='D$ LISP I@UIT:='WEDGE$ 

LISP PROCEDURE B!@IP(IND,BUIT); 

%C BI@IP.I; 

BEGIN SCALAR H,FAC; 

%C ii; 

RETURN IF IND MEMBER (H:=CDR BUIT) THEN 

%C iii; 

IF LENGTH H=I THEN 1 

%C iv; 

ELSE<(FAC:=I; 

WHILE (IND NEQ CAR H) DO<(FAC:=-FAC;H:=CDR H>); 

%C v;- 

AEVAL LIST('TIMES,FAC,DELETE(IND,BUIT))>) 

%C vi; 

ELSE 0 

END B!@IP; 
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PROCEDURE IP(X,ALFA); 

%C IP.i; 

BEGIN SCALAR CO,IND;INTEGER DX,DA; 

%C ii; 

DX:=COEFF(X, !@VECVAR,A!@IP); 

%C iii; 

IF Ai@IP(0) NEQ 0 THEN 

REDERR("IP: NO GOOD VECTORFIELD GIVEN"); 

%C iv; 

DA:=OPCOEFF( 

%R NORMDIF 

ALFA,!@UIT,UITi@IP); 

%C v; 

RETURN FOR I:=I:DX SUM 

%C vi; 

%C vi.l; 

IF (CO:=AI@IP(I)) = 0 THEN 0 

%C vi.2; 

ELSE << FOR J:=0:DA SUM 

%C vi.3; 

(BZ@IP(I,UITI@IP(0,J))*CO*UIT!@IP(I,J) )7> 

END IP; 

CLEAR A!@IP; 

WRITE("EXECUTE: ARRAY Ai@IP(MAXIMAL DIMENSION);"); 

%OPL.RED 15-APR-81$ 

OFF ECHO$ 

ARRAY A!@OPL(1)$ 

LISP OPERATOR OPL,D!@MAX$ 

LISP PROCEDURE OPL(WAT,WAARNA)$ 

IF D!@MAX(WAT,WAARNA)=I THEN 

BEGIN COEFF(WAT,WAARNA,'A!@OPL)$ 

RETURN SETK(WAARNA,AEVAL LIST('MINUS 

,LIST('QUOTIENT,GETEL LIST('A!@OPL,0), 

GETEL LIST('A!@OPL,I))))END 

ELSE WRITE(WAARNA," NOT A KERNEL 

OR EXPRESSION NOT LINEAR WITH RESPECT TO ",WAARNA); 

LISP PROCEDURE D!@MAX(EPR,VARI)$ 

MAXDEGREE(NUMR SIMP EPR,VARI)$ 

LISP PROCEDURE MAXDEGREE(FORM,VARI)$ 

IF DOMAINP FORM THEN 0 

ELSE IF MVAR FORM = VARI THEN LDEG FORM 

ELSE MAX2(MAXDEGREE(LC FORM,VARI),MAXDEGREE(RED FORM,VARI))$ 

ON ECHO$ 

SCALAR TOTAAL,DI@DIF$ 

LISP OPERATOR CLEARKVALUE,LE; 

LISP PROCEDURE CLEARKVALUE(OP); 

<<REMPROP(OP,'KVALUE);0>>; 

OPERATOR V,CO,B,LA,VER,OI@INF; 

PROCEDURE INFSYM(VOR,NI,N); 

BEGIN INTEGER M,MI, JJ,I,J,K; 
ARRAY RA NI; 

FOR I:=I:NI DO B I:=NORMDIF(VOR I); 
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M:=I;MI:=0; 
VEC:=(FOR I:=I:N SUM V(I,VAR)*DAI); 

FOR ALL X,II LET DF(V(II,VAR),X)=V(II,X); 

FOR JJ:=I:NI DO 
BEGIN AA:=!@BEVATOP(B(JJ),UIT); 

RA(JJ):=LE AA; 

END; 

FOR I:=I:NI DO 

BEGIN 
LA I:=LIEDF(VEC,B I)-(FOR J:=I:NI SUM 

MULFORM(GEFORM(J,RA I-RA J,N),B J)); 

