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Abstract

Metabolic Control Analysis (MCA) is a powerful quantitative frame-

work for understanding and explaining the relationships between the

global steady-state properties of a cellular system in terms of control

coefficients, and the local properties of the individual components of

the system in terms of elasticities. The elasticities are apparent kinetic

orders, which derive directly from the kinetic properties of the en-

zymes. Since MCA relates elasticities to control coefficients through

a matrix inversion, it allows one to predict and to quantify how the

kinetics of individual enzymes affect the systemic behaviour of biolo-

gical pathways. Most often this problem has been solved numerically,

with algebraic and symbolic control analysis having been tackled less

frequently. We present here a general implementation of the symbolic

matrix inversion of MCA through symbolic algebraic computation.

The algebraic expressions thus generated allow an in-depth analysis

of where the control within a system lies and which parameters have

the greatest effect on this control distribution, even if the exact values

of the elasticities or control coefficients are unknown.
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Introduction

Metabolic Control Analysis (MCA; see [1, 2]) is a powerful quantitative framework for

analysing and quantifying the control and regulation of cellular pathways. It was developed

independently by Kacser and Burns [3] and Heinrich and Rapoport [4] in the early 1970 s.

One of the fundamentals of MCA is that it quantifies the steady-state behaviour of a system

in terms of global properties (termed control coefficients) and local properties (termed

elasticities). Mathematically, a control coefficient is defined as:
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where y is any steady-state variable of the system (e. g. flux or species concentration) and vi

is the local rate of step i. The control coefficient thus quantifies how sensitive the variable y

is to changes in local rate vi. The subscript ss indicates that the entire system relaxes to a new

steady state after the perturbation in vi; hence, control coefficients are systemic properties.

An elasticity on the other hand, quantifies the effect of any molecular species or parameter

that directly affects a unit step on the local rate through this step in isolation:
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where vi is the local rate of unit step i in the system and sj the concentration of any molecular

species (substrate, product or effector) or parameter (e. g. Km) that affects the step directly.

The subscript sk,sl,... indicates that the concentrations of all other substrates, products and

effectors are kept constant at their prevailing values while sj is varied. Elasticities are

apparent kinetic orders, which derive directly from the kinetics of the enzymes; their proper-

ties are local to the particular step and do not depend on the rest of the system.

A particular strength of MCA lies in the fact that it relates control coefficients to elasticities

through a number of summation and connectivity relationships [3 – 5], thus enabling one to

calculate systemic behaviour and control from the local properties of each of the components

of the reaction network. These relationships have been combined into a variety of matrix

equations (e. g. [6 – 8]), of which a particularly elegant form is that of Hofmeyr and Cornish-

Bowden [9]:

Ci � E ¼ I ) Ci ¼ E�1 (3)

where Ci = ½CJi Csi �T is a matrix of independent flux- and concentration-control coeffi-

cients, and E = [K –esL] is a matrix of all structural and local properties of the system. K is

the scaled kernel matrix relating dependent fluxes to independent fluxes, es is a matrix of

elasticities, and L is the scaled link matrix relating the time-derivatives of the dependent

species to the independent species – for further details, the reader is referred to [9, 10].
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From Equation (3) it follows that the control coefficients can be calculated by inversion of

the local matrix E. Computational methods have traditionally focused on the numerical

solution of this matrix inversion of MCA. A great number of simulation packages exist

for computational systems biology (see http://sbml.org/), many of which can also do numer-

ical MCA. Algebraically and symbolically, the problem has been tackled less frequently; the

notable examples include control-pattern analysis [11] and the MetaCon program [12]. In

both cases the aim was to derive algebraic relations between the control and elasticity

coefficients. As it is often experimentally difficult to determine all parameter values for

large models, it would be useful to develop a general approach for identifying key system

parameters without knowing their actual values.

