
Symbolic Dynamic Programming for First-order POMDPs

Scott Sanner
NICTA & ANU

Canberra, Australia
scott.sanner@nicta.com.au

Kristian Kersting
Fraunhofer IAIS

Sankt Augustin, Germany
kristian.kersting@iais.fraunhofer.de

Abstract

Partially-observable Markov decision processes (POMDPs)
provide a powerful model for sequential decision-making
problems with partially-observed state and are known to have
(approximately) optimal dynamic programming solutions.
Much work in recent years has focused on improving the effi-
ciency of these dynamic programming algorithms by exploit-
ing symmetries and factored or relational representations. In
this work, we show that it is also possible to exploit the full
expressive power of first-order quantification to achieve state,
action, and observation abstraction in a dynamic program-
ming solution to relationally specified POMDPs. Among the
advantages of this approach are the ability to maintain com-
pact value function representations, abstract over the space of
potentially optimal actions, and automatically derive compact
conditional policy trees that minimally partition relational ob-
servation spaces according to distinctions that have an impact
on policy values. This is the first lifted relational POMDP
solution that can optimally accommodate actions with a po-
tentially infinite relational space of observation outcomes.

Introduction
Partially-observable Markov decision processes (POMDPs)
are known to be a powerful modeling formalism for sequen-
tial decision-making problems with partially observed state.
Important recent applications include clinical decision-
making, dialog management, and control policies for robots.
However, this power does not come without its drawbacks
and large POMDPs are also notoriously difficult to solve
even approximately optimally.

To address these difficulties, recent work has explored the
use of factored propositional or relational representations
and algorithms that can exploit these representations (Wang
and Schmolze 2005; Wang 2007; Wang and Khardon 2010;
Shani et al. 2008). Other recent work has sought to ex-
ploit symmetries in the structure of the problem or solu-
tion (Doshi and Roy 2008; Kim 2008). However, no current
work has fully exploited the power of first-order abstraction
in POMDPs with a potentially infinite relational observation
space in a way that is independent of ground domain size.

In this paper, we provide an extension of Boutilier
et al.’s results on first-order MDPs (Boutilier, Reiter,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Price 2001) and Wang et al.’s results on relational
POMDPs (Wang and Schmolze 2005; Wang 2007; Wang
and Khardon 2010) to first-order POMDPs with actions that
have a potentially infinite relational space of observation
outcomes. Specifically, we provide the first lifted POMDP
solution that can automatically derive relevant quantified ob-
servations leading to a solution whose complexity is inde-
pendent of the size of the ground state, action, and observa-
tion spaces.

We proceed as follows: after reviewing POMDPs, we dis-
cuss the need for first-order POMDPs, formalize them, and
provide a lifted solution via symbolic dynamic program-
ming (SDP). We empirically show the complexity of SDP
is invariant to domain size while enumerated state POMDP
solvers have complexity exponential in the domain size.

Partially Observable MDPs
We assume familiarity with MDPs (Puterman 1994) and
POMDPs (Kaelbling, Littman, and Cassandra 1998) and
thus provide only a brief review. A Markov decision pro-
cess (MDP) is a tuple 〈S,A, T ,R, γ, h〉 (Puterman 1994).
S = {s1, . . . , sn} is a finite set of states. A = {a1, . . . , am}
is a finite set of actions. T : S × A × S → [0, 1] is a
known stationary, Markovian transition function, often writ-
ten P (s′|s, a) for s′, s ∈ S and a ∈ A. R : S ×A → R is a
fixed known reward function associated with every state and
action. γ is a discount factor s.t. 0 ≤ γ ≤ 1 where rewards
t time steps in the future are discounted by γt. h ≥ 0 is
a horizon, possibly infinite (h = ∞), indicating how many
decision stages there are until termination of the process.

A partially observable MDP (POMDP) is a tuple
〈S,A,O, T ,R,Z, γ, h〉. In addition to the definitions for
an MDP, a POMDP introduces an observation set O =
{o1, . . . , op} and a known observation function Z : S ×
A × O → [0, 1] often written as P (o|a, s′) for observation
o ∈ O, action a ∈ A, and next state s′ ∈ S.

In a POMDP, the agent does not directly observe the states
and thus must maintain a belief state b(s) = P (s). For
a given belief state b = b(·), a POMDP policy π can be
represented by a tree corresponding to a conditional plan β.
An h-step conditional plan βh can be defined recursively in
terms of (h− 1)-step conditional plans as shown in Fig. 1.

Our goal is to find a policy π that maximizes the value
function, defined as the sum of expected discounted rewards

Figure 1: Example conditional plan βh for POMDP control.

over horizon h starting from initial belief state b:

V h
π (b) = Eπ

[∑h

t=0
γt · rt

∣∣∣b0 = b
]

(1)

where rt is the reward obtained at time t and b0 is the belief
state at t = 0. For finite h and belief state b, the optimal
policy π takes the form of an h-step conditional plan βh. For
h = ∞, the optimal discounted (γ < 1) value function can
be approximated arbitrarily closely by using a sufficiently
large, but finite h (Kaelbling, Littman, and Cassandra 1998).