AANT:=OPCOEFF(LA I,UIT,C); 

�9 OR K:=0:AANT DO 
bEGIN LII@INF:=OPCOEFF(C(I,K),CO,OI@INF); 

S!@INF:=0; 
WHILE S!@INF LI!@INF+I DO 
IF (O!@INF(I,S!@INF)^2)=I THEN 

BEGIN OPL(C(I,K),OI@INF(0,SI@INF)); 

S!@INF:=LI!@INF+I; 

END ELSE S!@INF:=S!@INF+I; 

END; 
FOR K:=0:AANT DO 
BEGIN L:=!@BEVATOP(C(I,K),CO); 

IF L NEQ 0 THEN BEGIN 
WRITE "YOU ARE CREATING DENOMINATORS!!"; 

OPL(C(I,K),L) 

END 
ELSE IF C(I,K) NEQ 0 THEN BEGIN VER M:=C(I,K); 

VER M:=VER M*D~ VER M; 

M:=M+I; 

END; 

END; 
TOTAAL:=M-I;%ONETERMSOL(VER,TOTAAL); 
WRITE "THERE EXIST ",M-I-M1," EQUATIONS FOR THE ",I,"-TH 

MI:=M-I;CLEARKVALUE(CO); 

END; 
VER 0:=0; 
FOR JJJ:=0:M-I DO WRITE VER JJJ:=VER JJJ; 

RETURN M-l; 

PROCEDURE GEFORM(NR,J,N); 
IF J=0 THEN CO(NR,J) ELSE 
IF J=l THEN (FOR I:=I:N SUM CO(NR,J,I)*UIT I) ELSE 

IF J=2 THEN (FOR I:=I:N SUM 
(FOR K:=I+I:N SUM CO(NR,J,I,K)*UIT(I,K))) ELSE 

IF J=3 THEN (FOR I:=I:N SUM 

(FOR K:=I+I:N SUM 
(FOR L:=K+I:N SUM CO(NR,J,I,K,L)*UIT(I,K,L)))) ELSE 0 

PROCEDURE PSP(N,M,K)$ 
FOR I:=M:K DO IF N I NEQ 0 THEN WRITE N I:=N IS 

PROCEDURE ONETERMSOL(NAME,AANT)$ 

BEGIN M:=0$ 
FOR I:=0:AANT DO IF VER I NEQ 0 THEN 

IF OPCOEFF(VER I,V,I@CC)=0 
AND I@RESTOPCOEFF=0 

THEN BEGIN WRITE !@CC(0,0)$ 
M:=M+I$ 
!@B:=OPL(VER I,!@CC(0,0) 

WRITE !@B$ 

ENDS 
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IF M 0 THEN ONETERMSOL(NAME,AANT)$ 