In this paper we present SymCA, a general implementation through symbolic algebraic

computation of the matrix inversion of MCA (Equation (3)). The symbolic algebra manip-

ulations are performed with Maxima, a powerful open-source algebra software. We have

developed a Python interface to Maxima to access its symbolic capabilities from within

PySCeS [13], the computational systems biology software developed in our group. This

enabled the successful implementation of the Ci =E– 1 inverse problem for systems of any

size and complexity. As will be shown below, the algebraic expressions generated, which are

factorized for easier interpretation, allow an in-depth analysis of where the control within a

system lies. The rest of the paper is organized as follows: first, the design of the SymCA

software is described, then its application is illustrated with two examples, and finally, the

results are discussed in a broader context.

The SymCA Software

Maxima (http://maxima.sourceforge.net/) is an open-source symbolic algebra software li-

cenced under the GNU GPL. It runs on multiple operating systems and is capable of

performing symbolic calculus, linear algebra, matrix manipulations and simplifications,

factorization, etc. Maxima is a descendant of Macsyma, the famous algebra software

developed at the MIT in the 1960 s. The program is implemented in common Lisp. Because

of its open-source licence and multi-platform capabilities, we chose Maxima to integrate

symbolic control analysis capabilities into PySCeS.

SymCA (Symbolic Control Analysis) refers to the combination of Python with PySCeS

and Maxima. The code is released under an open-source licence together with the PySCeS

project at http://pysces.sourceforge.net/. The operation of the software is summarized in

Fig. 1.
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Figure 1. Operation of the SymCA software.

The symbolic algebra capabilities of Maxima are accessed through a Python interface,

which we have developed using the subprocess module. The analysis is started by loading

a model into PySCeS and performing a structural (stoichiometric) analysis. This extracts

and processes the structural data and generates the K, es and L matrices, from which the E

matrix (Equation (3)) is assembled. SymCA subsequently translates these data into equiva-

lent symbolic data by substituting text strings for the elasticity and species names into the

matrix entries. The symbolic E matrix is then passed to Maxima using our newly developed

interface, where it is symbolically inverted and the results passed back to Python. In the

final step, SymCA extracts, processes and simplifies the symbolic control coefficient ex-

pressions, which can then be output in various formats. The whole process, including the

details of this simplification, are illustrated with an example (see SymCA by Example

below).

Additional features

The SymCA software has a number of additional features built in for error checking and

user convenience:

. The control coefficient expressions can be output in LATEX [14] format for easy

typesetting and incorporation into documents. The text format for loading the

expressions into Maxima is also saved.

. The expressions are automatically checked for correctness by substituting the

numerical values of the elasticities from the PySCeS model, calculating the

control coefficient values, and comparing these to the control coefficients calcu-

lated numerically directly by PySCeS.

. SymCA allows numerical substitution (e. g. 0 or 1) of selected elasticity values to

generate a simplified control coefficient expression subject to certain assumptions
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about the model, such as a particular reaction being saturated with substrate (i. e.

following zero-order kinetics) or operating in the first-order range.

. Expressions for parameter-response coefficients can be calculated from the parti-

tioned response property [3]: Cy
p ¼ evip � Cy

vi
, where p is an external parameter

acting on step i. In fact, this merely involves multiplying the control coefficient

expression by the parameter elasticity of step i towards p.

SymCA by Example

The operation of the SymCA software will be illustrated with two examples: first, a small

‘‘core’’ model, which has been designed to emphasize the salient features, and next, a more

realistic model of fermentation pathways in Lactococcus lactis.

Simple metabolic pathway

Figure 2. A simple metabolic pathway with a branch-point and a moiety-conserved

cycle [10].

Figure 2 shows a scheme of a ‘‘minimal’’ system containing an example of the most

important structural features observed in metabolic pathways, i. e. a branch-point and a

moiety-conserved cycle. This example has been treated in detail to explain the matrix

method of MCA [10] and will also be used here to demonstrate the workings of the SymCA

software.