While the number of belief states is infinite, it is well-
known that the optimal POMDP value function for finite
horizon h is a piecewise linear and convex function of the
belief state b and that V h can be represented as a maximiza-
tion over a finite set of “α-vectors” αh

i :

V h(b) = maxαh
i ∈Γh αh

i · b (2)

Here, b is a belief state of dimension |S| (note that b’s last
dimension is determined by the other |S| − 1 dimensions)
and each αh

i ∈ Γh is likewise of dimension |S|.
The Γh in this optimal h-stage-to-go value function can be

computed via the dynamic programming algorithm of value
iteration (VI) (Sondik 1971). We initialize α0

1 = 0 and Γ0 =
{α0

1}. Then, we can inductively compute Γh from Γh−1 in
a dynamic programming backup operation:1

gh
a,o,j(s) =

X
s′

P (o|s′, a)P (s′|s, a)αh−1
j (s′); ∀αh−1

j ∈ Γh−1

Γh
a = R(·, a) + γ�o∈O

n
gh

a,o,j(·)
o

j
(3)

Γh =
[
a

Γh
a

From Γh, it is easy to determine the optimal h-step con-
ditional plan βh starting from a belief state b. To do
this, we simply find the maximizing α-vector α∗ =
arg maxαh

i ∈Γh αh
i · b. For h > 0, α∗ must have been gen-

erated as the �o of gh
a,o,j(·)’s for a given action a. Then

the optimal action at step h is a, and once we observe o, we
know that the optimal h − 1-step conditional plan βh−1 is
given by the αh−1

j ∈ Γh−1 that corresponds to gh
a,o,j(·).

1The � of sets is defined as �j∈{1,...,n}Sj = S1 � · · · � Sn

where the pairwise cross-sum P � Q = {p + q|p ∈ P,q ∈ Q}.
The sum of a scalar and a set is defined as the elementwise sum:
v + {u1, . . . ,uk} = {v + u1, . . . ,v + uk}.

First-order (FO) Partially Observable MDPs
The Need for First-order Representations
While dynamic programming provides a provably optimal
solution to POMDPs, we note that the number of α-vectors
grows exponentially on each backup operation, i.e., |Γh| =
|A||Γh−1||O| (the factor of |Γh−1||O| is incurred during the
� operation). Even with pruning algorithms for removing
provably suboptimal α-vectors in |Γh|, exact dynamic pro-
gramming remains intractable even for small h when the ob-
servation space O is large (Spaan and Vlassis 2005).

For this reason, most conventional approaches to solv-
ing POMDPs use a carefully defined observation set O that
has been tuned or even artificially restricted to guarantee
tractability of the solution. However, as we show in this
paper, due to the structure of many natural POMDP formu-
lations, it is not always necessary to limit oneself to small
or carefully defined observation spaces in order to ensure
a tractable solution. In fact, in this paper, we encourage
precisely the opposite: we allow rich relational observation
spaces that define all possible observations and relations be-
tween them. The dynamic programming algorithm should
be intelligent enough to automatically derive only the rele-
vant abstracted observations.

As a simple illustrative example, we modify the classical
TIGER POMDP (Kaelbling, Littman, and Cassandra 1998).
Example 1 (FO-TIGER) An agent is in the center of a
large circular room faced with a choice of doors d1, . . . , dn.
Behind each door di is food, but also possibly a noisy tiger
denoted by state TigerS(di). The state of TigerS(di) does
not change and cannot be directly observed. If the agent
decides on action openS(di) and ¬TigerS(di) holds, she
receives reward 10, otherwise if TigerS(di) holds, she re-
ceives reward −100. No observations are made on an
openS(di) action, however, the agent can make observa-
tions on a listenS action (costing −1) where for each di,
either the observation NoiseO(di) or¬NoiseO(di) is made;
30% of the time a noise seems to come from all doors. For
simplicity, we assume h is finite and thus set discount γ = 1.

We note that for a problem with n doors, this problem
has n possibilities for the openS action, but more alarm-
ingly, |O| = 2n possible observations for the listenS action!
There is an observation for each door indicating whether or
not a noise was heard. Clearly, if value iteration for conven-
tional POMDPs has complexity |Γh| = |A||Γh−1||O| then
this problem cannot be solved in reasonable space and time
for even small h using enumerated observations.

Obviously, the key to a succinct solution for FO-TIGER is
to avoid working with a fully enumerated state, action, and
observation space and to exploit symmetries and homomor-
phisms — in this paper through the use of logical abstraction
— to find lifted abstractions that can be treated identically
without loss of value. In our following formalization and
solution to this problem, we will demonstrate that despite
a very large (or even infinite) observation space, our first-
order (FO) POMDP representation and solution achieves
these goals by deriving a small set of first-order abstracted
conditional policies that permit an efficient and compact fi-
nite horizon solution to POMDP problems like FO-TIGER.