ENDS 

PROCEDURE ONE()$ 

BEGIN ONETERMSOL(VER,TOTAAL)$ 

PSP(VER,0,TOTAAL)$ 

ENDS 

PROCEDURE PS()$ 

PSP(VER,0,TOTAAL)$ 

PROCEDURE LPO(AANTI,AANT2)S 

BEGIN OPL(VER AANTI,V(AANT2,VAR))$ 

VER AANTI:=0$ 

ENDS 

ARRAY I@A(0)$ 

LISP OPERATOR SCHEM,LX,LYSTX,TEST,TESTI$ 

LISP PROCEDURE LYSTX(L)$ 

BEGIN LX:=NIL$ 
WHILE L DO BEGIN LX:=LIST('X,CAR L).LX$ 

L:=CDR L 

ENDS 
RETURN LX$ 

END LYSTX$ 

LISP PROCEDURE SCHEM()$ 

BEGIN FOR J:=I:DI@DIF DO !@A(J):=NIL$ 

FOR I:=I:D!@DIF DO 

FOR K:=I:DI@DIF DO 

IF REVAL LIST('V,I,LIST('X,K)) EQ 0 THEN !@A(K):=I.!@A(K)$ 

ENDS 

ARRAY AI@FIG(0)$ 

LISP OPERATOR FIGS 

LISP PROCEDURE FIG()$ 

BEGIN SCALAR H$ 

H:=NIL$ 

SCHEM()$ 
FOR I:=DI@DIF STEP -i UNTIL 1 DO 

IF I i0 THEN H:='! .'l .I.H 
ELSE H:='! .APPEND(EXPLODEC I,H)S 

H:='V.'I.'J.H$ 

SETEL('(A!@FIG 0),H)$ 

FOR J:=I:D!@DIF DO 

BEGIN H:=NIL$ 

FOR I:=D!@DIF STEP -i UNTIL 1 DO 

IF I MEMBER !@A(J) THEN H:='! .'! .'O.H 

ELSE H:='! .'! '!*.HS 

IF J i0 THEN H:='! .'! .J.H 

ELSE H:='! .APPEND(EXPLODEC J,H)$ 

SETEL(LIST('Ai@FIG,J),H)$ 

ENDS 
FOR J:=0:D!@DIF DO 

(<MAPCAR(GETEL LIST('AI@FIG,J),FUNCTION PRINC)$ 

TERPRI() >> 

END FIG $ 

WRITE "EXECUTE : ARRAY !@A(DI@DIF)$"S 

WRITE "EXECUTE : ARRAY AI@FIG(DI@DIF)$"$ 

ARRAY !@B 05 

LISP OPERATOR SPLITS,SPLIT1; 

LISP PROCEDURE SPLITS()$ 

BEGIN SCALAR RY,RYTJE,RES,TEL$ 

RY:=NIL$TEL:=0$ 
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FOR II:=I:DI@DIF DO RY:=II.RY$ 
SCHEM()$ 

FOR JJ:=0:TOTAAL DO 

BEGIN RYTJE:=NIL$ 
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LB:=OPCOEFF(REVAL LIST('VER,JJ),'V,'!@CO)$ 

FOR EACH EL IN RY DO 

BEGIN RES:=NIL$ 

FOR KK:=0:LB DO 

IF CADR !@CO(0,KK) MEMBER !@A(EL) 
THEN NIL 

ELSE BEGIN KK:=LB+I$ 

RES:=T$ 

ENDS 

IF RES THEN NIL 

ELSE RYTJE:=EL.RYTJE$ 

ENDS 

IF RYTJE=NIL THEN 

BEGIN SETK(LIST('VER,TEL),REVAL LIST('VER,JJ))$ 

TEL:=TEL+I$ 

WRITE JJ,"-TH EQUATION : NO!!"$ 

END 

ELSE BEGIN 

MLIETAB(REVAL LIST('VER,JJ),LYSTX RYTJE)$ 

SETK(LIST('VER,JJ),0)$ 

WRITE JJ, "-TH EQUATION :",RYTJE$ 

ENDS 

ENDS 
FOR LL:=TEL:TEL+TELI-I DO 

SETK(LIST('VER,LL),REVAL LIST('PETER,LL-TEL+I))$ 

TOTAAL:=TEL+TELI-I$ 

CLEARKVALUE('PETER)$ 

TELI:=0$ 

WRITE "TOTAAL:=",TOTAAL$ 

END SPLITS $ 

LISP OPERATOR ZERODELETE; 

SCALAR LI@ZERODELETE; 

LISP PROCEDURE ZERODELETE NAME;BEGIN SCALAR LI,L2,TEL; 

TEL:=0;LI@ZERODELETE:=NIL; 

FOR EACH XX IN GET(NAME,'KVALUE) DO 

IF REVAL(L2:=CADR XX)=0 THEN L!@ZERODELETE:=(CAR XX . 