For the system in Fig. 2, Equation (3) reads:
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For Equation (4) to be computed by SymCA, the K and L matrices (which are provided by

PySCeS from the stoichiometric analysis) first have to be scaled to K and L as described in

[10]. Subsequently, the matrix product –esL is computed. Before proceeding with the sym-

bolic matrix inversion, dependent fluxes are expressed in terms of independent ones accord-

ing to J =KJi, which for the system in Fig. 2 reads:
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Equation (5) shows that J1 and J2 are both equivalent to J3 + J4; thus, in the RHS of

Equation (4) J2 is replaced with J1. The symbolic matrix E is then passed to Maxima for

inversion. The determinant of E (also computed by Maxima) gives the common denomi-

nator of all the control coefficient expressions. For the example model in Fig. 2, this reads:
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To obtain the individual control coefficient expressions, the denominator (Equation (6)) is

first factored out of the symbolic inverse of E. Next, the expressions are rearranged and

simplified so that:

. elasticity terms are only multiplied by fluxes (i. e. not divided), and

. elasticities towards species in conserved moieties are always divided by the

concentration of that same species.

As an example, we show the expressions thus generated for the control coefficients on

flux J3:
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with S as in Equation (6). The automatic rearrangement and factorization of the terms has

the consequence that the generated control coefficient expressions such as in Equations (7) –

(10) always end up in a standard format that is easily interpretable: every term is a control

pattern [11], which can be visualized as a ‘‘chain of local effects’’ through the pathway.

Fermentation pathways in Lactococcus lactis

To illustrate the application of SymCA with a more realistic model, we have analysed the

fermentation pathways of Lactococcus lactis. The pathway shown in Fig. 3 is a simplified

version of the model reported by Hoefnagel et al. [15] with the branch to acetolactate

omitted.

Figure 3. Fermentation pathways in Lactococcus lactis. Abbreviations for Equations

(11) and (12): PYR, Pyruvate; ACCOA, Acetyl-CoA; ACAL, Acetaldehyde; ACP,

Acetyl-P.
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When processing this model with SymCA, the following expression for CJ2

1 is generated,

which we show by way of example:
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(24 terms)

with the denominator S given by:

X
¼

J3J5J6"
4
ACAL

"7
ACP

"6
COA

"5
NADH

"3
PYR

COA NADH
þ
J2J5J6"

4
ACAL

"7
ACP

"6
COA

"5
NADH

"2
PYR

COA NADH

�
J1J5J6"

4
ACAL

"7
ACP

"6
COA

"5
NADH

"1
PYR

COA NADH
�
J3J5J6"

5
ACAL

"7
ACP

"6
COA

"4
NADH

"3
PYR

COA NADH

�
J2J5J6"

5
ACAL

"7
ACP

"6
COA

"4
NADH

"2
PYR

COA NADH
þ
J1J5J6"

5
ACAL

"7
ACP

"6
COA

"4
NADH

"1
PYR

COA NADH

þ . . .

þ
J2J3J6"

4
ACAL

"6
ACCOA

"7
ACP

"2
NAD

"3
PYR

ACCOA NAD
�
J1J3J6"

4
ACAL

"6
ACCOA

"7
ACP

"1
NAD

"3
PYR

ACCOA NAD

�
J2J3J6"

4
ACAL

"6
ACCOA

"7
ACP

"3
NAD

"2
PYR

ACCOA NAD
þ
J1J3J6"

4
ACAL

"6
ACCOA

"7
ACP

"3
NAD

"1
PYR

ACCOA NAD

(12)

(56 terms)

The above expression is rather unwieldy and contains a very large number of terms, which

makes it difficult to interpret. However, three aspects are noteworthy:

1. The expression is mathematically correct, providing an analytical solution for the

control coefficient in terms of elasticities.

2. The expression is arranged and factorized so that all terms are similar and con-

form to the standard format described above.

3. The expression can be simplified subject to certain assumptions about the path-

way.

To illustrate the last point, assume, for example, that "1
PYR ¼ "2

PYR ¼ 0 (i. e. that both

reactions 1 and 2 are insensitive to changes in the pyruvate concentration). The expression

for CJ2

1 then simplifies to (automatically calculated by SymCA):
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The number of terms has been reduced from 24 to 4 in the numerator and from 56 to 12 in

the denominator. Clearly, Equation (13) is of a more manageable size so that direct algebraic

analysis and interpretation is possible.