Logical Foundations of FO-POMDPs
We assume basic familiarity with many-sorted first-order
logic with equality (Enderton 1972) where for FO-TIGER
we need sorts for Door and Situation (sorts will be ob-
vious from context). The situation calculus is a first-order
language for axiomatizing dynamic worlds consisting of ac-
tions, situations and fluents and specified in a domain theory:
Actions are first-order terms consisting of an action function
symbol and its arguments. In FO-POMDPs, there are two
types of actions, transition actions such as openS(di) and
listenS and observation actions such as listenO.
Situations are first-order terms denoting a sequence of ac-
tions. These are represented using a binary function sym-
bol do: do(α, s) (and inverse do−1(α, s)) denotes the situ-
ation after (before) performing the action α starting in state
s; e.g., do(listenS , do(openS(di), s)) denotes the situation
resulting from opening door di then listening. In contrast
to states, situations reflect the entire history of action occur-
rences. However, the FO-POMDP dynamics are Markovian
and allow recovery of state properties from situation terms.
Fluents are relations whose truth values vary from state to
state and are denoted by predicate symbols whose last ar-
gument is a situation term. In FO-POMDPs, there are two
types of fluents, state fluents such as TigerS(di, s) and ob-
servation fluents such as NoiseO(di, s).2

We assume that all non-fluent predicates are fully ob-
served, e.g., this includes sorts and equality (=). Similarly,
we assume that all terms (including constants) are likewise
fully observed. All fully observed predicates may appear in
either the state or observation description, thus the observa-
tion relations may refer directly to the Herbrand universe of
terms used in the state relations.

If identity uncertainty (uncertainty over equality of terms
t1 and t2) is required, it may be formalized via uncertainty
over a Same-as(t1, t2, s) fluent. The binary equality predi-
cate = is not situation dependent and thus fully observed.
Domain theory: A domain theory without action precondi-
tions or an initial database3 is axiomatized in the situation
calculus using two classes of axioms (Reiter 2001):
• Successor state axioms (SSAs): There is one such axiom

for each fluent F (x, s) with syntactic form:

F (x, do(a, s)) ≡ ΦF (x, a, s),

where ΦF (x, a, s) is a formula with free variables among
a, s,x. These characterize the truth values of the fluent F
in the next situation do(a, s) in terms of the current sit-
uation s. While SSAs are typically compiled from effect
axioms and embody a solution to the frame problem (Re-
iter 2001), we bypass this compilation step in this paper
and directly provide the SSAs for brevity.

• Unique names axioms: These state that the action terms
of the domain are all pairwise unequal.
2State fluents are subscripted with S and observation fluents

with O . Also note we have augmented the predicates in the FO-
TIGER description with situation terms s since they are fluents.

3We assume all actions are executable in all situations and we
do not require knowledge of the initial state.

Regression and Progression The regression of a formula
ψ through an action a is a formula ψ′ that holds prior to
a being performed iff ψ holds after a. Suppose that fluent
F ’s SSA is F (x, do(a, s)) ≡ ΦF (x, a, s). We inductively
define the regression of a formula whose situation arguments
all have the form do(a, s) as follows:

Regr(F (x, do(a, s))) = ΦF (x, a, s)

Regr(¬ψ) = ¬Regr(ψ)

Regr(ψ1 ∧ ψ2) = Regr(ψ1) ∧Regr(ψ2)

Regr((∃x)ψ) = (∃x)Regr(ψ)

The inverse of regression is progression, which takes a for-
mula ψ and an action o and represents the formula ψ′ that
would hold after action o is performed in a situation satis-
fying ψ. Unlike regression, progression is only well-defined
for certain language restrictions of effect axioms. There are
a variety of such language restrictions, each leading to dif-
ferent expressiveness (Reiter 2001; Vassos, Lakemeyer, and
Levesque 2008). In brief, any progression algorithm that
takes a finite formula ψ as input and generates a progressed
finite formula ψ′ as output can be used in FO-POMDPs. For
a simple example of a finitely progressable theory that suf-
fices for FO-Tiger in this paper, we use a subset of the pro-
gressable context-free effects model (Reiter 2001). In brief,
we assume every pre-action fluent F1(x, do−1(o, s)) corre-
sponds to a unique post-action fluent F2,o(x, s). Then with
effect axiom pairs of the form

F1(x, do
−1(a, s)) ∧ a = o ⊃ (¬)F2,o(x, s) (4)

¬F1(x, do
−1(a, s)) ∧ a = o ⊃ (¬)F2,o(x, s) (5)

where (¬) allows possible negation, Reiter (2001) pro-
vides a progression operator Prog(ψ(do−1(o, s)))=ψ′(s)
that produces a post-action formula ψ′(s) that must hold in
s if the pre-action formula ψ(do−1(o, s)) holds prior to the
action. The algorithm for Prog is too long to reproduce here,
but in this paper, progressions of our examples will be self-
evident from the effect axioms.