'(0)) �9 LI@ZERODELETE 

ELSE LI:=(LIST(NAME,TEL:=TEL+I). LIST L2 ).LI; 

IF L1 THEN PUT(NAME,'KVALUE,REVERSIP LI) ELSE 

RETURN TEL 

END; 

LISP PROCEDURE SPLITI(JJ); 

BEGIN SCALAR RY,RYTJE,RES; 

RY:=RYTJE:=NIL; 

FOR II:=I~DI@DIF DO RY:=II.RY; 

SCHEM(); 
LB:=OPCOEFF(REVAL LIST('VER,JJ),'V,'!@CO); 

FOR EACH EL IN RY DO 

BEGIN RES:=NIL; 

FOR KK:=0:LB DO 

IF CADR !@CO(0,KK) MEMBER !@A(EL) 
THEN NIL 

ELSE BEGIN KK:=LB+I; 

RES:=T; 
END; 

IF RES THEN NIL 

ELSE RYTJE:=EL.RYTJE; 

END; 
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IF RYTJE=NIL THEN 

BEGIN WRITE JJ,"-TH 

RETURN 0 

END 

EQUATION : NOI!M; 

ELSE BEGIN 
MLIETAB(REVAL LIST('VER,JJ),LYSTX RYTJE); 
SETK(LIST('VER,JJ),0); 
WRITE JJ,"-TH EQUATION :",RYTJE; 

END; 
FOR LL:=TOTAAL+I:TOTAAL+TELI DO 
SETK(LIST( 'VER,LL),REVAL LIST( 'PETER,LL-TOTAAL); 

TOTAAL:=TOTAAL+TELI; 

CLEARKVALUE('PETER); 

TELl:=0; 

WRITE "TOTAAL:= ",TOTAAL; 

END SPLITI; 

77 

References 

1. Anderson, R. L. and Ibragimov, N. H. : Lie-Bi~cklund Transformations in Applications, SIAM Studies 

in Applied Mathematics, Philadelphia, 1979. 

2. Cartan, E. : Les systbmes difJ~rentiels et leurs applications g6om6triques, Hermann, Paris, 1945. 

3. Edelen, D. G. B. : Isovector Methods for Equations of  Balance, Sijthoffand Noordhoff,  Alphen a/d Rijn, 

The Netherlands, 1981. 

4. Wahlquist, H. D. and Estabrook, F. B.: J. Math Phys. 16 (1975), 1-7. 

5. Estabrook, F. B. and Wahlquist, H. D.: J. Math Phys. 17 (1976), 1293-1297. 

6. Frick, I. : SHEEP's Users' Manual, University of Stockholm, 1977. 

7. Estabrook, F. B. : 'Differential geometry as a tool for applied mathematicians, in R. Martini (ed.), 

Geometric Approaches to DifJerential Equations (Lecture Notes in Mathematics, Vol. 810), Springer- 

Verlag, Heidelberg, New York, 1979. 

8. Gragert, P. K. H. : 'Symbolic computations in prolongation theory', PhD thesis, Twente University of 

Technology, 1981. 

9. Gragert, P. K. H. and Kersten, P. H. M.: 'Implementation of differential geometric objects and 

functions with an application to extended Maxwell equations', in J. Calmet (ed.), Proceedings Eurocam 

1982 (Lecture Notes in Computer Science, Vol. 144), Springer-Verlag, Heidelberg, New York, 1982, 

pp. 181 187. 

10. Harrison, B. K. and Estabrook, F. B.: J. Math. Phys. 12 (1971), 653-666. 

I 1. Hearn, A. C. : Reduce 2 Users" Manual, 2nd edition, University of Utah, 1973. 

12. Kersten, P. H. M. : 'Infinitesimal symmetries and conserved currents for nonlinear Dirac equations', 

to appear in J. Math. Phys. 

13. Lewis, V. E. (ed.): MA CS YMA Users" Conference Proceedings, 1979, Washington D.C., MIT Labora- 

tory of Computer Science, Cambridge, Mass., 1979. 

14. McCarthy, J. et al. : LIPS 1.5 Programmers" Manual, MIT Press, Cambridge, Mass., 1962. 

15. Molino, P. : 'Exterior differential systems and partial differential equations', Notes of invited lectures 

at the University of Amsterdam, 1982. 

16. REDUCE Newsletters, 1 (1978), 2 (1978), 3 (1978), 4 (1978), 5 (1979), 6 (1979), 7 (1979), Symbolic 

Computation Group, University of Utah. 

17. Risch, R. H.: Trans. Am. Math. Soc. 139 (1969), 167 189. 

18. Wahlquist, H. D. : 'Exterior calculus on an Apple : the program "~CARTAN", preprint, 1981. 