Discussion and Conclusion

The framework of MCA has been a driving force in dispelling the notion of the ‘‘rate-

limiting step’’ in metabolic pathways, as was elegantly illustrated by the pioneering experi-

mental work of Groen and co-workers [16] on the control of mitochondrial oxidative

phosphorylation. However, MCA goes beyond the mere quantification of control coeffi-

cients – in our view, the real power of MCA lies in its relation of control coefficients to

elasticities, thus allowing us to infer systemic properties from the characteristics of the

isolated system components.

In this paper we have described SymCA, a software that implements the symbolic matrix

inversion of MCA in a generalized way and generates analytical expressions for the control

coefficients of a pathway in terms of the elasticities. This has a number of uses:

. Computational analysis of biochemical pathways is becoming increasingly im-

portant in the burgeoning field of computational systems biology. An inspection

of on-line model databases such as JWS Online ([17], http://jjj.biochem.sun.ac.za/)

or BioModels ([18], http://www.ebi.ac.uk/biomodels) reveals that the number of

available models grows monthly, but that they are also increasing in size and

complexity. Here, MCA can become an increasingly important analysis tool by

dissecting where the control in a pathway lies and identifying the factors that

determine this control. For example, the expressions generated with SymCA can

be used to identify key elasticities that are responsible for a particularly large (or

small) value of a certain control coefficient. Furthermore, the analysis can easily

be extended to parameter-response coefficients (see Additional features above),

thus addressing the question of which parameters in a kinetic model have the

largest effect on a particular observed behaviour, and how this effect is trans-

mitted.

. Fermentation pathways in Lactococcus lactis (above), shows that the MCA ex-

pressions quickly become unwieldy once the model size grows beyond a few

reactions. In such cases, assumptions can be introduced to simplify the expres-
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sions, as illustrated above. Very often, it is known that a particular reaction is

saturated with substrate or insensitive to product under cellular conditions (allow-

ing the elasticity to be set to zero) or is operating in the first-order range because

the substrate concentration is lower than the Km (allowing the elasticity to be set

to one). Moreover, certain elasticities can be set numerically to vary within

bounds to explore how the control distribution in the network would be affected.

. The development of kinetic models is often hampered by the fact that not all of

the kinetic parameters are known. The significance of symbolic MCA is that it is

valid in general, and as such does not depend on the availability of particular

parameter values. All that is required is the stoichiometry and mapping of the

allosteric modifier interactions. Thus, general conclusions about the control struc-

ture of a pathway may be drawn even if not all the kinetic parameter details are

known.

. As was already pointed out by Hofmeyr almost 20 years ago [11], the individual

terms of a control coefficient expression can be visualized on the network as a

‘‘control pattern’’ that describes a ‘‘chain of local effects’’ corresponding to a

particular route of regulation. Symbolic control analysis can thus help identify

such routes of regulation in a complex network and quantify their relative im-

portance (e. g. comparing feedback inhibition along the main chain of a pathway

vs. an allosteric feedback loop).

It should be mentioned that programmatic symbolic control analysis is not new. The problem

has been tackled by Thomas and Fell with the MetaCon [12] computer program. However,

their approach is not completely general in the sense that the analysis of branched pathways

always requires the manual selection of a reference flux before the expressions can be

generated and selection of different reference fluxes leads to different expressions, whereas

the matrix method on which SymCA is based does not have this limitation. Moreover, the

integration of SymCA data structures within PySCeS means that it is easy to substitute

some or all of the elasticities with numerical values, allowing for further analysis, simplifi-

cation or validation of the expressions.

In conclusion, as the field of computational systems biology grows it can be anticipated that

the complexity of models will increase, approaching the level of complexity of the modelled

systems themselves. Analysis tools will become ever more essential for making sense of

huge amounts of model data. Symbolic control analysis is one such tool the SymCA soft-

ware presented here facilitates and contributes to this analysis.
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