Representation of FO-POMDPs
An FO-POMDP can be viewed as a universal POMDP that
abstractly defines the state, action, observations, transition,
reward and observation function tuple 〈S,A,O, T ,R,Z〉
for all possible domain instantiations, e.g., we desire an FO-
POMDP for FO-TIGER that holds for any number of doors.

In this section, we draw on the formalization of first-order
MDPs (Boutilier, Reiter, and Price 2001) and extend this to
first-order POMDPs by defining an observation function.

Case Representation of Reward, Value, & Probability:
We use a tabular case notation along with its logical defini-
tion to allow first-order specifications of the rewards, proba-
bilities, and values required for FO-POMDPs:

t =
φ1 : t1
: : :
φn : tn

≡

0@ _
i≤n

{φi ∧ t = ti}

1A (6)

Here the φi are state formulae where fluents in these formu-
lae do not contain the term do and the ti are constant terms.
As an example, we present the FO-TIGER reward:

R(s, a) =
∃dj .a = openS(dj) ∧ ¬TigerS(dj , s) : 10
∃dj .a = openS(dj) ∧ TigerS(dj , s) :−100
a = listenS : −1

(7)

This formalizes the previously described FO-Tiger reward
obtained when executing an action in a state. The case repre-
sentation can also be used to specify the value function and
transition probabilities, but first we discuss case operations.

Case Operations We begin by describing the following
binary ⊗, ⊕, and 	 operators on case statements (Boutilier,
Reiter, and Price 2001). Letting each φi and ψj denote
generic first-order formulae, we can perform the “cross-
sum” ⊕ of case statements in the following manner:

φ1 : 10
φ2 : 20

⊕ ψ1 : 1
ψ2 : 2

=

φ1 ∧ ψ1 : 11
φ1 ∧ ψ2 : 12
φ2 ∧ ψ1 : 21
φ2 ∧ ψ2 : 22

Likewise, we can perform	 and⊗ operations by, respec-
tively, subtracting or multiplying partition values. Note that
for a binary operation involving a scalar and a case state-
ment, a scalar value C may be viewed as > : C where > is
a tautology. We use the

⊕
and

⊗
operators to, respectively,

denote summations and products of multiple case operands.
Some resulting partitions may be inconsistent (e.g., φ∧¬φ)
and pruned, but pruning is only necessary for compactness.

Stochastic Actions There are two types of actions in FO-
POMDPs: transition actions and observation actions.
Transition actions such as openS(di) and listenS are ex-
plicitly executed by the “agent”.4 If a transition action gen-
erates non-nil observations then it must have an associated
observation action with the same parameters (e.g., listenO is
associated with listenS) that is executed implicitly after the
transition action is executed. As usual for POMDPs, transi-
tion and observation outcomes may be stochastic.

Stochastic actions (either transition or observation) can be
decomposed into a collection of deterministic actions, each
corresponding to a possible outcome of the stochastic ac-
tion. We then use a case statement to specify a distribution
according to which “Nature” may choose a deterministic ac-
tion from this set whenever the stochastic action is executed.
Formally, letting A(x) be a stochastic action with Nature’s
choices (i.e., deterministic actions) n1(x), · · · , nk(x), we
represent the probability of ni(x) given A(x) is executed in
s by P (nj(x), A(x), s). Next we provide an example.
Stochastic Observation Actions: As a major contribution
of the paper, we propose to model the observation func-
tion in an FO-POMDP via a distribution over determin-
istic observation action outcomes. We crucially note that
these observation actions are not under direct control of the
agent, but rather correspond to possible deterministic ways
in which the underlying state “generates” observations.

In FO-TIGER, we note that an observation action listenO
is executed whenever the agent executes transition action
listenS . For stochastic action listenO, there are two deter-
ministic outcomes: listenSuccO and listenFailO. Recalling
the FO-TIGER description, the agent’s hearing fails 30% of
the time on a listenO (she hears noise at all doors on failure):

P (listenSuccO, listenO, s) = > : 0.7 (8)

P (listenFailO, listenO, s) = > : 0.3 (9)

4For actions, S indicates transition and O indicates observation.

Because we will progress the state through deterministic ob-
servation actions to obtain relevant observation descriptions,
we need to define effect axioms for deterministic observa-
tion actions w.r.t. the previously stated requirements for pro-
gression. For FO-TIGER, our previously described special
case of context-free effects leads us to the following axioms:

TigerS(di, do
−1(a, s)) ∧ a = listenSuccO ⊃ NoiseO(di, s)

¬TigerS(di, do
−1(a, s)) ∧ a = listenSuccO ⊃ ¬NoiseO(di, s)

TigerS(di, do
−1(a, s)) ∧ a = listenFailO ⊃ NoiseO(di, s)

¬TigerS(di, do
−1(a, s)) ∧ a = listenFailO ⊃ NoiseO(di, s)

The openS(di) action generates no observations (only nil).
Stochastic Transition Actions: There are two stochastic
transition actions in the FO-TIGER POMDP: listenS and
openS(di). According to the FO-TIGER description, these
actions are actually deterministic, so there is only one de-
terministic outcome for each, respectively listenSuccS and
openSuccS(di). Then trivially, we obtain:

P (listenS , listenSuccS , s) = > : 1.0

P (openS(di), openSuccS(di), s) = > : 1.0

The state of fluent TigerS(di, s) is persistent according to
the FO-TIGER description, leading to the simple SSA:

TigerS(do(a, s)) ≡ ΦTigerS
(s) ≡ TigerS(s) (10)

This completes the FO-TIGER FO-POMDP description. We
necessarily keep the FO-TIGER domain simple to ensure its
solution is self-contained in this paper. More complex ex-
amples of stochastic transtion actions compatible with our
FO-POMDP definition are in Sanner and Boutilier (2009).

Here we do not consider the factored extension of FO-
POMDPs as done for factored FO-MDPs (Sanner and
Boutilier 2007; Sanner 2008) to permit the specification of
stochastic actions with an indefinite number of independent
outcomes. Such factored extensions are highly non-trivial
and beyond the scope of this initial FO-POMDP work.

Symbolic Dynamic Programming
In this section, we define a symbolic dynamic programming
(SDP) algorithm for computing solutions to FO-POMDPs in
the form of lifted α-vectors. This SDP algorithm performs
all derivations at a symbolic level that is independent of any
particular set of domain objects and can accommodate ac-
tions with infinite relational observation outcome spaces. In
this way, the algorithm may derive exact compact lifted rep-
resentations of the value function in cases where doing so
would be generally impossible for ground methods.

In our symbolic dynamic programming solution to FO-
POMDPs, lifted α-vectors will be represented as parameter-
ized case statements, e.g. αCase(x, s). The parameters in
these case statements will refer to the parameters x of all ac-
tions in the conditional policy represented by αCase(x, s).

Our lifted POMDP value function will be represented as
a maximization over a set Γh = {αCase(x, s)}:

V h(s) = maxθ maxαCase∈Γh b · αCase(x, s)θ (11)

Technically, belief state b assigns a probability to each
ground state of an FO-POMDP (for a fixed instantiation

of domain objects encountered at execution-time). If b is
sparse, one efficient way to calculate b · αCase(x, s)θ is to
sum over the non-zero probability belief states in b, multi-
plying each belief state probability by the weight of the par-
tition of αCase(x, s)θ satisfied by that belief state. Alter-
nately, if b is logically structured, Wang and Schmolz (2005;
2007) provide insights on the compact maintenance of belief
states b and the efficient computation of b · αCase(x, s)θ.

Now we need only specify how to derive Γh via symbolic
dynamic programming, but as a crucial intermediate step,
we discuss the automatic derivation of relevant observations
Oh

A and distribution Ph(Oh
A|s,A) for action A at horizon h.

Automatically Deriving the Observation Function Un-
like standard enumerated or factored POMDPs where there
are a finite number of observation outcomes for an action,
FO-POMDPs permit a potentially infinite relational obser-
vation space. However, given a policy where we execute
transition action a then follow the conditional policy given
by αCase(x, s), we need only make the relevant observa-
tions that disambiguate future attainable values.

For example, in FO-TIGER, assume that we will execute
openS(di) (as the only step of a 1-step conditional policy as-
sociated with αCase(x, s)) where there is a tiger potentially
lurking behind di. Then a relevant observation for initial ac-
tion a = listenS is NoiseO(di, ·), but not NoiseO(dj , ·) for
some dj 6= di (since knowing the latter would not help us
determine whether openS(di) is a good action). Fortunately,
given that an action a generates observations from states via
observation actions and our observation action theory was
required to be finitely progressable, we have a convenient
way to automatically derive a finite, minimal partitioning of
the relational observation space (and observation probabili-
ties) relevant to distinguishing the value of action a followed
by the conditional policy given by αCase(x, s).

Let us clarify this important issue with an example, where
we assume that at horizon h = 1, the 1-step conditional
policy associated with αCase1

1,openS
(di, s) is openS(di):

αCase1
1,openS

(di, s) = ¬TigerS(di, s) : 10
TigerS(di, s) : −100 (12)

Clearly, the only relevant state partitions in this case are
{¬TigerS(di, s),TigerS(di, s)}. Next we assume that we
will execute listenS at horizon h = 2. Then the observations
and probabilities relevant to αCase1

1,openS
(di, s) that can be

observed on a listenS action are given by the progressions of
the pre-observation state partitions of αCase1

1,openS
(di, s)

through the deterministic outcomes of listenO:

Prog(TigerS(di, do
−1(listenSuccO, s))) = NoiseO(di, s)[.7]

Prog(¬TigerS(di, do
−1(listenSuccO, s))) = ¬NoiseO(di, s)[.7]

Prog(TigerS(di, do
−1(listenFailO, s))) = NoiseO(di, s)[.3]

Prog(¬TigerS(di, do
−1(listenFailO, s))) = NoiseO(di, s)[.3]

Here in brackets, we also indicate the probabilities of each
deterministic observation outcome from (8) and (9). Pro-
gressing the relevant state from αCase1

1(di, s) to obtain rel-
evant observations and taking the cross-product of these ob-

servations, we obtain relevant observation space O2
listenS

:

O2
listenS

= {NoiseO(di, s),¬NoiseO(di, s)} (13)

From this we now explicitly write P (O2
listenS

|s, listenS)
by summing probabilities in [·] above for the same obser-
vation outcomes generated from the same underlying state
(for readability, we suppress the post-observation situation):

P (NoiseO(di)|s, listenS) =
¬TigerS(di, s) : 0.3
TigerS(di, s) : 1.0

(14)

P (¬NoiseO(di)|s, listenS) =
¬TigerS(di, s) : 0.7
TigerS(di, s) : 0.0

(15)

For correctness, note the sum over observations in each state

P (NoiseO(di)|s, listenS)⊕ P (¬NoiseO(di)|s, listenS) = 1.0

We did not discuss parameterized observation actions
since they were not needed for FO-TIGER, however, we
note their treatment is no different than above. Hypothet-
ically, if we allowed for a door-specific listenS(di) tran-
sition action then we might have an observation action
listenO(di) with deterministic outcomes listenSuccO(di)
and listenFailO(di). Then two context-free SSAs might be

TigerS(di, do
−1(a, s)) ∧ a = listenSuccO(di)⊃NoiseO(di, s)

TigerS(dj , do
−1(a, s)) ∧ a = listenSuccO(di) ∧ di 6= dj

⊃ ¬NoiseO(di, s)

This fragment states we would only hear noise from a tiger
behind door di if di is the door being listened to. In this way,
we see that observation action outcomes can be restricted
by transition action parameters, if needed. Progression of
such context-free SSA theories according to Reiter (2001)
to obtain relevant observations proceeds as above.

This completes our demonstration of how to derive rel-
evant observations from an α-vector given transition ac-
tion AS . Generally, given a set of αCases, Γh =
{αCaseh

1 , . . . , αCase1
k} at horizon h, one can derive all

relevant observations Oh
AS

from the progressions of parti-
tions of

⊗k
i=1 αCaseh

i though observation outcomes of AO

and for each φ ∈ Oh
AS

, derive corresponding case statement
probabilities Ph(φ|s,AS) as above.

Lifted Dynamic Programming with SDP As for dy-
namic programming in the ground case, we will obtain an
iterative algorithm that starts with the 0 α-vector at zero de-
cision stages to go and computes the optimal receding hori-
zon control policy for successively larger horizons up to H .
At every horizon of h ≤ H decisions to go, the optimal
value function V h(s) will be of the form in (11) where Γh

represents the set of α-vector cases (αCases) that comprise
this optimal value function. This algorithm can be formally
stated as follows (and will be followed by an example):

1. Set Γ0 = { > : 0.0 }, set h = 1.

2. For Γh and each stochastic transition action A(x), com-
pute the relevant observation setOh

A and for each o ∈ Oh
A,

derive Ph(o|s,A) as previously described.

3. For each stochastic transition action A(x) and each
o ∈ Oh

A, compute a gCaseh
A(x),o,j(s,yj) for each

αCaseh−1
j ∈ Γh−1 by summing over all Nature’s choice

state-changing action nk(x) outcomes for A(x):

gh
A(x),o,j(s,yj) =

⊕
nk(x)

Regr(Ph(o|do(nk(x), s), A))⊗

P (nk(x), s, A(x))⊗ Regr(αCaseh−1
j (do(nk(x), s),yj))

Here we note that gh
A(x),o,j(s,yj) is parameterized not

only by the action parameters of A(x), but also by any
(standardized-apart) action parameters yj of the condi-
tional policy for αCaseh−1

j .

4. Compute the set Γh
A = {αCaseh

i,A(y, s)} of all possible
conditional policies for given initial action A(x):5

Γh
A = R(s,A(x))⊕ γ�o∈Oh

{
gh

A(x),o,j(s,yj)
}

j

Here we let y be the concatenation of all action parame-
ters yj appearing in each of the gh

A(x),o,j(s,yj).

5. Union the sets Γh
A for all stochastic transition actionsA to

represent the optimal form of V h(s) in (11):

Γh =
⋃

A
Γh

A

6. If horizon h < H , set h = h+ 1 and go to step 2.

SDP Example For h = 0, Γ0 is given in step 1. Space lim-
itations only permit us to present one conditional policy up
to horizon h = 2. Clearly, one good h = 2 policy is to first
listenS followed by openS(di) on a ¬NoiseO(di) observa-
tion, otherwise listenS again on a NoiseO(di). Hence we
focus on generating this particular h = 2 conditional policy
in the following example.

For h = 1, we derive Γ1 starting with openS(di). There
is no observation on openS(di) so O1

openS
= nil in step

2. Because Γ0 consists only of > : 0.0 , we trivially com-
pute gh

openS(di)
(s) = > : 0.0 in step 3. Step 4 adds in

the reward R(s, a) given in (7) and after simplification w.r.t.
a = openS(di) and the unique names axiom, we obtain
the result αCase1

1,openS
(di, s) already shown in (12). For

listenS , αCase1
1,listenS

(s) = > : −1.0 ; intuitively, since
the action has no effects or usable observations, we simply
obtain the reward of R(s, listenS) = −1 for all states. Thus
Γ1 = {αCase1

1,openS
(di, s), αCase1

1,listenS
(s)}.

For h = 2, since αCase1
1,openS

(di, s) is the only α-vector
in Γ1 with partitions other than >, we can derive O2

listenS

5Here, the cross-sum of sets of case statements is defined as
�jSj = S1 � · · ·� Sj where P �Q = {p⊕ q|p ∈ P,q ∈ Q}.
The ⊕ of a case statement and a set is defined as the elementwise
sum: v ⊕ {u1, . . . ,uk} = {v ⊕ u1, . . . ,v ⊕ uk}.

precisely as outlined from (12) to (13). Doing steps 3 and 4:

αCase2
1,listenS

(di, s) =
¬T (di) : 5.7
T (di) : −1

= −1⊕ (16)

¬T (di) : .7
T (di) : 0

⊗ ¬T (di) : 10
T (di) : −100| {z }

¬NoiseO(di) → openS(di)

⊕ ¬T (di) : .3
T (di) : 1

⊗−1| {z }
NoiseO(di) → listenS

For compactness we abbreviate TigerS(di, s) as T (di).
In the calculation following the result, the first term
R(s, listenS) = −1, the second term is the observation
probability¬NoiseO(di) in (15) timesαCase1

1,openS
(di, s),

and the third term is observation probability NoiseO(di)
given in (14) times αCase1

1,listenS
(s). We note that step 3 of

SDP requires that the observation probabilities and αCase1
1

statements are regressed using the Regr operator, but in the
special case of FO-TIGER with transition action SSA given
by 10, the state is persistent andRegr is an identity operator.

Lifted Conditional Policies and Dominance In general,
we note that since the optimal policy in a POMDP is history-
dependent, we cannot directly quantify out the action vari-
ables x at each state as we would do for a state-dependent
policy in first-order MDPs as observed by Wang et al. (2007;
2010). However, it is still possible to identify logical
conditions on x that eliminate dominated instantiations of
αCase(x) (recall that each αCase(x) is a lifted template
for ground α-vectors and conditional policies obtained by
instantiating x). While we cannot provide a full exposition
of dominance testing here, we do provide an example illus-
trating the power of lifted pointwise dominance testing.

Let us revisit (16); because the first action in this condi-
tional policy is listenS and requires no action parameters,
let us delay dominance pruning for action parameter di until
after we have executed listenS and made the observation of
(¬)NoiseO(di). Thus, we have two conditional policies:

¬NoiseO(di) → αCase1
1,openS

(di, s) = ¬T (di) : 10

NoiseO(di) → αCase1
1,listenS

(s) = > : −1

We note that αCase1
1,openS

(di, s) does not have a parti-
tion for T (di) since there is zero probability of observing
¬NoiseO(di) in state T (di).

To demonstrate lifted dominance pruning, we first define a
new case binary comparison operator: ≥ is like the other bi-
nary operators⊕ and⊗ except that the terms of the resulting
case statement are the boolean values > and ⊥ representing
the inequality evaluation.

Given this ≥ operator, we define a pointwise dominance
test for αCase1(x) over αCase2(y) (non-situation vari-
ables in each αCase must be standardized apart), where b is
a belief state probability vector (∀ibi ∈ [0, 1],

∑
i bi = 1):

∀b [b · αCase1(x) ≥ b · αCase2(y)] = >
≡∀b [b · (αCase1(x)	 αCase2(y)) ≥ 0] = >
≡ [αCase1(x)	 αCase2(y) ≥ 0] = >
≡ [αCase1(x) ≥ αCase2(y)] = > (17)

We removed the dependence on b since potentially if each
bi > 0, this is equivalent to checking that value dominance

1 2 3 4 5 6 7 8 9 10

10
2

10
4

10
6

α−vectors in Optimal Solution vs. Domain Size

Domain Objects (Doors for FO−Tiger)

α−

ve
ct

or
s

(lo
g

sc
al

e)

Enum. POMDP
FO−POMDP

Figure 2: Comparison of SDP and enumerated DP on FO-Tiger.

holds in all mutually satisfiable partitions. Thus, pointwise
dominance only holds for an instantiation of x and y if all
consistent partitions of αCase1(x) ≥ αCase2(y) are >.

Applying this dominance test to our example, we obtain:

αCase1
1,openS

(di, s) ≥ αCase1
1,listenS

(s) = ¬T (di) ∧ > : >

Since the only partition in the resulting case statement is >,
we see that after executing listenS in the conditional pol-
icy for αCase2

1,listenS
(di, s) in (16), any instantiation of di

s.t. ∃di ¬NoiseO(di) strictly dominates all alternate instan-
tiations of di where NoiseO(di). Hence, lifted pointwise
dominance analysis can prune suboptimal policies through
the use of existential abstraction in the observation space.

Proof-of-concept Empirical Evaluation We solved FO-
TIGER using both a simple implementation of our FO-
POMDP SDP algorithm and Sondik’s enumerated DP algo-
rithm (Sondik 1971) for h = 2 (Sondik’s algorithm could
not solve h = 3 for more than 1 door). On a 2Ghz Intel
Linux machine, SDP required less than 30s and produced 8
αCases; we limited Sondik’s algorithm to 10 hours (we had
to restrict to pointwise dominance for it to complete for 3
doors). In Figure 2, we compare the number of α-vectors
generated in the optimal solution vs. the number of αCases
(domain-size independent) generated in SDP. Even for small
problems, SDP outperforms enumerated DP due to the large
2#Doors observation space size. For correctness, we note that
each α-vector generated by DP corresponds to a ground in-
stantiation of one of the αCases generated by SDP.

Correctness of SDP Wang et al. (2007; 2010) provide a
proof of correctness of a related SDP algorithm for relational
FO-POMDPs; since their FO-POMDP formalism restricts
observations to predicates over the action parameters only,
it remains to show that correctness is preserved in our more
general observation framework. We note that a sketch of
correctness is quite simple: if we inductively assume that the
state partitions in the αCase statements distinguish all rele-
vant values (this holds for the base case of Γ0), then the ob-
servations need only provide a distribution over the αCase
state partitions. This is precisely what is achieved via the use
of progression to generate relevant observations. If we were
to subdivide observation partitions, this would only give us
more accurate information on states within the same αCase
state partition; since these states would have the same value,
no additional value would be distinguished in expectation.

Related Work and Concluding Remarks
Wang et al. (2007; 2010) have presented the only competing
relational POMDP solution, however we note that their ap-
proach cannot encode the listenS action in FO-TIGER that
generated an observation for every door di. We argue that
our treatment of the observation space in FO-POMDPs is
the first to fully exploit the full power of first-order tech-
niques: we can now automatically derive compact relevant
first-order abstractions in large or potentially infinite obser-
vation spaces. While future work needs to focus on prac-
tical enhancements of the SDP algorithm (e.g., approxima-
tion, point-based approaches), this work represents a crucial
advance in scalable relational POMDP solutions.

Acknowledgements
We thank Roni Khardon for his clarifying observations on earlier
versions of this work. NICTA is funded by the Australian Gov-
ernment’s Backing Australia’s Ability initiative, and the Australian
Research Council’s ICT Centre of Excellence program. This work
was supported by the Fraunhofer ATTRACT fellowship STREAM.

References
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic dynamic
programming for first-order MDPs. In IJCAI, 690–697.
Doshi, F., and Roy, N. 2008. The permutable POMDP: fast solu-
tions to POMDPs for preference elicitation. In AAMAS, 493–500.
Enderton, H. A. 1972. A Mathematical Introduction to Logic. New
York: Academic Press.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Plan-
ning and acting in partially observable stochastic domains. Artifi-
cial Intelligence. (1-2): 99-134.
Kim, K.-E. 2008. Exploiting symmetries in POMDPs for point-
based algorithms. In AAAI, 1043–1048.
Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York: Wiley.
Reiter, R. 2001. Knowledge in Action: Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.
Sanner, S., and Boutilier, C. 2007. Approximate solution tech-
niques for factored first-order MDPs. In (ICAPS-07), 288 – 295.
Sanner, S., and Boutilier, C. 2009. Practical solution techniques
for first-order MDPs. Artificial Intelligence. 173:748–488.
Sanner, S. 2008. First-order Decision-theoretic Planning in Struc-
tured Relational Environments. Ph.D. Dissertation, University of
Toronto, Toronto, ON, Canada.
Shani, G.; Brafman, R. I.; Shimony, S. E.; and Poupart, P. 2008.
Efficient add operations for point-based algorithms. In ICAPS.
Sondik, E. J. 1971. The Optimal Control of Partially Observable
Markov Processes. Ph.D. Dissertation, Stanford University.
Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized point-
based value iteration for POMDPs. JAIR 24:195–220.
Vassos, S.; Lakemeyer, G.; and Levesque, H. 2008. First-order
strong progression for local-effect basic action theories. In KR.
Wang, C., and Khardon, R. 2010. Relational partially observable
MDPs. In AAAI.
Wang, C., and Schmolze, J. 2005. Planning with POMDPs using a
compact, logic-based representation. In IEEE ICTAI, 523–530.
Wang, C. 2007. First Order Markov Decision Processes. Ph.D.
Dissertation, Tufts University, USA.

